
Design Document

Xdir - X.500 Directory
User Agent

Andrew Findlay
Damanjit Mahl
Stefan Nahajski

X500@brunel.ac.uk

Brunel University
M & ES

Kingston Lane
Uxbridge
UB8 3PH

UK

Xdir Design Document

Introduction

page 2 Brunel University

1 Introduction

This document describes the design of a user agent for the X.500
directory service. The design is intended to be implemented as an
application running in a windowing environment such as X, NeWS,
OS/2 Presentation Manager or MS Windows. It is expected that
implementations for X and MS Windows will be produced within the
timescale of the project.

The interface design has developed as a result of experience and
feedback gained from three prototype DUAs; namely sd, xd and pod.

1.1 Overview of Design Objectives
The design goals of Xdir include:

• Simplicity
The interface is intended for use by novice users, and
yet have the higher level of functionality required by
more advanced users. To this end, an approach similar
to that taken by the designers of the X.400 Mail User
Agent1 has been adopted. More advanced features
are hidden from the novice user but can be explored as
experience increases.

• Configurability
The interface should allow the experienced user to
adapt it to their particular requirements, in an
interactive manner.

• Consistency
A consistent approach for invoking commands and
performing actions should be used.

• Portability
The Xdir design should be capable of being
implemented on many platforms. Where possible, the
look and feel of Xdir, has been designed to be
independent of style toolkits, so that a user will be
able to recognize it on different platforms.

1 Hugh Smith & Graham Lunt, "The XUA Visual Interface", Communications

Research Group, Nottingham University.

Xdir Design Document

Visual Interface

page 3 Brunel University

2 Visual Interface

This chapter describes the visual interface to Xdir. As Xdir is intended
to be implemented on a number of hardware platforms, this design is
high level and abstract in it’s nature.

Xdir aims to provide a directory navigation tool which does not require
the user to have a grasp of tree structures, whilst using the tree to
guide the user’s enquiry.

The visual interface will be described in two parts. Firstly, basic
windowing interface primitives will be defined, and then the way these
are used to create a "kit" of interface parts will be described. At the
end of the chapter, an example configuration will be described, to
demonstrate the use of the kit of parts.

2.1 Windowing Primitives
Many concepts and properties are common to all windowing
environments. However, there are also many differences which may
result from the use of a particular windowing system or development
toolkit. This section specifies the primitives to be used and avoids
toolkit/environment differences.

The primitives described are:

• window
• popup
• scroll bar
• button

Window
A window is a rectangular screen area which may consist of a title bar,
scroll bars and a number of contained sub-windows.

Popup
A popup is a transient or semipermanent window which is created
when required and destroyed when not required. Popups are used to
minimize the use of screen real estate.

Xdir Design Document

Visual Interface

page 4 Brunel University

Scroll Bar
A scroll bar allows a large virtual screen area to be displayed on a
smaller real screen area (viewport). The scroll bar associated with the
viewport allows control over which part of the virtual area is visible in
the viewport.

Button
A button is a screen area used to invoke an action. A button is pressed
by moving the cursor into the button area and clicking with the mouse
button.

2.2 Kit of Parts
The "kit of parts" concept allows the visual interface to be highly
configurable in its layout and mode of operation.

The kit comprises a set of interface objects which can be grouped in
many different ways.

The interface objects are described in the following sections. Some
sections include example screen dumps. However if the nature of any of
the interface parts is still unclear, it may be helpful to refer to the
example layout described at the end of the chapter.

2.2.1 Button
A button is a generic method of invoking an action. Each Xdir button
has a name and action associated with it. The name given to a button,
is used as the label for the button. This can be specified either as a text
string, or as a reference to a bitmap file which will be shown in the
button. The action associated with a button will often require data
which may be the result of a further action, such as clicking on an item
or may be retrieved from another object in the
grouping (such as a search value for the
search action). This second method of
retrieving data, implies that certain actions
are logically bound to other interface objects.
These actions can only be used in groups
containing the requisite objects.

Xdir Design Document

Visual Interface

page 5 Brunel University

The actions which may be selected are listed below. The descriptions
should become clearer when the interface objects have been described:

• Quit Action
quit application.

• Help toggle action
this controls the operation of the help text object.

• History action(group_name)
a history action passes a list of most recently
visited entries to the specified group.

• Create window action(group_name)
this creates a window containing the objects
specified in the list "group name" (see also keep
action).

• Search action(group_name)
performs a search using the parameters found in
other objects in the same group. The results are
passed to the named group.

• List Action(group_name)
lists children under the ‘current position’ and
passes the results to the specified group.

• Config action
allows configuration of many aspects of Xdir.

• Keep action
By default only one instance of a group may be
visible at a time. If a second instance is
requested, the first instance is cleared and
reused to display the information. However, it is
sometimes useful to be able to keep a number
of instances of a particular group. If an instance
of a group is to be kept, then the keep action
will prevent it from being reused. The close
action will always destroy the instance of the
group.

Xdir Design Document

Visual Interface

page 6 Brunel University

• Close action
see keep action.

• Save action
save selected entry to all channels specified by
current configuration. Typically these will be
save to buffer or pass to XUA.

• Process save buf action
causes a menu to appear showing a number of
destination/format descriptions, to which the
entries in the save buffer will be saved.

• Delete save buf action
this requires selection of an entry from the save
buffer. The selected entry will be removed from
the buffer.

• Add save buf action
the entry currently being read is added to the
save buffer.

• Modify action
this gives a menu of modification actions that
can be applied to the entry currently being read
(modify, delete, move).

• Add attributes action
gives a menu of attributes which can be added
to the entry currently being modified.

• Submit modified entry action
takes the current status of the entry being
modified and tries to apply it to the directory.

2.2.2 Menu
A menu object is very similar to a button
object. However, clicking on a menu object,
produces a list of actions to choose from. The
actions then behave in a similar way to that
described for the button object.

Xdir Design Document

Visual Interface

page 7 Brunel University

2.2.3 Help Text
The help text object provides a user driven help facility. When the
object is active (controlled by the help toggle action), clicking on an

Clicking on ‘gb’ will make the current position:

All current position objects are synchronized, so changing the current
position in one window changes each current position object.

area of Xdir, will display
descriptive text relating
to the object being
selected. When the help
text object is inactive,
the last description
displayed is kept, and
actions have their
normal effect.

2.2.4 Current Position
A current position object displays the current directory position with
the component RDN’s shown separately. Clicking on an RDN causes it
to become the current position. So, for example, if the current directory
position is:

Xdir Design Document

Visual Interface

page 8 Brunel University

2.2.6 Search Type
The search type object also has name and value areas. The value area
shows the current directory entry type being searched for. This will be

2.2.5 Search Value
The search value object has a name and a text editing area. The name
can be set in a similar way to that used for button objects. The editing
area allows a search value to be entered and/or edited, and key-
bindings will be definable.

set automatically to a default type.
However, clicking on the search
type object gives the user a choice
of search types from a menu.

2.2.7 Status
A status object is used to display errors and administrative limits
which have occurred as a result of an action. A status object can take
one of two forms, a simple text area or a popup. These can be
configured for use by status messages of different severity. The object
that is trying to display the status message will look for a status object
in its group. If one is found, then it will be used, otherwise the message
will not be displayed.

2.2.8 Title
A title object is similar to a status object but is used specifically to
show titles. A title might show the DN of an object being read, or the
parent of a list, or might simply be a text string.

Xdir Design Document

Visual Interface

page 9 Brunel University

2.2.9 List
List objects are a general way of displaying lists, be they the result of
list, search or history actions. The list to be displayed is shown in a
scrolled text area and selections can be made from the list by using the
mouse. The selected item is then passed to a context specified action.

2.2.10 Entry display
An entry display object displays the attributes of a directory entry.
The list of attributes to display and the format used are configurable.
Clicking on an attribute can be configured to perform an action using the
selected attribute.

Xdir Design Document

Visual Interface

page 10 Brunel University

2.2.11 Modify Entry
The modify entry object is similar to the entry display object. The major
difference being that the attribute values can be edited.

2.2.12 Add attributes
An add attributes object provides a pop down menu of attributes that
can be added to an associated modify entry object.

2.3 Object Layout
In order to maintain a consistent layout throughout Xdir, objects are
laid out in a predefined way. This can be overridden for a particular
group of objects.

2.4 An Example Configuration
The diagram below depicts possible ‘main’ and ‘list’ windows using
the described configuration scheme.

Close and Keep buttons

List

Status window

Buttons Search TypeSearch Value

Current Position

Title

Xdir Design Document

The Query Engine

page 11 Brunel University

3 The Query Engine

The services provided by the directory are powerful when used
correctly, but require the user to have some knowledge of the structure
of the DIT and the kind of information contained therein. The solution to
this is to make as many ‘reasonable’ assumptions as possible about
what the user is looking for and the composition and structure of the
directory database.

Some of the ideas presented here will require an asynchronous
interface to the directory. At present only a synchronous interface is
available.

3.1 What does the query engine do?
The query engine attempts to formulate directory queries that are likely
to succeed, but not at the expense of overloading a DSA. Thus a trade-
off is needed between the complexity and number of queries made
against the probability of success.

The services provided by the query engine are closely aligned to those
defined by the X.500 standard. These being:

• Search
Search for entries within some defined part of the DIT

• Read
Read the contents of a directory entry.

• List
List the children of a directory entry.

• Modify Entry
Modify the contents of a directory entry.

• Add Entry
Add an entry to the database.

• Delete Entry
Delete an entry from the database.

Xdir Design Document

The Query Engine

page 12 Brunel University

• Rename Entry
Modify the directory name of an entry.

The most important of these is the search operation, as this
constitutes the basic function of Xdir, to search through data.

3.2 Search
The query engine offers several named search strategies. These are
defined in a configuration file. The circumstances in which each strategy
is useful can be defined so that the most appropriate one is always
offered by default.

Possible strategies range from the simple ‘exact match on a single
attribute in one level of the DIT’, to the environment sensitive
searches suggested in work from University College London1.

3.2.1 Object Types
In Xdir, searches take the form of a search within some part of the DIT
for an object of some particular type, an object type. It could be a search
for a person, a place, an organization etc. This contrasts with the X.500
search type, which defines only the kind of attribute to match against,
not the type of entry that the attribute is contained in.

A complete definition of an Xdir object type is somewhat complex. It is
not only the kind of object that is being searched for that matters, but
also the way in which this object relates to other parts of the DIT. For
example, once an object has been located and moved to, it is also
necessary to know how that object relates to it’s children (or indeed if
it has any children) in order to simplify any searches below the entry.
The information that defines an Xdir object type is:

• Type definition
This refers to the information that distinguishes one
Object Type from another. The data contained in the
‘objectClass’ attribute will be used for this purpose,
though this is limited and not always consistent.

• Matching information
The attributes that the object is likely to contain and
that a user is likely to try to match against. When

1 S.E. Kille, "Using the OSI Directory to achieve User Friendly Naming", Computer
Science, University College London, April 1990.

Xdir Design Document

The Query Engine

page 13 Brunel University

searching for a person one is likely to try to match
using his/her personal name, when searching for a
‘person with a role’ one would try to search using the
name of the person’s role.

• Structural Information
How does a specific type of entry relate to the rest of
the DIT? Specifically is this a leaf entry, or else what
is the organization of data held below this entry?

• Naming Information
How is this type of entry to be named in an
addressing or searching context?

As an example the generic type ‘Place’ may then be informally defined
as:

Type denoted by:
objectClass contains ‘locality’

OR objectClass contains ‘room’
OR objectClass contains ‘country’

Match on:
countryName

OR stateOrProvinceName
OR locality
OR friendlyCountryName
OR commonName

Label: ‘Place’

Structural Information:
for ‘country’ entries or ‘locality’ entries

children may be: organization, use search single level
 locality, use search single level

for ‘room’ entries
no children

The generic type definitions used by Xdir are provided in a set of user
configurable files, in order to allow for the variation of structure and
content in different parts of the DIT.

Xdir Design Document

The Query Engine

page 14 Brunel University

3.2.2 Search Strategy
The Xdir search strategy operates at two levels:

• Matching values against a given set of entries
• Ascertaining the X.500 distinguished name of an entry.

Matching against Entries
The available matching algorithms have different strengths and
weaknesses. Any one of them cannot cater for all likely situations on
it’s own. For example a simple search under Brunel University, with
surname approximately matches the value ‘nahajski’, returns a list
containing around fifty entries. This is unreasonable behaviour.
Substring or exact matching are also not particularly useful, as the
name ‘nahajski’ is one that many are likely to misspell.

In an attempt to allow for this Xdir will make multiple queries, using
similar filters but employing matching algorithms with increasing levels
of ‘looseness’, and merge the results. Thus a first search might use
‘exact’ or ‘substring’ match. If very few or no matches are made then a
further search is made, using an approximate matching algorithm. The
results of the two searches are then merged with results from the
initial search placed at the top of the displayed list.

Ascertaining X.500 Distinguished Names
As well as performing searches on a single value, Xdir will allow the
user to enter a user-friendly name that can be used to ascertain the
distinguished name of an entry. The framework of such a search is
illustrated in the following example. The user supplied name (not
necessarily presented in this way) is,

polonius plum, parkway polytechnic, great britain

leading to a search operation that goes through the following steps:

i) search at top level for ‘great britain’, making the assumption that
‘great britain’ is a country or organization.

ii) search below all entries returned by step (i), for ‘parkway
polytechnic’ making the assumption that ‘parkway polytechnic’ could
be any of the following: locality, organization.

Xdir Design Document

The Query Engine

page 15 Brunel University

iii) subtree search below all entries returned by step (ii) for ‘polonius
plum’ which is assumed to be a personal name.

If any of the individual steps return too many entries, then the user is
asked for more or better information.

Obviously this example makes the unreasonable assumption that it is
always possible to perform subtree search within an organization, but
it has been made simple in order to illustrate the approach taken and to
give an idea of how it will work for the user.

This type of heuristic search will only perform well when an
asynchronous programming interface becomes available. With the
current synchronous interface such searches can be very time
consuming. It is expected that the implementation of Xdir produced
within the timescale of this project will be based on a synchronous
interface.

3.3 List
As with current DUA prototypes, a list invocation will actually be a
one level search using a filter that removes unwanted information, e.g.
entries for DSAs.

3.4 Read
The query engine will provide a straight interface onto the X.500 read
function.

3.5 Modifying The DIB
The modify entry, add entry, rename and delete entry services will be
straight interfaces to the services provided by X.500.

Xdir Design Document

Xdir Configuration

page 16 Brunel University

4 Xdir Configuration

Configuration within Xdir is extensive and simple. It allows tailoring of
the following aspects of the application.

• Layout of the visual interface

• Object Type definitions and Search Strategies

• X.500 service parameters

Xdir will contain tools that allow interactive editing of the configuration
files. This simplifies the process by bypassing the need to edit user-
unfriendly tailor files.

All configuration options will be read in from a single file. For
administrative purposes this can be made up from a number of included
files. The configuration file will consist of a set of unsequenced
attributes.

4.1 Layout of the Visual Interface
As described in the previous chapter the user interface is built out of
"kit of parts", where each part is a primitive object that may have an
associated action. For example a quit button is a primitive that has the
associated action of quitting from the interface.

Xdir contains a set of in-built configuration tools that allow users to
modify the organization of these primitives in a totally flexible way.
This, for example would allow all input and output windows to be
contained in a single main window like Xd, or in a separate windows
like Pod.

As a more likely example the main window may be configured to
contain a search value dialogue box, a start search button and read
window. This could be a suitable configuration for a screen in a
reception area, allowing simple search for a person within an
organization.

Xdir Design Document

Xdir Configuration

page 17 Brunel University

4.2 Display and Save Formats
The selection of attributes and the format used to represent them can
be configured. A single set of configuration options is applicable both to
display windows and save channels.

4.3 Search Strategies
Search strategies and their default usage can be user configured. This
will allow the behaviour of Xdir to be modified according to future
changes in the structure of the DIT or local structure.

4.4 X.500 Service Parameters
X.500 Service parameters associated with individual requests can be
modified via an options menu. Default service parameters are retrieved
from a tailor file.

Xdir Design Document

Xdir Internal Structure

page 18 Brunel University

5 Internal Design

5.1 Internal Structure
The internals of Xdir have been designed using an object-oriented
approach. At the highest level Xdir can be seen as being comprised of
two objects: a visual interface object and a directory. These may then in
turn be comprised of component objects (referred to as sub-classed
objects). For example a list window is a sub-classed object of the
visual interface.

An ‘object’ is built out of four parts:

• Constructor function
This initializes the object and creates any data
structures or sub-objects.

• Destructor function
Destroys the object.

• Private set
Methods and data associated with an object but
‘private’ to that object.

• Public set
Methods and data that are ‘publicly’ available.
This amounts to the interface to an object.

DestructorConstructor Set of Public Methods

Set of Private Methods

The diagram below shows the relationship between these parts.
The internal structure of Xdir will be specified in terms of the
relationship between each contained object, followed by a description of
the internals of each object.

Xdir Design Document

Xdir Internal Structure

page 19 Brunel University

5.1.1 The Visual Interface
The diagram below shows the hierarchy of objects comprising the
visual interface.

Button

Menu

Help Text Current Position

Search Value

Search TypeStatus Window

Title

List Window

Entry Window

Modify Window

The internal structure of the visual interface object is depicted below.
The set of Xdir actions, implemented as X toolkit callbacks, are
selectively inherited by the sub-classed window objects.

Visual Interface

Constructor Destructor

Read Tailor Files

Create Sub-object
Open Directory

Destroy Sub-object

Xdir Actions

Private Functions

Xdir Design Document

Xdir Internal Structure

page 20 Brunel University

5.1.2 The Query Engine
The structure of the query engine object is depicted below. The public
functions defined in the visual interface are specified in Appendix A.

Constructor Destructor

Read Tailor Files

Bind to DSA
Unbind

Delete Entry

Search

Modify

List

Read Entry

Add Entry

Private Methods

Public Methods

Modify RDN

Xdir Design Document

Xdir Internal Structure

page 21 Brunel University

5.2 Merging Two Asynchronous Event Loops
Xdir faces the problem of managing two separate asynchronous event
loops. The windows event loop and the notification events from the OSI
stack. In the case of the MS-windows implementation this is trivial as
stack messages are passed using the MS-windows message loop. For
the X-windows implementation, the two event loops will be merged at
a point between the query engine and the visual interface. It is intended
that the visual interface will supply X event generating procedures to
the query engine, which the query engine will use to pass results back
to the visual interface.

The diagram below shows the flow of information between the various
parts of the interface.

Application Queue

System Queue

OSI stack

Event loop

Visual Interface

Query Engine

Xdir Design Document

Appendix 1

page 22 Brunel University

Appendix 1: Abstract
Programming Interface

Data types and associated functions:

status
status check ok
status check fatal
set status
print status

entry name
read entry name
set entry name
print entry name

attribute
read attribute value
read attribute name
set attribute value
set attribute name
convert attribute value for display
convert attribute name for display

search value
set search value
read search value

search type
set search type
read search type
search options
read search options
set search options

Composite data types:

name list
entry name
entry name

 .
 .

Xdir Design Document

Appendix 1

page 23 Brunel University

attribute list
attribute
attribute
.
.

directory entry
status
entry name
attribute list

directory list
status
entry name (parent)
name list

directory position
entry name

search specification
search value
search type
search options

read specification
entry name
read result
directory entry

Functions provided by query engine for use by visual interface:

search request(search specification) = directory list
read request(read specification) = directory entry
list request (entry name) = directory list
add entry request(directory entry) = status
delete entry request (entry name) = status
modify request (entry name, attribute list, attribute list) = directory
entry
modify rdn request(entry name, attribute) = status

