
Exploring servmon and itmquery functionality in
NetView 7.1.4

Jane Curry, Skills 1st Limited
 jane.curry@skills-1st.co.uk

Abstract

This paper examines some of the new functionality shipped with IBM Tivoli NetView 7.1.4.
servmon provides a way to monitor processes and applications using the NetView network
manager. itmquery offers an integration point between NetView and the IBM Tivoli
Monitoring suite of products .

Introduction

IBM Tivoli NetView 7.1.4 was released in October 2003. It provided a number of
enhancements, including:
! Closer integration with the Tivoli Enterprise Console 3.9 for more effective root-cause

problem analysis
! Better integration with Tivoli Enterprise Data Warehouse to include support for Simple

Network Management (SNMP) performance data
! A new daemon, servmon, to monitor processes and applications
! A new utility, itmquery, to provide integration between the systems management

capabilities of IBM Tivoli Monitoring 5.1.1 (ITM), and the network management
capabilities of NetView

This paper examines the latter two utilities in detail.

In general, the comments made in this paper apply to all versions of NetView 7.1.4 Unix
platforms, and to NetView 7.1.4 on Windows. Where exceptions apply, this will be made
clear.

Background to servmon development

The NetView product has had the nvsniffer utility for many years. nvsniffer is a command
utility that tests whether a system has an application running on a particular TCP port. It is
customized with a configuration file, /usr/OV/conf/nvsniffer.conf by default, which specifies
what port to test for, on what systems. nvsniffer works by creating a new boolean NetView
object field to represent whether a system supports the particular port, or not. In addition, a
NetView SmartSet can automatically be created, based on whether the port is supported. For
example:

isTelnet|23|TelnetServers|Telnet Server|||*

in /usr/OV/conf/nvsniffer.conf directs the nvsniffer command to test all nodes in the NetView
object database (the final �*� in the line above), to discover a service on port TCP 23 (the
second field in the line above). If nvsniffer can connect to this port, create a new field in the
NetView object database called isTelnet (the first field), and create a SmartSet called

Page 1 Exploring NetView 7.1.4 servmon and itmquery functionality 17 May 2004
Copyright Skills 1st Ltd

TelnetServers (third field), with a SmartSet label of �Telnet Server� (fourth field). Fields are
separated with the pipe (vertical bar) symbol.

nvsniffer can be used in a slightly different way, if required. Instead of detecting services on
a specified port, a discovery script can be supplied in field five and a status script can be
supplied in field six. The port field can then be used to pass parameters to these scripts, if
desired.

nvsniffer has some significant limitations. It is a command, not a daemon, so needs
configuring to run periodically to maintain accurate status and discovery information. This
has been possible recently with the �-r� parameter of the nvsniffer command, or by using the
Unix cron facility or Windows scheduler.

Configuring the servmon daemon

NetView 7.1.4 has introduced the servmon daemon to replace nvsniffer - the Release Notes
suggest that nvsniffer users now migrate to servmon. It is a Java-based daemon rather than a
command, which starts automatically with the other NetView daemons. (If required,
automatic startup of servmon can be disabled using the serversetup utility and following the
Configure -> Set Options for daemons -> Set options for topology, discovery and database
daemons -> Set options for servmon daemon path).

servmon responds to asynchronous events that it receives from NetView�s trapd and nvcold
daemons.

netmon
servmon

(Java)

IP Network

pingSNMP

ovtopmd
Network discovery /
config / status
information

IP
topology
database

object
database

ovwdb
Service discovery /

status
information

port sniffing
Custom status /
discovery scripts

Java custom
tests

map
databaseovw

NetView
CLIENT

itmquery Java tests

nvcold

trapd

collmap

Page 2 Exploring NetView 7.1.4 servmon and itmquery functionality 17 May 2004
Copyright Skills 1st Ltd

servmon.conf

The servmon daemon is configured with the default configuration file,
/usr/OV/conf/servmon.conf, which has a very similar format to the old nvsniffer.conf. The
format for each entry is:

[Node Field]|[TCP Port]|[Service SmartSet]|[Service Label Name]|[Discover
Test]|[Status Test]|[Discover Node Selection Criteria]|[Status Interval]

where:
Node Field
is the name of the Boolean field to create on a node object if the service is successfully
discovered. A value must be specified for this parameter. The value cannot contain a space.
If the discovery attempt of a service against a node is successful, this field is set to TRUE.
TCP Port
is either a comma-separated list of the TCP port numbers to test on each node, or arguments
for a custom plug-in, launchable test if one is specified. A value must be specified for this
field unless a custom test is specified for both the Discover test and Status test fields.
Service SmartSet
is the name of the service SmartSet to create if a service is discovered. If a value is not
specified, a service SmartSet is not created. The value cannot contain a space. If the Node
Field value is set to TRUE, the node automatically is made a member of this SmartSet. This
field is also used as the node selection criteria for monitoring the status of the service. If a
value is not specified for this field, the status of the service defined by this entry is not
checked.
Service Label Name
is the symbol label name assigned to the service object created as a result of the service being
discovered. A value must be specified unless the Service SmartSet field is not specified. The
value can contain a space.
Discover Test
is the name of the optional, custom plug-in module to use to discover a service. Specify the
full path of the launchable application. The same launchable application can be specified as
the one that is specified in the Status Test field. The use of Java JAR file custom extensions
is reserved for use only by the Tivoli NetView product.
Status Test
is the name of the optional, custom plug-in module to be used to check the status of a service
that has already been discovered. Specify the full path of the launchable application. The
same launchable application can be specified as the one that is specified in the Discover Test
field. The use of Java JAR file custom extensions is reserved for use only by the Tivoli
NetView product.
Discover Node Selection Criteria
specifies the nodes to test during service discovery. Specify either the name of any existing
SmartSet, or an asterisk (*) to specify all managed IP nodes. The value cannot contain a
space.
Status Interval
specifies how often (in minutes) to check the status of this service on nodes known to have
this service. The maximum value that can be specified is 44640 minutes. A value of 0
specifies that no status checking should be performed for this service.

Page 3 Exploring NetView 7.1.4 servmon and itmquery functionality 17 May 2004
Copyright Skills 1st Ltd

General points about servmon.conf:
! Comments can (and should!) be used. Comment lines start either with # or with // -

trailing comments are not allowed
! If a service is ever removed from the node, servmon removes the designated boolean field

from the node after it has determined that the service has been unavailable for the interval
specified by the �Service Down Delete Interval� in the xnmsnmpconf dialogue on
NetView/Unix, or the �Delete Services down for ...� interval in the nmpolling dialogue
on NetView/Windows

! Either forward or backward slashes can be used when specifying pathnames to custom
plug-in modules on Windows

! Remember that custom plug-in modules are run on the NetView server, not on the
destination nodes being tested

! The Discover Node Selection Criteria field should be specified using a SmartSet
whenever possible; otherwise all nodes in the NetView object database will be tested for
that particular service

! Each configuration file entry must be on a single line
! servmon logs to /usr/OV/log/servmon.log by default. The level of logging is controlled

in /usr/OV/conf/servmon-log4j.properties.
! After changing servmon.conf, the servmon daemon must be stopped and restarted

Check the servmon.conf file itself for comments on how to use the file. The man servmon
command on a Unix system also provides further information. The servmon daemon and
configuration file are documented in the new NetView 7.1.4 Administrator�s Guide for Unix
and in the new NetView 7.1.4 User�s Guide for Windows.

Other configuration utilities for servmon

In addition to the servmon.conf configuration file, servmon is also controlled by two new
parameters in the xnmsnmpconf utility (Options -> SNMP Configuration menu item) on
NetView on Unix or the nmpolling utility for NetView on Windows. The following
parameters cannot be set for individual nodes or collections of nodes, only for the Global
Default:

! Service Discovery Interval default is 12 hours
! Service Down Delete Interval default is 7 days

These values are saved in /usr/OV/conf/service_polling.conf. Note that short intervals in
these parameters can produce a very heavy load on the NetView system. For performance
reasons, it is recommended that the Service Discovery Interval should be at least 1 hour.

The Options -> Topology/Status Polling Intervals menu also has a servmon parameter. The
Discover New Services check box determines whether servmon performs discovery or not.

Changes to this flag and the two parameters modified by xnmsnmpconf / nmpolling, are
stored in /usr/OV/conf/service_polling.conf. Any changes to this file result in a CSP_EV
NetView event - a Change Service Polling Interval trap. This trap is configured by default to
be LogOnly in NetView, so can only be seen by viewing /usr/OV/log/trapd.log. If you are

Page 4 Exploring NetView 7.1.4 servmon and itmquery functionality 17 May 2004
Copyright Skills 1st Ltd

watching /usr/OV/log/servmon.log, it sometimes takes several minutes before entries are
reported that reinitialize the monitors.

Differences between nvsniffer.conf and servmon.conf

The differences between nvsniffer.conf and servmon.conf are:
! An extra, final field specifying the frequency of status checks. Note that this is inactive if

either this value is 0, or the SmartSet field is not specified.
! The location of the configuration file is /usr/OV/conf/servmon.conf by default and can be

modified using the �-c� parameter to the servmon command. This can be specified in
/usr/OV/jars/start_servmon.sh which configures the servmon daemon startup. .

! Service objects are created in the NetView object database for each service discovered on
a node, when the Service SmartSet field is specified.

! A third option is available for Status and Discovery plug-in modules. Custom Java class
files can be used, but they are only supported for IBM internal use and are not
documented. There are a number of samples provided in servmon.conf using these Java
plug-ins.

! The nvsniffer discovery process has no simple mechanism for deleting references to
services that have been down for a given period. The Service Down Delete Interval,
customized using xnmsnmpconf / nmpolling, provides this for servmon.

Custom plug-in modules for servmon discovery and status scripts

Custom plug-in tests can consist of any thread-safe, re-entrant launchable script or executable
file. servmon launches the exact syntax specified in the Status Test or Discovery Test field,
including all arguments designated in the TCP Ports field (with the comma separator
characters removed).

Custom launchable tasks can be any executable program or script that:

! Can receive and parse the character string node name and command arguments (if any)
that servmon "passes" to the script or program

! Can return an integer value upon completion, which must be one of:
! 2 = Normal status (the test succeeded)
! 3 = Marginal status (the test partially succeeded)
! 4 = Critical status (the test failed)
! 0 = the test cannot be performed (servmon treats this value the same as the value 4 -
(Critical/failed))

Values returned that are outside this range are treated as 4 (failure). A discovery test is
considered successful if either the Normal or Marginal status values are returned.

The calling sequence for custom launchable tasks launched by servmon is as follows:
 <task launch syntax> <node name> <arguments ...>
where:
<task launch syntax> is the value of the Discover Test field when discovery of the service is
being attempted, or the value of the Status Test field when an existing service is being
monitored for status.

Page 5 Exploring NetView 7.1.4 servmon and itmquery functionality 17 May 2004
Copyright Skills 1st Ltd

<node name> is the name of the node that the test is being performed on (servmon
automatically passes the node name as the first parameter)

<arguments> are the values taken from the TCP Ports field (minus the comma delimiters)

Further information is provide by the man servmon command and a sample plugin is
provided in /usr/OV/prg_samples/launchport.

Events generated by servmon

A number of different events are generated by servmon:
! 58916975 SUP_EV Service Up
! 58916976 SDWN_EV Service Down
! 58916977 SMAR_EV Service Marginal
! 58916978 SACK_EV Service Acknowledged (Only applicable to NetView/Win)
! 58916979 SUACK_EV Service Unacknowledged (Only applicable to NetView/Win)
! 58916980 MSER_EV Service Managed (applicable when a user manages a service

icon (NetView/Windows) or when a user manages a node containing the service (all
platforms))

! 58916981 USER_EV Service Unmanaged (applicable when a user unmanages a
service icon (NetView/Windows) or when a user unmanages a node containing the
service (all platforms))

! 58982417 SADD_EV Service Added
! 58982418 SDEL_EV Service Deleted
! 58982422 ATADD_EV Service Attribute Added (used when a new service attribute is

added to the NetView object database but a service object is not created; that is, when a
service SmartSet is not specified in servmon.conf)

! 58982423 ATDEL_EV Service Attribute Deleted (used when a service attribute is
deleted from the NetView object database, but not when a service object is deleted)

Only two of these events are configured by default with a Tivoli Enterprise Console (TEC)
event class - the Service Up and Service Down events; both map to the
TEC_ITS_SERVICE_STATUS class. Within the TEC slot mapping, the servicestatus field
is set to 1 for the Service Up event, and is set to 2 for the Service Down event.

In spite of this configuration, the default NetView ruleset shipped for forwarding events to
TEC (TEC_ITS.rs) does not contain these two events. They must be added to this ruleset (or
any other ruleset that is used) to forward these NetView events to TEC.

Note that TEC 3.9 does provide service correlation rules but such rules are fired on receiving
TEC_ITS_NODE_SERVICE_IMPACT events, which are generated by the State Correlation
Engine (SCE) functionality in TEC 3.9 / NetView 7.1.4.

servmon service objects

Service objects are created in the NetView object database for each service discovered on a
node, when the Service SmartSet field is specified. Service objects contain status (such as
Normal or Critical). On Windows systems, the status of a service object can contribute to the
overall IP status of a node; on NetView for Unix systems, the service status does not
contribute to a node�s overall IP status.

Page 6 Exploring NetView 7.1.4 servmon and itmquery functionality 17 May 2004
Copyright Skills 1st Ltd

The Selection Name of these service objects is of the format:

<Selection Name of Node>:<SmartSet Name>.CF

A typical entry in the NetView object database for a service object would look like this (use
ovobjprint to view such information):

OBJECT: 9111

FIELD ID FIELD NAME FIELD VALUE
10 Selection Name "poppet.skills-1st.co.uk

:Skills_Unix_ITM_DMXProcess.CF"
163 Service Status Critical (4)
164 Down Time 1074706838
220 TopM Node ID 262

This is a service object representing the Skills_Unix_ITM_DMXProcess SmartSet on the
node poppet.skills-1st.co.uk. The service being monitored is in a critical status and went
down at time 1074706838 since the epoch (January 1st 1970). This service object is
contained within the object 262, which is the object for node poppet.skills-1st.co.uk.

Note that you can use perl to help translate epoch times. The following example translates
the above epoch time to GMT time:

perl -e 'print scalar gmtime 1074706838'

Note that a service object is not created if no SmartSet field is specified for that entry in
servmon.conf. In this case, a service attribute is created in
/usr/OV/databases/servmon/service_attributes.properties. Each entry of the
service_attributes.properties file contains:
! The node�s selection name
! The {Node Field} value
! The discovery timestamp

When the service attribute has been Critical for the configured maximum, the respective
entry is removed from the service_attributes.properties file, and the {Node Field} field is
removed from the node (it is never set to FALSE).

Increasing debugging information for servmon

servmon logs to /usr/OV/log/servmon.conf by default. The level of logging is controlled in
/usr/OV/conf/servmon-log4j.properties and provides basic INFO logging. To increase the
level of debugging, this file can be modified as follows:
! Change line 7 from:
! log4j.rootCategory=INFO, A1, R to
! log4j.rootCategory=DEBUG, A1, R

! and change the last line from:
! log4j.category.com.tivoli.netview.servmon=MIN#com.tivoli.netview.log4j.NvLevel

to
! log4j.category.com.tivoli.netview.servmon=DEBUG#com.tivoli.netview.log4j.NvLevel

Page 7 Exploring NetView 7.1.4 servmon and itmquery functionality 17 May 2004
Copyright Skills 1st Ltd

Observations on using servmon

Note that by default, servmon will wait 10 seconds for each TCP Port test or custom plug-in
Status or Discovery test. This value can be changed using the -t <seconds> parameter to
servmon, which can be configured in /usr/OV/jars/start_servmon.sh. Increasing this time
should only be done with care as it will increase the demand on the number of threads that
servmon uses (15 by default). However, if the time interval is too short for a test (or the
machine is very busy), and the test does not complete, the result will be as though the test
failed. Timeout failures can be seen in /usr/OV/log/servmon.log with a �Timer expired�
message.

Unmanaging / managing a node that has services monitored on a Unix NetView, does not
appear to generate Service Unmanaged / Service Managed traps.

A major glitch with servmon on Unix NetView is that the documentation indicates that
service icons will be created at the interface level of nodes where servmon has discovered
services. This is only true for Windows NetView, not for Unix NetView (although the
service objects are created in the NetView object database)..

itmquery

itmquery is a new utility shipped with NetView 7.1.4 to provide integration between
NetView and the IBM Tivoli Monitoring (ITM) 5.1.1 suite of applications. It is a Java utility
that is either activated using the itmquery command or it can be used under-the-covers by the
servmon daemon.

Configuring itmquery

itmquery has two configuration files, both in /usr/OV/conf:
! itm_servers.conf lists the IBM Tivoli Monitoring servers that you want to monitor and

the account information for each server. The information is used by the itmquery
function, and by the service monitor function of servmon to perform IBM Tivoli
Monitoring attribute discovery tests. Do not use an editor to change this file. Instead, use
either the serversetup utility or use the itmquery --add-server or --remove-server
parameters to modify this file. Parameters required are:
! TCP/IP address or resolvable name of the IBM Tivoli Monitoring server
! The port that the oserv runs on - normally 94
! A user name that is both defined to the IBM Tivoli Monitoring server Operating

System and is associated with a Tivoli Administrator with sufficient roles to run ITM
commands

! The password associated with the above user
! itm_attributes.conf is used to specify the names of services that the itmquery function

should search for when it queries IBM Tivoli Monitoring endpoints to determine which
services are installed on the endpoints. The servmon daemon also uses this file for service
discovery purposes. Use a text editor to modify this file. The file itself provides helpful
configuration information. Fields to specify are:
! A user-specified product name

Page 8 Exploring NetView 7.1.4 servmon and itmquery functionality 17 May 2004
Copyright Skills 1st Ltd

! A perl regular expression to match against an ITM Resource Model (RM) name
! For example,
! Standard_Unix_ITM|^DMX.*$
! specifies a product name of Standard_Unix_ITM which looks for any ITM Resource

Model starting with the characters DMX - this includes all the standard Unix RMs.

Note that both these files are shipped as owned by root and have unix file protection bits set
to 600. This means that any non-root user cannot successfully run an itmquery command
(they simply get a blank response, not an error message).

Also note that the documentation refers to �IBM Tivoli Monitoring servers�. It appears that
it is adequate to specify the TMR Server or any other single Tivoli Managed Node which has
ITM installed on it, even if Endpoints running an ITM engine are assigned to different
endpoint gateways (and therefore different ITM gateways).

Useful itmquery commands are:
! itmquery --verify-server-info
! itmquery --dump-endpoints

There are two logfiles for itmquery in /usr/OV/log:
! msgItmquery.log
! traceItmquery.log

The level of logging is controlled by /usr/OV/conf/itmquery-log4j.properties (change the
trace threshold and category entries from MIN to DEBUG).

Current limitations with itmquery

There are currently some distinct limitations with itmquery, some of which are documented
in itm_attributes.conf and in the NetView 7.1.4 Admin Guide.

! The only entries NetView's servmon daemon and itmquery utility currently support are
WAS, MQ and DB2. Other lines are supplied in itm_attributes.conf but are commented
out (i.e. "Oracle" through "WebLogic"); they have NOT been verified to work by IBM
and are not officially supported with this release of NetView. However (says the
documentation in itm_attributes.conf) , these entries probably would work without
problems and a future NetView release will most likely officially support more of these
entries.

! If you wish to take the next step, and have servmon automatically set a capability field on
all nodes that are recognized to be running services configured in itm_attributes.conf, you
have to add an entry like this to the servmon.conf file (it should all be on one line)
!

isStandard_Unix_ITM|Standard_Unix_ITM|Standard_Unix_ITM|Standard_Unix
_ITM|/usr/OV/jars/nv_itm.jar@com.tivoli.netview.itm.servmon.Discovery
Monitor|/usr/OV/jars/nv_itm.jar@com.tivoli.netview.itm.servmon.Discov
eryMonitor|ITM_Endpoints|5

! Please note the following about this servmon entry:
! The first field, "isStandardUnixITM", is the boolean NetView object database field

that will be set for nodes discovered to have a standard Unix ITM Resource Model

Page 9 Exploring NetView 7.1.4 servmon and itmquery functionality 17 May 2004
Copyright Skills 1st Ltd

! the second field within the entry, "Standard_Unix_ITM", must match an associated
"Standard_Unix_ITM" entry within itm_attributes.conf

! servmon does not always automatically create a SmartSet for service attribute
entries, so if you want to have a "Standard_Unix_ITM" SmartSet (as specified in the
third field above), you may have to manually create this SmartSet on your own using
the SmartSet editor or the nvUtil / smartsetutil command line utilities. The third field
in the example above may be ignored from the point-of-view of creating a SmartSet
(however it, and the fourth field (the SmartSet label) may be necessary to specify the
nodes to monitor if a Status Test field is supplied).

! The Discover Test and Status Test fields (fields five and six) use the same Java
custom plug-in script (remember that Java plug-ins are only supported for IBM
Internal use)

! Field seven is the Discover Node Selection Criteria, specifying the SmartSet of nodes
to perform discovery against. A SmartSet called ITM_Endpoints already exists.

! The eighth field specifies how frequently the Status Test should be run against the set
of nodes defined by the Service SmartSet field (field three)

! The ITM_Endpoints SmartSet can be created by uncommenting and modifying the line
already supplied in servmon.conf (all on one line):
! isITMEndpoint||ITM_Endpoints|ITM

Endpoints|/usr/OV/jars/nv_itm.jar@com.tivoli.netview.itm.servmon.Disc
overyMonitor|/usr/OV/jars/nv_itm.jar@com.tivoli.netview.itm.servmon.D
iscoveryMonitor|*|5

! This SmartSet should automatically find any node supporting ITM

! It appears that itmquery commands sometimes hang - they often seem to take an
inordinate length of time to run when they do complete. Sometimes itmquery commands
produce some relevant output and then output the command usage (as though it had lost
some of the command part way through execution)

! In order for servmon Status Tests that use Java itm classes to run successfully, the patch
for PMR 43850 must be applied

! itmquery --dump-endpoints never seems to find ITM Resource Models running on
endpoints within a TMR with an AIX TMR Server, even though the command correctly
finds the endpoints in that TMR. This means that any servmon entries using Java itm
classes for Discovery and Status tests fail. itmquery --dump-endpoints does appear to
work correctly for endpoints in a TMR with a Windows TMR Server. Looking at
/usr/OV/log/traceItmquery.log, it appears that the failing commands never complete.

! The itmquery commands that succeed in examining ITM Resource Models only appear to
check whether a Resource Model has been sent to an endpoint - it does not appear to
check its status. This can be tested using the following command to stop all Resource
Models in a particular ITM profile. itmquery --dump-endpoints still reports successful
on these stopped Resource Models
! wdmeng -e <endpoint> -p <profile>#<region> -stop
! wdmeng -e <endpoint> [-p <profile>#<region>] <resource model> -stop

!

An example of custom plug-in scripts for use with servmon

The servmon daemon has three different ways it can detect services:
! TCP port sniffing

Page 10 Exploring NetView 7.1.4 servmon and itmquery functionality 17 May 2004
Copyright Skills 1st Ltd

! Custom plug-in Discovery and Status Test scripts, which may or may not be written in
Java (but Java scripts are only supported for IBM Internal use)

! Using itmquery by way of IBM-supplied Java plug-in scripts for Discovery and Status
tests

The servmon.conf file, as shipped, provides the following line to detect the NetView Jetty
webserver on ports 8080 or 80, using a Java custom plug-in (it should all be on one line):

isService_Jetty|8080 80 Jetty|Jetty|Jetty|
/usr/OV/jars/httpServiceTests.jar@com.tivoli.netview.httpServiceTests.HttpD
iscoveryMonitor|/usr/OV/jars/httpServiceTests.jar@com.tivoli.netview.httpSe
rviceTests.HttpDiscoveryMonitor|*|20

A simpler, better supported way of achieving the same effect is as follows:

isPortService_Jetty|8080 80|PortJetty|Port Jetty|||*|20

Shellscript to perform similar functionality to itmquery

Given that itmquery currently has some limitations, and the fact the Java plug-in scripts are
not documented and not supported for general use, it would be useful to have a shellscript
which performs similar checking to the itmquery-style of Java Status and Discovery Test
scripts.

The script shown below is not as flexible as itmquery in that:
! It only works within 1 TMR
! The NetView machine must have the Tivoli Framework and ITM 5.1.1 installed to

provide access to the wdm commands
! No use is made of itm_servers.conf

An advantage of this script is that it does test the status of ITM monitors on an endpoint, to
ensure that they not only exist, but also are Running.

A possible problem arises if the naming convention throughout the entire Tivoli environment
is not consistent. servmon will pass the Selection Name of a node from the NetView object
database, to servmon, as the first parameter. This Selection Name will depend on the naming
convention in place on the NetView system when the node was discovered. If that was
Domain Name System (DNS), then the node name will be a fully qualified domain name
(fqdn). If NetView was using /etc/hosts with shortnames, then the node name will be a short
name. If neither mechanism could resolve the node name on discovery, the Selection Name
field will be the IP address.

The Tivoli TMR environment should be using the same name-to-address resolution
mechanism - DNS is very strongly recommended for all names. However, endpoint names
(labels) may not be the same as the fqdn of a node passed by NetView. Therefore the script
assumes that endpoints have labels that at least start with the short hostname and compares
Selection Name node names and endpoint names that have both been truncated to the first
dot.

Page 11 Exploring NetView 7.1.4 servmon and itmquery functionality 17 May 2004
Copyright Skills 1st Ltd

#!/bin/ksh
Script to replace some of the itmquery function shipped with NetView 7.1.4
#
It is assumed that the NetView system has ITM 5.1.x installed on it
to provide access to the wdmlseng command. If this cannot be the case,
something like ssh will be needed to run wdmlseng commands
on remote systems, having queried the itm_servers.conf file
#
No use is made of the /usr/OV/conf/itm_servers.conf file in this script
One implication of this is that only the local TMR is supported.
#
Two parameters are required - the name of a node to check and the
name (or partial name) of the Resource Model (RM) to check for.
The node name is not used when running this script standalone. When
called by servmon, servmon passes a node name as the first parameter.
#
This script can be used both as a discovery and as a status script
in servmon.conf
servmon expects exit codes as follows:
2 = Normal 3 = Marginal 4 = Critical 0 = test cannot be run
#
Source the Tivoli environment, if it exists
#
#set -x
if [-f /etc/Tivoli/setup_env.sh]
then
 . /etc/Tivoli/setup_env.sh
fi
#
RET_CODE=4
get Selection Name passed by NetView
HOST="$1"
RM="$2"
#
Find each Alive endpoint for each ITM MN gateway
and for each, see if the host matches a valid endpoint
and whether the specified RM exists and is Running, eliminating duplicates
#
for i in `wdmmngcache -m all -l | grep -v ManagedNode | grep -v \| \
 | grep -v + | grep -v Unreachable | grep -v DMEngineOff | cut -f1 -d " " `
do
 shorthost=`echo "$HOST" | cut -f1 -d . `
 shortendpoint=`echo "$i" | cut -f1 -d . `
Check whether short hostname is same as a shortname of a valid endpoint
If so, check for running RM on Endpoint and return status code
 if ["$shorthost" = "$shortendpoint"]
 then
 RUN=` wdmlseng -e "$i" | grep "$RM" | grep Running| sort -u | cut -f1 -d : `
 if ["$RUN" != ""]
 then
 echo "$RUN" running on "$i" Endpoint
 RET_CODE=2
 else
 echo failure $RUN
 RET_CODE=4
 fi
 fi
done
exit $RET_CODE

The script uses the wdmmngcache command to find all ITM gateways and for each ITM
gateway it gets a list of all endpoints whose status is not either Unreachable or
DMEngineOff. For each endpoint, it then truncates the name to the first dot, compares it
against the short name of the node passed by NetView, and checks to see if the Resource
Model (specified by the second parameter to the script) exists and is Running on the

Page 12 Exploring NetView 7.1.4 servmon and itmquery functionality 17 May 2004
Copyright Skills 1st Ltd

endpoint. Success results in an exit return code of 2 (Normal); failure results in an exit return
code of 4 (Critical).

Commands used to stop, start and test ITM monitoring are:
! wdmcmd -stop -e <endpoint> to stop the ITM engine

! wdmcmd -restart -e <endpoint> to start the ITM engine

! wdmlseng -e <endpoint> -verbose to display status of ITM engine

Configuring servmon to use a custom plug-in shellscript

Configure /usr/OV/conf/servmon.conf with single-line entries for each Resource Model or
partial name of a Resource Model, that you wish to monitor, providing the RM name in the
second field. Don�t forget to stop and start servmon to ensure the new configuration is read.

isSkills_Unix_ITM_DMXProcess|DMXProcess|Skills_Unix_ITM_DMXProcess|Skil
ls_Unix_ITM_DMXProcess|/usr/OV/conf/skills/skills_itmquery.sh|/usr/OV/c
onf/skills/skills_itmquery_status.sh|ITM_Endpoints|5

isSkills_Win_ITM_Services|TMW_Services|Skills_Win_ITM_Services|Skills_W
in_ITM_Services|/usr/OV/conf/skills/skills_itmquery.sh|/usr/OV/conf/ski
lls/skills_itmquery_status.sh|ITM_Endpoints|5

These examples specify different Discovery and Status Test scripts, though actually the
discovery script, skills_itmquery.sh, has simply been copied to skills_itmquery_status.sh.

The speed of service discovery is controlled by the Service Discovery Interval specified in
xnmsnmpconf / nmpolling. The nodes that are checked to try and discover these services are
those in the SmartSet ITM_Endpoints. Nodes where these services are discovered are added
to the SmartSet Skills_Unix_ITM_DMXProcess (if the DMXProcess Resource Model is
discovered) and Skills_Win_ITM_Services (if the TMWServices Resource Model is
discovered). Status checking of the services is carried out every 5 minutes on the nodes in
the Skills_Unix_ITM_DMXProcess and Skills_Win_ITM_Services SmartSets respectively.

Since these scripts may take a relatively long time to run, /usr/OV/jars/start_servmon.sh has
been modified to include a �-t 20� parameter to allow the scripts to run for 20 seconds.

Issues can be tracked by checking /usr/OV/log/servmon.log - if necessary use the information
provided earlier to increase the level of debugging.

Generating service icons on Unix NetView systems

A major drawback with servmon on Unix NetView systems is that the documentation
suggests that service icons should appear at the interface level for any node where a service
has been discovered. Although this works on Windows NetView systems, it does not work
for Unix systems. This section describes a solution to this. Note that it is not applicable to
NetView on Linux as it utilises the Agent Policy Manager (APM) which is not supported on
Linux.

Page 13 Exploring NetView 7.1.4 servmon and itmquery functionality 17 May 2004
Copyright Skills 1st Ltd

Creating NetView icons using the Agent Policy Manager (APM) and MLM

All versions of NetView ship with implementations of the Mid Level Manager (MLM) which
is an extra SNMP subagent, designed for offloading some of NetView�s work to a distributed
system or systems. MLM is available for AIX, Solaris, HP-UX and Windows (not Linux).
In the samples shown here, the AIX MLM was installed on the same system as NetView.

Regardless of whether any MLMs are deployed, NetView on AIX and Solaris has a daemon
called C5d, which is not started by default with all other NetView daemons. C5d implements
the Agent Policy Manager which permits a simple way to customise a local or remote MLM,
by filling in values in a table in a Graphical User Interface (GUI). The Agent Policy
Manager daemon can be customized to start with the other NetView daemons, using the
serversetup utility. The APM Configuration tool can be started either from the Tools menu
or from the Tool Palette.

The APM can be used to create policies for Data Collection and Thresholding of SNMP data.
The APM Configuration Tool allows specification of what SNMP variable to sample,
whether to store and/or threshold values, threshold and rearm conditions, and actions to run
on threshold and rearm events. Once the monitor is specified, the targets for this monitoring
are denoted by selecting one or more NetView SmartSets. (In many ways, the APM
Configuration panel is analogous to a Tivoli Profile Manager - in the top half of the window,
you specify what you want to monitor; in the bottom half, you specify where to deploy this
monitoring).

Page 14 Exploring NetView 7.1.4 servmon and itmquery functionality 17 May 2004
Copyright Skills 1st Ltd

When the APM is complete, it is Applied and can then be Distributed (again, just like a
Tivoli Profile is distributed to a number of target subscribers). Remember that the purpose of
APM is to customize one or more MLMs. When the APM is distributed, the C5d works out
which MLM(s) need to be configured in order to distribute this monitoring to the nodes
specified by the SmartSets in the APM. The targets may be managed by a number of
different MLMs throughout the enterprise. In the screenshot below, the only MLM that
needs to be configured to distribute to all nodes in the SmartSet Jetty, is the MLM on
poppet.skills-1st.co.uk.

Page 15 Exploring NetView 7.1.4 servmon and itmquery functionality 17 May 2004
Copyright Skills 1st Ltd

One of the extra benefits of APM is that, for values customizing an MLM�s Threshold and
Collection table, an icon is created on all NetView maps, at the interface level, for each node
where that APM is deployed (that is, you get extra icons in all the nodes specified by the
SmartSet, not in the node representing the MLM). This mechanism can provide icons exactly
where we need them for servmon! Although we do not need to monitor actual SNMP values,
we do want the icons.

In the first screenshot above, the State of the monitor is disabled, the SNMP MIB variable to
sample is a dummy .1.3.6.1.2.1.1.3.0 (MIB-2 sysUpTime), no threshold or rearm values or
actions are specified, but the threshold and rearm counts are set to 1 (otherwise MLMs on
Windows complain!). The Jetty SmartSet is specified as the target assignment.

servmon and the NetView object database

servmon can create SmartSets based on whether a service is supported. In the example in the
previous section, APM is using a SmartSet called Jetty which has been created by a line in
servmon like this:

isService_Jetty|8080 80 Jetty|Jetty|Jetty|
/usr/OV/jars/httpServiceTests.jar@com.tivoli.netview.httpServiceTests.HttpD
iscoveryMonitor|/usr/OV/jars/httpServiceTests.jar@com.tivoli.netview.httpSe
rviceTests.HttpDiscoveryMonitor|*|20

Page 16 Exploring NetView 7.1.4 servmon and itmquery functionality 17 May 2004
Copyright Skills 1st Ltd

When servmon first discovers this service on a node, it automatically creates a new field in
the NetView object database, whose name is the concatenation of the node and the service,
joined by a �:� (colon), with �.CF� on the end. For example:

poppet.skills-1st.co.uk:Jetty.CF
This object is created, even though servmon cannot create an associated icon.

 By using the ovobjprint command and redirecting the output to a file, it is possible to see
that the object representing the node poppet.skills-1st.co.uk has Object Id 262 and a large
number of attributes, including the isServiceJetty attribute:

OBJECT: 262

FIELD ID FIELD NAME FIELD VALUE
10 Selection Name "poppet.skills-1st.co.uk"
11 IP Hostname "poppet.skills-1st.co.uk"
14 OVW Maps Exists 2
15 OVW Maps Managed 2

518 isTest TRUE
5061 isITMEndpoint TRUE
5062 isService_IBM_DB2 TRUE
5063 isService_Jetty TRUE
6091 isStandard_ITM TRUE
9103 isSkills_Unix_ITM_DMXProcess TRUE
12094 isPortService_Jetty TRUE

The object for the SmartSet called Jetty that is created automatically by servmon, is as
follows:

OBJECT: 5072

FIELD ID FIELD NAME FIELD VALUE
10 Selection Name "Selection Name5072"
150 isCollection TRUE
151 nvCollectionName "Jetty"
152 nvCollectionDescription "All nodes that are Jetty"
153 nvCollectionRule "("isService_Jetty" ="TRUE")"

There is also an entry for the icons representing the SmartSet Jetty. This is called Jetty.CF:

OBJECT: 5073

FIELD ID FIELD NAME FIELD VALUE
10 Selection Name "Jetty.CF"
14 OVW Maps Exists 2
15 OVW Maps Managed 2

The object that represents the service on a node is as follows. Note that the TopM Node ID
field, i.e. the �containing� field, is the object ID for the node poppet.skills-1st.co.uk. This
service object also has fields for Service Status and, if Critical, the time that the node went
down (as time in seconds since January 1st, 1970).

OBJECT: 5081

FIELD ID FIELD NAME FIELD VALUE
10 Selection Name "poppet.skills-1st.co.uk:Jetty.CF"
163 Service Status Critical(4)

Page 17 Exploring NetView 7.1.4 servmon and itmquery functionality 17 May 2004
Copyright Skills 1st Ltd

164 Down Time 1074843634
220 TopM Node ID 262

These objects and fields are all created automatically by servmon and the Service Status and
Down Time fields are updated automatically, based on input from Service Up / Service Down
traps received via servmon and trapd. All we need is an icon for this service object that
changes when the service status changes.

Combining servmon and APM

To create icons that represent the service objects, create a Threshold/Data Collection APM as
described in the APM section above, and shown in the screenshots. The name of the APM
must be the name of the SmartSet defined in the third field of the servmon.conf entry, with
�.CF� appended (the APM Configuration tool will prevent creation of an APM with an
identical name to the SmartSet). The SmartSet Assignment in the APM should also be the
same SmartSet defined in the third field of servmon.conf - in other words, create a service
icon for all nodes in the SmartSet defined by an entry in servmon.conf.

Although this mechanism may appear clumsy and non-automatic at first, once the first APM
has been created it is trivial to copy it, simply modifying the APM name and the SmartSet
assignment.

Rather than creating a new object for this APM service object, APM adds extra fields to the
existing <nodename>:<SmartSet>.CF object, representing the C5d attributes (Object: 5081 in
the example above).

OBJECT: 5081

FIELD ID FIELD NAME FIELD VALUE
10 Selection Name "poppet.skills-1st.co.uk:Jetty.CF"
14 OVW Maps Exists 2
15 OVW Maps Managed 2
17 isSMAPPL TRUE
21 smDeleteObject FALSE
22 C5status 3
23 C5mlmObjectId 262
24 C5nodeObjectId 262
25 C5resourceObject 2
26 C5resourceName "Jetty.CF"
28 isC5ManagedResource TRUE
163 Service Status Critical(4)
164 Down Time 1074868834
220 TopM Node ID 262

Note that this Object 5081 now exists in 2 Maps and is still contained within Node ID 262.

The last piece of customization is to persuade the service icons to change colour as Service
Up/Down events are received. The icon does not inherit status from the Service Status field,
but the NetView Status Change trap (58916871) could be used to change the status of the
service icon when a Service Up/Down event is received. Reconfigure these service status
events to run a small shellscript that generates a NetView change status trap.

Page 18 Exploring NetView 7.1.4 servmon and itmquery functionality 17 May 2004
Copyright Skills 1st Ltd

The gen_service_change_trap.sh script is shown below. The second and third variables
from the original service trap are passed to the script - the second variable is the hostname of
the node sending the service trap; this variable is checked for �\� escape characters and then
has the service name and �.CF� appended to it. It is used to form the Selection Name of the
icon to be changed.

The third variable from the original service status trap, has 3 words:
Page 19 Exploring NetView 7.1.4 servmon and itmquery functionality 17 May 2004

Copyright Skills 1st Ltd

! Service
! < The name of the service that has changed status >
! < The value of the status of the service>
This second variable is split into its component words by the script to determine the service
that has changed and the status it has changed to. A status of User2 (purple) has been used
for a service status of anything other than Normal, while Normal status (green) has been used
for a service status of up. User2 has been chosen as that status is defined to contribute up the
NetView map hierarchy so a node that contains a purple service icon, along with other green
icons, will itself be Marginal (yellow).

#!/bin/ksh
#
Send trap using the snmptrap supplied with NetView in /usr/OV/bin
Trap here is NetView change status trap
Source should be passed as $1 - fully qualified domain name
$2 is 3 word string where:
1st word is "Service" , 2nd word is service name, 3rd word is service status
#
#
#set -x
MANAGER=`hostname`
ENTERPRISE=.1.3.6.1.4.1.2.6.3.1
If domain name has "." and "-" they will be escaped, so unescape
SOURCE=`echo "$1" | sed "s:\\\\\\::g"`
Split out $2 into 3 words, $1, $2, $3
set $2
SERVICE="$2"
SERV_STATUS="$3"
#
GENTRAP=6
SPECTRAP=58916871
TIMESTAMP=1
TRAPVAR=.1.2.6.1.4.1.2.6.3.1.1.2.0
SELECTION="$SOURCE":"$SERVICE".CF
if [$SERV_STATUS = Normal]
then
 STATUS=Normal
else
 STATUS=User2
fi
#
MESSAGE="Status changed on $SELECTION to $STATUS"
#
/usr/OV/bin/snmptrap $MANAGER $ENTERPRISE $SOURCE $GENTRAP $SPECTRAP
$TIMESTAMP \
 $TRAPVAR Integer 14 \
 $TRAPVAR OctetString $SELECTION \
 $TRAPVAR OctetString "$MESSAGE Object status is" \
 $TRAPVAR OctetString $STATUS
#

The final result should be that, when a service status event is received from a node, the
service icon within the node should turn purple for �bad news� and green for �good news�.
Once testing is complete, it may be advisable to customise the Change Status trap to be of
Category LogOnly so that NetView users do not see it.

Page 20 Exploring NetView 7.1.4 servmon and itmquery functionality 17 May 2004
Copyright Skills 1st Ltd

Observations using APM, MLM and servmon

There are a number of points to be aware of when installing and using MLM and the APM:
! MLM code is shipped on the same CDs as NetView, under an MLM directory
! Before installing an MLM, ensure that community names for external addresses and

loopback addresses are correct both in SNMP agents and in NetView�s ovsnmp.conf.
MLM configuration is achieved using SNMP SET commands so readWrite access is
required to any SNMP agent on an MLM.

! Beware that the AIX MLM does not install properly on an AIX 5.x system - the
/usr/OV/bin/smmlm_smit install script needs modifying with an extra line (around line
144), containing an entry for AIX 5.x - simply copy the line for AIX4:
! 4) arch=AIX4;;
! 5) arch=AIX4;;
! esac;;

! If a service object is deleted by servmon when the Service Down Delete Interval
parameter has detected a service down for a given period, then the whole service object is
deleted, including any service icon that was created with APM. If the APM
Configuration tool is used to delete a service icon associated with a servmon service
object, then the C5 fields are removed from the service object and the icon is deleted but
the basic service object remains with the original four fields, as created by servmon.

! Occasionally the C5d daemon creates extra icons with Object Id numbers appended to the
name. Try using the Node Status -> Resynch option from the APM Configuration tool
to remove these extraneous icons. Typically these icons cannot simply be deleted using
the Edit -> Delete Object menus. If the APM Tool is used to delete the icon then
deleting any remaining, associated extraneous icons with the Edit -> Delete Object menu
always seems to work, but this means that the APM has to be recreated and redistributed.
 If all else fails, back up the NetView databases, and use the ovwdbdmap -d <Object
Id> command, having first determined the Object Id using ovobjprint or the Tools ->
Display Object Information menu.

Summary

The purpose of this document was to gather together disparate information available for the
new NetView 7.1.4 servmon and itmquery utilities and to demonstrate practical uses of them.
Current limitations are documented and workarounds proposed to produce a system that
combines network and service management.

The team that wrote this paper

Jane Curry is an independent Tivoli consultant and instructor, specializing in the Tivoli
availability products - Framework, NetView, TEC and ITM. Previously, she spent 11 years
in IBM working in both presales and postsales, systems and network management roles.

Page 21 Exploring NetView 7.1.4 servmon and itmquery functionality 17 May 2004
Copyright Skills 1st Ltd

