
X.500 User Agents page i ...one year in

Designing an X.500 User Interface: One Year In

Andrew Findlay Damanjit Mahl Stefan Nahajski

Brunel University

x500@brunel.ac.uk

ABSTRACT

The outline of a Directory user interface design was
presented at the 1989 UKUUG conference in Cardiff.
Several working interfaces have now been built and
released for public comment. A design has been finalised
as a result of experience and feedback gained from the
working interfaces. The evolution of this design is
charted, and the current X Window System and MS-
Windows implementations are described. An overview
of the latest design is given, and progress is reported.

1. Introduction.

The idea of X.500 is ... to facilitate the interconnection of information
processing systems to provide directory services. The set of all such systems,
together with the directory information which they hold, can be viewed as an
integrated whole, called the Directory. The information held by the Directory,
collectively known as the Directory Information Base (DIB), is typically used
to facilitate communication between, with, or about objects such as
application entities, people, terminals, and distribution lists1.

The X.500 Directory can be thought of as an ‘electronic phone book’. Like a
phone book, a geographic structure is imposed on the data; no phone book lists
all people in the world in a single alphabetic sequence. It is necessary to have
some idea of where a person might be before starting to search for them.

The X.500 Directory is similar; information is held in a tree structure, called

X.500 User Agents page ii ...one year in

the Directory Information Tree (DIT). Information is distributed across a large
number of co-operating Directory System Agents (DSAs), each holding data
concerned with a relatively small area. A consequence of this is that any
searches covering a wide geographic area tend to be slow and expensive. User
interfaces must therefore encourage the user to narrow the field of search as
rapidly as possible.

This paper describes the continuing design and implementation of user
interfaces for the X.500 Directory.

2. Background

At the 1989 UKUUG conference in Cardiff, a paper was presented which
introduced some of the services that an X.500 Directory would provide, and
described an outline design of a user interface to make use of these services.
Since then the team at Brunel University has produced four interfaces called
sd, xd, xdsm and pod. Brief descriptions of these are given later. A design
document has been written in the light of experience gained from those
prototypes, and two new interfaces called Xdir and PCdir are currently under
development.

3. Current User Interfaces

Near the beginning of the year, an interface called sd was developed. This
is a character mode interface for UNIX which derived from the early interfaces
that were distributed as part of ISODE/QUIPU2. It provides a simple
mechanism for
navigating the Directory,
and performing searches,
listing children of a node
etc. The user is
presented with a screen
similar to that shown.
Pressing an appropriate
key invokes an action.

X.500 User Agents page iii ...one year in

It was decided at a meeting of the Directory Pilot Group that some
prototype Directory user interfaces should be presented at the Networkshop
90 conference held at Newcastle University in March. This resulted in three
interfaces being developed in addition to sd, namely xd, xdsm and pod. These
were written for X and used the Xt toolkit and athena widget set (Xdsm
initially used the Hewlett Packard widget set but switched to the athena
widgets early on).

Xd and Xdsm occupied a large screen area, presenting information such as
current Directory position, directory information about the current position and
a list of children of the current position at the same time on a single form. In
addition to this Xdsm maintained a list of ‘places visited’ which was shown at
the bottom of the form. The interfaces were driven by pointing and clicking the
cursor on a name in a list or on "buttons" which invoked directory or interface
operations. Xd differed from Xdsm, by showing the history of places visited in

X.500 User Agents page iv ...one year in

a separate pop-up, this being invoked by pressing a button. Both interfaces
used pop-ups to implement help facilities. A screen shot of xd is shown below.

The idea of using pop-ups was taken further with the writing of Pod.
Instead of maintaining an area in which a list of children of the current position
could be displayed, Pod created a pop-up containing the list when required.

It was felt that Pod was a definite improvement over the previous
interfaces and the decision was taken to further develop Pod.

4. Pod Today

Pod is now a high functionality DUA. It enables a user to read, modify, list
and search the Directory. A search type defaulting mechanism is employed
and complex search filters can be defined. Both the defaulting mechanism and
search filters are configurable. All Directory results are shown in popup
windows which can be maintained on screen, removed, or reused by later
operations. A popup help card is also available, which has a ‘cursor position
sensitive’ text. Examples of the features provided by Pod are shown in the
following screen shots.

X.500 User Agents page v ...one year in

Pod Main Window
When Pod is started, the main window appears. This shows the current directory posi-
tion, allows a search value to be entered, displays and sets, via a drop down menu, the
current search type (in this case "Person"), and allows functions of the the interface to be
invoked by pressing buttons.

X.500 User Agents page vi ...one year in

Pod List Pop-up
The list pop-up can contain the result of a list, search or the history list. The contents are

described in the status bar (top right), and errors or limits are reported in the bottom status bar.

X.500 User Agents page vii ...one year in

Pod Read Pop-up
The Keep/Kept button that can be seen in these examples is analogous to

the push pin used in Open Look. If a Keep button is pressed, the associated
window will not be used for subsequent operations and the Keep label changes
to Kept. This makes it possible to collect a number of read (and list) pop-ups
on screen at the same time.

X.500 User Agents page viii ...one year in

5. Design Document

A design document3 has been produced which reflects the experiences and
feedback obtained during the development of the early interfaces. These
experiences and the feedback can broadly be classified into two groups; those
that reflect a personal preference or suitability for a given context, and those
that describe an inconsistency or weakness in the design (although these can
also be influenced by the former). The design incorporates both aspects of the
feedback received.

The design is divided into two parts describing a visual interface, and a
query engine.

5. 1 Visual Interface
The design of user interfaces is fraught with dangers. It is all too easy to

annoy or frustrate a user by grouping functionality ‘badly’, laying out ‘wrongly’
or over/under specifying the interface for example. The design of the visual
interface attempts to avoid many of these dangers by putting such decisions in
the hands of the user. This is accomplished by providing a kit of parts suitable
for building DUA interfaces.

5.1. 1 Kit of Parts
The kit of parts comprises such visual objects as buttons, lists, directory

read areas and also actions such as read, list and search. The parts can be
grouped together, layouts can be specified and actions can be associated with
objects. A specification language has been defined allowing the configuration
of such a interface to be read from a file. At a later stage the configuration file
may be machine generated as a result of an interactive configuration session
with a user.

5. 2 Query Engine
The query engine provides effective access to and control over data in the

Directory, regardless of the visual interface with which it cooperates. In
addition to normal directory operations such as read, modify and list, the query
engine enables the user to define directory object types. These object types
are used as the basis for the search operation. An object type definition
specifies the collection of X.500 attributes which denotes the object type, the

X.500 User Agents page ix ...one year in

attributes to match against and the type of matching to perform for each
attribute, and an amount of structural information which describes how a given
type of entry relates to the rest of the Directory Information Tree (DIT). As
an example, the generic type ‘Place’ might be informally defined as:

Type denoted by:
objectClass contains ‘locality’
OR objectClass contains ‘room’
OR objectClass contains ‘country’

Match on:
=countryName
OR ~stateOrProvinceName # approx
OR %locality # substring
OR =friendlyCountryName # equals

Label:
‘Place’

Structural Information:
for entries of type: country locality
 children may be: organization
 locality
for entries of type: room
 children may be: none

The structural information in an object definition provides hints to the type
of search strategy that should be employed. Other search strategies, such as
User Friendly Naming4 may also be used where appropriate.

6. Data Manipulation

As has already been mentioned, a high degree of user configurability is an
important feature in the design of the directory interface. The configuration of
the visual interface and the query engine have been briefly described. However
no mention has yet been made of how the data extracted from the Directory
will be used. The X500 standard suggests a number of different modes of use.
Browsing or simple lookup will form a large part of any use, but there will also
be a need to store data for local use in a number of different formats. Typical
required formats may be address labels created from a distribution list stored
in the Directory, or maybe business cards containing photographs.

The design introduces an idea called ‘save formats’. These are user
configurable and specify the layout and content of a named format. As an

X.500 User Agents page x ...one year in

example, consider a save format called nametag. This might be defined to
contain the photograph, name and address of the given directory entry and laid
out say with the text to the right of the photograph. The user could then,
whilst using the interface, select the nametag save format and then choose
people from the Directory for whom name tags should be produced. The exact
mechanism by which layout and other post processing will be achieved for the
multitude of possible formats has not yet been decided. It is likely however
that a save format will specify the content and a post processor which will be
invoked to deal with layout and output to a file or other device.

7. Implementation

Implementations of directory interfaces are required to run under DOS and
UNIX. Versions suitable for X (using the Athena widget set), X using OSF
Motif, and a character addressable terminal are required for UNIX. DOS
versions suitable for Microsoft Windows and character mode use are
required. The DOS versions are intended for two different scenarios; the
Windows implementation is expected to be running on a highly specified DOS
machine which will also be running a DOS implementation of the OSI stack,
whereas the character mode interface is intended for minimal DOS machines
connected to a query engine on a serving DOS machine via a PC LAN.

The success or otherwise of the design described above will depend to
some degree on the support and flexibility of the proposed platforms. As
mentioned, implementations are required for DOS and UNIX, and the
difference in support provided by these two systems has caused major
differences in the implementations of the interfaces to appear. For the most
part these differences will affect the visual interface part of the design. More
particularly, it is expected that the DOS interface will have very restricted
configurability. The character mode visual interfaces are not expected to be
highly configurable.

8. Future

The work mentioned so far has been aimed at providing access to
information the Directory holds regarding people or places. The X.500
standard recognises many different modes of use for the Directory. One mode
which is currently of interest is its use as a distributed diary store. Any
person or room for example could have a diary attribute associated with them.

X.500 User Agents page xi ...one year in

This could be interrogated or altered, subject to access controls, and thus
meetings or bookings arranged.

Other modes of Directory use will doubtless appear and each will have
specific requirements of a user agent.

9. Contacts

The authors are open to any comments or questions which you may have
and can be contacted at X500@brunel.ac.uk. The source code for sd, xd and
pod are available from Brunel on request.

10. References

1 ISO/CCITT Recommendation X.500: The Directory - Overview of Concepts,
Models and Services, Geneva, March 1988. ISO 9594 is technically aligned
with X.500.

2 The ISO Development Environment User’s Manual, Volume 5: QUIPU, UCL,
Jan 1990, Kille, Robbins, Roe, Turland.

3 Design Document: Xdir - X.500 Directory User Agent, Andrew Findlay,
Damanjit Mahl, Stefan Nahajski, Brunel University, June 1990.

4 Using the OSI Directory to achieve User Friendly Naming, S.E. Kille, June
1990

X.500 User Agents page xii ...one year in

