IBM Tivoli NetView & IBM TBSM Integration

Prepared for ACME Corporation

IBM
Tivoli NetView – TBSM Common Listener Integration
Prepared For: ACME Corporation

Prepared By:
Tom Caputo, tcaputo@computer.org

Table of Contents
11.
Preface

2.
Abbreviations, Acronyms and Definitions
1
3.
Overview
1
4.
Functional Requirements
1
4.1
Process Flow
2
4.1.1
MLM Hierarchy
2
4.1.2
Hub(attended) MLM
2
4.1.3
Down-stream MLM
3
4.1.4
TBSM Adapter/CL configuration
4

5. SUMMARY…………………………………………………………………………………………..... 1

1. Preface

The intent of this document is to define a solution-based method of passing correlated events to TBSM

through the common listener for NetView(TBSM Adapter). It provides details on architecture and processes. Preliminary data tables are modeled and are described for clarification and understanding.

2. Abbreviations, Acronyms and Definitions
CL

 Common Listener

TBSM

IBM Tivoli Business Systems Manager
T/EC

Tivoli Enterprise Console
MLM

Middle Level Manager(smMlm)
DS-MLM Down-stream MLM
3. Overview
Before proceeding any further, I would like to provide this disclaimer:

“ PLEASE TEST THIS ON A NON-PRODUCTION SYSTEM FIRST.”
The TBSM adapter for NetView, out of the box is relatively simple to configure. After an initial bulk upload, subsequent topology changes & traps are reflected in the console.

That's fine, but, how do we get correlated events directly through the Common Listener without going through T/EC? The main reason for doing this is that Resource Objects created through T/EC lack the details provided with NetView's bulk upload, and lack the detailed NetView topology.

Since the CL for NetView is designed to act on trapd.trace entries, bypassing nvserverd and nvcorrd, we need to ensure that false-negative events from NetView are NOT forwarded to TBSM.

4. Functional Requirements
The following diagram depicts a high level flow of the integration:

[image: image1.png]TBSM
server

Each remote site has a down-stream MLM(NT) polling all required LAN nodes, and router interfaces from within(trap destination is the Corporate NetView server). Status events are forwarded to the hub MLM for nv6000 trap generation if needed.
4.1 Process Flow

The Corporate NetView server runs MLM in attended mode for receiving and processing MLM enterprise events from each down-stream MLM. You will also use the MLM to receive and convert vendor enterprise traps into an nv6000 enterprise event allowing it to be sent through the TBSM adapter. It does this by using the “matched command” MIB variable. A filter table entry is usually created to act on specific events involving particular devices or interfaces. The action script will generate an nv6000 enterprise (i.e. IBM_NVIFDN_EV) trap which the CL can send to TBSM. You can not add additional nv6000 trap IDs or vendor enterprise traps to the /usr/OV/conf/topxtrapgate.conf, you can only filter out traps from what is currently listed. Again, the idea is to keep false-negatives from trapd.
4.1.1 MLM Hierarchy
There is a simple hierarchy to this solution. A hub MLM is installed concurrently on the Corporate NetView server(s). Many users have done this for MLM’s filtering capabilities alone. We place DS-MLMs in remote sites to perform polling and trap reception/filter functions. This is commonly referred to as off-loading.
4.1.2 Hub(attended) MLM
This server needs to have trapd moved off port 162/tcp & 162/udp using nvsetup before starting MLM. All remote nodes to be polled by DS-MLM need to be set to managed before the Bulk Upload. After the Bulk Upload, set them to unmanaged so netmon leaves them alone. It also needs to have an smMonitor group of all down-stream MLM hosts. Configuration tasks include:

· The Hub(attended) MLM will be listening on port 162 to receive events from the down-stream MLMs, and local or remote devices.

· Create an Alias table consisting of all DS-MLM hosts.

· Create an smMonitor group for DS-MLM alias entries to track availability of the DS MLMs.

· Create Filter table entries which act on traps received by DS-MLMs, and other SNMP agents. If the filter is matched for certain criteria, your action script specified in the “Matched Command” section will execute. We have one of our entries as an example:

Filter entry:

Remote routers

Action:

sendTraps

Enterprise:

.1.3.6.1.4.1.2.6.12
Generic:

6

Specific:

.1.3.6.1.4.1.2.6.12(11)
Var Express:

($SM6K_TRAP_VAR_VALUE4 == "RE:[a-z][a-z][a-z]_primary")
Matched Com:
rtrping.sh
$SM6K_TRAP_VAR_VALUE3 $SM6K_TRAP_VAR_VALUE4
Action Script: rtrping .sh

This filter will watch for MLM status down events regarding routers with a hostname containing three characters followed by “_primary”. This is a variable expression containing a regular expression. Naming conventions vary, so adapt to fit your environment. The following is the action script(matched command) if the filter is matched.

##############################

Test for valid alerts

##############################

export PATH=$PATH:/usr/OV/bin:/usr/OV/service

ifdesc=`echo $2 |sed 's/\"/ /g' |cut -f1 -d '.'`;

ipaddr=`echo $1 |sed 's/\"/ /g'`;

devname=`echo $2 |sed 's/\"/ /g''`;

ping -c10 $ipaddr;

if [$? != 0] ; then

Limiting ourselves to only one ovtopodump call

 objinfo=`ovtopodump |grep "$devname" |grep "$ipaddr" > /tmp/"$devname".txt`;

 ifobjid=`cat /tmp/"$devname".txt |sed 's/\// /g' |awk '{print $1,$2}'`;

 objid=`cat /tmp/"$devname".txt |sed 's/\// /g' |awk '{print $2}'`;

 objname=`cat /tmp/"$devname".txt |awk '{print $2}'`;

 ifprop=`ovobjprint -s $objname |grep "$ipaddr " |awk '{print $1}' |sed 's/\"/ /g'`;

 ## Primary Interface ################
 /usr/OV/bin/snmptrap -p 162 destination .1.3.6.1.4.1.2.6.3 originator 6 58916867 8\ .1.3.6.1.4.1.2.6.3.1.1.2.0 integer 2 .1.3.6.1.4.1.2.6.3.1.1.3.0 octetstring $objname .1.3.6.1.4.1.2.6.3.1.1.4.0\ octetstring "Primary interface not reachable for $objname" .1.3.6.1.4.1.2.6.3.1.1.5.0 octetstring "$ipaddr\ $ifobjid" .1.3.6.1.4.1.2.6.3.1.1.6.0 octetstring openview .1.3.6.1.4.1.2.6.3.1.1.7.0 octetstring\ "$objname:$ifprop" .1.3.6.1.4.1.2.6.3.1.1.8.0 octetstring $ipaddr .1.3.6.1.4.1.2.6.3.1.1.9.0 octetstring\ $objid

fi

We also added more useful info in the $NVATTR_3(message) variable part of the trap.
The different variable values will be exclusive to our object DB and naming convention. The above script code is just to illustrate trap re-generation process.

** F.Y.I.: You can not add additional nv6000 trap IDs to the /usr/OV/conf/topxtrapgate.conf file, you can only filter them out or send them through.
4.1.3 Down-stream MLM
The down-stream MLM is configured to poll all local interfaces in its LAN by default if netmon knows to distribute polling to the MLM. We have opted to keep netmon ignorant to the DS-MLMs. Netmon should see all remote nodes as unmanaged because we don’t want netmon polling remote nodes even if the DS-MLM isn’t operational. For a large number of MLM collections there would be too much swapping back-and-forth for control over who does the polling. Also, for a large number of MLMs,, we don’t want to use C5d APM because netmon will need to know what we are doing.

· The DS-MLMs are configured with smconfig utility. Set up one as a model to obtain the OID instances.
· Once we obtain the OID instances(Alias names, Filter entry names, etc.) we can use them to set up multiple DS-MLMs via snmpset commands issued in a script. Here are the pieces:
**(If you don’t have many MLMs, just use smconfig for all of them)

Using smconfig to set up your “model” DS-MLM, we configure the following:

Alias name
.1.3.6.1.4.1.2.6.12.8.1.1.2
LAN

State:

.1.3.6.1.4.1.2.6.12.8.1.1.1
enabled

List:

.1.3.6.1.4.1.2.6.12.8.1.1.3
Local site’s LAN nodes

Click the “apply” button.

Then do an snmpwalk on the model DS-MLM for the mlm alias name oid which is “.1.3.6.1.4.1.2.6.12.8.1.1.2” .

The result is the full oid and instance :

ibm.ibmProd.systemsMonitor6000.sm6kAlias.sm6kAliasTable.sm6kAliasEntry.sm6kAliasName.76.65.78 : DISPLAY STRING- (ascii): LAN
So, for the full MIB instance to use to set up an Alias with the name LAN, we use:

 snmpset mlmName .1.3.6.1.4.1.2.6.12.8.1.1.2.76.65.78 octetstring LAN

The full MIB instance to use to set up the Alias’ state (Alias LAN) is :

 snmpset mlmName .1.3.6.1.4.1.2.6.12.8.1.1.1.76.65.78 integer 3

** (3 =enabled, 2=invalid, 1=disabled)

The full MIB instance to use to set up the Alias group (Alias LAN) members is:
 snmpset mlmName .1.3.6.1.4.1.2.6.12.8.1.1.3. 76.65.78 octetstring “node1 node2 node3”
4.1.4 TBSM Adapter/CL configuration
The TBSM adapter install package comes with a readme doc. PLEASE read this for configuration steps. I will not go into much detail, but I will like to iterate the following SNAG points:

· Make sure the registration(tbsmtopo.reg, and tbsmtrap.reg) files are modified to include the RESTART flag.

· Make sure you have your Native console R/W map open at all times, or use netviewd. Keep in mind netviewd will start the tbsmtopo and tbsmtrap processes, but not the tbsmadapter daemon.
· Make use of the tbsmtrigger command to start debugging and tracing, very useful.

5. SUMMARY

As mentioned above, the TBSM adapter for NetView can be installed and configured at various degrees of complexity. The MLM should be placed wherever your topology dictates and what suits you best. For NetView environments where raw netmon polling events are sent to nvcorrd for testing, the MLM proves its value as an alternative polling mechanism and event packager for TBSM-bound events.

Maybe some future release of the CL for NetView will allow for a post-nvcorrd connection to TBSM, and accommodate more than just the nv6000 enterprise events.

17

_1170755086.bin

