Zenoss Datasources through the eyes of
the Python Collector ZenPack

Monitoring Windows devices with SNMP

Jane Curry
Skills 1st Ltd
2 Cedar Chase
Taplow
Maidenhead
SL6 OEU
01628 782565

jane.curry@skills-1st.co.uk

February 2015
Jane Curry
Skills 1st Ltd

www.sKkills-1st.co.uk

DRAFT

© Skills 1st Ltd

9 Feb 2015

http://www.skills-1st.co.uk/
mailto:jane.curry@skills-1st.co.uk

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0
Unported License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-sa/3.0/ or send a letter to Creative Commons,
444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

(ool

2 © Skills 1st Ltd 9 Feb 2015

http://creativecommons.org/licenses/by-sa/3.0/

Synopsis

Zenoss provides several mechanisms for collecting performance data from devices,
using different protocols, driven by different Zenoss daemons. Many come as standard
with Zenoss Core.

A simple way to run non-standard data collection is to use the zencommand daemon
which will run any script - bash, python, whatever - and deliver data to the
performance data files which, for Zenoss upto and including version 4, are held in
Round Robin Database (rrd) format. Unfortunately the zencommand daemon has a
large overhead if many scripts are run against many devices.

Zenoss introduced the zenpython daemon in the Python Collector ZenPack to
streamline collecting custom data and to provide much more flexibility in both
defining and handling that data.

The Python Collector ZenPack also offers a new collection method for configuration
data. Modeler plugins can be constructed which use zenpython to gather
configuration data in an efficient way.

This paper first describes the Zenoss architecture behind data collection. It then
explores simple and more complex ways of building new datasources with the Python
Collector ZenPack, both to gather data from a device and to collect data for
components of devices. It also demonstrates building a Python-based modeler plugin
to discover device components.

Performance data is gathered by writing Python code. The code has to process data
that arrives at the zenpython daemon asynchronously. The Python “Twisted” libraries
have to be used to achieve this - a major topic in itself. Examples using both scripts
and SNMP are described.

All examples are included in ZenPacks.skills1st.WinSnmp. This ZenPack updates and
combines the excellent work done by Ryan Matte with his
ZenPacks.Nova.Windows.SNMPPerfMonitor ZenPacks.Nova.WinServiceSNMP.

This is not an introductory text. It is aimed at people who can write some Python
code, are already comfortable with creating Zenoss ZenPacks and have a good working
knowledge of Zenoss in general. For help getting to this starting point, see some of the
items in the extensive reference section.

THIS IS CURRENTLY NOT COMPLETE - MORE TO FOLLOW..........

Notations

Throughout this paper, text to by typed, file names and menu options to be selected,
are highlighted by italics; important points to take note of are shown in bold.

n Points of particular note are highlighted by an icon.

3 © Skills 1st Ltd 9 Feb 2015

Table of Contents

B 217 06 LTt o) o W 6
2 ATCRITECTUTE. ... e e e e e e aaaaaaeas 6
2.1 Collecting data.......cccoceec s 6
2.2 Performance templates............uvvviviiiiiiiiiiiiiiiiieiiieeeeeeeeeeeeeeeeee e e e e e e e e e e eeeeens 7
2.2.1 Device templates vs component templates..........cccoeeeeeeeeeeeeeeiiiiiiiiieee e, 11

2.3 The role of zenhub in data collection...........ccccuvviiiiiiiiiiiiiiiee e, 13
2.3.1 config_ key method..............ooviiiiiiiiiee e 14
2.3.2 params Method.........ccccuiiiiiiiiiiiii e 14
2.3.3 Proxy attribDULES...cccvviiiiiieeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee s 16

3 The Python Collector ZenPacK................uuiiiiiiiiiiiiiiiiiiiiiiiiiieiiieeeeeereesser e e esssrsnaeeeeeens 17
3.1 Programming With TWiSted...........coevvviiiiiiiiiiiiiiiiiiiiieiirieeeeeeeeeeeeeeeeeeeeeeeeee e 18

4 ZenPacks.Nova.Windows.SNMPPerfMonitor.........cccccceevviviiiiiiiiiiiiiiicieee e 19
4.1 Obtaining code and documentation for the ZenPack.............ccccuvvviviieiiiinnicnnnnnnnns 19
4.2 ZenPack implementation detailS...........cccvvvvviiiiiiiiiiiiiiiiiiiiiiiicee e e eeeane 20

5 ZenPacks.Nova.WinServiceSNMP.............ccccii e, 23
5.1 Obtaining code and documentation for the ZenPacK...............cccevvvvvvvvvrrvvrevnennnnne. 23
5.2 ZenPack implementation details.........ccccoooeiiiiiiiiiiii e 25

6 ZenPacks.skills1st.WinSnmp........ccccooiiiiiiiiiiiiiee e 26
6.1 Creating a ZenPacK...............oviiiiiiiieiee e e e 26
6.2 Building a Python datasource to run a script.......cccccoeeeeeiiiiiiiiiiiiiiiiiiiieeeeeeeeee, 27
6.2.1 Imports and logging...........cccooeeiiiiiiiiiiiien 27
6.2.2 The datasource class.........cccoeiiiiiiiiiiii i, 28
6.2.3 Info and Interface definitions.........ccccceieeiiiiiiiiiiiiiiieee e, 31
6.2.4 The PythonDataSourcePlugin class...........cccccoeeeiiiiiiiiiieiicee e 33

6.3 CONFIGUIE.ZCIML.......coiiiiiiiiiiiiiiieeeeeeeeeeeeeeeee e e e e e e e e eeeeeeeseeeseaaeaesaaaaraaaraaaaas 44
6.4 Testing the New dataSOUTCE...........cevvvivviiiiiiiiiiiieiieeeeeeeeeeeeeeeeeeeeeeerereeeeeeeerreerrreer—————— 45
6.4.1 Defining a template to utilise a new datasource............ccccceevvverrvrrrniieeeennnns 45
6.4.2 Testing the datasource configuration...............cccccccceiiiiiiiii, 47
6.4.3 Testing the target device...........ccoooiiiii e, 48
6.4.4 Testing with ZzenpPython........ccocooiiiiiiiiiiiiieeccc e 49
6.4.5 Adding graphs and threshold to the template.............cccccceiiiiiiiniinriiinnnnns 51

6.5 Datasource to collect cpu utilisation with a command... 51
6.6 Building a datasource to gather a single SNMP scalar value................cccee....... 51
6.7 Building a datasource to gather SNMP table values..........cccccuvvvvveeieeiiiiiiinnnnn..n. 51
6.8 Building a Python modeler plugin..............cccvvvviiiiiiiiiieiiiiieiiieieeineerierrreeeeeeeereennes 51
6.9 The rest of the ZenPackK............ooooiiiiiiiiiiiiiieeeee e 51
6.9.1 Device and component 0bJectS..........coovvviiiiiiiiiiiiiiiieeeeeee e 51
6.9.2 The __init_ . pY file..ueiiiiiiieeee e 52

A O707's Tl 1V 1S3 (o) 1= TP 52
REfEIEINCES. ...cceiiiiieeeee ettt e e e e e e e et r e e e e e e e e e e errae e e e e b aaaa i as 53
ACKNOWIEAZEMENES.... .o e e e e e e e e e e n e 56

4 © Skills 1st Ltd 9 Feb 2015

© Skills 1st Ltd 9 Feb 2015

1 Introduction

This paper has a number of objectives:
Provide documentation for developing and testing ZenPacks
Describe in detail the ZenPack architecture for gathering performance data
Explore the capabilities of Zenoss's Python Collector ZenPack

Combine the functionality of Ryan Matte's
ZenPacks.Nova.Windows.SNMPPerfMonitor ZenPacks.Nova.WinServiceSNMP
to produce a single ZenPack for monitoring Windows devices using the SNMP
protocol.

2 Architecture

2.1 Collecting data

There are some good architecture diagrams in Chapter 1 of the Zenoss Core 4
Administration Guide that help describe the interactions between the many Zenoss
daemons.

e \
I I
| User Web App / Reports :
. — A L |
[: prem— —— p— — § "
I I
i Data ZenModel EenEvents ZenRRD :
R T T e e e e e e
I I
! Process ZenHub ZenActions ZenJobs :
I i
= m e e e e e e o
! :
] - - - |
: Collect '« Discovery _I Performance e Availability —_ Events i
L 4
ICMP SNMP S5SH WMI Perfmon IMX VMAPI 50L HTTP SMTP... Traps Eventlog Syslog ...

Figure 1: Zenoss Architecture

Fundamentally, data is collected by “collectors”. A Zenoss collector is always installed
when you install Zenoss Core (or a Zenoss Enterprise hub). It will be called

6 © Skills 1st Ltd 9 Feb 2015

localhost. It may be a logical entity in your single Zenoss server or you may install
one or more separate Zenoss collector systems if you want to spread the load of data
collection or avoid problems with firewalls. Each collector will have its own name, its
own collection of devices that it is responsible for ,and its own set of Zenoss daemons.
For the rest of this paper, the assumption is that there is a single localhost collector,
co-located with the Zenoss hub and database.

“Data” can be various types, shown in the diagram above:

Discovery - this is typically configuration data. Examples for a device would
be the number and type of network interfaces, the number of filesystems with
their basic attributes, the number and names of monitored processes.
zenmodeler is the daemon that collects this data and it typically runs every 12
hours. You do not expect configuration data to change minute-by-minute.

Performance - this data often is relevant, at least at 5-minute intervals. So
having discovered a device has several interfaces, including eth0, a performance
daemon would then gather bytes in and bytes out for that interface, at 5 minute
intervals. There are several Zenoss-supplied daemons that could do this.
Typically the data is gathered using the SNMP protocol so zenperfsnmp would
be the relevant daemon. If a device does not support SNMP, the data may be
gathered using a command, perhaps over SSH; the collecting daemon would
then be zencommand. If the device runs Windows, you may have one of the
Zenoss-supplied ZenPacks to gather data using the WMI protocol using the
zenwin daemon, or using the WinRM protocol which used the zenpython
daemon.

Availability data is typically collected by Zenoss daemons asking “are you still
there” questions. zenping is a good example; by default, every device known to
Zenoss is ping'ed every minute.

Event data may come from the Zenoss daemons that gather external events
information - zentrap gathers SNMP TRAP data; zensyslog gathers syslog data.

This paper will focus mainly on performance data and will touch on discovery data.

2.2 Performance templates

So how does a collector know what data to collect for what devices? Performance
templates define what data is to be collected.

7 © Skills 1st Ltd 9 Feb 2015

[+
Source Enabled Type Name Type Min. Value

Ping Ping true PING high utilizatk MinMax Thresho

finErrors 1.361212.21.14 true SNMP ifOperStatusChange ValueChangeT..
a ifinOctels 13612122110 true SNIMP
ifind InOctets DERIVE

ffinUcastPackets

ifOperStatus

Edit Data Source

Name:

ifinCetets

0ID: [Enabled

136.1.21.221.10

Name
Te-.;l Againsi a Device Throughput
e Name: Packets
Errors

CAMCEL

ne

> SubagentShellCommandStatus B E]
> SubagentShelllpConntrack Name Bource Enabled Type MName Type Min. Value

> SubagentShellMailgLength £71s1800 jzenoss/localis180... true COMMAND size10To20 MinMaxThreshold 20
> SubagentShellNamedStat sizevar21To30 MinMaxThreshold 30
> BubagentShellNtpSyncStatus testi countervar GAUGE sizevarOver30 MinMax Threshold
+ SubageniShellPingStatus test!.percentvar GAUGE
» BubagentShellProcStat [GAUGE
» SubagentShellSwapPages test! timevar GAUGE
» SubageniShellWebService y
i Edit Data Source
@/application/SSL_Certificate_Ch... Name:

@ serverLinuxiotschy.skills-15tc... ﬂEnanl d

@/serverLinuxzend2 class.exam. . Event C
> TMS_Pulse_Template
+ uptimeTwisted Parser:
» VPNGateway :

Component:
WinDalabase
WinService
. Command Template:
4 WinServiceSNMP
/ServerAWindows

loplizenossiocalfitestl.sh

/ServerWindows/Snmp ~]

Figure 3: test1 Command template for [Server/Linux

A template typically includes:

« One or more datasources.

(here.spee:

Max. Value

| 0 Jobs - |

sieNnouT B

o The datasource has a name; good practice suggests it should be unique.

o The data to be gathered. In Figure 2 above, it is an SNMP Object Id (OID).

In Figure 3 the data is captured using a command.

o Whether the datasource is enabled.

8 © Skills 1st Ltd 9 Feb 2015

An event class may be specified to be sent if the collection mechanism fails,
with the severity of that event.

The protocol / daemon used to gather information, though this is often
inherent rather than explicitly stated.

Depending on the collection mechanism, which may be introduced by a
ZenPack, the datasource may have all sorts of other features.

Figure 4: sizevar datapoint in test1 datasource

Monitoring Templates

~[+[efe-

GAUGE Description:

GAUGE

GAUGE RRD Type:
GAUGE

Create Command:

RRD Minimum:

RRD Maximum:

Read Only

Alias:
ID / FORMULA

Each datasource may have one or more datapoints.

o]

A datapoint has a name which must be unique within the datasource
definition.

Figure 2 shows a single datapoint, ifInOctets, for the SNMP datasource
ifInOctets. Because the datasource type was selected to be SNMP, a single
datapoint is automatically created with the same name as the datasource.
This is because an SNMP query typically returns a single piece of data for a
given OID request.

Figure 3 shows the testl datasource with 4 datapoints - countervar, sizevar,
timevar and percentvar. A script can deliver as many values as you want
from a single script. The datasource is of type COMMAND so we get more
fields to define how the command is run. The trick with a COMMAND
datasource is that the script must return “Nagios-style output” which
typically echos to stdout a string like:

"This is a test - status OK | timevar=74s sizevar=9B percentvar=10% countervar=123c"

The summary of an event is populated by the text before the vertical bar;
any data values are after the bar in the format <variable name>=<variable

© Skills 1st Ltd 9 Feb 2015

value>. They may be comma or space separated. The trick is that, in the
template, the datapoints need to be defined such that their names exactly
match the variable names that are output.

o The datapoint has a type - COUNTER, GAUGE, DERIVE or ABSOLUTE.

o A datapoint may have a maximum and/or minimum value specified. Sample
data outside this range will not be stored.

o The datapoint may have an alias.

When creating a datapoint, you specify its name. When the datapoint is used, its full
name is <datasource>.<datapoint> (in some older versions of Zenoss, you may
sometimes see <datasource>_<datapoint>). So, from Figure 4, we get:

testl.countervar
testl.sizevar
testl.percentvar
testl.timevar

When data has been gathered, it is stored in Round Robin Database (rrd) files. (Note
that this is changing with Zenoss 5). It is zenrrd that actually populates the files.
Data files are stored on the collector responsible for a device, under a directory
structure starting $ZENHOME/perf/Devices/<device id>. Device-wide data, such as
memory and load average are directly under this directory. If the template includes
graphs, the graphs are seen from the left-hand Graphs menu for the device.

If the template is for component data, such as filesystems or interfaces, then the data
files are in subdirectories such as os/filesystems or os/interfaces.

The datafile will end in .rrd. The main part of the filename is the datasource name

concatenated with the datapoint name, separated by an underscore; so we get things
like:

testl_countervar.rrd
os/interfaces/MS TCP Loopback interface/ifInOctets_ifInOctets.rrd

Note that these filenames do not include the template name. This is why it would be
good practice to always have unique datasource names. If you have two templates,
both with a datasource called test1, both of which have a datapoint called contervar,
both of which are bound to a particular device, then you will have chaos with two
templates both trying to write to the same file.

Templates are activated by binding them either to a device class or to a specific
device. If bound to a class, the template is inherited down that class hierarchy and to
the device instances. A template of the same name may be overridden at any point
lower down the hierarchy, with changes. This is why there are lots of templates called
Device, probably all different.

10 © Skills 1st Ltd 9 Feb 2015

Zenoss’ DASHBOARD EVENTS INFR/

|:: |::| =] E

Settings Collectors Monitoring Templates Jobs

Q

[2]

4 Device
@ /Devices
@ /Network/Router/Cisco
OIF‘ing il
@ /Power/UPS/APC
@ /server
@ /server/Cmd
@ /Server/Darwin
@ /server/Linux
@ /server/ Linux/lotschy.skills-1st.co.uk
@ /Server/Microsoft
@ /server/Scan
@ /server/Solaris
@ /Server/SSH
@ /Server/SSHILinux
@ /server/Windows
@ /server/Windows/1 Processor
@ /Server/Windows/16 Processors b

Figure 5: Device template with different versions for device classes and
specific devices

The template at the lowest point in the hierarchy is the one actually applied.

2.2.1 Device templates vs component templates

Some templates ask questions about an overall “device”, Device (Server/Linux) has
SNMP datasources that query cpu and memory statistics.

The “question” is asked once of the whole device. In SNMP terminology, the OID that
is requested is usually a scalar, ie. a single number and it nearly always ends in a .0 .
Data is retrieved and stored directly under $ZENHOME/perf/Devices/<device id>.

These templates must be bound to a device class or device.

11 © Skills 1st Ltd 9 Feb 2015

ZeNOSS™ DASHBOARD EVENTS INFRASTRUCTURE ~ REPORTS = A) jane SIGN OUT

Settings Collectors Monitoring Templates Jobs MIBs

Q Data Sources Thresholds

4 Device
@ /Devices S latuauni g e 010 Sliue T N :
, MinMaxThreshold
& INetwork/Router/Cisco » [laLoadint5 1.3.6.1.4.1.2021.10.1.5.2 true SNMP
Py low... MinMaxThreshold 2
/Ping 4~ memAvailReal 1.3.6.1.4.1.2021.4.6.0 true SNMP
@ Power/UPSIAPG memAvailReal. memAvail. . GAUGE
@ /server - () memAvailSwap 1.3.6.1.4.1.2021.4.4.0 true SNMP
© server/Cmd & (] memBuffer 1.3.6.1.4.1.2021.4.14.0 true SNMP
@ Server/Darwin - () memCached 1.3.6.1.4.1.2021.4.15.0 true SNMP

¥ [Server/Linux

o,’Server.r‘Linuxllolschy.skH\sfl st.co.uk

I |_] ssCpuRawWwait 1.3.6.1.4.1.2021.11.54.0 true SNMP
@ /Server/Microsoit
» |_] ssCpuSystem 1.3.6.1.4.1.2021.11.10.0 true SNMP
@ /Server/Scan [
: 4 ssCpulser 1.3.6.1.4.1.2021.11.8.0 true SNMP |
OISeNen‘Solarls Graph Definitions
ssCpullser.ssCpulser GAUGE 1
@ server/sSH a1
: I [ssIORawReceived 1.3.6.1.4.1.2021.11.58.0 true SNMP
@ /Server/SSH/Linux
. 4/ ssIORawSent 1.3.6.1.4.1.2021.11.57.0 true SNMP
@ /Server/Windows = o
ssIORawSent.ssIORawSent DERIVE Dex s
@ /server/Windows/1 Processor
(] sysUpTime 1.3.6.1.21.25.1.1.0 true SNMP §: CEU LHiEation

@ /server/Windows/16 Processors [~
Figure 6: Device (/ Server/Linux) template with scalar SNMP datasources and datapoznts

A component template is rather different. Typically it gathers data for each instance
of a component. The ethernetCsmacd (/Devices) template gathers several datapoints
for every interface. With SNMP, typically the datasource specifies an OID for an
SNMP table rather than a scalar, where the last digit of the OID refers to the
instance within the table.

Zenos_s_" DASHBOARD EVENTS INFRASTRUCTURE REPORTS @/ D jane SIGN OUT

Collectors Monitoring Templates Jobs MIBs

Settings

Q Data Sources Thresholds
e +]oo- '
I EG2VPGCSubnet ; T
I EG2Zone >] Ping Fing true PING hig... MinMaxThreshold
I~ EsxTopHost 47 finErrors 1.3.6.1.2.1.221.14 true SNMP if0... ValueGhangeT...
4 ethernetCsmacd ifinErrors.ifinErrors DERIVE
4 3 findctels 13612122110 e snup
ONetwark/Switch 3 ifinOctets.ifinOctats DERIVE
O/servericmd + (] ifinUcastPackets 1.361.21.221.11 true SNMP
O /serverMicrosoft
I (] ifOperStatus 1.3.61.21.221.8 true SNMP
©/server/SSHLinux =
I [ifOutErrors 1.361.2.1.2.21.20 true SNMP
©/serverWindows WM
+ (] IfoutOstats 1.3.6.1.2.1.221.16 true SNMP
4 ethernetCsmacd 64
: - (] ifoutUcastPackets 1.36.1.21.221.17 true SNMP
©/Devices
© /Nstwork/Router/devices/tb2011 s. . Srmph Definitlons
O /Netwark/Router/devices/rb2011 s...
© /Netwark/Router/devices/rb2011 s... e
0:‘ Server/Linux/devices/zen42.class... Throughput
+ ExampleComponent Packets

Figure 7: ethernetCsmacd template showing OIDs for tables (no .0 on the end)

ifInOctets is one of the datasource/datapoints in the ethernetCsmacd template. Note
in Figure 7 that the OID does not end in .0 . Also note in the templates dialogue that

12 © Skills 1st Ltd 9 Feb 2015

in the left-hand menu it has a grey “snowflake” icon against it; this denotes a
component template.

To see what the datasource returns, use the snmpwalk utility to get the OID:
snmpwalk -v 2c¢ -c¢ public win2003net.class.example.org .1.3.6.1.2.1.2.2.1.10
IF-MIB::1fInOctets.l = Counter32: 1139
IF-MIB::1fInOctets.2 = Counter32: 12594398
IF-MIB::1fInOctets.3 = Counter32: 1453709

A table of values is returned, one per interface. It is the job of the datasource to work
out how to assign the correct data to the correct interface.

Component templates must not be bound by humans! They are bound
automatically when the zenmodeler daemon discovers instances of a component
during the configuration cycle.

The association is made by the template (not datasource or datapoint - template)
having exactly the same name as the object defining the component (it may be
different if you code it that way - as with interface templates - but this is a good
starting rule). Typically, you only find this information by digging in the code. The
FileSystem component template is bound automatically to components of type
FileSystem (have a look in $ZENHOME/Products/ZenModel/FileSystem.py for the
object definition).

2.3 The role of zenhub in data collection

zenhub is the central Zenoss coordination daemon. Performance templates are
usually defined through the graphical interface, included with the Core code, or
shipped with ZenPacks. However they are defined, they are stored in the Zope
database (zodb) which is implemented in MySql. In a simple implementation the
MySql instance is co-located with the zenhub though it can be separated off to a
separate server with both Zenoss Core and Enterprise. Fundamentally, zenhub
directs access to the ZODB database.

Data collection is performed by various daemons in one or more Zenoss collectors.
zenhub knows which devices are supported by which collectors. Part of the role of
zenhub is to decide what template information should be sent to which collectors; the
collector daemons can then build task lists of what data to gather from where.
Whenever a template is changed, zenhub needs to push configuration changes to the
appropriate collector(s); this now happens automatically when a template or device
attribute is updated; in the past, the Push Changes menu option was used.

It would be wildly inefficient to individually pass every datapoint for every datasource
for each object to the collectors. Each type of datasource is defined as an object class
and each class is associated with a DataSourcePlugin class. The DataSourcePlugin
code includes methods for zenhub to determine what data needs passing to which
collectors.

13 © Skills 1st Ltd 9 Feb 2015

2.3.1 config_key method

This method will be discussed in more detail later but for now, the comments in
Figure 8 are helpful.

File Edit View Search Terminal Help
@classmethod
f config key(cls, datasource, context):

Return a tuple defining collection uniqueness.

This is a classmethod that is executed in zenhub. The datasource and
context parameters are the full objects.

This example implementation is the default. Split configurations by
device, cycle time, template id, datasource id and the Python data
source's plugin class name.

You can omit this method from your implementation entirely if this
default uniqueness behavior fits your needs. In many cases it will.

Logging in this method will be to zenhub.log

(
context.device().id,
datasource.getCycleTime(context),
datasource.rrdTemplate().id,
datasource.id,
datasource.plugin classname,
)

Figure 8: config_key method for a datasource plugin class

The method is run by zenhub.

It is passed the datasource object and the context object; “context” is the item that the
datasource template is applied to, typically a device or a component.

It returns unique configuration “batches” where you specify what makes a config
unique. The default is shown here. Note that the device id is included but not the
context.id. This means that, by default, a single component datasource definition will
serve for all similar components of the device, with the same datasource template,
cycle time, datasource name and datasource plugin.

2.3.2 params method

A datasource may also implement a params method. Remember that data collection
may be in a remote collector which does not have direct access to the zodb database. If
the collection daemon needs access to zodb data, then it has to be fetched by zenhub
and included in the configuration that is passed to the collection daemon.

14 © Skills 1st Ltd 9 Feb 2015

def params (cls, datasource, context):

Return params dictionary needed for this plugin.

This is a classmethod that is executed in zenhub. The datasource and

context parameters are the full objects.

You have access to the dmd object database here and any attributes

and methods for the context (either device or component) .

You can omit this method from your implementation if you don't require
any additional information on each of the datasources of the config
parameter to the collect method below. If you only need extra
information at the device level it is easier to just use

proxy_attributes as mentioned above.

params = {}
params ['snmpVer'] = datasource.talesEval (datasource.snmpVer, context)
params ['snmpCommunity'] = datasource.talesEval (datasource.snmpCommunity, context)

Get path to executable file, starting from this file
which is in ZenPack base dir/datasources

Executables are in ZenPack base dir / libexec

thisabspath = os.path.abspath(__file)
(filedir, tail) = os.path.split(thisabspath)

libexecdir = filedir + '/../libexec’

script is winmem.py taking 3 parameters, hostname or IP, zSnmpVer, zSnmpCommunity

cmdparts = [os.path.join(libexecdir, 'winmem.py')]

context is the object that the template is applied to - either a device or a component

In this case it is a device with all the attributes and methods of a device

if context.titleOrId():

cmdparts.append (context.titleOrId())
elif context.managelp:

cmdparts.append (context.managelp)
else:

cmdparts.append ('UnknownHostOrIp')

15 © Skills 1st Ltd 9 Feb 2015

Items of particular note in the params method above are:

params ['snmpVer'] = datasource.talesEval (datasource.snmpVer, context)

o The datasource dialogue provides elements in the GUI for you to specify
data. This “datasource.talesEval” construct provides access to that data (the
snmpVer attribute in this case). More on this later.

if context.titleOrId():

o context is the object the template is applied to, typically a device or
component. All attributes and methods of that object are available at this
time. For a device, look in $ZENHOME/Products/ZenModel/Device.py for
the object definition. This line uses the titleOrId() method.

elif context.managelp:

o Similarly, this gets the managelp attribute of the device or component.

2.3.3 proxy attributes

The proxy method provides great flexibility for accessing zodb attributes and methods
of devices and components. If the requirements of the data collector are simpler - just
attributes of a device - then they can be specified in a proxy_attributes statement of
the DataSourcePlugin class. They are then accessed by zenhub and passed as part of
the datasource configuration, to the collector.

File Edit View Search Terminal Help

#testable = True

SnmpProcPlugin(PythonDataSourcePlugin):

Collection plugin class for SnmpProcDataSource.

List of device attributes you might need to do collection.

proxy attributes = (
'zSnmpVer',
"zSnmpCommunity',
'zSnmpPort"',
'zSnmpMonitorIgnore',
'zSnmpAuthPassword',
'zSnmpAuthType',
'zSnmpPrivPassword',
"zSnmpPrivType',
'zSnmpSecurityName',
"zSnmpTimeout',
'zSnmpTries',
'ZMax0IDPerRequest"',
)

Figure 9: proxy_attributes for a DataSourcePlugin

16 © Skills 1st Ltd 9 Feb 2015

3 The Python Collector ZenPack

Zenoss released the Python Collector ZenPack in 2013 - see
http://wiki.zenoss.org/ZenPack:PythonCollector . I believe it only works with Zenoss 4

releases, not Zenoss 3 or earlier. There is some documentation provided on the wiki
page but it is rather sparse.

The ZenPack provides:

A new collector daemon that implements Python code - zenpython
A new datasource base class - PythonDataSource

With associated info and interfaces classes - PythonDataSourcelnfo and
IPythonDataSourcelnfo to help define the layout of the dialogue for the
datasource.

A new DataSourcePlugin class - PythonDataSourcePlugin that actually
specifies the work to be done in collecting data.

PythonDataSourceConfig and PythonConfig classes (in the services
directory) as base classes to define how zenhub handles Python datasource
configurations.

Fundamentally, this daemon implements your Python code. Out-of-the-box, the
Python Collector ZenPack does not immediately deliver anything useful.

From the wiki page.....

17

“The goal of the Python data source type is to replicate some of the standard
COMMAND data source type's functionality without requiring a new shell and
shell subprocess to be spawned each time the data source is collected. The
COMMAND data source type is infinitely flexible, but because of the shell and
subprocess spawning, it's performance and ability to pass data into the
collection script are limited. The Python data source type circumvents the need
to spawn subprocesses by forcing the collection code to be asynchronous using
the Twisted library. It circumvents the problem with passing data into the
collection logic by being able to pass any basic Python data type without the
need to worry about shell escaping issues. “

“The Python data source type is intended to be used in one of two ways. The
first way is directly through the creation of Python data sources through the
web interface or in a ZenPack. When used in this way, it is the responsibility of
the data source creator to implement the required Python class specified in the
data source's Python Class Name property field. The second way the Python
data source can be used is as a base class for another data source type. Used in
this way, the ZenPack author will create a subclass of PythonDataSource to
provide a higher-level functionality to the user. The user is then not responsible
for writing a Python class to collect and process data. “

© Skills 1st Ltd 9 Feb 2015

http://wiki.zenoss.org/ZenPack:PythonCollector

In practise, this means you have to create your own ZenPack to make use of
zenpython. The second paragraph from the wiki talks about “creation of Python data
sources through the web interface or in a ZenPack” but fundamentally you have to
code a PythonDataSourcePlugin to perform the data collection, even if you then build
a datasource of type Python through the GUI which then references your
PythonDataSourcePlugin. This “first method” does avoid coding the datasource
definition; that is, the GUI dialogue that allows you to specify relevant fields like
Event Class and Severity, Cycle Time and Component but the downside is that you
also lose that flexibility.

The “second way” to use the data source that is described in the above paragraph, does
impose the responsibility of some coding to define the datasource GUI dialogue. The
last sentence about “not responsible for writing a Python class to collect and process
data” really is not valid. Although a skeletal PythonDataSourcePlugin class exists, all
the actual collection methods are null code that you need to override in your ZenPack.

Another good reference is the Zenoss Labs ZenPack Development documentation at
http://zenosslabs.readthedocs.org/en/latest/zenpack development/monitoring http api/
index.html . This “Monitoring an HTTP API” section provides examples of coding for
the Python Collector ZenPack and uses the twisted.web.client libraries. The ZenPack
code example can be found here -

https:/github.com/zenoss/ZenPacks.training. WeatherUnderground .

3.1 Programming with Twisted

The wiki also refers to “forcing the collection code to be asynchronous using the
Twisted library” and then in the example has:

“return somethingThatReturnsADeferred(

without giving real example code. Programming with Python “Twisted” libraries is an
acquired taste and somewhat of a black art.

Fundamentally, Twisted provides methods that allow you to define a data collection
routine but expects the data to be returned at some time in the future. The program
does not have to wait, pending this data; it is handled asynchronously, at a later time,
when the data arrives. Typically it uses a callback mechanism to link the data
request with the returned data. Writing twisted code is non-trivial and debugging it
is harder; printing or logging statements are often inappropriate as the data will not
yet be available.

This paper is not a Twisted tutorial but it does provide examples of using both SNMP
and commands through the Twisted libraries.

18 © Skills 1st Ltd 9 Feb 2015

https://github.com/zenoss/ZenPacks.training.WeatherUnderground
http://zenosslabs.readthedocs.org/en/latest/zenpack_development/monitoring_http_api/index.html
http://zenosslabs.readthedocs.org/en/latest/zenpack_development/monitoring_http_api/index.html

4 ZenPacks.Nova.Windows.SNMPPerfMonitor

To provide several different examples of using Python datasources, this paper
describes the ZenPacks.skills1st.WinSnmp ZenPack. A second objective is to deliver a
working ZenPack to monitor Windows devices using the SNMP protocol.

Ryan Matte, well known to the Zenoss community, has two long-established ZenPacks
that provide this functionality but some of the data collection is performed through
zencommand; this will be replaced by zenpython datasources. The example ZenPack
will combine the functionality from both of Ryan's ZenPacks.

Note that when accessing ZenPacks through the Zenoss wiki site at
http://wiki.zenoss.org/Category:ZenPacks , some of the github links may be broken.
This is often because the link starts with git: rather than https: . For example:

git://github.com/zenoss/ZenPacks.Nova.Windows.SNMPPerfMonitor.git

can be corrected to

https:/github.com/zenoss/ZenPacks.Nova.Windows.SNMPPerfMonitor.git

4.1 Obtaining code and documentation for the ZenPack

Ryan Matte's ZenPacks.Nova.Windows.SNMPPerfMonitor is available at
https:/github.com/zenoss/ZenPacks.Nova.Windows.SNMPPerfMonitor . Note that this
is version 1.6 and does not have process and paging monitoring. The latest 1.7 version
I can only find in egg format referenced from the Zenoss wiki page at
http://wiki.zenoss.org/ZenPack:Windows SNMP Performance Monitor %28Advanced
%29 and the download link for the 1.7 egg is
http://dmon.org/downloads/zenoss/zenpacks/zenoss4/ZenPacks.Nova.Windows.SNMPP
erfMonitor-1.7-py2.7.egg .

Documentation for the ZenPack can be found at
http:/community.zenoss.org/docs/DOC-3386 . Note that it used to be called Windows
SNMP Performance Monitor (Advanced). The description on this page (which applies
to version 1.6 of the ZenPack) gives the following.

Description:

This ZenPack allows you to monitor performance data (CPU and Memory) of
Windows hosts running the standard SNMP Service without needing snmp-
informant installed. This ZenPack is still under development but is functional.

This ZenPack adds organizers to /Server/Windows as follows:

/Server/Windows/1 Processor
/Server/Windows/2 Processors
/Server/Windows/4 Processors
/Server/Windows/8 Processors
/Server/Windows/16 Processors

19 © Skills 1st Ltd 9 Feb 2015

http://wiki.zenoss.org/Category:ZenPacks
https://github.com/zenoss/ZenPacks.Nova.Windows.SNMPPerfMonitor.git
http://community.zenoss.org/docs/DOC-3386
http://dmon.org/downloads/zenoss/zenpacks/zenoss4/ZenPacks.Nova.Windows.SNMPPerfMonitor-1.7-py2.7.egg
http://dmon.org/downloads/zenoss/zenpacks/zenoss4/ZenPacks.Nova.Windows.SNMPPerfMonitor-1.7-py2.7.egg
http://wiki.zenoss.org/ZenPack:Windows_SNMP_Performance_Monitor_(Advanced)
http://wiki.zenoss.org/ZenPack:Windows_SNMP_Performance_Monitor_(Advanced)
https://github.com/zenoss/ZenPacks.Nova.Windows.SNMPPerfMonitor

Each one has a template that monitors a certain number of processors. New
templates may be created if you need more than 16 processors, though the
defaults should be ideal in most cases.

To determine which group to place a server in perform an snmpwalk command
for hrProcessorLoad as follows:

snmpwalk -v1 -c <snmp string> <host> hrProcessorLoad

The number of lines corresponds to the number of CPUs. Place the device in the
appropriate group. This ZenPack allows each individual CPU/Core to be
monitored as well as the total CPU usage. It also calculates total memory usage
in percentage to make thresholding much easier. There are thresholds available
for each individual CPU/Core as well, but these can be disabled if desired.

Version 1.7 of the ZenPack adds paging and number of processes to the data collected.
Note that there is a clear warning about the removal of the ZenPack:

If you are upgrading from an older version of the pack I recommend removing it
and then reinstalling it as I've made significant changes to the template which
don't appear to merge well when upgrading. In the case of this Advanced
ZenPack, move all of your Windows devices out of the processor
organizers to /Server/Windows so that they don't get deleted when the
pack is removed. After removing and reinstalling the pack simply
move the devices back in to their respective organizers.

This comment applies to any ZenPack which creates and deletes Device Classes. If
the ZenPack remove deletes a device class then all devices that have been allocated to
that class will also be deleted. This does not apply if you reinstall the ZenPack; in
that case, existing devices are preserved.

The documentation also suggests that an event transform be applied to the
/Perf/Memory event class to transform the summary and message fields to report the
percentage of memory or paging used, when a threshold is breached.

4.2 ZenPack implementation details

This is a simple ZenPack. It is really just a large number of objects in the
objects/objects.xml file. The objects create:

The Device classes documented above
Performance templates for each of these device classes

All the templates are variants of a template called Device. The templates that gather
cpu, memory and paging use zencommand to run scripts provided in the libexec
directory of the ZenPack:

20 © Skills 1st Ltd 9 Feb 2015

« wincpu.py

+ winmem.py

Zenoglpsg" DASHEOARD EVENTS INFRASTRUCTURE REPORTS ADVANG Q *jane SGNOUT H
Seftings Collectors @I Rr YD Jobs MBS ‘Page Tips.
qQ Data Sources | Thresnotas
4 Device Z . . ! E] - .
©/Devices JLare,] Lnsbled JLrpe. U Type b, e, e ave]
@ Network/Router/Cisco a5 CPU $$(which python) ${hereiZenPackManager/packs/ZenPacks.N... true COMMAND | CcPU1 MinMaxThreshold 90
@ring = CPU.CPUI GAUGE [cru MinMaxThreshoki %0
@ PowerUPS/APC 3 CRUCALE GAUGE | Memory Minax Threshold here.gelRRDV
o:‘Server 1 CPU.Total GAUGE Paging MinMaxThreshold here.getRRDV|
©/serveriCmd || 425 Memory $${which python) ${here/ZenPackManageripacks/ZenPacks.N... true COMMAND TolAl GPU s | NnkAs Thmaehold i
@ serverDanwin Memory.MemoryTotal GAUGE |
@ /serveriLinux Memary Memory Used GAUGE
@ /serveriLinuxotschy.skills-1stc... Memary PagingTotal GAUGE
@ serverMicrosoft Memaory.PagingUsed GAUGE |
@ server/scan Memory PercenthemorylJ... GAUGE 7‘. . 3]
@ /servensolaris Memory.PercentPagingUsed GAUGE Graph Definitions
@serverissH 4 £ hrSystemMaxProcesses 136.1.2.1.251.7.0 true SNMP E] -
@ servenssHiLinux hrSystemMaxProcesses.... GAUGE &
O servermwindows 4 55 hrSystemProgesses 13612125160 true SNMP cPU
@ serverWindows/1 Processor hrSystemProcesses.hrSy... GAUGE | Memory
@ serverWindows:16 Processars b (] sysUpTime 136121130 true SNMP | Paging
[Frovesses
@ serverWindows/4 Processors
@ /ServerWindows8 Processors
@ /serverWindows/net-snmp |
\ Pionice_ma (< . [
Footer ~ mﬁ]ml Group By: [Templlle-” nevlnechss][:aum: © Component: O

Figure 10: Device template from SNMPPerfMonitor ZenPack for | Server |/ Windows /2 Processors

Fundamentally all the data is collected using the SNMP protocol; however, as is not
uncommon, SNMP doesn't quite provide an OID for the exact data required. The cpu,
memory, and process data all comes from the standard HOST-RESOURCES mib.

For memory and paging we need total available, total used and percent used. What
the hrStorage part of the host resources mib provides us with, as a table, is:

- SNMP OIDs are table values - hrStorageEntry 1.3.6.1.2.1.25.2.3.1

« The .2 column gives hrStorageType with values like hrStorageRam and
hrStorageVirtualMemory

« The .4 column gives hrStorageAllocationUnits (ie block size in bytes)

« The .5 column gives hrStorageSize (ie total number of allocation units)

- The .6 column gives hrStorageUsed (ie number of allocation units used)
winmem.py

« Gathers this tabular data

« From the .2 hrStorageType it determines the OID instance that represents
hrStorageRam and hrStorageVirtualMemory

- For these instances, it gathers the .4, .5 and .6 values and uses them to
calculate the required datapoint values. For example:

21 © Skills 1st Ltd 9 Feb 2015

o MemoryTotal = (hrStorageAllocationUnits * hrStorageSize) /1.024
o MemoryUsed = (hrStorageAllocationUnits * hrStorageUsed) / 1.024
o PercentMemoryUsed = (MemoryUsed / MemoryTotal) * 100

- Data is gathered using the snmpwalk utility, taking parameters for the host to
collect from, the SNMP version to use and the SNMP community name.

- The script echos an output line to stdout in Nagios format, with each of the
datapoints after a vertical bar, in <var name> = <value> format

cpu utilisation is also provided by the HOST-RESOURCES mib where data is
provided per cpu. This is why the ZenPack provides various different device classes to
accommodate templates with datapoints for different hardware configurations.

wincpu.py is shown below. It provides a value for hrProcessorLoad for each CPU and
an overall total.

#!/usr/bin/python

Originally from Ryan Matte's ZenPacks.Nova.Windows.SNMPPerfMonitor
Uses a command to run an snmpwalk to get cpu utilisation

SNMP OID is actually a table of values - 1 value per processor

hrProcessorLoad .1.3.6.1.2.1.25.3.3.1.2

For multiple CPUs, simply sum up the values

import sys

import commands

host = sys.argv[1l]

snmp_ver = sys.argv[2]
community_string = sys.argv[3]
total = 0

cpu_index = 1

cpu_command = "snmpwalk -" 4+ snmp_ver + " -c¢ " + community_string + \
" " + host + " .1.3.6.1.2.1.25.3.3.1.2"

(status, cpu_output) = commands.getstatusoutput (cpu_command)

if status == 0:

cpu_list = cpu_output.split('\n"')

num_cpus = len(cpu_list)

if num_cpus > O:
sys.stdout.write ("OK|")

for cpu in cpu_list:

22 © Skills 1st Ltd 9 Feb 2015

else:

value = int(cpu.split(' ") [-11)
total = total + value
sys.stdout.write ("CPU" + str(cpu_index) + "=" + gstr(value) + " "),
cpu_index += 1
sys.stdout.write("Total=" + str((total / num cpus)) + "\n")

sys.stdout.flush ()

else:

print "Unknown"

print "Unknown"

When this script is used in a command template, the correct number of datapoints
need to be provided to match the number of CPUs. See the template in Figure 10

above.

5 ZenPacks.Nova.WinServiceSNMP

5.1 Obtaining code and documentation for the ZenPack

Ryan Matte's ZenPacks.Nova.WinServiceSNMP can be found on the Zenoss wiki at
http://wiki.zenoss.org/ZenPack:Windows SNMP_Service Monitor . The egg download

1s at

http://dmon.org/downloads/zenoss/zenpacks/zenoss4/ZenPacks.Nova.WinServiceSNMP

-1.1-py2.7.egg . I have not found the source code on github; however,I have built a

The documentation on the wiki page says:

23

DESCRIPTION:

The Windows SNMP Service Monitor ZenPack allows Zenoss to monitor
Windows Services via SNMP. It automatically links to the /Server/Windows
device class. After installing the pack you can simply remodel devices in
/Server/Windows and Zenoss will discover any services running on them.

Make sure that you lock the services to prevent them from being removed
during a remodel while a service is down. Modeling will only pick up services
that are running.

INSTALLATION:

During installation and removal the ZenPack rebuilds device relations for all
devices within the /Server/Windows device class. Depending on the number of
devices that you have in that class, it can take a long time. You will notice some

© Skills 1st Ltd 9 Feb 2015

http://dmon.org/downloads/zenoss/zenpacks/zenoss4/ZenPacks.Nova.WinServiceSNMP-1.1-py2.7.egg
http://dmon.org/downloads/zenoss/zenpacks/zenoss4/ZenPacks.Nova.WinServiceSNMP-1.1-py2.7.egg
http://wiki.zenoss.org/ZenPack:Windows_SNMP_Service_Monitor

errors in the Ul while the relations are being rebuilt, which is normal. Please be
patient and allow it to complete. After the relations have been rebuilt Zenoss
should be restarted. Make sure that the zenwinsrvsnmp daemon is running
after the restart is performed.

ZPROPERTIES:

zWinServiceSNMPIgnoreNames: Place the full names of any services
that you want to ignore in this line by line.
zWinServiceSNMPMonitorNames: Place the full names of any services
which you explicitly want to monitor (ignoring all others) in this line by
line.

zWinServiceSNMPMonitorNamesEnable: This enables/disables the use of
zWinServiceSNMPMonitorNames

Note that you need to remodel your devices for the above to take effect.

Keep in mind that zWinServiceSNMPIgnoreNames is constantly in use. If you
put the same service name in both zWinServiceSNMPIgnoreNames and
zWinServiceSNMPMonitorNames it will be ignored.

DAEMON:

zenwinsrvsnmp: Make sure this daemon is running or service monitoring
won't work.

TEMPLATE:

WinServiceSNMP in /Server/Windows: This template is required for
monitoring services. Do not bind this template to the device. Make sure
the template is in the class that the device is in (or a higher class). The
template will automatically be used for the windows services components.

MODELER PLUGIN:

community.snmp.WinServiceMap: This plugin is required during
modeling.

Note that this ZenPack only detects Windows services that are actually running.
Unlike both the old and new Zenoss-provided Windows ZenPacks that use WMI and
WinRM protocols respectively, there is no concept of the “Start Mode” of a service
(because it is not provided by any SNMP OID).

Also note that a component template, WinServiceSNMP, is provided.

Note that this ZenPack modifies all existing devices under /Server/Windows when the
ZenPack is installed.

24 © Skills 1st Ltd 9 Feb 2015

5.2 ZenPack implementation details

This is a much more complex ZenPack. In addition to the WinServiceSNMP
component template, code is provided to implement:

A new device object type - WinServiceSNMPDevice
A new component for the WinServiceSNMPDevice called WinServiceSNMP
A new daemon to gather component data - zenwinsrvsnmp

A new datasource, WinServiceSNMPDataSource, that runs an snmpwalk
command to gather service data

A new modeler plugin - WinServiceMap
A new event class, /Status/WinServiceSNMP which includes a transform

New zProperties zWinServiceSNMPIgnoreNames,
zWinServiceSNMPMonitorNames and zWinServiceSNMPMonitorNamesEnable
which are declared in the __init__.py of the main ZenPack directory.

A new left-hand menu for a device, called Services, which shows monitoring,
locking and status details of Windows services. This is implemented in a
combination of the __init_ .py and files under the skins subdirectory hierarchy.

When the ZenPack is installed, all devices under /Server/Windows have their
zPythonClass property set to the new device type defined by
ZenPacks.Nova.WinServiceSNMP.WinServiceSNMPDevice . This is only done if
zPythonClass is not currently set for a device (ie. it won't override a value already
configured).

The modeler plugin and the datasource both use SNMP to get data from the Lan
Manager MIB table that delivers service information. The scSvcTable Entry
(1.3.6.1.4.1.77.1.2.3.1) has entries for:

Nl svSveName

.3 svSveOperatingState where

° active(1)

° continue-pending(2)
0 pause-pending(3)

o paused(4)

Both the standard Windows SNMP agent and the net-snmp Windows agent appear to
support the Lan Manager MIB, in addition to the standard Mib-2 and HOST-
RESOURCES mibs.

25 © Skills 1st Ltd 9 Feb 2015

6 ZenPacks.skills1st.WinSnmp

The primary objective of this paper is to explore using the Python Collector. The
various datasources and datapoints implemented in Ryan's two ZenPacks will be
reimplemented to be driven by the zenpython daemon.

Some of the examples in this section you would not normally convert to a
PythonDataSource; those datasources that gather simple SNMP OID values may as
well be done by the zenperfsnmp daemon and its associated datasource type; however
the examples here all demonstrate particular points, even though you may not choose
to implement them this way in a production environment.

Every effort has been made to ensure that Ryan's ZenPacks and this Skills 1st
ZenPack can coexist; hence many objects have had their name slightly changed
(typically by adding “Python”) to ensure there are no name clashes.

6.1 Creating a ZenPack

Do ensure that the ZenPack is in “development mode”. My method for creating this
ZenPack would be:

1. Create a new ZenPack through the GUI. Make a note of the name - you will
need to use it in the new datasource files. This ZenPack is
ZenPacks.skills1st. WinSnmp .

2. Do a recursive copy of the directory under $ZENHOME/ZenPacks to a local
working directory and then reinstall in development mode. For example:

cd $ZENHOME/ZenPacks
cp -R ZenPacks.skillslst.WinSnmp /opt/zenoss/local (assuming this exists)
cd /opt/zenoss/local

zenpack --link --install ZenPacks.skillslst.WinSnmp
This gets you a development mode ZenPack in a working directory
3. You should restart zenhub and zopectl at this point.

4. If you inspect the directory hierarchy of the ZenPack, there will be skeleton files
for many things, many of which you don't need. The main working directory of
the ZenPack is:

ZenPacks.skillslst.SnmpWin/ZenPacks/skillslst/SnmpWin
5. Under here will be directories such as:
datasources
modeler
libexec

objects

26 © Skills 1st Ltd 9 Feb 2015

6.2 Building a Python datasource to run a script
There are two main parts to defining a datasource:
The code that builds the GUI dialogue for your new datasource type

The code that then gathers values to populate the datasource's datapoints. This
code has several methods some of which are actually implemented by zenhub to
build configurations for collectors and some are run by the zenpython daemon to
collect the data.

These sections are generally common whatever daemon the datasource is written for.

This first example is going to reimplement the zencommand datasource that gathers
memory and paging data using a script but the script will be driven by the zenpython
daemon, rather than by zencommand; however, the same winmem.py file will be used.

Datasource files are created in the datasources directory of a ZenPack.

6.2.1 Imports and logging

First there is some necessary preamble, importing prerequisite objects and methods
and setting up logging.

File Edit View Search Terminal Help
lirom zope.component import adapts
from zope.interface import implements

from Products.Zuul.form import schema

from Products.Zuul.infos import ProxyProperty

from Products.Zuul.infos.template import RRDDataSourceInfo
from Products.Zuul.interfaces import IRRDDataSourcelInfo
from Products.Zuul.utils import ZuulMessageFactory as t

from ZenPacks.zenoss.PythonCollector.datasources.PythonDataSource \
import PythonDataSource, PythonDataSourcePlugin

import os
import subprocess
from twisted.internet import defer

Setup logging
import logging
log = logging.getLogger('zen.PythonWinSnmp')

Figure 11: Preamble for the CmdSnmpMemDataSource.py file

27 © Skills 1st Ltd 9 Feb 2015

Note the import of the PythonDataSource and PythonDataSourcePlugin from the
Python Collector ZenPack.

It is good practice (and strongly advised) to set up logging. Use something unique but
common throughout the ZenPack. zen.PythonWinSnmp is used here.

6.2.2 The datasource class

The second part defines a new DataSource class, inheriting from the
PythonDataSource. Inspect the code in the Python Collector ZenPack, under
datasources/PythonDataSource.py, to see the properties that are inherited by default.

zenoss@zen42:/opt/zenoss/local/ZenPacks.zenoss.PythonCollector/ZenPacks/zenoss/PythonCollector

File Edit View Search Terminal Help

from Products.Zuul.form import schema

from Products.Zuul.infos import ProxyProperty

from Products.Zuul.infos.template import RRDDataSourcelnfo
from Products.Zuul.interfaces import IRRDDataSourcelInfo
from Products.Zuul.utils import ZuulMessageFactory as t

PythonDataSource(ZenPackPersistence, RRDDataSource):
"""General-purpose Python data source."""
ZENPACKID = 'ZenPacks.zenoss.PythonCollector'

sourcetypes = ('Python',)
sourcetype = sourcetypes[0]

plugin classname = None

Defined instead of inherited to change cycletime type to string.
_properties = (

{'id': 'sourcetype', 'type': 'selection', 'select variable': 'sourcetypes', 'mode': 'w'},
{'id': 'enabled',6 'type': 'boolean', 'mode': 'w'},

{'id': ‘'component', 'type': 'string', 'mode': 'w'},

{'id': 'eventClass', 'type': 'string', 'mode': 'w'},

{'id': 'eventKey',K 'type': 'string', 'mode': 'w'},

{'id': 'severity', 'type': 'int’', 'mode': 'w'},

{'id': 'commandTemplate', 'type': 'string', 'mode': 'w'},

{'id': "cycletime', ‘type': 'string’, ‘'mode‘': 'w'},

{'id': 'plugin _classname', 'type': 'string', 'mode': 'w'},

)

"datasources/PythonDataSource.py" [readonly] 210 lines --22%--
Figure 12: Python Collector ZenPack definition of PythonDataSource class

The first few lines set a ZENPACKID variable that can be used later and then defines
the new source type name.

ZENPACKID = 'ZenPacks.skillslst.WinSnmp'
Friendly name for your data source type in the drop-down selection.
sourcetypes = ('CmdSnmpMemDataSource',)
sourcetype = sourcetypes[0]
Standard attributes inherited from the parent PythonDataSource, can be given
default values.

component = '${here/id}"

28 © Skills 1st Ltd 9 Feb 2015

eventClass = '/Perf/Memory/Snmp'
cycletime is standard and defaults to 300

cycletime = 120

class CmdSnmpMemDataSource(PythonDataSource):
""" Get RAM and Paging data for Windows devices
using SNMP """

ZENPACKID = 'ZenPacks.skillslst.WinSnmp'
Friendly name for your data source type in the drop-down selection.

sourcetypes = ('CmdSnmpMemDataSource’,)
sourcetype = sourcetypes[0]

component = '${here/id}'

eventClass = '/Perf/Memory/Snmp'

cycletime is standard and defaults to 300
cycletime = 120

Custom fTields in the datasource - with default values
(which can be overriden in template)

hostname = '${dev/id}’

ipAddress = 's{dev/managelp}'

snmpVer = '${dev/zSnmpVer}'

snmpCommunity = '${dev/zS5nmpCommunity}"'

_properties = PythonDataSource. properties + (
{'id': 'hostname', 'type': 'string', 'mode': 'w'}

{'id': 'ipAddress', 'type': 'string', 'mode': ‘'w'},
{'id': ‘snmpVer', 'type': ‘'string’', 'mode': 'w'},
{'id': 'snmpCommunity', 'type': 'string', 'mode': 'w'},

)

"CmdSnmpMemDataSource.py" 375 lines --5%--

Figure 13: Start of new CmdSnmpMemDataSource class, inheriting from PythonDataSource

You can specify other fields that you want to see in the GUI dialogue for this
datasource.

Custom fields in the datasource - with default values

(which can be overridden in template)

hostname = '${dev/id}"

ipAddress = '${dev/managelp}"’

snmpVer = '${dev/zSnmpVer}'

snmpCommunity = '${dev/zSnmpCommunity}"

_properties = PythonDataSource._properties + (
{rid': 'hostname', 'type': 'string', 'mode': 'w'},
{rid': 'ipAddress', 'type': 'string', 'mode': 'w'},

29 © Skills 1st Ltd 9 Feb 2015

{rid': 'snmpVer',6 'type': 'string', 'mode': 'w'},

{rid': 'snmpCommunity', 'type': 'string', 'mode': 'w'},

Collection plugin for this type. Defined below in this file.
plugin_classname = ZENPACKID + '.datasources.CmdSnmpMemDataSource.CmdSnmpMemPlugin'

f addDataPoints(self):

self.datapoints._getOb('MemoryTotal', None):

self.manage_addRRDDataPoint('MemoryTotal')
self.datapoints. getOb('MemorylUsed', None):

self.manage_addRRDDataPoint('MemoryUsed"')
self.datapoints. getOb('PercentMemorylUsed', None):

self.manage_addRRDDataPoint('PercentMemoryUsed")
self.datapoints._getOb('PagingTotal', None):

self.manage_addRRDDataPoint('PagingTotal")

t self.datapoints._getOb('PagingUsed', None}:
dp=self.manage addRRDDataPoint('PagingUsed’)
dp.rrdtype = 'DERIVE'

dp.rrdmin = @
dp.rrdmax = None # NB. rrdmin MUST be less than rrdmax or zenpython will barf on storing rrd data
dp.description = 'Paging Used as a counter'

self.datapoints._getOb('PercentPaginglUsed', None):
self.manage_addRRDDataPoint('PercentPagingUsed"')

"CmdSnmpMemDataSource.py" 375 lines --11%-- 42,0-1

Figure 14: plugin_classname and datapoints for the new datasource

The plugin_classname specifies the object path to the plugin; typically this will be in
this same file.

Datapoints for the datasource can be defined using the manage_addRRDDataPoint()
method. It is perfectly possible to override the default values of the datapoint
attributes as shown in Figure 14 for PagingUsed. The fundamental definition of rrd
datapoints is in $ZENHOME/Products/ZenModel/RRDDatapoint.py.

30 © Skills 1st Ltd 9 Feb 2015

El zenoss@zend2:/opt/zenoss/Products/ZenModel

File Edit View Search Terminal Help
ss RRDataPoint(ZenModelRM, ZenPackable):

meta type = 'RRDDataPoint’

rrdtypes = ('COUNTER', 'GAUGE', 'DERIVE', 'ABSOLUTE')
createCmd = ""
rrdtype = 'GAUGE'
isrow = True
rrdmin = None
rrdmax = None

These attributes can be removed post 2.1

They should remain in 2.1 so the migrate script works correctly
linetypes = ("', 'AREA', 'LINE')

rpn = ""
color =
linetype =
limit = -1
format = '%5.21f%s"'

_properties = (
{'id':"'rrdtype’', ‘'type':'selection’,

‘select_variable' : 'rrdtypes', 'mode':'w'},
{'id':"'createCmd', 'type':'text', 'mode':'w'},
{'id':"isrow', 'type':'boolean', 'mode':'w'},
{'id':'rrdmin', 'type':'string', 'mode':'w'},
{'id':"'rrdmax', 'type':'string', 'mode':'w'},
{'id':'description’', 'type':'string', 'mode':'w'},

)

_relations = ZenPackable. relations + (
("datasource", ToOne(ToManyCont,"Products.ZenModel.RRDDataSource","datapoints")),
("aliases", ToManyCont(ToOne, "Products.ZenModel.RRDDataPointAlias","datapoint"))
"RRDDataPoint.py" [readonly] 240 lines --36%--

Figure 15: RRDDatapoint.py in $ZENHOME | Products | ZenModel defines the attributes of a datapoint

6.2.3 Info and Interface definitions

Since we are defining a panel that will be supplied by the Zenoss GUI, we have to
provide interface and info definitions. Some ZenPack writers choose to put such
definitions in separate info.py and interfaces.py files. Here the code is included in the
datasource file.

The interface information defines the text label that will appear above the relevant
box in the new datasource GUI dialogue.

31 © Skills 1st Ltd 9 Feb 2015

class ICmdSnmpMemDataSourceInfo(IRRDDataSourceInfo):
"'"Tnterface that creates the web form for this data source type."""

#cycle = schema.TextLine(title= t(u'My Cycle (seconds)'))
hostname = schema.TextLine(
title= t(u'Host Name'),
group=_t('CmdSnmpMemDataSource'))
ipAddress = schema.TextLine(
title= t(u'IP Address'),
group=_t('CmdSnmpMemDataSource'))
snmpVer = schema.TextLine(
title= t(u'SNMP Version'),
group=_t('CmdSnmpMemDataSource'))
snmpCommunity = schema.TextLine(
title= t(u'SNMP Community'),
group=_t('CmdSnmpMemDataSource'))

cycletime = schema.TextLine(
title= t(u'Cycle Time (seconds)'))

"CmdSnmpMemDataSource.py" 375 lines --16%--

Figure 16: Interface class definition for the new datasource

The info class links defines the new attributes as proxy properties.

class CmdSnmpMemDataSourceInfo(RRDDataSocheInfc}:
"""Adapter between ICmdSnmpMemDataSourceInfo and CmdSnmpMemDataSource."""

implements(ICmdSnmpMemDataSourcelnfo)
adapts (CmdSnmpMemDataSource)

#cycle = ProxyProperty('cycle')

hostname = ProxyProperty('hostname')

ipAddress = ProxyProperty('ipAddress"')

snmpVer = ProxyProperty('snmpVer"')
snmpCommunity = ProxyProperty('snmpCommunity"')

cycletime = ProxyProperty('cycletime')

Doesn't seem to run in the GUI if you activate the test button
testable = False

#testable = True

"CmdSnmpMemDataSource.py" [readonly] 375 lines --21%--

Figure 17: Info class definition for the new datasource

Note the “testable” attribute. This controls whether the GUI window has a “Test”
button. In practise, this never seems to work for a PythonDataSource so it has been
coded with a “False” value.

This completes the definition of the GUI window to define the new datasource. The
result can be seen in Figure 18.

32 © Skills 1st Ltd 9 Feb 2015

Edit Data Source
Name: Type:
CmdSnmpMemDataSource

Enabled Severity:
Event Key: Warning
Event Class:
Component: /Perf/Memory/Snmp
${here/id} Cycle Time (seconds):

120

CmdSnmpMemDataSource
Host Name: IP Address:

${dev/id} ${dev/managelp}
SNMP Version: SNMP Community:

${devizSnmpVer} ${dev/zSnmpCommunity}

CANCEL

Figure 18: GUI dialogue box created for the CmdSnmpMemDataSource

6.2.4 The PythonDataSourcePlugin class

The rest of the CmdSnmpMemDataSource.py file defines the
PythonDataSourcePlugin class that gathers the data.

The parent PythonDataSourcePlugin class can be inspected in the Python collector
ZenPack's datasources /| PythonDataSource.py file. A number of methods are defined,
some of which are effectively dummies in this parent class, that are to be overridden
in your new class:

def config_key(cls, datasource, context):

o Return list that is used to split configurations at the collector. This is a
classmethod that is executed in zenhub. The datasource and context
parameters are the full objects. Check zenhub.log for errors.

def params(cls, datasource, context):

o Return params dictionary needed for this plugin. This is a classmethod that
is executed in zenhub. The datasource and context parameters are the full
objects.

33 © Skills 1st Ltd 9 Feb 2015

def __init_ (self, config=None):
o Initialize the plugin with a configuration. New in version 1.3.
def collect(self, config):

o No default collect behaviour. You must implement this method. This method
must return a Twisted deferred. The deferred results will be sent to the
onResult then either onSuccess or onError callbacks below. This method
really is run by zenpython daemon. Check zenpython.log for any log
messages.

def onSuccess(self, result, config):

o Called only on success. After onResult, before onComplete. You should
return a data structure with zero or more events, values and maps. Note
that values is a dictionary and events and maps are lists.

def onError(self, result, config):

o Called only on error. After onResult, before onComplete. You can omit this
method if you want the error result of the collect method to be used without
further processing. It recommended to implement this method to capture
errors.

def onComplete(self, result, config):

o Called last for success and error. You can omit this method if you want the
result of either the onSuccess or onError method to be used without further
processing.

def cleanup(self, config):

o Called when collector exits, or task is deleted or recreated. May be omitted.

The first element in the plugin code specifies any proxy_attributes that you want to
use from the Zope database. They will be accessed by zenhub and passed as part of
the configuration to the zenpython daemon on the collector.

CmdSnmpMemPlugin(PythonDataSourcePlugin):

Collection plugin class for CmdSnmpMemDataSource.

List of device attributes you'll need to do collection.
proxy attributes = (

"zSnmpVer',

"zSnmpCommunity',

)

"CmdSnmpMemDataSource.py" [readonly] 375 lines --24%--

Figure 19: proxy_attributes for the PythonDataSourcePlugin class

34

© Skills 1st Ltd 9 Feb 2015

Since we shall use the SNMP protocol to gather data, the zZSnmpVer and
zSnmpCommunity configuration properties will be useful. This is nothing to do with
the new fields that are defined in the datasource GUI. We are simply providing
alternatives here.

The config_key method decides how to determine a “unique” configuration for this
datasource. It is run by zenhub. The only modification from the default is to include a
logging line, which will appear in zenhub.log if the zenhub daemon is run with
debugging turned on. You can turn debugging on for a running zenhub, as the zenoss
user, from a command prompt, with:

zenhub debug
less $ZENHOME/log/zenhub.log to inspect the log file

@classmethod
config_key(cls, datasource, context):

Return a tuple defining collection uniqueness.

This is a classmethod that is executed in zenhub. The datasource and
context parameters are the full objects.

This example implementation is the default. Split configurations by
device, cycle time, template id, datasource id and the Python data
source's plugin class name.

You can omit this method from your implementation entirely if this
default uniqueness behavior fits your needs. In many cases it will.

Logging in this method will be to zenhub.log

log.debug('In config key context.device().id is %s datasource.getCycleTime(context) is %s datasource.rrdTemplate
().id is %s datasource.id is %s datasource.plugin classname is %s ' % (context.device().id, datasource.getCycleTime(cont
ext), datasource.rrdTemplate().id, datasource.id, datasource.plugin classname))

context.device().1id,
datasource.getCycleTime(context),
datasource.rrdTemplate().id,
datasource.id,

datasource.plugin classname,

)

A

"CmdSnmpMemDataSource.py" [readonly] 375 lines --32%-- 121,1 34%
Figure 20: config_key method determines configuration uniqueness

The params method may be used to gather information from the Zope database for
either a device or a component. You have access to object methods as well as
attributes. params is run by zenhub.

The params method coded here is more complex than necessary but demonstrates
several alternative ways of accessing information. Basically, we have two alternatives
(in addition to the device proxy_attributes described above):

- Data values provided in the datasource GUI dialogue
- Data values retrieved from zodb
The params method returns a dictionary (typically called params).

The

params ['snmpVer'] = datasource.talesEval (datasource.snmpVer, context) construct

provides access to the value in the datasource.

35 © Skills 1st Ltd 9 Feb 2015

@classmethod
params(cls, datasource, context):

Return params dictionary needed for this plugin.

This is a classmethod that is executed in zenhub. The datasource and
context parameters are the full objects.

You have access to the dmd object database here and any attributes
and methods for the context (either device or component).

You can omit this method from your implementation if you don't require

any additional information on each of the datasources of the config

parameter to the collect method below. If you only need extra

information at the device level it is easier to just use

proxy attributes as mentioned above.

params = {}

params['snmpVer'] = datasource.talesEval(datasource.snmpVer, context)

| | params['snmpCommunity'] = datasource.talesEval(datasource.snmpCommunity, context)

Get ‘path to executable file, starting from this file
"CmdSnmpMemDataSource.py" [readonly] 375 lines --44%--

Figure 21: params method gathers data values from the datasource GUI dialogue

This datasource plugin is going to run the same winmem.py file that Ryan's ZenPack
called. We need to build that command. The next section of the params method
delivers the command, based on the assumption that winmem.py is in the ZenPack's
libexec directory.
The first part finds the path to winmem.py and creates the filepath:
Get path to executable file, starting from this file

which is in ZenPack base dir/datasources

Executables are in ZenPack base dir / libexec

thisabspath = os.path.abspath(__file)
(filedir, tail) = os.path.split(thisabspath)

libexecdir = filedir + '/../libexec’

script is winmem.py taking 3 parameters, hostname or IP, zSnmpVer, zSnmpCommunity

cmdparts = [os.path.join(libexecdir, 'winmem.py')]

The next section provides the hostname or IP address, the snmp version and the snmp
community parameters. This section uses a mixture of techniques as a demonstration.
You probably wouldn't do it this way in production.

. context.titleOrId()

o Uses the titleOrId() method of the device object

. context.managelIp

o Looks up the managelp attribute of the device in the zodb
if not params['snmpVer']:

cmdparts.append('vl')

36 © Skills 1st Ltd 9 Feb 2015

else:
cmdparts.append (params ['snmpVer'])
if not params ['snmpCommunity']:
cmdparts.append ('public')
else:
cmdparts.append (params [' snmpCommunity'])
o This is the contrived part. It demonstrates that you can access the

snmpCommunity and snmpVer elements of the params dictionary that you
have already setup, gathering data from the datasource.

File Edit View Search Terminal Help
infofjmation at the device level it is easier to just use
proxy attributes as mentioned above.
params = {}
params['snmpVer'] = datasource.talesEval(datasource.snmpVer, context)
params['snmpCommunity'] = datasource.talesEval(datasource.snmpCommunity, context)

Get path to executable file, starting from this file
which is in ZenPack bhase dir/datasources
Executables are in ZenPack base dir / libexec

thisabspath = os.path.abspath(_ file)

(filedir, tail) = os.path.split(thisabspath)
libexecdir = filedir + '/../libexec'

script is winmem.py taking 3 parameters, hostname or IP, zSnmpVer, zSnmpCommunity
cmdparts = [os.path.join(libexecdir, ‘winmem.py') 1]

context is the object that the template is applied to - either a device or a component
1In this case it is a device with all the attributes and methods of a device

if context.titleOrId():
cmdparts.append(context.titleOrId())

elif context.managelp:
cmdparts.append(context.managelp)

cmdparts.append('UnknownHostOrIp')

This gets parameters from the template

if not params['snmpVer']:
cmdparts.append('vl")

cmdparts.append(params['snmpVer'])

if not params['snmpCommunity']:
cmdparts.append('public')

..-cmdparts.append(params['snmpCommunity'])

"CmdSnmpMemDataSource.py" [readonly] 375 lines --43%--
Figure 22: params method - building the cmd key in the params dictionary

Rather than using params['snmpVer'], you may prefer to use the next ,commented-out
section which gathers zProperty data from zodb.

37 © Skills 1st Ltd 9 Feb 2015

This gets parameters direct from the device using context
if not context.zSnmpVYer:
cmdparts.append('vl')
else:
cmdparts.append(context.zSnmpVer)
if not context.zSnmpCommunity:
cmdparts.append('public')
else:
cmdparts.append(context.zSnmpCommunity)

params['cmd'] = cmdparts

log.debug{' params is %s “\n' % (params))
params

“"CmdSnmpMemDataSource.py" [readonly] 375 lines --48%--

Figure 23: params method using zProperties of the device to create command parameters

One way or another, the cmd key of the params dictionary should look something like:

['/opt/zenoss/local/ZenPacks.skillslst.WinSnmp/ZenPacks/skillslst/WinSnmp/dataso
urces/../libexec/winmem.py', 'win2003net.class.example.org', 'v2c', 'public']

Note that cmdparts is a Python list with the command and its parameters as separate
elements of the list. This is the format required to use in the subprocess.pOpen
method in the collect method that follows.

The next method in the new PythonDataSourcePlugin is collect - the one that actually
gets the data. Again, it provides two alternative ways to do things, one of them
commented out.

def collect(self, config):
ds0 = config.datasources|[0]
Next 3 lines use params to get cmd
cmd = dsO.params ['cmd!']
log.debug (' cmd is %s \n ' % (cmd))
cmd_process = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)

The collect method is run by zenpython and is passed the datasource config structure
as its parameter..

This code uses the params dictionary that we carefully built in the params method
and then calls the Python subprocess.Popen method to gather data.

38 © Skills 1st Ltd 9 Feb 2015

File Edit View Search Terminal Help
lef collect(self, config}:
No default collect behavior. You must implement this method.
This method must return a Twisted deferred. The deferred results will
be sent to the onResult then either onSuccess or onError callbacks
below.
This method really is run by zenpython daemon. Check zenpython.log
for any log messages.
ds® = config.datasources[0]
Next 3 lines use params to get cmd
cmd = dsO.params['cmd"']
log.debug(' cmd is %s “\n ' % (cmd))
cmd_process = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)

or this lot if you dont use params and do use device proxy attributes
Get path to executable file, starting from this file

which is in ZenPack base dir/datasources

Executables are in ZenPack base dir / libexec

thisabspath = os.path.abspath(_ file)
(filedir, tail) = os.path.split(thisabspath)
libexecdir = filedir + '/../libexec’

script is winmem.py taking 3 parameters, hostname or IP, zSnmpVer, zSnmpCommunity
cmd = [os.path.join(libexecdir, 'winmem.py'), dsO.managelp, ds0.zSnmpVer, ds0.zSnmpCommunity]
log.debug(' cmd is %s “\n ' % (cmd))
cmd_process = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
cmd_out = cmd_process.communicate()
dd = defer.Deferred()
cmd_process.communicate() returns a tuple of (stdoutdata, stderrordata)

f cmd_process.returncode == 0:

dd.callback(cmd_out[0])

.éd.errback(cmd_out[l])
return dd
"CmdSnmpMemDataSource.py" [Modified] 370 lines --62%-- 2:

Figure 24: collect method for new datasource plugin

The alternative, commented-out code completely ignores the work done in the params
method. We use the same code to build the filepath for the command, directly in the
collect method. The parameters come from the proxy_attributes we defined at the
start of the plugin method (zSnmpVer and zSnmpCommunity). We did not specify the
managelp attribute but some attributes of the data source are passed by default in the
config parameter. The defaults can be seen in the code in the Python Collector
ZenPack under services/PythonConfig.py.

39 © Skills 1st Ltd 9 Feb 2015

zenoss@zen42:/opt/zenoss/local/ZenPacks.zenoss.PythonCollector/ZenPacks/zenoss/PythoncCollector/services

File Edit View Search Terminal Help

firom twisted.spread import pb

from Products.DataCollector.ApplyDataMap import ApplyDataMap

from Products.ZenCollector.services.config import CollectorConfigService
from Products.ZenRRD.zencommand import DataPointConfig

from Products.ZenUtils.ZenTales import talesEvalStr

from ZenPacks.zenoss.PythonCollector.datasources.PythonDataSource \
import PythonDataSource

known point properties = (
'isrow', 'rrdmax', 'description', 'rrdmin', 'rrdtype', 'createCmd')

PythonDataSourceConfig(pb.Copyable, pb.RemoteCopy):
device = None
manageIp = None
component = None

template = None
datasource = None
config key = None

params = None

cycletime = None
eventClass = None
eventKey = None
severity = 3

plugin classname = None
result = None

"PythonConfig.py" [readonly] 225 lines --6%--
Figure 25: Default attributes of a PythonDataSourceConfig class

The last part of the collect method arranges for the command to be run and return
deferred output.
cmd_out = cmd_process.communicate ()
dd = defer.Deferred()
cmd_process.communicate() returns a tuple of (stdoutdata, stderrordata)
if cmd_process.returncode ==
dd.callback (cmd _out [0])
else:
dd.errback (cmd _out[1])

return dd

The trick here is that collect must return a “Twisted deferred”. So we specify our
output to be delivered to cmd_out - and then defer it! Data is delivered
asynchronously at a later stage. If the returncode is 0 (successful) then we continue
with the success callback; if it is not successful we continue with the error callback.

The onResult method of the plugin can be omitted. In this case, it is just used to
provide logging (to zenpython.log).

def onResult (self, result, config):

40 © Skills 1st Ltd 9 Feb 2015

Called first for success and error.

You can omit this method if you want the result of the collect method

to be used without further processing.

log.debug('result is %s ' % (result))

return result

onSuccess is the last major method to implement. It need to process the data that was
successfully returned by the collect method. It must deliver a data structure with zero
or more events, values and maps. The data in the values dictionary is then used to
populate the rrd files.

The trick with the values dictionary is that it is a dictionary of dictionaries with one
dictionary per component datapoint, where the keys are the components and the
values are the data. Data values for a device (rather than a component) have the
None key.

Note that the events and maps data structures are lists, not dictionaries. You do not
have to return an events list; in the onSuccess method you may prefer not to; it will
default to an empty list.

41 © Skills 1st Ltd 9 Feb 2015

zenoss@zend2:/opt/zenoss/local/ZenPacks.skills1st.WinSnmp/ZenPacks/skills1st

File Edit View Search Terminal Help
def onSuffcess(self, result, config):

Called only on success. After onResult, before onComplete.

You should return a data structure with zero or more events, values

and maps.
Note that values is a dictionary and events and maps are lists.
return {
'events': [{
‘summary': 'successful collection',
'eventKey': 'myPlugin result'’,
‘severity': 0,
3 {
‘summary': 'first event summary',
'eventKey': 'myPlugin_ result',
‘severity': 2,
Ao
‘summary': 'second event summary',
'eventKey': 'myPlugin_ result'’,
'severity': 3,
1.

'values': {
None: { # datapoints for the device (no component)
'datapointl’: 123.4,
‘datapoint2': 5.678,

b

'cpul': {
"user's 12.1;
nsystem': 1.21,
Yig": 23,
}

+

'maps': [

ObjectMap(...),
RelationshipMap(..),
]

}
"CmdSnmpMemDataSource.py" [Modified][readonly] 372 lines --73%--

Figure 26: onSuccess method for the new data plugiﬁ - what you need to return

The maps list can be used to modify attributes of the device or component in the zodb
database, in the light of the performance data retrieved.

42 © Skills 1st Ltd 9 Feb 2015

File Edit View Search Terminal Help
log.debug('In success - result is %s and config is %s ' % (result, config))
Next line creates a dictionary like

{'values': defaultdict(<type 'dict'>, {}), 'events': [], 'maps':[]}
the new data method is defined in PythonDataSource.py in the Python Collectar
ZenPack, datasources directory

data = self.new data()

log.debug('In success - data is %5 ' % (data))
Format of output in script result is
OK|MemoryTotal=523712000 MemoryUsed=213184000 PercentMemoryUsed=41 PagingTotal=1284096000 PagingUsed=190784000
PercentPagingUsed=15

dataVarVals = result.split("|")[1].split()
log.debug('split result is %s \n ' % (dataVarVals))
datapointDict={}

d dataVarVals:

myvar,myval = d.split("=")

datapointDict[myvar] = myval
log.debug('datapointDict is %s \n ' % (datapointDict))
data['values'] = {

None : datapointDict

}

You don't have to provide an event - comment this out if so
data['events'].append({
‘device': config.id,

‘summary': 'Snmp memory data gathered using zenpython with winmem script’',
‘severity': 1,

‘eventClass' : '/App',

‘eventKey': 'PythonCmdSnmpMem',

1)
data['maps'] = [1]

log.debug('data is %s ' % (data))
data

"CmdSnmpMemDataSource.py" [readonly] 375 lines --93%-- 349,0-1 92%
Figure 27: The main body of the onSuccess method, processing the returned data

First we use the new_data() method to initiate a new, empty datastructure to return.

This datasource is running the winmem.py script to gather device-wide data - single
scalar values. The output is in the format:

OK|MemoryTotal=523712000 MemoryUsed=212800000 PercentMemoryUsed=41
PagingTotal=1284096000 PagingUsed=204032000 PercentPagingUsed=16

Note that the variable names in the section after the vertical bar, exactly match the
datapoint names defined earlier in this datasource file.

We use Python code to split the output into sections before and after the vertical bar.
The variables sections are then split on the “=” symbol and parsed into a new
dictionary, datapointDict, where the key is the variable name and the the value is the
data value. This is now in the correct format to return as the value part of the “None”
key (device-wide values), in the returned data dictionary.

As a demonstration, an event is also generated with Info severity, of event class /App.
config.id refers to the device itself so is passed as the device attribute of the event.

The onError and onComplete methods are fairly trivial. onError delivers an event,
similar to the one above but with an Error severity.

43 © Skills 1st Ltd 9 Feb 2015

File Edit View Search Terminal Help

log.debug('data is %s ' % (data))
return data

- onError(self, result, config):

Called only on error. After onResult, before onComplete.

You can omit this method if you want the error result of the collect
method to be used without further processing. It recommended to
implement this method to capture errors.

log.debug('In OnError - result is %s and config is %s % (result, config))
'events': [{
"summary': 'Error getting Snmp memory data with zenpython: %s' % result,
'eventKey': 'PythonCmdSnmpMem',
'severity': 4,
.
}

- onComplete(self, result, config):

Called last for success and error.

You can omit this method if you want the result of either the
onSuccess or onError method to be used without further processing.

rn result

"CmdSnmpMemDataSource.py" [readonly] 375 lines --92%--

Figure 28: onError and onComplete methods for the new datasource plugin

That's all there is to it!

6.3 configure.zcml

There is one other thing you need to do before you can test the datasource. The
configure.zcml file in the main directory of the ZenPack, needs lines added to define
the adapter for the new datasource.

44

© Skills 1st Ltd 9 Feb 2015

zenoss@zend42:/opt/zenoss/local/ZenPacks.skillslst.WinSnmp/ZenPacks/skills1st/WinSnmp

Eile Edit View Search Terminal Help

<configure
xmlns="http://namespaces.zope.org/zope"
xmlns:browser="http://namespaces.zope.org/browser"
xmlns:zcml="http://namespaces.zope.org/zcml">

<!-- Info Adapters: DataSources

For ZenPacks that add new datasource types you must register their Info
adapter(s). The info adapters provide the API that the web interface needs
to show information about each instance of your datasource type that is
created. The info adapters are also used to set the properties of the
datasource instances.

-->

<adapter
provides=".datasources.CmdSnmpMemDataSource.ICmdSnmpMemDataSourceInfo"”
for=".datasources.CmdSnmpMemDataSource.CmdSnmpMemDataSource"
factory=".datasources.CmdSnmpMemDataSource.CmdSnmpMemDataSourceInfo"

1>

B/configure>

"configure.zcml" [Modified][readonly] 23 lines --95%--

Figure 29: configure.zeml with adapter for new datasource

At this stage, with a datasource file and a configure.zcml, reinstall the ZenPack again.
I would also completely restart zenoss, for safety, with zenoss stop; zenoss start.

Subsequent “tweaks” to the ZenPack files you can probably get away with just
restarting zenhub, zopectl and zenpython:

zenhub restart; zopectl restart; zenpython restart

6.4 Testing the new datasource

Ultimately the new ZenPack is going to create some new device classes, starting
with /Server/Windows/Snmp. For now create this device class by hand. Put a test
device into this class; the example used here will be win2003net.class.example.org.

6.4.1 Defining a template to utilise a new datasource

The first test of the new datasource is to create a new template; select
/ Server | Windows /[Snmp as the template path.

Within that template, create a new datasource. You should find the new datasource in
the list of datasource types.

45 © Skills 1st Ltd 9 Feb 2015

Zené.gg‘

Q

MSExchangelS
MySQL
MySQLDatabase
MySQLServer
NtpMonitor

olson_power
OSProcess
OSProcess-2003
PrinterSupply
ProcessCheck
ProcessCheck_firefox
ProcessCheck_vmnet
4 PyTestl

PyTest4

DwTacts

. MyFooter = @@ @| Group By:

DASHBOARD

EVENTS

Monitoring Templates

INFRASTRUCTURE REPORTS

ADVAN

Mame

Add Data Source

Name:

Type:

SUBMIT

CmdSnmpMemDataSo 'ﬂ

Amazon CloudWatch

ApacheMonitor
AWSDataSource
Built-In

Calculated Performance

CmdSnmpCpuDataSourg
CmdSnmpMemDataSour
COMMAND

Datapoint Aggregator
DigMonitor

DnsMonitor

FtpMonitor

[Template H Device Class l| Bound: €3 Comj HttpComponent
1

olo-

Figure 30: Creating a new datasource of type CmdSnmpMemDataSource

When you have created it, you should also find that the datapoints you defined have

automatically been created for you.

Double-click the datasource and check that the correct fields appear in the datasource

dialogue.

46

© Skills 1st Ltd

9 Feb 2015

@ IC) example.org | https://zen42.class.example.org/zport/dmd/template #templateTree:/zport/dmd/Devices/Server/Window: | v [| [-‘]v

Monitoring Templates
Edit Data Source
-3 + { c C} .t MName:

S Enabled
Event Key: Warning

Component: /Perf/Memery/Snmp

CmdSnmpMem DataSource
Host Name: IP Address:

oo oy

SNMP Version: SNMP Community:

${dev/izSnmpVer} ${dev/zSnmpCommunity}

SAVE CANCEL

[-] e e

Fzgrure 31: Datasou;ée ;iialToéLIL;

At this stage, it is probably optimistic to start creating thresholds and graphs!

6.4.2 Testing the datasource configuration

As this is a device-level template, it needs binding. Bind it to the device class
/ Server | Windows /| Snmp; this class should already have you test device in it.

This is the point at which the config_key and params methods of the datasource plugin
are exercised. For now, unbind the template again.

As the zenoss user, turn debugging on to zenhub. This is a toggle switch that you can
apply to any running zenoss daemon.

zenhub debug
Now use less to show $ZENHOME/log/zenhub.log.
Rebind the template to the device class and check updates in zenhub.log.

47 © Skills 1st Ltd 9 Feb 2015

Zenoss@zen42:/opt/zenoss/log

File Edit View Search Terminal Help
2015-82-88 09:41:28,169 DEBUG zen.ZenHub: Giving sendEvents to worker @, (localhost:Products.ZenHub.services.EventService.send| "
Events)

2015-02-08 89:41:208,247 DEBUG zen.ZenHub: worker @, work localhost:Products.ZenHub.services.EventService.sendEvents finished i
n 0.0784261226654

2015-82-88 09:41:21,557 DEBUG zen.ZenHub: [processQueue] syncing....

2015-02-88 09:41:21,561 DEBUG zen.ZenHub: Synchronized with database

2015-02-88 089:41:21,561 DEBUG zen.ZenHub: [processQueue] synced

2015-82-88 09:41:21,614 DEBUG zen.InvalidationFilter: <DeviceClass at /zport/dmd/Devices/Server/Windows/Snmp> has a new checks
um! Including.

2015-02-88 09:41:21,615 DEBUG zen.ZenHub: Notifying services that <DeviceClass at /zport/dmd/Devices/Server/Windows/Snmp> has
been updated

2015-82-88 09:41:21,615 DEBUG zen.Events: ===============incoming event ===============

2015-02-08 89:41:21,616 DEBUG zen.Events: Got a localhost zenhub heartbeat event (timeout 90 sec).

2015-02-88 09:41:21,617 DEBUG zen.zenoss.protocols.amgp: Publishing with routing key zenoss.heartbeat.localhost to exchange ze
noss.heartbeats

2015-82-88 09:41:21,621 DEBUG zen.ZenHub: ZenIMXConfigService.notifyAffectedDevices is interested in <Products.ZenHub.zodb.Upd
ateEvent object at @xa6fa2de> for <DeviceClass at /zport/dmd/Devices/Server/Windows/Snmp=>

2015-02-08 ©9:41:21,628 DEBUG zen.hub.notify: BatchNotifier.notify subdevices: <DeviceClass at /zport/dmd/Devices/Server/Windo
ws/snmp>, ('ZenJMXConfigService', 'localhost’)

2015-82-88 09:41:21,630 DEBUG zen.ZenHub: LdapConfigService.notifyAffectedDevices is interested in <Products.ZenHub.zodb.Updat
eEvent object at Oxa6fazde> for <DeviceClass at /zport/dmd/Devices/Server/Windows/Snmp>

2015-02-08 ©9:41:21,630 DEBUG zen.hub.notify: BatchNotifier.notify subdevices: <DeviceClass at /zport/dmd/Devices/Server/Windo
ws/snmp=, ('LdapConfigService', 'localhost')

2015-82-88 09:41:21,631 DEBUG zen.ZenHub: ProcessConfig.notifyAffectedDevices is interested in <Products.ZenHub.zodb.UpdateEve
nt object at @xa6fa2d@> for <DeviceClass at /zport/dmd/Devices/Server/Windows/Snmp=>

2015-02-08 ©9:41:21,631 DEBUG zen.hub.notify: BatchNotifier.notify subdevices: <DeviceClass at /zport/dmd/Devices/Server/Windo
ws/snmp=, ('ProcessConfig’, 'localhost')

2015-82-88 09:41:21,631 DEBUG zen.ZenHub: SyslogConfig.notifyAffectedDevices is interested in <Products.ZenHub.zodb.UpdateEven
t object at @xa6fa2de> for <DeviceClass at /zport/dmd/Devices/Server/Windows/Snmp=

2015-02-08 ©9:41:21,632 DEBUG zen.hub.notify: BatchNotifier.notify subdevices: <DeviceClass at /zport/dmd/Devices/Server/Windo
ws/snmp>, ('SyslogConfig’, 'localhost’)

2015-82-88 09:41:21,632 DEBUG zen.ZenHub: WinServiceSNMPPerformanceConfig.notifyAffectedDevices is interested in <Products.Zen
Hub.zodb.UpdateEvent object at Oxa6fa2do> for <DeviceClass at /zport/dmd/Devices/Server/Windows/Snmp>

2015-02-08 ©9:41:21,632 DEBUG zen.hub.notify: BatchNotifier.notify subdevices: <DeviceClass at /zport/dmd/Devices/Server/Windo
ws/snmp=, ('WinServiceSNMPPerformanceConfig', 'localhost')

2015-02-08 09:41:21,632 DEBUG zen.ZenHub: CommandPerformanceConfig.notifyAffectedDevices is interested in <Products.ZenHub.zod
b.UpdateEvent object at ®xa6fa2de> for <DeviceClass at /zport/dmd/Devices/Server/Windows/Snmp>

2015-02-08 ©9:41:21,633 DEBUG zen.hub.notify: BatchNotifier.notify subdevices: <DeviceClass at /zport/dmd/Devices/Server/Windo
ws/snmp=, ('CommandPerformanceConfig', 'localhost’)

2015-02-08 09:41:21,633 DEBUG zen.ZenHub: WinServiceConfig.notifyAffectedDevices is interested in <Products.ZenHub.zodb.Update
zenhub.log lines 74485-74507/74545 byt 9013/6045380 99% (press RETURN)

Figure 32: zenhub.log when a configuration change is received

Look carefully for error messages.

6.4.3 Testing the target device

At this stage, it would be prudent to ensure that the target test device is up and
responds to the SNMP OIDs that will be required.

I have tested with both the standard Microsoft SNMP agent and with the windows
version of net-snmp; both seem to respond well to standard Mib-2, HOST-
RESOURCES requests and Lan Manager OIDs.

For testing, I am using SNMP v2 and a community name of public. Use snmpwalk to
test. The winmem.py script is requesting data from the hrStorage table
(.1.3.6.1.2.1.25.2.3.1) so try:

snmpwalk -v2c -cpublic win2003net.class.example.org .1.3.6.1.2.1.25.2.3.1

snmpwalk -v2c -cpublic win2003net.class.example.org hrStorage

You should get responses.

48 © Skills 1st Ltd 9 Feb 2015

zenoss@zend2:/opt/zenoss/local/ZenPacks.skillslst.WinSnmp/ZenPacks/skil

Eile Edit View Search Terminal Help

[zenoss@zend2 libexec]$ snmpwalk -vZc -cpublic win2@83net.class.example.org hrStorage
HOST-RESOURCES-MIB: :hrMemorySize.0 = INTEGER: 523716 KBytes

HOST-RESOURCES-MIB: :hrStorageIndex.1l = INTEGER: 1
HOST-RESOURCES-MIB: :hrStorageIndex.2 = INTEGER: 2
HOST-RESOURCES-MIBE: :hrStorageIndex.3 = INTEGER: 3
HOST-RESOURCES-MIB: :hrStorageIndex.4 = INTEGER: 4
HOST-RESOURCES-MIB: :hr5torageIndex.5 = INTEGER: 5

HOST-RESOURCES-MIB: :hrStorageType.
HOST-RESOURCES-MIB: :hrStorageType.

1 = DID: HOST-RESOURCES-TYPES::hrStorageRemovableDisk

2
HOST-RESOURCES-MIB: :hrStorageType.3

4

5

= 0ID: HOST-RESOURCES-TYPES::hrStorageFixedDisk
0ID: HOST-RESOURCES-TYPES: :hrStorageCompactDisc
DID: HOST-RESOURCES-TYPES::hrStorageVirtualMemory
0ID: HOST-RESOURCES-TYPES::hrStorageRam

HOST-RESOURCES-MIB: :hrStorageType.
HOST-RESOURCES-MIB: :hrStorageType.

HOST-RESOURCES-MIB: :hr5torageDescr.l = STRING: A:%

HOST-RESOURCES-MIB: :hrStorageDescr.2 = STRING: C:%\ Label: Serial Number 28d148d8
HOST-RESOURCES-MIB: :hr5torageDescr.3 = STRING: D:%

HOST-RESOURCES-MIB: :hrStorageDescr.4 = STRING: Virtual Memory

HOST-RESOURCES-MIB: :hrStorageDescr.s
HOST-RESOURCES-MIB: :hr5torageAllocationUnits.1l = INTEGER: @ Bytes
HOST-RESOURCES-MIB: :hr5torageAllocationUnits.2 = INTEGER: 4096 Bytes
HOST-RESOURCES-MIB: :hr5torageAllocationUnits.3 = INTEGER: @ Bytes
HOST-RESOURCES-MIB: :hr5torageAllocationUnits.4 = INTEGER: 65536 Bytes
HOST-RESOURCES-MIB: :hrStorageAllocationUnits.5 = INTEGER: 65536 Bytes

STRING: Physical Memory

=

HOST-RESOURCES-MIB: :hr5torageSize.1l = INTEGER:
HOST-RESOURCES-MIB: :hrStorageSize.2 = INTEGER: 2094466
HOST-RESOURCES-MIB: :hrStorageSize.3 = INTEGER: @

= INTEGER: 208064
= INTEGER: 8183

HOST-RESOURCES-MIB: :hr5torageSize.
HOST-RESOURCES-MIB: :hrstorageSize.

HOST-RESOURCES-MIB: :hrStorageUsed.1l = INTEGER: ©
HOST-RESOURCES-MIB: :hrStorageUsed.2 = INTEGER: 1087946
HOST-RESOURCES-MIB: :hrStorageUsed.3 = INTEGER: @

Eop TR S R R R o FE 8]
|

HOST-RESOURCES-MIB: :hrStorageUsed. INTEGER: 3236
HOST-RESOURCES-MIB: :hrStoragelsed.5 = INTEGER: 3390

HOST-RESOURCES-MIB: :hrStorageAllocationFailures.1l = Counter32: @
HOST-RESOURCES-MIB: :hrStorageAllocationFailures.2 = Counter32: @
HOST-RESOURCES-MIB: :hr5torageAllocationFailures.3 = Counter3z: @
HOST-RESOURCES-MIB: :hrStorageAllocationFailures.4 = Counter32: @
HOST-RESOURCES-MIB: :hrStorageAllocationFailures.5 = Counter32: @

[zenoss@zend? libexec]s l
Figure 33: snmpwalk test for hrStorage OIDs

6.4.4 Testing with zenpython

The best way to test that data is gathered by the new datasource is to run zenpython
from the command line with full debugging. The datasource code has been well
scattered with log.debug statements exactly for this purpose.

zenpython run -v 10 -d win2003net.class.example.org
Try to ensure that there are no other Python templates active against your test device
to reduce the output. If there is too much to scan, redirect the out put to a file:
zenpython run -v 10 -d win2003net.class.example.org > /tmp/fred 2>&l
If you see a message saying it cannot find the configuration for your test device “Is

that the right name”, this means that there is a problem with the configuration
section. Check zenhub.log and inspect the config_keys and params methods of the

plugin.

49 © Skills 1st Ltd 9 Feb 2015

The output should show a number of phases:

zenoss@zend42:/opt/zenoss/local/ZenPacks.skills1st.WinSnmp/ZenPacks/skills1st/WinSnmp/libexec

File Edit View Search Terminal Help

inSnmp.datasources.CmdSnmpMemDataSource.CmdSnmpMemPlugin, < main__.PythonCollectionTask object at 0x6e343d0> using 120 second interval
2015-02-08 10:05:37,184 DEBUG zen.collector.scheduler: Task win2003net.class.example.org 120 PyTestCmdMemCpu cmdMem ZenPacks.skillslst.WinSn
mp.datasources.CmdSnmpMemDataSource.CmdSnmpMemPlugin starting (waited @ seconds) on 120 second intervals

2015-02-08 10:05:37,184 DEBUG zen.collector.scheduler: Task win2003net.class.example.org 120 PyTestCmdMemCpu cmdMem ZenPacks.skillslst.WinSn
mp.datasources.CmdSnmpMemDataSource.CmdSnmpMemPlugin changing state from IDLE to QUEUED

2015-02-08 10:05:37,184 DEBUG zen.zenpython: purgeOmittedDevices: deletedConfigs=

2015-02-08 10:05:37,185 DEBUG zen.collector.scheduler: Task configlLoader finished, result: 'Configuration loaded’

2015-02-08 10:05:37,185 DEBUG zen.collector.scheduler: Task win2003net.class.example.org 120 PyTestCmdMemCpu cmdMem ZenPacks.skillslst.WinSn
mp.datasources.CmdSnmpMemDataSource.CmdSnmpMemPlugin changing state from QUEUED to RUNNING

2015-02-08 10:05:37,185 DEBUG zen.PythonWinSnmp: cmd is ['/opt/zenoss/local/ZenPacks.skillslst.WinSnmp/ZenPacks/skillslst/WinSnmp/datasourc
es/../libexec/winmem.py', 'win2003net.class.example.org', 'v2c', 'public']

2015-02-08 10:05:38,563 DEBUG zen.PythonWinSnmp: result is OK|MemoryTotal=523712000 MemoryUsed=219072000 PercentMemoryUsed=42 PagingTotal=12
84096000 PagingUsed=207040000 PercentPagingUsed=16

2015-02-08 10:05:38,565 DEBUG zen.PythonWinSnmp: In success - result is OK|MemoryTotal=523712000 MemoryUsed=219072000 PercentMemoryUsed=42 P
agingTotal=1284096000 PagingUsed=207040000 PercentPagingUsed=16

and config is win20@3net.class.example.org

2015-02-08 10:05:38,565 DEBUG zen.PythonWinSnmp: In success - data is {'maps': [], 'values': defaultdict(<type 'dict'=, {}), 'events': []}
2015-02-08 10:05:38,565 DEBUG zen.PythonWinSnmp: split result is ['MemoryTotal=5237120600', 'MemoryUsed=219072000', 'PercentMemorylUsed=42', '
PagingTotal=1284096000', 'PagingUsed=207040000', 'PercentPagingUsed=16']

2015-02-08 10:05:38,565 DEBUG zen.PythonWinSnmp: datapointDict is {'PercentPagingUsed': '16', 'MemoryTotal': '523712000', 'PagingTotal': '12
84096000', 'PercentMemoryUsed': '42', 'PagingUsed': '207040000', 'MemoryUsed': '219072000'}

2015-02-08 10:05:38,566 DEBUG zen.PythonWinSnmp: data is {'maps': [], 'values': {Nonme: {'PercentPagingUsed': '16', 'MemoryTotal': '523712000
', 'PagingTotal': '1284096000', 'PercentMemoryUsed': '42', 'PagingUsed': '207040000', 'MemoryUsed': '219072000'}}, 'events': [{'device': 'wi
n2003net.class.example.org’, 'eventClass': '/App', ‘eventKey': 'PythonCmdSnmpMem', ‘'severity': 1, 'summary': 'Snmp memory data gathered usin

g zenpython with winmem script'}]}

2015-02-08 10:05:38,566 DEBUG zen.collector.scheduler: Task win2003net.class.example.org 120 PyTestCmdMemCpu cmdMem ZenPacks.skillslst.WinSn
mp.datasources.CmdSnmpMemDataSource.CmdSnmpMemPlugin changing state from RUNNING to STATE_SEND_EVENTS

2015-02-08 10:05:38,567 DEBUG zen.zenpython: Queued event (total of 1) {'rcvtime': 1423389938.567503, 'severity': 1, ‘'agent': 'zenpython',
summary': 'Snmp memory data gathered using zenpython with winmem script’, 'manager': 'zen42.class.example.org', 'eventKey': 'PythonCmdSnmpMe
m', 'device': 'win2@03net.class.example.org', 'eventClass': '/App', ‘'device guid': '8901375e-709a-40e7-bc73-e523d9072584', 'monitor': 'local
host'}

Figure 34: zenpython debugging output . - '

1. You should see the cycletime for the datasource - 120 seconds in this case

2. You should see a task with the template name (PyTestCmdMemCpu), the
datasource id (cmdMem) and the object path to the plugin
(ZenPacks.skills1st.WinSnmp.datasources.CmdSnmpMemDataSource.CmdSnm
pMemPlugin). The task should change from IDLE to QUEUED to RUNNING.

3. You should see the cmd variable - remember this is the list that will be passed
to subprocess.Popen().

cmd is
['/opt/zenoss/local/ZenPacks.skillslst.WinSnmp/ZenPacks/skillslst/WinSnmp/
datasources/../libexec/winmem.py', 'win2003net.class.example.org', 'wv2c',
'public']

4. Check that the command parameters for device, snmp version and snmp
community have substituted correctly.

5. The code has a log.debug that reports the result in the onResult method. This
is immediately after data collection has taken place.

result is OK|MemoryTotal=523712000 MemoryUsed=219072000
PercentMemoryUsed=42 PagingTotal=1284096000 PagingUsed=207040000
PercentPagingUsed=16

6. You should see the task changing state from RUNNING to
STATE_SEND_EVENTS and see the event that you constructed in the
onSuccess method.

50 © Skills 1st Ltd 9 Feb 2015

7. You should see the task changing state from STATE_SEND_EVENTS to
STORE_PERF_DATA. This is where the data actually gets saved into rrd files.
You can see the file names and the values.

8. You should then see the task changing state from STORE_PERF_DATA to
IDLE.

6.4.5 Adding graphs and threshold to the template

The ultimate test of the datasource is that you can create graphs with the datapoints
and also thresholds. If the zenpython test runs successfully, then it is worth creating
graph and threshold definitions to use the data.

6.5 Datasource to collect cpu utilisation with a command

Ryan's ZenPacks.Nova.Windows.SNMPPerfMonitor gathers memory and cpu
utilisation, both using a script to drive SNMP. Thecccovvvvinnnnnnnn....

6.6 Building a datasource to gather a single SNMP scalar value

6.7 Building a datasource to gather SNMP table values

6.8 Building a Python modeler plugin

Remember....

If plugin doesn't show in the list to be run, suspect syntax errors in the plugin itself
plugin classname must be same as filename

Change modeler then bounce zenhub and zopectl

Clear browser cache

portal_type = meta_type = 'WinServiceSNMPPython' - must match component type

6.9 The rest of the ZenPack

6.9.1 Device and component objects

51 © Skills 1st Ltd 9 Feb 2015

6.9.2 The __init__.py file

Menus

7 Conclusions

52 © Skills 1st Ltd 9 Feb 2015

References

53

. “Creating Zenoss ZenPacks for Zenoss 3” by Jane Curry, January 2011.

http:/www.skills-1st.co.uk/papers/jane/zenpacks/zenpacks3.pdf

. Zenoss Core 4 Administration Guide - http://wiki.zenoss.org/Zenoss Core 4.2.x

3. Zenoss Developer's Guide 3 -

ZenPack development Guide -
http://zenosslabs.readthedocs.org/en/latest/zenpack development/index.html

a) In particular, check the “Monitoring an HTTP API” section -
http://zenosslabs.readthedocs.org/en/latest/zenpack development/monitoring
http api/index.html

. ZenPacks.zenoss.PythonCollector

o Documentation http:/wiki.zenoss.org/ZenPack:PythonCollector
o Github https://github.com/zenoss/ZenPacks.zenoss.PythonCollector.git

. ZenPacks which use the Python Collector ZenPack

a) ZenPacks.zenoss.XenServer

» Documentation http://wiki.zenoss.org/ZenPack:XenServer

« Github https:/github.com/zenoss/ZenPacks.zenoss.XenServer.git
b) ZenPacks. TwoNMS.Rancid by mwallraf (Python modeler)
» Github https://github.com/mwallraf/ZenPacks. TwoNMS.Rancid

¢) ZenPacks.zenoss.MySqlMonitor (Python modeler)

» Documentation
http://wiki.zenoss.org/ZenPack:MySQL Database Monitor %28Core%29

» Github https:/github.com/zenoss/ZenPacks.zenoss.MySqlMonitor.git
d) ZenPacks.zenoss.PostgreSQIl (Python modeler)

= Documentation http:/wiki.zenoss.org/ZenPack:PostgreSQL
» Github https://github.com/zenoss/ZenPacks.zenoss.PostgreSQL.git
e) ZenPacks.zenoss.AWS

» Documentation http://wiki.zenoss.org/ZenPack:Amazon Web Services

» Github https://github.com/zenoss/ZenPacks.zenoss. AWS.git

f) ZenPacks.zenoss.Hadoop (dsplugins.py example)

» Documentation http://wiki.zenoss.org/ZenPack:Hadoop

» Github https:/github.com/zenoss/ZenPacks.zenoss.Hadoop.git

g) ZenPacks.zenoss.HBase (dsplugins directory example)

© Skills 1st Ltd 9 Feb 2015

https://github.com/zenoss/ZenPacks.zenoss.Hadoop.git
http://wiki.zenoss.org/ZenPack:Hadoop
https://github.com/zenoss/ZenPacks.zenoss.AWS.git
http://wiki.zenoss.org/ZenPack:Amazon_Web_Services
https://github.com/zenoss/ZenPacks.zenoss.PostgreSQL.git
http://wiki.zenoss.org/ZenPack:PostgreSQL
https://github.com/zenoss/ZenPacks.zenoss.MySqlMonitor.git
http://wiki.zenoss.org/ZenPack:MySQL_Database_Monitor_(Core)
https://github.com/mwallraf/ZenPacks.TwoNMS.Rancid
https://github.com/zenoss/ZenPacks.zenoss.XenServer.git
http://wiki.zenoss.org/ZenPack:XenServer
https://github.com/zenoss/ZenPacks.zenoss.PythonCollector.git
http://wiki.zenoss.org/ZenPack:PythonCollector
http://zenosslabs.readthedocs.org/en/latest/zenpack_development/monitoring_http_api/index.html
http://zenosslabs.readthedocs.org/en/latest/zenpack_development/monitoring_http_api/index.html
http://zenosslabs.readthedocs.org/en/latest/zenpack_development/index.html
http://wiki.zenoss.org/Zenoss_Core_4.2.x
http://www.skills-1st.co.uk/papers/jane/zenpacks/zenpacks3.pdf

54

» Documentation http://wiki.zenoss.org/ZenPack:HBase

» Github https:/github.com/zenoss/ZenPacks.zenoss.HBase.git

h) ZenPacks.zenoss.OpenStackInfrastructure

» Documentation http:/wiki.zenoss.org/ZenPack:OpenStack
%28Provider View%29

= Github
https://github.com/zenoss/ZenPacks.zenoss.OpenStackInfrastructure

i) ZenPacks.training.NetBotz referenced in the Zenoss Labs ZenPack
development documentation:

= https:/github.com/cluther/ZenPacks.training.NetBotz

j) ZenPacks.training. WeatherUnderground referenced in the Zenoss Labs
ZenPack development documentation:

« https:/github.com/zenoss/ZenPacks.training. WeatherUnderground

k)

7. Ryan Matte's ZenPacks.Nova.Windows.SNMPPerfMonitor -
https:/github.com/zenoss/ZenPacks.Nova.Windows.SNMPPerfMonitor . Note
that this is version 1.6 and does not have process and paging monitoring. The
latest 1.7 version I can only find in egg format referenced from the wiki page at
http://wiki.zenoss.org/ZenPack:Windows SNMP Performance Monitor
%28Advanced%29 and the download link for the 1.7 egg is
http://dmon.org/downloads/zenoss/zenpacks/zenoss4/ZenPacks.Nova.Windows.S
NMPPerfMonitor-1.7-py2.7.egg

8. Ryan Matte's ZenPacks.Nova.WinServiceSNMP - the wiki page is at

http://wiki.zenoss.org/ZenPack:Windows SNMP_Service Monitor . The egg
download is at

http://dmon.org/downloads/zenoss/zenpacks/zenoss4/ZenPacks.Nova.WinService
SNMP-1.1-py2.7.egg . I have built a development-mode tarball of the 1.7 code

9. ZenPacks.zenoss.CalculatedPerformance ZenPack -

http://wiki.zenoss.org/ZenPack:Calculated Performance

10.Nagios format - see section 6.3 of the Zenoss Administration Guide. For
detailed information on the format, follow the reference to https:/nagios-

plugins.org/doc/guidelines.html

11.Lan Manager MIB (LanMgr-Mib-II) can be downloaded from
http://www.mibsearch.com/vendors/LAN%20Manager/download/LanMgr-Mib-
II-MIB

12.
13.

© Skills 1st Ltd 9 Feb 2015

http://www.mibsearch.com/vendors/LAN%20Manager/download/LanMgr-Mib-II-MIB
http://www.mibsearch.com/vendors/LAN%20Manager/download/LanMgr-Mib-II-MIB
https://nagios-plugins.org/doc/guidelines.html
https://nagios-plugins.org/doc/guidelines.html
http://wiki.zenoss.org/ZenPack:Calculated_Performance
http://dmon.org/downloads/zenoss/zenpacks/zenoss4/ZenPacks.Nova.WinServiceSNMP-1.1-py2.7.egg
http://dmon.org/downloads/zenoss/zenpacks/zenoss4/ZenPacks.Nova.WinServiceSNMP-1.1-py2.7.egg
http://wiki.zenoss.org/ZenPack:Windows_SNMP_Service_Monitor
http://dmon.org/downloads/zenoss/zenpacks/zenoss4/ZenPacks.Nova.Windows.SNMPPerfMonitor-1.7-py2.7.egg
http://dmon.org/downloads/zenoss/zenpacks/zenoss4/ZenPacks.Nova.Windows.SNMPPerfMonitor-1.7-py2.7.egg
http://wiki.zenoss.org/ZenPack:Windows_SNMP_Performance_Monitor_(Advanced)
http://wiki.zenoss.org/ZenPack:Windows_SNMP_Performance_Monitor_(Advanced)
https://github.com/zenoss/ZenPacks.Nova.Windows.SNMPPerfMonitor
https://github.com/zenoss/ZenPacks.training.WeatherUnderground
https://github.com/cluther/ZenPacks.training.NetBotz
https://github.com/zenoss/ZenPacks.zenoss.OpenStackInfrastructure
http://wiki.zenoss.org/ZenPack:OpenStack_(Provider_View)
http://wiki.zenoss.org/ZenPack:OpenStack_(Provider_View)
https://github.com/zenoss/ZenPacks.zenoss.HBase.git
http://wiki.zenoss.org/ZenPack:HBase

55

© Skills 1st Ltd

9 Feb 2015

Acknowledgements

Several people have contributed either actively or passively to this paper:

56

Ryan Matte for the Windows SNMP ZenPacks
Chet Luther for countless hints and tips

agmenut on the Zenoss IRC at UC Regents (agmenut@ucdevis.edu) for
ZenPacks.ucdavis.PureStorage -
https:/bitbucket.org/ucdavis/zenpacks.ucdavis.purestorage/src/ec2a69f9061eadf
d81164ee62b0eb1353d953d54/ZenPacks/ucdavis/PureStorage/dsplugins.py?
at=master

Jason Stanley (jstanley or jls on Zenoss IRC), jstanley734@gmail.com , for
various samples and comments

Doug Syer on github - https:/github.com/dougsyer/Zenoss-Examples-and-Tools

© Skills 1st Ltd 9 Feb 2015

https://github.com/dougsyer/Zenoss-Examples-and-Tools
mailto:jstanley734@gmail.com
https://bitbucket.org/ucdavis/zenpacks.ucdavis.purestorage/src/ec2a69f9061eadfd81164ee62b0eb1353d953d54/ZenPacks/ucdavis/PureStorage/dsplugins.py?at=master
https://bitbucket.org/ucdavis/zenpacks.ucdavis.purestorage/src/ec2a69f9061eadfd81164ee62b0eb1353d953d54/ZenPacks/ucdavis/PureStorage/dsplugins.py?at=master
https://bitbucket.org/ucdavis/zenpacks.ucdavis.purestorage/src/ec2a69f9061eadfd81164ee62b0eb1353d953d54/ZenPacks/ucdavis/PureStorage/dsplugins.py?at=master
mailto:agmenut@ucdevis.edu

	1 Introduction
	2 Architecture
	2.1 Collecting data
	2.2 Performance templates
	2.2.1 Device templates vs component templates

	2.3 The role of zenhub in data collection
	2.3.1 config_key method
	2.3.2 params method
	2.3.3 proxy attributes

	3 The Python Collector ZenPack
	3.1 Programming with Twisted

	4 ZenPacks.Nova.Windows.SNMPPerfMonitor
	4.1 Obtaining code and documentation for the ZenPack
	4.2 ZenPack implementation details

	5 ZenPacks.Nova.WinServiceSNMP
	5.1 Obtaining code and documentation for the ZenPack
	5.2 ZenPack implementation details

	6 ZenPacks.skills1st.WinSnmp
	6.1 Creating a ZenPack
	6.2 Building a Python datasource to run a script
	6.2.1 Imports and logging
	6.2.2 The datasource class
	6.2.3 Info and Interface definitions
	6.2.4 The PythonDataSourcePlugin class

	6.3 configure.zcml
	6.4 Testing the new datasource
	6.4.1 Defining a template to utilise a new datasource
	6.4.2 Testing the datasource configuration
	6.4.3 Testing the target device
	6.4.4 Testing with zenpython
	6.4.5 Adding graphs and threshold to the template

	6.5 Datasource to collect cpu utilisation with a command
	6.6 Building a datasource to gather a single SNMP scalar value
	6.7 Building a datasource to gather SNMP table values
	6.8 Building a Python modeler plugin
	6.9 The rest of the ZenPack
	6.9.1 Device and component objects
	6.9.2 The __init__.py file

	7 Conclusions
	References
	Acknowledgements

