Methods of monitoring processes
with Zenoss

Draft

April 2009
Jane Curry
Skills 1st Ltd

www.sKkills-1st.co.uk

Jane Curry
Skills 1st Ltd
2 Cedar Chase
Taplow
Maidenhead
SL6 OEU
01628 782565

jane.curry@skills-1st.co.uk

1 © Skills 1st Ltd 24 Apr 2009

http://www.skills-1st.co.uk/
mailto:jane.curry@skills-1st.co.uk

Synopsis

This paper discusses three possible methods for performing process monitoring;
e Using the process monitoring capabilities of the net-snmp agent

e Using ssh to access a device and run local commands, Nagios-style plugins or
Zenoss plugins

e Using Zenoss's zenprocess daemon

Each of these methods will be examined, including an in-depth discussion on the
various different types of plugin that Zenoss can utilise and their strengths and
weaknesses. Examples and screenshots are provided.

In addition to monitoring processes, the options for rectifying failed processes will be
explored. This can be driven by the Zenoss events subsystem so examples are given to
generate events from each of the process monitoring techniques.

A third element of monitoring processes is to collect performance data for use in
graphs and threshold-generated events. Examples of performance data collection
templates are included for each of the ssh-based methods.

It is assumed that the reader is familiar with basic SNMP concepts and with simple
SNMP configuration parameters. It is also assumed that the reader is familiar with
setting up communications using ssh.

This paper was written based on stack-built Zenoss Core 2.3.3 on SLES 10.

2 © Skills 1st Ltd 24 Apr 2009

Table of Contents

1 Overview of process managemeNnt................evvvveiriiiiriiieiereerrreereeerreererre———————ee e 4
1.1 Defining “process management” requirements............ccccuvvvvvvvvvrrrverreeernrerreernnnnn... 4
1.2 Methods for monitoring Unix / LINUX Processes.........ccccvveiiieiieeeeeeeeeeiiieeeeeeeeeeennnn. 4

1.2.1 Native SNMP access to process information..........cccoeeeeeeeeeeeeerrriiiieeeeeennennnnn... 4
1.2.2 Using ssh to gain process information............cccoeeeeeeeieieiieeeeee e, 5
1.2.3 Using Zenoss's zenprocess daemon to monitor process information.............. 5

2 Native net-snmp process Management........ccceeaennns 5
2.1 Host Resources MIB..........ccoooiiiiiiiiiiii et e e e e e e e e taaee e e e e e eeeraaaeaees 6
2.2 Process table of UCD-SNMP-MIB.........coooiiiiiiiieeeeeeeeerre e eeeeeeens 7
2.3 DisMan Event MIB.............. e, 9

3 Monitoring processes With SSh.............eeviviiiiiiiiiiiiiiiiiiiiiiiiiereeeeeeeeeeeeeeeeeeeereeereerreeeerereeeees 11
3.1 Setting TP SSH..uuee e e e e e aaaaas 12

3.1.1 Using to ssh to directly monitor processes........c.ccccceevveveeiiieeiieiieieeeeeeeeeeeeee, 14
3.2 Nagios plugin architecture............ccccccoovvviiiiiiiiiiiieeeeeeeeeeeeeeeee e 14
3.2.1 Using Nagios plugins to monitor processes.........cccceeeeeeeeeviiiieeeeeerervnnneeeeennnnn. 17
3.3 ZeNO0SS PIUGINS...cccoeieieiiieeeee e 18
3.3.1 Using Zenoss plugins to monitor processes...........cccceeeeeeevviviieeeeeeeviieeeeeeeeees 21

4 Monitoring processes with Zenoss's zenprocess daemon..............ccceeeeeeveeevviviieeeeennnne. 21
4.1 Process configuration...........cccueiiiiiiiiieiiiiiiiieeeee e e et e e e e e e e e e e e e e e eeeaaes 22
4.2 ProCeSS AiSCOVETY..ccciiiieeiiiiiiiiieeeeeeeicittteeeeeeeeeseaarrteeeeeeeessssssaseaeeeeessesssssssssseenesnees 24
4.3 Process status CheCKIng.........coooeieeiiieiiieeieeeeeeecceccceeeecccccecce e e e e e 27

5 Integrating process monitoring with other Zenoss capabilities...........ccccceeeeviieeernen. 29
5.1 SNMP MIBS, TRAPS And ZenO0SS....cccccooeviiiiiiiieeeeeeeeeeeeeiieeeeeeeeeeeeevaeeesvaaeesanneees 29

5.1.1 Configuring event mapping for SNMP TRAPS........cccccomemmmeimeniiiiiiee e 31
5.1.2 Responding to SNMP TRAPS with Zenoss........cccccceeeeeieeciiiiiiieeeieeeeeccnnn, 33
5.2 Zen08S ANd SSN.....ccciiiiiiiiiieee e e e e e e e e e e e e naraaaaeaaae 35
5.2.1 Using Zenoss to run stand-alone ssh commands............................. 37
5.2.2 Using Zenoss to run Nagios plugins through ssh.. 47
5.2.3 Using Zenoss to run Zenoss plugins through ssh..........cccccovvviiiiiiiiiinnennnnnn. 49

6 COMNCIUSIONS. ...cciiiiiiiiiiiieeee ettt e e e e e e et e e e e e e e e e e eabaaeaeeeeeeeeesnnnasssasasnnnnaeeeeaaaaans 54

R EIEINCES. ...cceiiieeeeeee e e e e e e et e e e e e e e e et ara e e e e et aeaaas 56

ACKNOWIEAZEMIENTS.uiiiiiiiiiiiiiecitee et e e e e e e e e e s sbraeeeeeeeeeeeeeeeeneerenes 56

3 © Skills 1st Ltd 24 Apr 2009

1 Overview of process management

1.1 Defining “process management” requirements
“Process management” can encompass a wide variety of interpretations:

1. Monitoring for processes on Unix / Linux, effectively using output from some
invocation of the ps command

2. Monitoring processes as defined by entries in Task Manager on a Windows
system

3. Monitoring for a single occurrence of a simple process name (eg. named)

4. Monitoring for full pathname of a command (eg. /usr/sbin/named)

5. Monitoring the arguments of a command

6. Monitoring for minimum and/or maximum numbers of occurrences of a process
7. “Alerting” on process failure and recovery

8. Automatic recovery from process failure

With the exception of monitoring Windows processes and services, each of these
requirements will be considered against each of the monitoring techniques discussed.

Windows services can be monitored by Zenoss's zenwin daemon and processes (ie.
programs that do not run as Windows services but do appear in the Windows Task
Manager) can be monitored using the standard Zenoss zenprocess daemon, provided
the target supports the SNMP Host Resources MIB. Thus some of the details in this
paper are also applicable to Windows targets.

1.2 Methods for monitoring Unix / Linux processes

Ultimately, process monitoring for Unix / Linux systems comes from some form of
running the ps command. Typically this will be achieved either through SNMP or
through ssh.

1.2.1 Native SNMP access to process information

Most Linux distributions use the net-snmp agent and net-snmp is also available for
proprietary Unix implementations. This paper will assume the presence of net-snmp
agents.

net-snmp itself provides a number of options for retrieving process information:
e Host Resources MIB (RFC 2790 supercedes RFC 1514)

e net-snmp process table support from the UCD-SNMP-MIB (net-snmp used to be
UCD snmp)

4 © Skills 1st Ltd 24 Apr 2009

No form of monitoring is truly “agentless” but since most Operating Systems do
provide SNMP, then management by SNMP is fairly close to agentless — once the
agent has been configured it should continue to deliver information to a management
station.

There are three versions of SNMP (V1, V2¢ and V3) where V1 and V2¢ have very little
authentication or encryption as part of the protocol, but SNMP V3 can provide both.
Obviously SNMP V3 will have a greater performance overhead than the earlier
versions.

1.2.2 Using ssh to gain process information

Secure Shell (ssh) can be thought of as another “agentless” method for accessing
information. As with SNMP, ssh tends to be supported as standard by most Operating
Systems and will operate without intervention once configured.

ssh management solutions tend to be “heavier” in resources. Encryption will be
enforced at source, destination and across the network. ssh can permit any script to
be run at the managed device so it can be as intensive and comprehensive as required,;
thus an ssh solution can potentially address all the process management requirements
detailed above.

1.2.3 Using Zenoss's zenprocess daemon to monitor process information

Zenoss provides the zenprocess daemon to query the availability and performance of
processes on remote devices. Fundamentally, zenprocess makes use of the Zenoss
HRSWRunMap data collector which relies on the Host Resources SNMP MIB at the
target.

Processes are configured from the main left-hand Processes menu. One automatic
advantage of using zenprocess is that, in addition to monitoring for the presence of a
process, it will also create graphs of that process's CPU, memory usage, and the
number of instances of the process (count).

2 Native net-snmp process management

Strictly, an SNMP agent is only required to support MIB-2 (which largely provides
network information); however, many SNMP agents support extra Management
Information Bases (MIBs) as standard, and, in particular, many support the Host
Resources MIB, a generic MIB that provides system information about a device. The
net-snmp agent can have support for other MIB extensions, such as the process table
of the UCD-SNMP-MIB and the DisMan Event MIB, in addition to the Host Resources
MIB.

Note that later versions of the net-snmp agent tend to be distributed with support for
many extensions already compiled in, but older versions may not have all the extra
extensions; in this case, you may need to get the source of the net-snmp agent and
rebuild it. To find out what your net-snmp agent supports, run one of the following:

5 © Skills 1st Ltd 24 Apr 2009

e net-snmpconfig -snmpd-module-list

e csnmpd -Dmib_init -H (needs root privilege)
To read MIB information from an SNMP agent,the snmpwalk command is a useful
testing tool. for example:

e snmpwalk -v 1 -c¢ public zen232 system

o uses SNMP V1 with a community name of public to GET the system table
from the machine zen232
® snmpwalk -v 3 -a MD5 -A fraclmyea -1 authNoPriv -u jane2 zen232 system

o uses SNMP V3 with MD5 authentication, passphrase fraclmyea, and user
jane2 to GET the system table from machine zen232

Obviously, the agent on the target host must have been configured to permit this
access, in its snmpd.conf file.

2.1 Host Resources MIB

The Host Resources MIB defined in RFC 1514 and updated by RFC 2790 defines many
standard MIB values for monitoring the “health” of a system, including tables for cpu,
memory, swap, storage, devices, installed software, running software and the
performance of running software.

The hrSWRunTable contains an entry for each distinct piece of software that is
running or loaded into physical or virtual memory in preparation for running. This
includes the host's operating system, device drivers, and applications. hrSWRunTable
consists of a sequence of hrSWRunEntry objects defined as follows:

HrSWRunEntry ::= SEQUENCE {
hrSWRunIndex Integer32,
hrSWwRunName InternationalDisplayString,
hrSWRunID ProductID,
hrSwWwRunPath InternationalDisplayString,

hrSWRunParameters InternationalDisplayString,
hrSwWRunType INTEGER,
hrSwRunStatus INTEGER

Typically:
e hrSWRunlIndex is the process id (PID) eg. 3555
e hrSWRunName is the short name of the process eg. named

e hrSWRunID always seems to be zeroDotZero

6 © Skills 1st Ltd 24 Apr 2009

e hrSWRunPath is the full pathname eg. /usr/sbin/named

e hrSWRunParameters are the parameters to the command (if any), eg. -t
/var/lib/named -u named (Note that long lines get truncated!)

e hrSWRunType is generally an application denoted by the integer value of 4

e hrSWRunStatus typically is runnable (2) though at least one process should
have a status of running (1)

If multiple instances of a process are running then each is reported, with the process
id being the differentiator.

The hrSWRunPerf table entry has 2 objects for CPU and memory:

HrSWRunPerfEntry ::= SEQUENCE f{
hrSWRunPerfCPU Integer32,
hrSWRunPerfMem KBytes

}

“CPU” is described as “the number of centi-seconds of the total system's CPU
resources consumed by this process. Note that on a multi-processor system, this value
may increment by more than one centi-second in one centi-second of real (wall clock)
time.”

“Memory is defined as “the total amount of real system memory allocated to this
process."

The index for both CPU and memory is again the process id.

Thus, the Host Resources MIB satisfies requirements 1, 3, 4 and 5 above (monitoring
for a process, monitoring the full pathname and monitoring the arguments). Multiple
occurrences of a process are reported but there is no simple way to specify how many
processes should be running.

To examine the Host Resources process information on a target device using SNMP V1
and a community name of public, use:

e snmpwalk -v 1 -c public zen233 hrSWRunTable

2.2 Process table of UCD-SNMP-MIB

The net-snmp agent has become the ubiquitous SNMP agent for Linux and is
available for many other systems. It evolved from the University of California Davis
(UCD) SNMP agent which had some useful private MIB extensions, including process
monitoring. The prTable of the UCD-SNMP-MIB allows specification of a process
name (the short name as reported by ps -acx) and a maximum and minimum number
of occurrences of the process. If the number of processes is less than MIN or greater
than MAX, then the corresponding prErrorFlag instance will be set to 1, and a
suitable description message reported via the prErrMessage instance. Note: This

7 © Skills 1st Ltd 24 Apr 2009

situation will not automatically trigger a trap to report the problem - see the DisMan
Event MIB section later. The syntax within the snmpd.conf file is:

proc named 1 1

proc vmware-vmx 3 4

There should be precisely one occurrence of the named process running and at least 3
but no more than 4 occurrences of vmware-vmx.

Optionally, snmpd.conf can also specify a command to run to attempt to fix the
problem. This is defined with a procfix line, for example:

procfix named /etc/init.d/named start

Note that a procfix line must come after the related proc statement. The procfix
command will not be run automatically. It is only run when the corresponding
prErrFix MIB value is set from O to 1.

The prTable in the UCD-SNMP-MIB is defined as follows:

PrEntry ::= SEQUENCE ({ Index Number
prIndex Integer32, 1
prNames DisplayString, 2
prMin Integer32, 3
prMax Integer32, 4
prCount Integer3?2, 5
prErrorFlag UCDErrorFlag, 100
prErrMessage DisplayString, 101
PrErrFix UCDErrorFix, 102
prErrFixCmd DisplayString 103

}

Note that the index numbers for this sequence are not consecutive (see right-hand
column). For example, the Object Identifier (OID) for the 5th instance in the process
table for prErrorFlag would be .1.3.6.1.4.1.2021.2.1.100.5, where .1.3.6.1.4.1.2021 gets
you to ucdavis, the next .2.1 gets you to prTable.prEntry, .100 is the prErrorFlag and
the final .5 is the instance denoting the 5th process entry in the table.

Typically:

e The prindex field is simply an increasing number to index into the process
table, starting at 1.

e prNames is the short name of the process eg. vimware-vmx

e The prErrorFlag is set to 1 if the count value exceeds max or is less than min

8 © Skills 1st Ltd 24 Apr 2009

e prErrMessage reflects a suitable error message if prErrorFlag=1. For example,
“Too few vmware-vmx running (# = 1)”. If prErrorFlag=0 then prErrMessage is
the null string.

e prErrFix is used to trigger the running of the prErrFixCmd command. prErrFix
must be SNMP SET to 1 to run the command. This can either be achieved with
an external SET command or by using the DisMan Event MIB

The advantage of the UCD-SNMP-MIB is that it can count the number of instances of
a process and raise an alert if the count is not within configured maximum / minimum
limits. It also has the possibility of taking action to rectify a process problem.
However, it cannot monitor for process path names or parameters.

Thus, the UCD-SNMP-MIB satisfies requirements 1, 3, 6, 7 and 8 above (monitoring
for a process, monitoring the number of instances of a process within maximum /
minimum limits, alerting on a process problem, and automatic recovery).

To examine the UCD_SNMP_MIB process information on a target device using SNMP
V1 and a community name of public, use:

e snmpwalk -v 1 -c public zen232 prTable

Of course, it is perfectly possible to combine UCD-SNMP-MIB process monitoring with
Host Resources MIB process monitoring.

2.3 DisMan Event MIB

The UCD-SNMP-MIB does not automatically raise any TRAPs or NOTIFICATION:S,
nor will it run any procfix commands, by default. The DisMan Event MIB, described
in RFC 2981, can be used with the prTable to achieve this.

“monitor” configuration lines can be added to snmpd.conf to monitor the value of a
MIB OID on the local agent; for process monitoring, the prErrorFlag is the obvious
OID to monitor for a value of 1. The monitor configuration can optionally raise a

TRAP or NOTIFICATION. monitor can also be used to trigger a change (SNMP SET)
in a prErrFix value, thus initiating a recovery script.

monitor configuration lines mandate a username parameter as the local MIB OIDs
will be queried (SNMP GET) and, in the case of changing prErrFix, an OID will be
changed (SNMP SET). For this internal querying, SNMP V3 is always used,
regardless of what version of SNMP is used for external devices to query the local
agent. When configuring SNMP V3 users for DisMan Event MIB monitoring, do
ensure that the user has read/write access if you need to change the prErrFix MIB
value.

9 © Skills 1st Ltd 24 Apr 2009

& jane@bino:letc/snmp - Shell - Konsole - lo x'.

Session Edit View Bookmarks Settings Help

H#proc sendmail 10 1 -
proc top 1 1

proc unware-umx 4 3

proc named 1 1

procfix named retcrinit.d-named start

Use DisMan Event MIB to check on process table for problems

#t user settings - note that this internal communication always uses SHMP U3

NHote if you want to use setEvent’s then user must have ruuser not rouser auth
ruuser _internal noauth

agentSecName _internal

#t monitors

#t —-r 10 = check every 10 seconds, -D = evaluate delta differences,

-3 = don’t evaluate on startup, —o = added varbinds

t#t MOTE: there must be white space around the operator token - prErrorFlag t= 0

monitor —u _internal —r 10 -D -3 -e ProcessEvent -o prindex —o prNames -o prMin —o prMax -
o prCount —o prErrorFlag —o prErrMessage —o prErrFix —o prErrFixCmd "Process table” prErro
rFlag '= 0

If you enable the monitor with the setEvent then you DON'T get
the good news event from the monitor above - timing??7?

#monitor —u _internal —-r 20 -5 -e procFix "Process table euvent" prErrorFlag t= @

motificationEvent ProcessEuent .1.3.6.1.4.1.1234.123
setEvent procFix prErrFix = 1

(]
"snmpd .conf” [readonlyl 424 lines —35x— 152,0-1 I =

?] = Shel |

Figure 1: snmpd.conf with process and DisMan Event configuration lines

Note when configuring monitor statements for the DisMan Event MIB, there must be
white space around operators.

In Figure 1 above, four processes are monitored, each having max/min parameters; in
addition, named has a procfix line.

A user called _internal is created for SNMP V3 use with read/write access; no
authentication is required. The monitor statement requires a “-u” parameter which
specifies an agentSecName — hence the agentSecName definition defining _internal as
a valid user for monitor queries.

The uncommented monitor line provides an example that checks each prErrorFlag in
the prTable (ie one check for each defined process) for a value !=0. On this condition,
the -e flag is used to generate an SNMP notification called ProcessEvent, which is
defined at the bottom of Figure 1. The -e parameter can either specify your own TRAP
/ NOTIFICATION (as shown here) or can use any TRAP / NOTIFICATION that is
defined and available to the agent in a MIB file. The event is passed a number of
variables (varbinds), each specified with a -o parameter (wildcard) and the name of the
OID to be sent. For a wildcarded expression, the suffix of the matched instance will be
added to any OIDs specified. Thus if named is index 3 in the prTable and

10 © Skills 1st Ltd 24 Apr 2009

prErrorFlag.3 is tested and found to be !=0, then the values of prIndex.3, prNames.3,
prMin.3 etc. will be included on the event as varbinds. The next-to-last field in the
monitor line (“Process table” in this case) is an administrative name for this
expression, and is used for indexing the mteTriggerTable (and related tables).

The active monitor line checks the prErrorFlag instances every 10 seconds (-r 10) and
evaluates delta differences (-D); the monitor is not run on snmpd agent startup (-S).

Note that a monitor line only specifies what event will be sent and under which
conditions. A standard snmpd.conf trapsink line (or lines) will be necessary to indicate
where events should be sent to.

The effect of the active monitor line is to send an SNMP notification with enterprise
OID .1.3.6.1.4.1.1234.123 including varbinds that report the problem, whenever a
process fails to meet its configured criteria. When the problem goes away, an event
with the same OID will be sent and the varbinds will indicate the “good news” nature
of the event.

The second, commented-out monitor line in Figure 1 demonstrates local automation by
running a SET event, procfix, when a prErrorFlag instance != 0. The corresponding
instance of prErrFix is set to 1 which will trigger any configured procfix action. In
the case of a failed named, this will cause /etc/init.d /named start to be run.

On my system, SuSE 10 with net-snmp-5.4.1-19.4, I found that either the bad news /
good news events would work, or the automatic procfix process restart would work;
however if both lines were configured then the “good news” event when the process
was healthy again, was never sent. For this reason, the second monitor line is
commented out — it is simple enough to configure an action at Zenoss to perform an
SNMP SET on the instance of prErrFix to set the value to 1 and cause the procfix
action to be executed.

In summary, adding the DisMan Event MIB configuration to an SNMP agent satisfies
the initial process management requirements 7 and 8 (alerting on process failure and
recovery, and automatic recovery from process failure).

3 Monitoring processes with ssh
There are three ways that ssh can be used to help achieve process monitoring:

e Use ssh to run operating system commands (either built-in (ps variations) or
scripts)

e Use ssh to run Nagios plugin commands (such as check_procs)

e Use ssh to run Zenoss plugins to deliver process information (eg. zenplugin.py
process sshd)

These options do not inherently rely on having Zenoss as the management system
(even the Zenoss plugins operate standalone). This chapter will discuss the basic

11 © Skills 1st Ltd 24 Apr 2009

techniques of ssh, Nagios and Zenoss plugins. Chapter 5 will then discuss how these
ssh methods can be incorporated with a Zenoss management system.

Nagios plugins offer the advantage of a large library of system and network
management checks that are coded to a defined format. Zenoss understands the
output of Nagios plugins and can use it automatically to generate events.

The disadvantage of using Nagios plugins with Zenoss is that you have to install the
Nagios plugins on any targets that you want to access that way — you have the old
problem of installing and maintaining an “agent”.

Similarly, the Zenoss plugins provide some pre-coded functionality but they have to be
installed along with Python. Zenoss has several performance data collection
templates that use Zenoss plugins — look under the Templates tab for

/ Devices | Server | Cmd at the Devices, FileSystem and ethernetCsmacd templates.

A compromise might be to write native scripts that produce output in Nagios format
which removes the need to install an “agent” remotely (though you still have to get the
script delivered to the targets).

3.1 Setting up ssh

Most Unix / Linux Operating Systems come with an ssh implementation. PuTTY is
probably the best known ssh for Windows platforms. Communication is protected by
encryption which usually requires public/private key pairs to be generated. The
private key needs to be held on the ssh client (for example, a Zenoss manager); the
public key is needed on the ssh server (for example, a device running sshd).

Typically on a Unix / Linux system, any user that runs ssh will have a .ssh directory
under their home directory which contains ssh key files; it should have 600 access
permissions.

The key pairs are generated with a utility generally called ssh-keygen. ssh can use
either RSA or DSA as an authentication algorithm and there are 2 versions of the ssh
protocol — version 1 and version 2. Most modern implementations of ssh should be
using the DSA algorithm and ssh version 2. So, if you want to use ssh with a Zenoss
management system, using the userid of zenoss, to manage a remote system called
bino with a userid of zenrem, generate a public/private key pair using DSA, for ssh
version 2, by:

e Becoming the zenoss user on the management system (because of the way this
user is created, you may need to su to root and then run su - zenoss)

e ssh-keygen -t dsa you will be prompted for a passphrase which may be blank

e inspect ~/.ssh for id_dsa and id_dsa.pub and check the directory has 600 access
permissions

12 © Skills 1st Ltd 24 Apr 2009

e copy id_dsa.pub to the machine bino into the .ssh subdirectory of the userid
zenrem. It should be copied into the file authorized_keys (or appended to
authorized_keys if the file already exists).

e The private key, id_dsa ,remains on the Zenoss system. It must have 600 access
permissions.

e The public key can be copied to the authorized_keys file of as many systems as
you want to manage.

Note that some implementation of ssh use a filename authorized_keys2 to hold
version 2 DSA public keys.

If you specify a passphrase when generating the key pairs, this passphrase is used to
further protect access to the private key, id_dsa and you will be prompted for the
passphrase before any ssh communication can take place.

Note that the names id_dsa and id_dsa.pub are defaults. It is perfectly possible to use
different file names and then to specify the keyfile name as part of the ssh command.

So, if we have a user, zenrem on a managed system, bino, with the correct public key
in zenrem's .ssh /authorized_keys file, you can test the communication from the Zenoss
system, as user zenoss, with:

e ssh zenrem@bino

e Ifyou have a passphrase configured, you will be prompted for it (this
prompt is from the local Zenoss system to access the local private key).

e If this is the first ssh communication with bino, an RSA key for the host
bino will be generated and you will be asked whether to continue
connection. If you answer Yes then this host key will be added into the
file known_hosts under zenoss's .ssh directory.

In general, key pairs may be used symmetrically; that is, if both client and server
have the same id_dsa private key and the same matching public key in their
authorized_keys file, then either can act as client (ssh command) or server (sshd
daemon).

Note that testing ssh with a user zenoss on the server side (ie ssh'ing in to a Zenoss
management system) will not work as the standard Zenoss install does not permit
logins to the user called zenoss — this also inhibits ssh access.

In summary, you need the private key, id_dsa, to authorize communication out of
your system (ie. acting as an ssh client); you need the public key in the file
authorized_keys to authorize communication in (ie acting as an ssh server). You don't
actually need the public key in the file id_dsa.pub.

13 © Skills 1st Ltd 24 Apr 2009

3.1.1 Using to ssh to directly monitor processes

Once ssh communications is correctly established, any script can be run on a remote
system, hence any requirements for process monitoring could be met; whether
monitoring for a single process instance, multiple instances, exact process names with
or without process parameters. It is also possible to code recovery actions and to
generate alerts — SNMP TRAPs, messages to syslog, emails, or any other form of
notification. The negative aspect of direct ssh communication is that, if a script is run,
then the script somehow has to be distributed to the target.

3.2 Nagios plugin architecture

The Zenoss Developer's Guide (page 18 of the 2.3 version) provides a reference to
Nagios plugin API documentation at

http://nagiosplug.sourceforge.net/developer-guidelines. html#PLUGOUTPUT

Chapter 2 of this Nagios paper documents the output format for:
e status result of the plugin
e any performance data delivered by the plugin

Basically, Nagios should deliver one line of output. Status output should be in the
format:

SERVICE STATUS: Information text

Valid return codes are documented as shown in the figure below.

2.4, Plugin Return Codes

The return codes below are based on the POSIX spec of returning a positive value. Metsaint prior to v0.0 7 supported non-POSIX compliant return code of "-1" for unknown
Nagios supports POSIX return codes by default

INote: Some plugins will on occasion print on STDOUT that an error occurred and error code is 138 or 255 or some such number. These are usually caused by plugins using
system commands and having not enough checks to catch unexpected output. Developers should include a default catch-all for system command output that returns an
UNKNOWN return code.

Table 2. Plugin Return Codes

Numeric | Service

Value Status Status Description

0 Ol The plugin was able to check the service and it appeared to be functioning properly

1 \Warning The plugin was able to check the service, but it appeared to be above some "warning" threshold or did not appear to be working properly

2 Critical The plugin detected that either the service was not running or it was above some "critical” threshold

Invalid command line arguments were supplied to the plugin or low-level failures internal to the plugin (such as unable to fork, or open a tcp socket) that
3 Unknown |[prevent it from performing the specified operation. Higher-level errors (such as name resolution errors, socket timeouts, stc) are outside of the control
of plugins and should generally NOT be reported as UNKNOWN states

Figure 2: Nagios plugin return codes

14 © Skills 1st Ltd 24 Apr 2009

http://nagiosplug.sourceforge.net/developer-guidelines.html#PLUGOUTPUT

If the plugin delivers performance data, it must follow the return code and text,
separated from it by the vertical bar symbol.

& Nagios plug-in development guidelines - Mozilla Firefox (ol [x
File Edit View History Bookmarks Tools Help

< - = \#_’J ,j—_} i http://nagiosplug sourceforge net/developer-guidelines htm#PLUGOUTPUT ~| B [[Gl-

i Interacti... Met Offi am BEC N 5 Magios C Tips an. (D newsab... @ Forums C ZenPac qputty - .. GUsing N [Nagi... & |~

-

2.6. Performance data

Performance data is defined by MNagios as "everything after the | of the plugin output” - please refer to Magios documentation for information on capturing this data to logfiles.
However, itis the responsibility of the plugin writer to ensure the performance data is in a "MNagios plugins” format. This is the expected format

'label'=value[UOM], [warn]; [crit],[min],[max]
Notes:
1. space separated list of labelivalue pairs
2. label can contain any characters
3. the single quotes for the label are optional. Required if spaces, = or ' are in the label
4 label length is arbitrary, but ideally the first 19 characters are unique (due to a limitation in RRD). Be aware of a limitation in the amount of data that NRPE returns to Nagios
5. to specify a quote character, use two single quotes
6. warn, crit, min or max may be null (for example, if the threshold is not defined or min and max do not apply). Trailing unfilled semicolons can be dropped
7. min and max are not required if UOM=%
8. value, min and max in class [-0-9]. Must all be the same UOM
9. warn and crit are in the range format (see Section 2.5). Must be the same UOM
10. UOM (unit of measurement) is one of.
a no unit specified - assume a number (int or float) of things (eqg, users, processes, load averages)
b s-seconds (also us, ms)
c. % - percentage
d. B- bytes (also KB, MB, TB)
e c-acontinous counter (such as bytes transmitted on an interface)

Itis up to third party programs to convert the MNagios plugins performance data into graphs

Figure 3: Nagios plugin format for delivering performance data

As an example, the check_file_age Nagios plugin takes warning and critical
parameters for age (-w and -c parameters in seconds) and size (-W and -C parameters
in bytes). To get the usage for any Nagios plugin, use the -h parameter after the
plugin command name (check_file_age -h). Thus a Nagios plugin, check_file_age,
might respond as shown below:

Session Edit View Bookmarks Settings Help

izenplug@binu:">

|zenplugEbinu:">

|zenplugEbinn:") .#check_file_age -w 180 —c 300 -W 3 -C 5 rhomerzenplug-fred

IFILE_AGE CRITICAL: ~home-zenplug-fred is 4859 seconds old and 5 bytes Ibytes=5b seconds=4859=
|zenplugEbinu:">

|zenplugEbinu:">

[[zenplug@bino:™>

Figure 4: Nagios plugin check_file_age with performance output

15 © Skills 1st Ltd 24 Apr 2009

Note that this plugin has been modified from the standard Nagios plugin in order to
deliver performance data after the vertical bar.

The plugin is actually a Perl script, the main body of which is shown below:

= jane@bino:...srlsharelsnmpi/mibs - Shell - Konsole _I:I x

Session Edit View Bookmarks Settings Help

(]

if (1t Sopt_f) {

print “FILE_AGE UNKNOWN: No file specifiedwn":
exit SERRORS{’UNKNOWN’ }:

¥

it Check that file exists (can be directory or link)

unless (-e Sopt_f£) {
print "FILE_AGE CRITICAL: File not found - Sopt_fn":
exit SERRORS{’CRITICAL’}:

¥

5st = File::stat::stat(Sopt_f):
Sage = time - Sst->mtime;
Ssize = Sst->size:

Sresult = ‘0K ;

if ((Sopt_c and Sage > Sopt_c) or (Sopt_C and Ssize < Sopt_CI) {
Sresult = *CRITICAL® ;

hH

elsif ((Sopt_w and Sage > Sopt_w) or (Sopt_UW and Ssize < Sopt_W)) {
Sresult = "WARNING' ;

hH

#print "FILE_AGE Sresult: Sopt_f is Sage seconds old and $size bytes\n":
print "FILE_AGE Sresult: Sopt_f is Sage seconds old and $size bytes "
print "Ibytes=5{size}b seconds=5{age}s\n";

exit SERRORS{Sresult};

"check_file_age" [readonlyl 115 lines —59»— 68,0-1 9t

[| = Shell

Figure 5: Body of modified check_file_age Nagios plugin

The first two sections check that a file name has been supplied and that a supplied file
name exists, each returning an output line with a result code (UNKNOWN or
CRITICAL). Note that an exit status is supplied as well as the status as part of the
output line. The main body of the script checks the file age and size against warning
and critical thresholds. The end of the script then delivers the output line with the
result code, information text and the values for size and age; again the exit status is
delivered.

Nagios plugins are installed as standard on a Zenoss server under /usr/local /zenoss/
common /libexec . Nagios plugins can also be installed on remote systems and run
standalone. Note that many require the utils.pm file to be available either in the
same directory as the plugin or in an include path, @INC. If you receive an error
message saying that utils.pm cannot be located, check the reported @INC path and a
symbolic link can be provided from the actual utils.pm directory to one of the
directories in the path.

16 © Skills 1st Ltd 24 Apr 2009

3.2.1 Using Nagios plugins to monitor processes

The standard Nagios plugins include a check_procs plugin which can be installed
standalone on a device.

. jJane@bino:...srsharelsnmp/mibs - Shell - Konsole

Session Edit View Bookmarks Settings Help

zenplug@bino:™> .- check_procs -h [«]

check_procs (nagios-plugins 1.4.5) 1.54

Copyright (c) 1999 Ethan Galstad <nagios@nagios.org>Copyright (c) 2000-Z006 Magios Plugin Development Team
<nagiosplug-devel@lists.sourceforge.net>

Checks all processes and generates UARMNING or CRITICAL states if the specified
metric is outside the required threshold ranges. The metric defaults to number
of processes. Search filters can be applied to limit the processes to check.

Usage :check_procs —w <range> -c <range> [-m metric]l [-s statel [-p ppidl
[-u user] [-r rss] [-z wsz]l [-P xcpul [-a argument-arrayl
[-C command] [-t timeout] [-ul

Required Arguments:

-u, ——warning=RANGE

Generate warning state if metric is outside this range
-c, ——critical=RANGE

Generate critical state if metric is outside this range
Optional Arguments:
-m, —metric=TYPE

Check thresholds against metric. Ualid types:

PROCS - number of processes (default)
Us2 - virtual memory size

R33 - resident set memory =ize

CPU - percentage cpu

ELAPSED - time elapsed in seconds

-t, —timeout=INTEGER
Seconds before commection times out (default: 100

-v, ——verbose
Extra information. Up to 3 verbozity levels

Optional Filters:

-5, —state=STATUSFLAGS
Only scan for processes that have, in the output of “ps”, one or
more of the status flags you specify (for example R, Z, S, RS,
RSZDT, plus others based on the output of your "ps’ command).

-p, —ppid=PPID
Only scan for children of the parent process ID indicated.

-z, ——usz=U32
Only scan for processes with usz higher than indicated.
-r, ——rss=R33

Only scan for processes with rss higher than indicated.
=P, —pcpu=PCPU

Only scan for processes with pcpu higher than indicated.
—u, —user=USER

Only scan for processes with user name or ID indicated.
—a, ——argunent-array=STRING

Only scan for processes with args that contain STRING.
—C, ——command=COMMAND

Only scan for exact matches of COMMAND (without path).
RANGEs are specified 'min:max’ or ‘min:’ or ’:max’ (or 'max’). If
specified 'max:min’, a warning status will be generated if the
count iz inside the specified range

This plugin checks the number of currently rumming processes and

generates WARNING or CRITICAL states if the process count is outside

the specified threshold ranges. The process count can be filtered by

process owner, parent process PID, current state (e.g., "2°), or may [«]
be the total number of rumming processes =]

= | @ shell |

Figure 6: Help for the check_procs Nagios plugin

Examples are also given at the end of the help:

17 © Skills 1st Ltd 24 Apr 2009

Examples:

check_procs —w 2:2 ¢ 2:1024 -C portsentry
Warning if not two processes with command name portsentry.
Critical if < 2 or > 1024 processes

check_procs —w 10 -a "~usrslocalsbinsperl’ -u root
Warning alert if > 10 processes with command arguments containing
*»rusrslocal binsperl’ and ouned by root

check_procs —w 50000 —c 100000 ——netric=US2
fAlert if usz of any processes over SO0K or 100K

check_procs —w 10 -c 20 —metric=CFPU
filert if cpu of any processes over 104 or 204

Send email to nagios-usersPlists.sourceforge.net if you have guestions
regarding use of this software. To submit patches or suggest improvements,
send email to nagiosplug-devel@lists.sourceforge.net

Figu-re 7.'-Examples for using Nagios check_procs plugin

Note that extra output can be achieved with the -vvv option (LOTS of verbosity). In
the case of the check_procs plugin, this extra flag shows that the command that is
actually run is:

/bin/ps axwo 'stat uid pid ppid vsz rss pcpu comm args'

When considering the process management requirements at the beginning of this
document, the Nagios plugins have possibilities for addressing 1, 3, 5 and 6
(monitoring single and multiple instances of processes by short process name and by
considering the parameters of a process). There is no ability in the standard plugin to
take remedial action or to send alerts; however, the Nagios API is just that and it is
perfectly possible to write your own plugin or to modify some of the standard plugins
provided. In addition, the Nagios plugin allows monitoring based on resources used,
such as memory and CPU, although no performance data values are returned by the
default plugin.

3.3 Zenoss plugins

Zenoss plugins are entirely separate from Nagios plugins. They are also sometimes
referred to as ZenPlugins (or even just “plugins”) in the documentation. They are a
collection of platform-specific python libraries and the zenplugin.py command. They
can be used to collect information using ssh, from remote systems. The Zenoss plugins
are only useful to monitor a remote system if that system has Python installed and if
the Zenoss plugins are supported on the architecture (this basically means linux2,
FreeBSD and Darwin).

Note that the Zenoss plugins are only used for collecting performance data; they are
not a pre-requisite for modelling a device.

The Zenoss plugins can be downloaded from the Zenoss download site (

http://www.zenoss.com/download/links?creg=no) under the heading “Remote
Monitoring Scripts” . Good overview information is available at the end of the Zenoss

18 © Skills 1st Ltd 24 Apr 2009

http://www.zenoss.com/download/links?creg=no

FAQ at http:/www.zenoss.com/community/docs/faqs/fag-english/ . There is also a
Zenoss plugins HowTo at http:/www.zenoss.com/community/docs/howtos/zenoss-
plugins . I found the documentation for installing the Zenoss plugins rather
confusing; the following process worked successfully on both SLES 10 (32 bit) and
Open SuSE 10.2 (64 bit).

Note that both python and the python development package must be already
installed. Note also that you need to install the Python setuptools package or you are

likely to get an error message about an ApplicationError - “ImportError: No module
named common”.

I found the easiest way to install the Zenoss plugins was to:

1. Get the latest Zenoss plugins package from
http:/www.zenoss.com/download/links?creg=no . I used the “Other” source
tarball under the “Remote Monitoring Scripts” section and got Zenoss-Plugins-
2.0.4.tar.gz

2.Get the source tarball for the Python setuptools utility from
http:/pypi.python.org/packages/source/s/setuptools/ (I got setuptools-
0.6c9.tar.gz)

3.As root, untar the Zenoss plugins file
4.Change to the Zenoss-Plugins-2.0.4 directory
5.Run

python ./setup.py build
python ./setup.py install

6.Python packages typically get installed to
/usr/local | lib | python2.5 | site-packages (the directory will be created if
necessary)

7.Untar the setuptools file
8.Change to the setuptools-0.6c9 directory
9.Run
python ./setup.py install
10.As a normal user, test with
zenplugin.py --list-plugins
11.Note that zenplugin.py will be installed into /usr/local /bin

The FAQ documents what utilities are supported on which architecture:

19 © Skills 1st Ltd 24 Apr 2009

http://pypi.python.org/packages/source/s/setuptools/
http://www.zenoss.com/download/links?creg=no
http://www.zenoss.com/community/docs/howtos/zenoss-plugins
http://www.zenoss.com/community/docs/howtos/zenoss-plugins
http://www.zenoss.com/community/docs/faqs/faq-english/

@ FAQ (English) - Commercial Open Source Application, Systems and Network Monitoring - Zenoss - Mozilla Firefox | _"\ o x

File Edit View History Bookmarks Tools Help

&

x. - @ G‘j | © http:#www.zenoss.com/community/docs/fags/fag-english/ SRS =H] ,‘\.

i Interacti 4 Met Offi mm BBC N s Nagios CFAQ..d [newsab © Forums © ZenPac *F putty - C Using N L1 Nagios -
Named Value: PortsinternetAvailable Type: REG_SZ Setting:"Y"

Named Value: UselnternetPorts Type: REG_SZ Setting: "Y"

These registry settings must be established in addition to all firewall settings.

How do I set up WMI to Monitor Windows Services?
See this page

VMWare Image

What is the default login for the image?
The default login for the Zenoss Management Console (on port B080) is username: admin password: zenoss

The default login for the Appliance Agent (on port 8003) is usemame: admin password: password

How do I login as root in the VMware Image?
You can login on local console as root user with empty password

Zenoss Plugins

What are the Zenoss Plugins (zenplugins)?

Zenoss Plugins consist of a collection of platform specific python libraries used by the zenplugin.py script to gather performance information
on a local computer. Using an SSH enabled Command collector Zenoss can securely monitor remote severs without requiring the system
administrator to install and expose an SNMP agent.

For more information, including how to download and install, see the ZenossPlugins HowTo

What platforms are currently supported?
Zenoss Plugins have been developed on and extensively tested on the linux2 platform. This includes Fedora Core, RHEL, CentOS, and
Ubuntu. The plugins have also been tested under FreeBSD B.1 and Darwin (OSX)

What plugins are available?

The plugins are platform dependent. As a result, a different set of plugins exist for each platform. The plugins implemented for the FreeBSD
5.x platform differ from the plugins implemented for the Linux2 platform. The following table shows which plugins are available on each
platform:

Platform CPUMemoryDiskProcess SMART Intf Uptime MySQL Apache Temperature
Linux2 v ¥ v ¥ v v ¥ v v
v v - - v
- vV
7 s o= v

Darwin
FreeBSD5
Tivao

= < [
<

3 BOOKMARK u®

& Find :ps | @ Next 1 Previous [iHighlight all ¥/ Match case
Done P Adblock

Figure 8: Zenoss FAQ for Zenoss plugins

I repeat - Zenoss plugins are entirely separate from Nagios plugins. However,
the Zenoss plugins implement the output specification of Nagios commands. Note in
the examples shown in Figure 9 that the return code is printed along with
informational text, followed by a vertical bar, followed by one or more performance
data values. Various Zenoss performance data collector templates, under

/Server /Cmd [Linux, use the Zenoss plugins to deliver data values for graphs for
Devices, FileSystem and ethernetCsmacd templates.

20 © Skills 1st Ltd 24 Apr 2009

@ jane@bino:..srisharelsnmp/mibs - Shell - Konsole _la] [x]

Session Edit View Bookmarks Settings Help

zenplug@hino:™> zenplugin.py cpu -
CPU OK: Is=CpuRawInterrupt=186893 laLloadInt1=0.74 ssRawContexts=4563322412 laLloadInt5=0.75 =ssCpuRauNice=255359
=sCpuRawkernel=16254783 ssCpuRawlystem=16254783 s=CpuRawlait=27Z2204 laLloadInt15=0.73 ssRawlnterrupts=10932855
39 ssCpuRawldle=67471011 ssCpuRawUser=-6605785zenp lug@bino:™>

zenplug@bino:™>

zenplug@bino:™>

zenplug@bino: > zenplugin.py men

MEM OK: ImenfivailReal=58679296 hrSuapSize=3224268800 hrMemorysize=2125438976 pageSize=4096 nenfivailSwap=2776584
19Z2zenp lug@hino: ">

zenplug@hino: >

zenplug@bino: >

zenplug@bino:™> zenplugin.py disk ~home

DISK OK:lavailBlocks=35955944 usedBlocks=174554448 totalBlocks=221775944zenplug@hino:™>

zenplug@hino:™>

zenplug@hino:™>

zenplug@bino:™> zenplugin.py process sshd

PROCESS OK: Isystem=1205 mem=182812672 cpu=4291 user=3086zenplug@bino:™>

zenplug@hino: ™ >

zenplug@bino: ™ >

zenplug@bino: ™ >

zenplug@hino:™> zenplugin.py io

10 OK: |ssI0RawSent=109203186 ssRawSuwapIn=85034 ssRawSwapOut=126836 ssI0RauwReceived=244694008zenplug@bino:™>
zenplug@hino:™>

zenplug@bino:™>

zenplug@hino:™> zenplugin.py —list-plugins

platform ’linux2’ supports the following plugins:

process

mem

disk

cpu

io

zenplug@bino:™> []

?| & shell |

Figure 9: Output from Zenoss plugin commands

3.3.1 Using Zenoss plugins to monitor processes

As can be seen from the screenshot above in Figure 9, there is a process Zenoss plugin
that takes a process name as argument. It delivers whether at least one instance of
the process is running but does not obviously distinguish between process name and
arguments, nor does it help as to the number of instances that are running. There is
no concept of the Zenoss plugins running automatic recovery actions or sending alerts
(which is reasonable — they are designed as a tool to work with a Zenoss manager
which can interpret output from the Zenoss plugins and can deliver recovery and
alerting actions).

4 Monitoring processes with Zenoss's zenprocess
daemon

Zenoss has several techniques for managing processes. Fundamentally, there are
three separate elements:

e Process configuration

e Process discovery through the zenmodeler daemon (every 12 hours by default)

21 © Skills 1st Ltd 24 Apr 2009

e Process status checking through the zenprocess daemon (every 3 minutes by
default)

These default polling intervals are controlled from the left-hand Collectors -> localhost

menu.

4.1 Process configuration

The left-hand menu of the main Zenoss GUI provides a Processes menu for configuring
processes to monitor. None are configured out-of-the-box.

Sequence Administration 2Properties Modifications.

v | Processes S’

Select Al None

o] Manitor
Clacees Name Regex

Dient ™ honeyd honeyd False
vents

™ mahiong mahjong True
I named named True

™ snmpd raddie Asnmpd -C - vacm_conf -p Amp/snmpd. pid * True

[ommeieons e —
ducts

Browse By

Systems
Figure 10: Zenoss Processes menu

Various parameters are configurable for each process to be monitored:

Main Views Administration zProperties Meodifications

BELLLEN] State at time: 2009/04/17 11:07:11
Event € ole Name Isnmpd_raddle

Devi

i Regex I"snmpd -C -l vacm_conf -p ftmp/snmpd.pid *
A Iﬂap lgnore Parameters Im
Classes Description
Events Check for raddle snmp processes - there should be 6 (11, r2, 13, 51, 52, a1)

Devices

Save |

Figure 11: Process details that can be edited

The Name field is simply a descriptive name — typically reflecting the process name.
The Regex field controls what process is monitored. A trivial example, such as in
Figure 10 above, shows a regex of named which will match any process name that

22 © Skills 1st Ltd 24 Apr 2009

includes named and parameters to the process name are ignored. The example in
Figure 11 is more specific — the process name must start with snmpd (the » specifies
start-of-line) and the parameters to the process are also considered when deciding on
whether to monitor the process. The regex must match exactly upto the

/tmp [snmpd.pid and can then have any combination of characters following (the *).

Note that with Zenoss 2.3.3 and earlier versions, the Ignore Parameters flag
sometimes appears to be ignored! For example, in Figure 10 above where Ignore
Parameters is set to True for the named process, processes are automatically detected
that have the string “named” in the parameters of other commands.

Processes also have zProperties which can further modify behaviour.

ZenCss core

iProcesses /snmpd_raddle

Main Views - Status Edit Administration

Dashboard zProperties Configuration
Event Console Property Value Type Path

Device List zAlentOnRestant

True x| an
Network Map S—— m o
Classes zFailS everity Critcal x| int

Events ZMonitor True | boolean

Devices Save
Delete Local Property

p
P zAlenOnRestart ~| Delete |

Figure 12: zProperties options for a Process

cessClasses/snmpd_raddle

cessClasses/snmpd_raddle

cessClasses/snmpd_raddle

a v B a
Iy

cessClasses/snmpd_raddle

The zProperties are:

e zAlertOnRestart - generate an event when the process is detected again

e zCountProcs - it is unclear what effect this has
e zFailSeverity - the severity of the event generated when the process fails
e zMonitor - whether to monitor for this process on all devices

Some of these zProperties are rather problematical. The two associated with events
work well. If zAlertOnRestart is set to True, then recovery of a process will result in a
“good news” event with a Cleared severity, which will automatically clear a preceding
“bad news” event for that process from the same device — this is standard Zenoss event
correlation.

The zCountProcs zProperty does not appear to have any effect. There is no
opportunity to specify what count is the “correct” number or range. Even if
zCountProcs is set to False, data appears to be collected for the number of instances of
a process — this can be seen in the performance graphs for a process for a device.

23 © Skills 1st Ltd 24 Apr 2009

The zMonitor zProperty should specify globally whether to monitor for a process on all
discovered devices. For some processes, this would be better set to False and the
process monitor can then be activated at the specific device level; however, doing so
seems to result in very variable monitoring results (with Zenoss 2.3.3). Process
monitoring seems much more reliable with zMonitor set to True.

Although with Zenoss 2.3.3, process configuration appears more stable than with
previous versions, there was sometimes a need to restart the zenprocess daemon after
process configuration takes place.

The Status tab of a specific process shows how many instances of a process are
running, where they are running, and their status:

ZenOSss’ Core

IProcesses isnmpd_raddle

Status Administration zProperties Modifications.

Main Views
Dashboard Process Class

Event Consocle Name snmpd_raddle Monitor

Device List Regex Asnmpd -C - vacm_conf -p Amp/snmpd.pid.* Ignere Parameters
Network Map Fail Severity 5

Description Check for raddle snmp processes - there should be 6 (r1, 12, 13, 51, 52, al)

Classes

Process Instances

Device Name Monitor
aroup-100-linux class example org snmpd -C | vacm _conf-p ftmp/snmpd.pid.=2 4 f Amp/snmpd.=2 log -A -c fusrilocalir 1ch-network/s2 conf True
aroup100-inux class example org snmpd -C | vacm_conf-p Amp/sr pid a1 Lt tmpisnmpd a1 1og -A - /usniloc: h-network/al.conf True
Products roup-100-inusx.class.example ort snmpd -C 4 vacm_conf -p imp/snmpd.pid.r1 -Lf imp/snmpd.r1 log -A ¢ Jusriloc nch-network/rl.conf True

roup-100-linux class example or snmpd -C 4 vacm_conf-p Amp/snmpd pid.r3 -Lf #mipisi r3 log -A -c Jusr/loc; h-network/r3 conf True
Browse By roup-100-inux.class example or snmpd -C | vacm_conf -p imp/snmpd.pid.s1 Lf Amp/snmpd.s1.log -A -c Jusn/ocaliraddle/branch-network/s1 conf True
Systems aroup-100-inusx.cla mple.org snmpd -C - vacm_conf-p Amp/sr pid.r2 -Lf Amp/snmpd. 12 1o -A -c fusri 1ch-network/r2.conf True

Groups

Figure 13: Status of the snmpd_raddle Process

4.2 Process discovery

From a device perspective, the os tab allows configuration as to which processes
should be monitored and shows their current status. The table drop-down menu
allows processes to be added, deleted, locked and monitoring enabled or disabled. This
should be used if a process has been configured but with zMonitor=False.

Once processes themselves have been configured as described in the previous
subsection, then whenever a device is modelled, a check will be made for all
processes whose zMonitor zProperty is set to True (either globally or for a specific
device). An entry will automatically be added to the Process table under the device's
os tab for processes that are discovered. By default, zenmodeler runs every 12 hours
but any device can be remodelled from the drop-down table menu -> Manage -> Model
Device .

The corollary is also true; if a device remodel takes place and a configured process is
not running then it is automatically removed from the process section of the os tab
and monitoring for that process for that device stops, at least until the next remodel.

24 © Skills 1st Ltd 24 Apr 2009

This can be very inconvenient if an important process happens to be down on the
periodic remodel. One way to prevent this hiatus is to select the process for the device
and use the table drop-down menu to Lock from Deletion . Unfortunately, this
sometimes seems to produce adverse effects which result in changes of the process
status not being monitored.

Device/IP Search

ZenQssS Core

IDevices /Server /Linux /group-100-linux.class.example.org

Hardware Software Events

Main Views
e
Event nsole Select All None
Device List Bame P Address Network MAC o A M Lock
Network Map [~ etho 10191100316 10191.00 00:0C29.FE:75.55 @ @ @
p— I e 127.001/8 @ @ @

[sito @ @ @
Events

v | 0SProcesses Monitored & (D

Services SelectAll None
Pro I~ honeyd Jhonevd True Error @ @ 2

'_ snmpd -C -lvacm_conf -p #mp/snmpd pid.a1 -Lf tm J/snmpd raddle True Critical 0 0
B [~ snmpd -C dvacm_conf-p Ampisnmpd pid.rl -Lf im Jsnmpd_raddle True Critical @ @
Systems |~ snmpd -C Jdvacm conf-p #mpisnmpd pid 2 -Lf Am fsnmpd _raddle True Critical @ @
Groups [snmpd-Cvacm conf-p Ampisnmpd.pid.r3 -LfAm Jsnmpd raddle True Critical @ @
Locations [~ snmpd-C 4 vacm conf -p Amp/snmod.pid s1-Lf Am Jsnmpd raddle True Critical @ @
Networks [~ sampd -C | vacm conf -p Amp/snmpd pid s2 -Lf Am Jsnmpd_raddle True Critical @ @
Reports 10f7 honeyd - show all Page Size 40 ok
Add Device Name Proto Bot s Description Status M Lock
Mibs 10f0 e show all Page Size 40 o
Collectors

. Fiesystems (U |
Figure 14: Device os tab showing processes with status

Fundamentally, the zenmodeler daemon will use the discovery protocol(s) configured
for a device, to discover processes. If the device supports SNMP, then it is usually the
Host Resources MIB hrSWRunTable that will provide process information. Modelling
collectors for a device are specified from the table drop-down More -> Collector Plugins
menu. The zenoss.snmp. HRSWRunMap is the collector that gather process
information from the Host Resources MIB.

25 © Skills 1st Ltd 24 Apr 2009

Zen OSS Core

[Devices /Server iLinux /group-100-linux.class.example.org

- q Status 0s Hardware Software Events Perf Edit
Main Views

Dashboard Sortable Selection

Event Console Name: zCollectorPlugins

Device List Path: /Server/Linux
Network Map

Classes zenoss.snmp.NewDeviceMap X
Events zenoss.snmp.DeviceMap #
zenoss.snmp.lnterfaceMap

zenoss.snmp.RouteMap

Services .
Processes zenoss.snmp.lpServiceMap X
Bradicts zenoss.snmp.HRFileSystemMap x

zenoss.snmp.HRSWRunMap b
Browse By zenoss.snmp.CpuMap 4

Systems

Groups

Locations

Figure 15: Modelling collector plugins for a device which supports SNMP

To better understand what the modelling process does, try running zenmodeler
standalone, with full debugging turned on:

zenmodeler run -v 10 -d group-100-linux.class.example.org
You should be able to see the process table entries being returned.

For a device that does not support SNMP, process modelling can still take place using
the zenoss.cmd.linux.process modelling collector. Note that these modelling collectors
do not require the Zenoss plugins to be installed on a remote system — simple
operating system commands are run, over ssh, on the remote system (so zProperties
need to be configured for a device to permit ssh access)..

26 © Skills 1st Ltd 24 Apr 2009

Main Views

Dashboard
Event Console

Device List
Network Map

Classes
Events
Devices
Services
Processes
Products

Browse By

Systems

Figure 16: Modelling collector plugins for a non-SNMP device

Status

05

Hardware

/Devices /Server /Cmd /deodar.skills-1st.co.uk

Software

Events

Perf

Sortable Selection

Name: zCollectorPlugins
Path: /Server/Cmd/devices/deodar.skills-1st.co.uk

zenoss.cmd uname

zenoss.cmd.df

zenoss.cmd linux ifconfig

zenoss.cmd. linux.memory

zenoss.cmd . linux process

zenoss.cmd. linux. netstat_an

zenoss.cmd. linux.netstat_rn

Again, to better understand what is happening, run zenmodeler with full debugging (
-v 10) from a command line.

4.3 Process status checking

Once processes are discovered for a device (modelled), the zenprocess daemon checks
the status of those processes, by default every 3 minutes. The process table in the
device's os tab should show a green icon for a healthy process and a red icon for a
missing process.

Events of the configured severity will be generated when the process is missing and
the corresponding cleared event will be generated if zAlertOnRestart is set to True ,
when the process is detected.

Note that with Zenoss versions prior to 2.3.3 there was a bug described in TRAC ticket
3270 whereby process status was always reported as up, even when down, but this
apparently was only a display problem with the status icon and events were actually

still generated accurately.

If the process Name field is selected in the os tab, then performance data for that
process should be displayed. (Note that the Name and Class columns got swapped
around between Zenoss 2.2 and 2.3.).

There is a single performance data collector template, OSProcess, that defines what
data to collect. It can be examined by drilling into the performance graphs for a
process on a device, and then selecting the Templates tab.

27

© Skills 1st Ltd

24 Apr 2009

zen233 - VMware Workstation E] E]
File Edit View VM Team Tabs Help

EEI\E Edit View History Bookmarks Tools Help

@ O @ oy {«3 [C) http:/izen233.class.example.crg:8080/zport/dmd/Devices/rrdTemplates/OSProcess ‘v] L] [Guug\a]

(Zenoss: OSProcess Zenoss: named (Zenoss: top (© Zenoss: About Zenoss: zen233.class.exampl... -
- N/ PO

~ IDevices fem

jane Preferences Logout Help

Zenoss servertime: 13.0558

— Performance Template

State at time: 2009/04/17 13:05:33

f| Main Views

Name OSProcess
Target Class [Products zenmodel OsProcess
Desaiption

Monitors for OSProcess object

Save |

- Data Sources

Name Source Source Type Enabled

™ count SNMP True

I cou SNMP True

I mem SNMP True

Name Type Data Points Severity Enabled

il Management

Add Device
_Name Graph Points Units Height Width
1 0 ™ cPU Utilization cpu percentage 100 500
ent Manager
anag h T aesnions mem bytes 100 s00
5 ot et count processes 100 500 s
I N N e o & jane@zen233:~ - Shell - 3
©AEg » B =@ a0
e = = E @ Zenoss: OSProcess - = =

To release cursor, press Ctrl-Shift-Alt

Figure 17: OSProcess template for collecting process performance data

The template defines three data sources for:
e count (regardless of whether the zCountProcs zProperty is True or False)
e cpu
e mem

Each of these data sources apparently are of type SNMP but no OID source is given.
Strangely, these graphs are populated with data even so; however, if the device has no
SNMP access then data is not collected (even though the process modelling collector
can detect the process).

If logging is increased for the zenprocess daemon, it is possible to see that it is actually
zenprocess that collects this performance data, not the usual zenperfsnmp daemon.
Logging can be increased for any daemon, from the Zenoss GUI, by selecting the left-
hand Settings menu, choosing the Daemons tab and clicking the edit config link.
Simply add a line with:

logseverity 10

and restart the daemon from the Daemons tab page.

28 © Skills 1st Ltd 24 Apr 2009

ZenOsSs Core

IAbout

Seﬂihgs Commands Users ZenPacks Menus Portlets Daemons Versions Backups

L ETL RN

Dashboard zenprocess Configuration File

Event Console

#PARAMETER VALUE
Device List moni tor localhost
Network Map logseverity 10

Classes
Events
Devices

Services

Figure 18: Increasing logging for Zenoss daemons

In summary, Zenoss process monitoring can discover processes on devices and
subsequently monitor those processes. With regard to the process management
requirements defined at the start of this document, zenprocess monitoring satisfies 1,
3,4,5,6,7 and 8 to some extent; that is, monitoring for one or more occurrences of a
process, based on exact or partial process names and process arguments; by
thresholding the process count (which is automatically gathered by zenprocess) then
alerts on maximum / minimum numbers of instances of a process can be raised. The
zenprocess mechanism not only generates events automatically but can also generate
clearing events. Although zenprocess itself cannot take automatic remedial action,
the Zenoss event processing subsystem can.

5 Integrating process monitoring with other Zenoss
capabilities
So far, a number of different process monitoring techniques have been discussed:
e SNMP using various combinations of MIBs and TRAPs
e ssh to run either Operating System commands or remote scripts
e Nagios plugins
e Zenoss plugins
e Zenoss zenprocess monitoring

The first three techniques don't mandate a Zenoss manager. Strictly the Zenoss
plugins could run standalone and deliver output to a different manager; however all
these methods integrate well with Zenoss.

5.1 SNMP MIBs, TRAPs and Zenoss

Zenoss has comprehensive facilities to receive and interpret SNMP TRAPs and
NOTIFICATIONs (NOTIFICATIONS are effectively SNMP V2 TRAPs and are
handled in a similar way by Zenoss; in the ensuing discussion TRAP will be used to

29 © Skills 1st Ltd 24 Apr 2009

embrace both). Some TRAPs are configured when Zenoss is installed (such as warm
start, cold start, authentication, link up and link down); any TRAP can be configured
through the Zenoss GUI, based on the enterprise OID and the specific TRAP number.
All the varbinds on the TRAP are available as user-defined fields on the Details tab of
a detailed event. By creating event mappings, events can be further distinguished
using regular expressions to parse the event's summary field. Python rules can be
used in mappings to test information from the TRAP against other criteria; for
example different actions could be taken based on which device sent the TRAP,
whether the device is a member of a particular Location or Group and on the
Production status of the device.

The TRAP varbinds can also be analysed. Depending on whether criteria are met, an
event mapping transform can be run — this is typically one or more Python
statements that can modify many of the characteristics of both the event and / or the
device that generated the event. A simple example would be to change the severity of
the event for devices in a particular Group.

For a much more comprehensive discussion, see my Zenoss Event Management paper
available at
http://www.zenoss.com/Members/jcurry/zenoss event management paper.pdf/view .

The combination in the UCD-SNMP-MIB of process monitoring, the procfix parameter
to customise a recovery action, and the ability of the DisMan Event MIB to trigger a
recovery action, can interwork with a Zenoss SNMP manager to activate the recovery.

Take the scenario where a process, named, has failed and the DisMan Event MIB
generates an enterprise specific TRAP to Zenoss, including varbind parameters from
the UCD-SNMP-MIB process table. The snmpd.conf configuration file can be seen in
Figure 1.

named has a procfix line which specifies to run /etc/init.d /named start but this only
happens when the matching instance of prErrFix is set to 1. The monitor line
generates an event (strictly an SNMP V2 NOTIFICATION) called ProcessEvent,which
is defined in the same snmpd.conf (if you don't specify your own event then a default
event from the DisMan Event MIB will be sent). The monitor line passes all the
parameters for the relevant instance of the UCD-SNMP-MIB process table. The
monitor is triggered by the relevant prErrorFlag != 0.

e monitor -u _internal -r 10 -D -S -e ProcessEvent -o prIndex -

o prNames -o prMin -o prMax -o prCount -o prErrorFlag -o

prErrMessage -o prErrFix -o prErrFixCmd "Process table"
prErrorFlag != 0

e notificationEvent ProcessEvent .1.3.6.1.4.1.1234.123

As documented earlier, the net-snmp agent does not seem able to reliably generate
both a notification and a set event to automatically run a procfix script; hence a
Zenoss manager could be used to perform the SNMP SET on the correct prErrFix MIB

30 © Skills 1st Ltd 24 Apr 2009

http://www.zenoss.com/Members/jcurry/zenoss_event_management_paper.pdf/view

variable. This is probably better practice than having the SNMP agent automatically
fix the problem as there will be an audit trail if it is fixed in Zenoss.

5.1.1 Configuring event mapping for SNMP TRAPs

An event mapping should be created for the event generated by the DisMan Event
MIB - .1.3.6.1.4.1.1234.123. Start by creating a new event Class, whose
eventClassKey is simply the event OID. In the example below, a new event class,
Skills is created with an event subclass of net_snmp_proc.

“Zenoss! S s A23- Mozilla Firefox =

File Edit View History Bookmarks Tools Help

@ m @ {’;\- [é http:/izen233.class.example.org:8080/zport/dmd/Events/Skills/net_snmp_proc/instances/1.3.6.1.41.1234.123/evel |'] lG{mgIe

C Zenoss: 1361411234123 CZenoss: 1.3.6.141.1234.123 C Zenoss: bino skills-1st.co.uk C Zenoss: Mibs Zenoss: net_snmp_proc_start

| ZenNn(0ss Core

A IEvents /Skills /net_snmp_proc /1.3.6.1.4.1.1234.123 Zenoss server time: 1

Logout

Main Views v Status Edit = Sequence zProperties Events Modifications

Events n 0 7_ [0 R 7 Total Event Count
Network Map EventClassinst

Classes Event Class Key 1361411234123
Seguence]
Rule

Regex
Example

Transform

for attr in diriewvt):
if attr.startswith('1.3.6.1.4.1.2021.2.1.100'):
evt.index=attr.replace('1.3.6.1.4.1.2021.2.1.100.", ")
Systems evt.process_name=getattr(evt,'1.3.6.1.4.1.2021.2.1.2. ' +evt.index)
evt.errorFlag=gstattr(eve,'1.3.6.1.4.1.2021.2.1,100. +evt.index)

Browse By

roups =vt.errFixcmdsgetater(sve,'1.3.6.1.4.1.2021.2.1.103. +eve.index)

Locations if ewt.errorFlag==1:

Networks &Vt.Summary=svt.process_name + ' process iz unhealthy!
evt.oeverity=s

Reports if evt.errorFlag==o:

&vt.summary=svt.procsss_name + ' process iz healthy!

evt.oeverity=o

Management
il Add Device Explanation
Mi Checks prErrorFlag for value 1= bad news
Figure 19: Event mapping 1.3.6.1.4.1.1234.123 for event class /Skills/net_snmp_proc

Events simply match on the eventClassKey of 1.3.6.1.4.1.1234.123 - there is no Rule or
Regex matching.

An event mapping transform is applied in order to generate a more useful event
summary.

for attr in dir(evt):
if attr.startswith('1.3.6.1.4.1.2021.2.1.100"):
evt.index=attr.replace('1.3.6.1.4.1.2021.2.1.100."',"'")
evt.process_name=getattr(evt,'1.3.6.1.4.1.2021.2.1.2."'+evt.index)
evt.errorFlag=getattr(evt,'1.3.6.1.4.1.2021.2.1.100."'+evt.index)
evt.errFixCmd=getattr(evt,'1.3.6.1.4.1.2021.2.1.103."'+evt.index)
if evt.errorFlag==1:
evt.summary=evt.process_name + ' process is unhealthy'

evt.severity=5

31 © Skills 1st Ltd 24 Apr 2009

if evt.errorFlag==0:

evt.summary=evt.process_name + '

evt.severity=0

process is healthy'

The transform looks for the user-defined event field that represents the prErrorFlag
varbind (1.3.6.1.4.1.2021.2.1.100). Remember that the UCD-SNMP-MIB has a table
associated with processes — we need to get at the index into that table, which is the
last number of the OID, so the transform gets the index into user-defined event field,
evt.Index, the process name into evt.Process_name and the error flag into evt.errorFlag.
The transform also gets the prErrFixCmd value although it is not actually used.

A test then checks evt.errorFlag. For a “bad news” event, the summary is set to a
useful comment and the severity is set to Critical; for a “good news” event, the severity
is set to Cleared. This means that Zenoss's automatic “good news clears bad news”

logic will apply.

) hitp:/lzen233.class.example.org:8080 - Event: C196E'

Fields Details

Field

Log
Value

136141.2021.21.1.3

3

1.36.141.2021.21.100.3

1

136141.2021.21.101.3

Too few named running (# = 0)

136.141.2021.21.1023

0

136.1.41.2021.21.1033

letcfinit.dinamed start

1.36.141.2021.21.23

named

136141.2021.2133

1

1.36.1.41.2021.2143

1

136141.2021.2153

0

community

public

enFixCmd

letcfinit.dinamed start

errorFlag

1

explanation

Checks prErrorFlag for value 1 = bad news

index

3

process_name

named

Figure 20: Details tab of event detail for SNMP TRAP
1.3.6.1.4.1.1234.123 showing TRAP varbinds

The resulting Zenoss event appears as shown in the next Figure.

32

© Skills 1st Ltd

24 Apr 2009

Main Views

Dashboard Last updated 2009-04-20 10:39:19 View Event History

Event Console
Device List Select: All None Acknowledged Unacknowledged 15015
Network Map

Classes

[Peri/Filesystem threshold of Free Space 90 Percent exceeded. current value 2009/04/09 14.29.14.000 2009/04/20 10.:40:31.000 19794

Events
6957528.00

|
u
e mdiFail isis a te: :47: :
testl ICmdiFail Th test 2008/04/01 12:47:58 000 200%04/20 10:4027 000 14846
™
-

[Perintertace Command timed out on device bino skills 15t co Uk 2008104109 142314 000 200904720 1037 42 000 26356 =
Justllocal/bin/zenplugin py intf vmnets O
l collector ‘uptime’ doesn't exist on platform ‘inus2 2009/04/09 14.29.14.000 2009/0420 10,37 28,000 2024 =

Products

Browse By

Figure 21: "Bad news” event from net-snmp agent for named process

As can be seen from Figure 20, the SNMP TRAP varbinds include the procfix
prErrFixCmd parameter /etc/init.d /named start as OID .1.3.6.1.4.1.2021.2.1.103.3
and the status of the trigger, OID .1.3.6.1.4.1.2021.2.1.102.3, the prErrFix flag.

5.1.2 Responding to SNMP TRAPs with Zenoss

To automate recovery from process failure using Zenoss, the relevant prErrFix flag
needs to be set to 1 using SNMP. Bear in mind that this will use an SNMP SET
command so SNMP authentication must permit SETs as well as GETs.

One way to configure Zenoss responses is to create Event Commands which are run by
the zenactions daemon; however, our response needs access to the TRAP varbinds to
determine the prTable table index and to set the appropriate prErrFix OID variable,
and unfortunately, Zenoss Event Commands do not have access to user-defined event
fields (ie. the varbinds).

For this reason, the SNMP SET command will be run by extending the event mapping
transform given in Figure 19. Any Python program can call Operating System
commands (and that's all an event transform is!). To use such commands the os
Python module needs to be imported, the command text needs to be setup and then
the o0s.system method is called.

33 © Skills 1st Ltd 24 Apr 2009

zen233 - VMware Workstation g E]
File Edt View VM Team Tabs Help
& Home 3 [zenz33 xjﬁ sk123_raddle_100 % |ff)sk123_radde_server %

e Edit View History Bookmarks Tools Help

] @ (\ @ , ?-;& [o http:/fizen233.class.example.org:8080/zport/dmd/Events/Skills/net_snmp_proc/instances/1.3.6.1.4.1.1234.123/evel H o] [Gccg\e

1 ©Zenoss 1361411234123 CZenoss: 1.36.1.41.1234.123 O http:#izen233.cl. kcollectDevice | O Zenoss: Mibs (G Zenoss: net_snmp_proc_start

| ZenCSs Cor e S—

[Events /Skills /net, _snmp_proc /1.3.6.1.4. 1.1234.123 Zenoss server time: 1523:37
Status i Sequence 2zProperties Events Modifications

Main Views

Total Event Count

[l Network Map
| ; EventClassinst
| classes Event Class Key 1.3.61411234.123
i Sequence 0
f| Events o
i Rule
o Regex
5 Example
[| Processes Transform
[Products
Browse By SAmiE
4 tewith('1.3.6.1.4.1.2021.2.1.100'):
ystems
roups
Locations
{ B
| Reports
i snmpVer=dev.zSnmpVer .replace('v' ' '}
f [T—— shellemd='/usr/bin/snmpset -v '+ snmpver + ' -a '+ dev.zSnmpAuthTyps + ' -a ' + dev. + -1 v -u ' + dev.zSnmpSscurityName + ' ' + dev.manags
5 o8 .oystem(shellemd)
il Add Device if evt.srrorFlag==o:
evt.mmmary=evt.process name + ' process is healthy'
evt.zeverity=o
ctors
Settings Explanation
Event Manager Checks prErrorFlag for value 1= bad news @
) G
Done |
63 & al /\ y: & jane@zen233:~ - Shell @ hitp/izen233.class exar @ htp:/fzen233.class.exam F e E.?ﬁl
g& *_7 ‘:Z‘l @ Zenoss: 1.3.6.1.4.1.127 @ http:/izen233 class exar et
To release cursor, press Ctrl-Shift-Alt g

Figure 22: Event mapping transform including action to SET the correct prErrFix variable to trlgger
process restart

Note that the shell command should all be on one line.
import os
snmpVer=dev.zSnmpVer.replace('v','")

shellcmd="'/usr/bin/snmpset -v '+ gsnmpVer + ' -a '+ dev.zSnmpAuthType + ' -
A ' + dev.zSnmpAuthPassword + ' -1 authNoPriv -u ' +
dev.zSnmpSecurityName + ' ' + dev.managelp + '
1.3.6.1.4.1.2021.2.1.102."'+evt.index+' 1 1

os.system(shellcmd)

The shell command simply invokes the snmpset command. The example above is for a
class of devices that support SNMP V3 so the authentication type, the authentication
password and the SNMP V3 user name must be supplied as parameters to snmpset.
Rather than hard-code these, they can be accessed from the zProperties of the device
that raised the initial TRAP, along with the IP address of that device, and the version
of SNMP to use. The only”gotcha” is that the zZSnmpVer zProperty responds with v3
(in this case) — the snmpset command requires a -v parameter followed by a space and
a version (1, 2c, 3) so an extra step is shown which strips the leading v off the
zSnmpVer zProperty.

34 © Skills 1st Ltd 24 Apr 2009

The end of the snmpset command concatenates the OID for the prErrFix variable with
the correct index from the user-defined evt.index value and sets the value, of type I
(INTEGER) to the value I — in other words, run the configured prErrFixCmd,
/etc/init.d /named start .

Do ensure that Zenoss has been configured correctly with SNMP zProperties for
devices and / or device classes.

zen233 - VMware Workstation [;] E]
File Edit View VM Team Tabs Help I

#Home 5 Eizen233 3 | sk123_raodle_100 X | sk123_raddle_server
T = =

| File Edit View History Bookmarks Tools Help

; @ o @ \Jfﬁ [5 http:/fizen233.class.example.org:8080/zport/dmd/Devices/Server/Cmd/devices/bino.skills-1st.co.uk/zPropertyE dit H [Gocg\e]

1 ©Zenoss: 1361411234123 C Zenoss: 1.36.1.41.1234.123 (O Zenoss: bino.skills-1st.co.uk (O Zenoss: Mibs ‘ (> Zenoss: net_snmp_proc_start -

ZRouteMapCollectonlyLocal |False =] boolean / |

zRouteMapMaxRoutes |500 int i

ZSnmpAuthPassword e string iServeriCmdidevicesibino.skills-15t.co uk

ZSnmpAuthType MD5s x| string iServeriCmdidevicesiino.skills-1st.co uk

public

zSnmpCommunities povule lines i

SnmpCommunity Ipub\ic string i

zSnmpMenitorignore True =] boolean /ServerCmd

zSnmpPort |1 61 int i

ZSnmpPrivPassword string IServeriCmdidevicesiino.skills-1st.co uk

ZSnmpPrivType DES 7| string /ServerCmadidevicesiino.skills-15t.co uk

zSnmpSecuriyName ane2 string IServeriCmdidevicesibino.skills-1st.co uk

2SnmpTimeout |2 5 float i

ZSnmpTries 2 int i

ZSnmpver v 7| string iServeriCmdidevicesiino.skills-1st.co uk

zStatusConnectTimeout 15.0 float i

zSysedgeDiskMaplgnoreNames | string i

zTelnetEnable False | boolean i

ZTelnetEnableRegex lassword string i

zTelnet_oginRegex ogin.$ string 1

zTelnetPasswordRegex |asswurd string i

ZTeinetPromptTimeout [ro0 fioat i

34

TelnetSuccessRegexList oe.$ lines i

zTelnetTermLength True = boolean i

ZWinEventiog False v| boolean i J
| Done =
A@ & ij @I ﬁ ﬁ| & jane@zen233:~ - Shell - @ hitp:/izen233 class exar @ http:/izen233.class.exam ? - 1ﬁ-“§]

= = - = @D @ Zenoss: bino.skills-1s! @ http:/fzen233.class.exar 4171

To release cursor, press Ctrl-Shift-Alt

Figure 23: Zenoss SNMP zProperties for an SNMP V3 device class

In practise, all this explanation takes far longer than the automation does!

5.2 Zenoss and ssh

Each device class and / or specific device can have zProperties configured for ssh
communications. Once accomplished, any underlying Zenoss ssh commands will
simply use those parameters.

35 © Skills 1st Ltd 24 Apr 2009

zen233 - VMware Workstation
File Edt View VM Team Tabs Help
) Home 5t @1zen233 3¢ | sk123_raodle_100 3 | sk123_radcle_server %

enoss: bino.skills=1st.co.uk™="Mozilla Firefox =
| File Edit View History Bookmarks Tools Help

[@ m @ 9 z«k [é http:/fzen233.class.example.org:8080/zport/dmd/Devices/Server/Cmd/devices/bino.skills-1st.co.uk/zPropertyEdit H [Gccg\e]

1 ©Zenoss 1361411234123 O Zenoss: Mibs

‘ O Zenoss: 1.3.6.14.1.1234123

I (© Zenoss: bino.skills-1st.co.uk

‘ 62&:nuss:netﬁsnmp)mc75taﬂ -

D zCommandCommandTimeout [iso float i B
ke zCommandCycleTime lao int i
Il oce==c= zCommandExistanceTest !1:51 F o%s string i
Products zCommandLoginTimeout 10.0 float i
BrowacEy zCommandLoginTries i int i
tems zCommandPassword b string IServeriCmdidevicesiino.skills-1st.co.uk
G zCommandPath Jusriocaibin string iServeriCmdidevicesiino.skills-1st.co uk
I ns zCommandPort jp2 int i
N s zCommandProtocol Issh string i
Reports
[I— zCommandSearchPath lines i
Add Device
vibs zCommandUsemame [zenplug string iServeriCmdidevicesiino.skills-1st.co uk
C rs Device
Settings zDeviceTemplates Z’“;T‘;;T‘"S lines /ServeriCmdidevicesiino.skills-15t.co uk
f| Event Manager -
zFileSystemMaplgnoreNames string i
zZFileSystemMaplgnoreTypes lines i
zHardDiskMaphatch string i
zicon izport/dmd/imglicons/serverpng string IServer
ziiDescription False x| boolean i
zinterfaceMapignoreNames string i
zinterfaceMaplgnoreTypes string i
zipServiceMapMaxP ort 1024 int i
ZKeyPath ~/.sshfid_dsa_bino_et_al string IServeriCmdidevicesibino.skills-1st.co uk J

Done

= “ @ jane@zen233:~ - Shell

=" @j @ Zenoss: bino.skills-1s' @ http:/izen233.class exar

@ hitp:/fzen233 class exar

@ http:/fzen233.class exam

To release cursor, press Ctrl-Shift-Alt

Figure 24: Zenoss ssh zProperties for device class

The crucial parameters are:

e zCommandPassword
e zCommandPath

o zCommandSearchPath

e zCommandUsername

path for remote commands

currently seems to have no effect)

the username already setup for ssh

this is the passphrase if one was defined

path for remote commands (Note that this

e zKeyPath where the ssh private key file is

Note that the screenshot above demonstrates the possibility of using a non-standard
name for the key file, id_dsa_bino_et_al. This file should be in the zenoss user's .ssh
directory.

Note that if non-standard keyfile names are used, Zenoss appears to need the public

key file (id_dsa_bino_et_al.pub) in the .ssh directory, in addition to the private key
file.

36 © Skills 1st Ltd 24 Apr 2009

5.2.1 Using Zenoss to run stand-alone ssh commands

Any command can potentially be run on a remote system using ssh. If a specific
combination of processes is required to define a “healthy” service, then a script may be
the easiest way to accomplish this. As a simple example, consider the script below:

) jane@bino:...srishare/snmp/mibs - Shell - Konsole- £

Session Edit View Bookmarks Settings Help

#tt binsbash -
i

Author: Jane Curry

t Creation: fApril 20th 2009

Modified:

Description: Check for 2 specific umuare-umx processes

i3 associated with ruming raddle environment

i Output and exit code follows Nagios plugin API

[t Nagios return codes

STATE_OK=0
STATE_WARNING=1
STATE_CRITICAL=2
STATE_UNKNOWN=3

PROC_NUM_STATUS="0K’
SERVER_STATUS="0K"
[SERVER_NUM=1
LINUX_STATUS='0K’

L INUX_HUM=1
EXIT_PROC=SSTATE_OK

t Want 2 Raddle umware processes but a third uvmuware will also be ruming

PROC_NUM="ps -ef | grep vnware-umx | grep -v grep | wc -1
((PROC_NUM-=1))

if [SPROC_NUM -1t 2 1
then
PROC_NUM_STATUS="UWARNING*
EXIT_PROC=SSTATE_WARNING
if [“ps —-ef | grep unware-umx | grep -u grep | grep sk123 raddle_server.umx | wc -17 -1t 1 1
then
SERVER_STATUS="WARNING*
SERVER_NUM=0

fi
if [“ps —ef | grep unware-umx | grep —u grep | grep sk123_raddle_100.umx | wec -1° -1t 1 1
then

LINUX_STATUS="WARNING”

LINUX_NUM=0

fi
if [SSERVER_STATUS = 'WARNING' 1 && [SLINUX_STATUS = 'WARNING' 1
then
PROC_NUM_STATUS="CRITICAL"
echo "RADDLE PROCS CRITICAL: All processes DOWN! | procs=$PROC_NUM serverNum=5SERVER_NUM 1inuwdium=SLINUX_NUN"
EXIT_PROC=$STATE_CRITICAL
else
echo "RADDLE PROCS WARNING: Some processes DOWN. Raddle server status = SSERUER_STATUS: Raddle Linux status = SLINUX_STATUS | procs=SPROC
| NUM serverNun=SSERVER_NUM 1inuxNum=SLINUX_NUM"
fi
else
cho "RADDLE PROCS OK: All prEcesses OK. | procs=SPROC_NUM serverMum=3SERVER_NUM LinuxMum=SLINUX_NUM"
fi

exit SEXIT_PROC a
"raddle_proc_check_datapoints.sh"” 55L, 1538C 51,32 Top -

[==] | =l Shell

Figure 25: Shellscript to check for specific processes

The script is checking for two VMware processes, one for a machine called server, the
other for a machine called group-100-linux; these two VMs together make up the
raddle application. The script will return numeric values for the number of relevant
VMware processes, the number of “server” processes and the number of “linux”
processes. The exit code will be OK if both are running, WARNING if only 1 is
running and CRITICAL if both are down. No attempt is made in this script to rectify
any problem, but potentially, recovery actions could also be included.

This script uses elements of the Nagios API to return a single line of output with:

e The status of the script, followed by colon, followed by textual information

37 © Skills 1st Ltd 24 Apr 2009

e A vertical bar

e Performance data in the format label=value . Multiple entries are space-
separated

The script also returns an exit status as defined by Nagios — 0 = OK, 1 = WARNING, 2
= CRITICAL, 3 = UNKNOWN.

To make use of a command script, the easiest method is to setup a Zenoss performance
data collector template. Note that it is good practice to create templates at a device
class level — otherwise, if it is created for a specific device, there is no simple way to
later apply that template to other devices. Data is actually collected by Zenoss's

zencommand daemon.

A performance data collection template has a number of elements:
e Data Sources how to collect data

e Thresholds ranges for “healthy” data

e Graph Definitions what to plot and how to plot it

The Data Source specifies what command to run, where to run it, and how to run it.

Zenoss: procs - Mozilla Firefox =

File Edit View History Bookmarks Tools Help

1QOY

(Zenoss: raddle

,ﬁ lé http:/izen233 class.example.org:8080/zport/dmd/Devices/Server/Cmd/rrdTemplates/raddle_proc_check/datasou "l 0] [Gongle

C Zenoss: bino.skills-1st.co.uk (Zenoss: bino.skills-1st.co.uk C Zenoss: localhost C Zenoss: procs l

Core

jane Preferences Logout He

iDevices /Server /Cmd /Templates /raddle_proc_check /procs Zenoss server time: 12:09:

Data Source

State at time: 2009/04/21 12:07:36

Main Views

il Device List Source Type COMMAND
Map Enabled True =]
Hl Classes Use SS5H True |
| rEy— Component fraddie
Event Class ISkillsiraddle el
Event Key |
Severity Wi El
Products Cycle Time 60

Browse By

Locations
Networks
Save

i Test Against Device —

il Management I

| Add Device ~ | DataPoints
Select All None
Name —
- 7'2‘““‘““"" GAUGE
™ procs e

Event Manager

Name

Parser

Command Template

procs

Ao ¥|

homeizenplug/raddle_proc_check_datapoints.sh

I serverium

GAUGE

Figure 26: Defining the procs Data Source in the raddle_proc_check performance data collector template

In the Data Source dialogue:

38

© Skills 1st Ltd 24 Apr 2009

e Source Type should be COMMAND. The drop down will certainly offer SNMP
as another alternative. If other ZenPacks are installed then other types may
also be available.

e To use this data source on remote systems over ssh, ensure the Use SSH box is
True

e The Component field is useful when processing events — for example, it is one of
the fields used to determine whether an event is a duplicate. The component
field does not need to already exist anywhere else — it is simply a text string.
raddle has been used here.

e The Event Class field will default to /Cmd /Fail but could usefully be set to an
existing, locally-defined event class. Here the class is set to /Skills/raddle.

e The Cycle Time is how frequently the zencommand daemon will run the script.

e The Command Template is the script you want to run. If a fully-qualified
pathname is provided then it will be honoured; otherwise, zencommand will
consult the zProperties for a device and will prepend the zCommandPath to the
filename given in the Command Template.

e Don't forget to use the Save button after completing definitions

e Note that the Test button does not appear to work for invoking remote
commands. It returns a “No such file or directory” error. Similarly the
zentestcommand utility returns the same error for remote scripts.

e The easiest way to test the script over ssh is to run the zencommand with full
debug; for example:

zencommand run -v 10 -d bino.skills-lst.co.uk

The bottom part of the Data Source dialogue maps the data that the script collects into
Zenoss DataPoints that can be thresholded and graphed. Remember that the script in
Figure 25 delivered three data values after the vertical bar on the output line — procs,
serverNum and linuxNum. The definitions of the DataPoints must match these
label names exactly.

39 © Skills 1st Ltd 24 Apr 2009

ZehOSS Core

IDevices /Server /ICmd /Templates /raddle_proc_check /procs /procs

— Data Point
Main Views

Dashboard State attime: 2009/04/21 12:32:45
Event Console Ipmcs—

MName

Processes

Device List
= Type | GAUGE 7|
Network Map
RRD Min |
Classes RRD Max |
Events
Create Cmd

Products

SEVE

Fi:gl.t;e 27: Defining the procs DataPoint in the procs Data Source

Typically, DataPoint definitions can be left at defaults having ensured that the name
matches the label that the script delivers.

The Zenoss name for a DataPoint is the concatenation of the Data Source and the
DataPoint names; hence, in the screenshot above, the DataPoint is procs_procs. The
other two DataPoints will be procs_serverNum and procs_linuxNum. For this reason,
it is important not to change the name of the Data Source without due consideration
or DataPoints already used in graphs and thresholds will become undefined.

Once the Data Source and DataPoints are defined, thresholds and graphs can be setup
within the template.

Device/IP Search

jane Preferences

Zenoss servertime: 12:41

Name raddle_proc_check

Target Class |Pmducts.ZenModel Device
Description
Classes Runs raddle_proc_check_datapoints.sh on remote host via ssh
Retums values for procs, and linuxNum
Events
Save |
Data Sources
Products
Name Source Source Type Enabled
Browse By ™ procs Ihomelzenplug/raddle_proc_check_datapoints.sh over SSH COMMAND True
v Thresholds
Select. All None
Name Type Data Points Severity Enabled
eports linuxNum MinMaxThreshold procs_linuxNum Error False
Repi []
rocs MinMaxThreshold procs_procs Critical False
I procs
s ™ serverbum MinMaxThreshold procs_serverNum Warning False
Add Device
Graph Definitions
Sy -Name Graph Points Units Height Width
o [e linuxNumz, serverNumz, procs2, linuxNum, precs, serverNum 100 500
Event Manager

Figure 28: raddle_proc_check performance data collector template

40 © Skills 1st Ltd 24 Apr 2009

As can be seen in the following screenshot, thresholds are chosen based on the defined
DataPoints. Events of a specified class, of a given severity can be generated when the
threshold is exceeded.

File Edit View History Bookmarks Tools Help

@ m @] % [f} http./flzen233.class.example.org:8080/zport/dmd/Devices/Server/Cmd/rrdTemplates/raddle_proc_check

(C Zenoss: raddle ¢ Zenoss: bino.skills-1st.co.uk (Zenoss: localhost

IDevices /Server /ICmd [Templates /raddle_proc_check /linuxNum

(& Zenoss: bino.skills-1st.co.uk

= Min/Max Threshold
Main Views

Dashboard State at time: 2009/04/21 12:44:45

Event Console Name linuxMum

Device List
Network Map BEIEREAL procs_procs
procs_serverMNum
Classes Min Value |1
Events Max Value I‘I
Event Class Ia’SkiIIs.fraddIe j
Severity I Error j
& Escalate Count ID
Products e Im
Browse By Save |

Fi:gure 29: Defining a threshold for the procs_linuxNum DataPoint

As many graphs as are desired can be created. In this example, a single graph with
all three DataPoints will be defined, including the three thresholds.

41 © Skills 1st Ltd 24 Apr 2009

Zen @ SS Core

IDevices /Server /Cmd /Templates /raddle_proc_check /raddle_procs

Main Views Graph Definition Graph Custom Definition Graph Commands

Dashboard v Graph Points
Event Console Select All None
Devic _ MName Type Description
Network Map lg_ I linuxNum? Threshold linuxNum
Classes |1— ™ serverumz Threshold serverMum
Events IZ— |_ procs2 Threshold procs
i |3_ [linuxhum DataPoint procs_linuxMum
VIC l-d_ l_ procs DataPoint procs_procs
Processes |5_ l_ serverNum DataPoint procs_serverMum
Products
Systems s raddle_procs
Groups Hen [100
Locations Width Ism,
Networks Units [
Reports Logarithmic Scale lm
Management fizscalizs lm
Add Device ol 1
Mibs Max Y H
Collectors Has summary Tus 7|
Settings Save |

Figure 30: raddle_procs Graph Definition to plot DataPoints and Thresholds

This performance data collector template was defined for the class of devices

/Server /Cmd. To ensure that the template is applied to the host bino.skills-1st.co.uk,
use the More -> Templates drop-down menu from the device's main page. From there,
select the drop-down and Bind Templates menu. A popup box allows you to select
templates to bind. Note that you should select all templates that you want bound
(use Ctrl key to select multiple options) — just selecting the new template will de-select
any templates already bound.

Bind Performance Templates

Figure 31: Binding multiple performance data collection templates to a device

Once the template is bound to a device or class of devices, data will start to appear
under the Performance tab of a device.

42 © Skills 1st Ltd 24 Apr 2009

) Zenoss: bino.sKills-1st.co.uk - Mozilla Firefox —
File Edit View History Bookmarks Tools Help

@ O @ o @ [ﬁ http:/izen233.class.example.org:8080/zport/dmd/Devices/Server/Cmd/devices/bino.skills-1st.co.uk/viewDevicePe

L]

C Zenoss: deodar skills-1st.co.uk ‘ (Zenoss: bino.skills-1st.co.uk (Zenoss: bino.skills-1st.co.uk | (Zenoss: localhost |

< =

1]

Mon 12:00 Tue 0O0:00 Tue 12:00
2009-04-20 2:58:03 to 2009-04-21 14:58:03 a
H memAvailReal cur:57.79M avg:86.97M max: 301, 79M

MISSING RRD FILE: bino.skills-1st.co.uk mem_memBuffer
MISSING RRD FILE: bino.skills-1st.co.uk mem_memCached

Free Swap

388
2.06
156

Bytes

l.6a
0.5 G

-0.68.0

Mon 12:00 Tue 00: 00 Tue 12:00

2009-04-20 2:558:04 to 2009-04-21 14:58:04
B memAvailSwap cur: 2.516 avg: 2.496 max: 2.54G6

raddle_procs

0.0

Mon 12:00 Tue 0O0:00 Tue 12:00
< 2009-04-20 2:55:04 to 2009-04-21 14:58:04 =
W linuxNum < 1

W linuxNum = 1

Eserverlum = 1

Eserverlum = 1

W procs = 2

W procs = 2

H linuxNum cur: 1.00 avg:911.11m max: 1.00
B procs cur: 2.08 avg: 1.83 max: 2.00
O serverlum cur:1000.00m avg:917.44m max: 1.00

|| Read zen233.class.example.org
Figure 32: Performance graph for raddle_procs template (thresholds disabled)

Note in Figure 32 above that thresholds have been disabled in the raddle_procs
template, hence no threshold values are shown.

With command-driven performance data collectors, there are two opportunities for
generating events:

e Using thresholds on DataPoints as described above
e Using the exit status from the script

If a script returns an exit status as defined by the Nagios plugin API, then events are
automatically generated with a severity corresponding to the exit code:

e Script exit code of OK (0) Zenoss event severity = Clear (0)
e Script exit code of WARNING (1) Zenoss event severity = Warning (3)
e Script exit code of CRITICAL (2) Zenoss event severity = Error (4)

43 © Skills 1st Ltd 24 Apr 2009

Hardware Software Events

:Ej Clear j Suppressed j.-

) Map Select: All None Acknowledged Unacknowledged
Classes nponent | eventClass
Events
]

s
p
P

ISkillsiraddle RADDLE PROCS WARNING: Some processes DOWN Raddle | 2009/0421 11:47:36.000 2009/04721 11:58:27 000
server status = WARNING: Raddle Linux status = OK

[Perf/CPU Command timed out on device bino skills-1st co uk: 0090472 46 000
Jusrllocal/binizenplugin.py cpu 2009/04/21 11:47:36.000

00904/21 11:55:46.000

Figure 33: Event console showing events generated by script Data Source

Note that the eventClass and the component fields of the event have been populated by
the Data Source configuration. The “good news” event automatically clears the “bad
news” events using Zenoss's default event correlation.

If the template thresholds are enabled then extra events are received, with their
configured severities.

ZenQss Core

Main Views v Status os Hardware Software

D | Last updated 2009-04-21 15:31:35. View Event History..
Even e Info ~IRREIEEY Acknowledged ~|FSEsil] m
D List Select All None Ackr ed Unad 1-100f 10
N ap
|
[<EEET
E |
| |
[~ |raddle [Skillsraddle threshold of linuxNum not met current value 0.00 2009/04/21 15:31:31.000 2009/04/21 15:35:24.000
p
[~ |raddle [Skillsraddle threshold of serverNum not met. current value 0.00 2009/04/21 15:35:24.000 2009/04/21 15:35:24.000 1
Browse
[~ |test1 {CmdiFail Thisis atest 2009/04/01 12:47.58.000 2009/04/21 15:35:24.000 15833
ems
ps I] [Per/Filesystem threshold of Free Space 90 Percent exceeded. current value 2009/04/09 14.29:14.000 2009/04/21 15:35:24.000 21759
L 0 6960372.00
Netw |] { collector ‘uptime’ doesn't exist on platform 'linux2' 2009/04/09 14.29:14.000 2009/04/21 15:34.27.000 3238
R

Figure 34: Event console showing events generated by script data source and thresholds

Again, threshold “good news” events automatically clear “bad news”.

44 © Skills 1st Ltd 24 Apr 2009

zen233 - VMware Workstation

File Edt View VM Team Tabs Help

£ Home 5t @1zen233 3¢ |5 sk123_racdle_100 ¥ | sk123_raddle_server %
ZEenoss! BING SRITSTSECOUR = MOZIlla FIPerox

File Edit View History Bookmarks Tools Help

@ @ @ O @ [5 http:/fzen233.class.example.org:8080/zport/dmd/Devices/Server/Cmd/devices/bino.skills-1st.co.uk/viewHistoryEv H [Goagie

(O Zenoss: deodar.skills-1stcouk | O Zenoss: bino.skills-1st.co.uk (© Zenoss: bino.skills-1st.co.uk O Zenoss: About (G Zenoss: Cmd

Events.

EE | <o e @

Select: All None Acknowledged Unackr

RADDLE PROCS OK: All processes OK.

[Skillsiraddle threshold of linuxNum not met: current value 0.00 2009/0421 15:31:31.000 2009/04/21 15:38:52.000

[Skillsiraddle threshold of serverNum not met: current value 0.00 2009/0421 1535 24.000 2009/04/21 15:38:52.000

ttings

I e 3 % jane@zen233:~ - Shell - = .

o S e = 15:56
@ & i @ ‘f% “f_/ B E @ Zenoss: bino.skills-1s! —_—
To release cursor, press Ctrl-Shift-Alt e

Figure 35: Event history showing "good news " and "bad news” events from scripts and thresholds

Threshold values are also shown on the performance graphs.

45 © Skills 1st Ltd 24 Apr 2009

J Zenoss! bino.skills-1st.co.uk - Mozilla Firefox
File Edit View History Bookmarks Tools Help

@ O @ ﬁ [C) http:fizen233.class.example.org:8080/zport/dmd/Devices/Server/Cmd/devices/bino.skills-1st.co.uk/vier

(> Zenoss: deodar.skills-1st.co.uk ‘ C Zenoss: bino skills-1st.co.uk C Zenoss: bino skills-1st.co.uk & Zenoss: About

< g >

a

Mon 12:00 Tue 0@: 00 Tue 12:00
2009-04-20 4:41:18 to 2009-04-21 16:41:18 El
M memAvailReal curige, 32M avg: 84.61M max:301.79M

MISSING RRD FILE: bino.skills-lst.co.uk mem_memBuffer
MISSING RRD FILE: bino.skills-1lst.co.uk mem_memCached

Free Swap

386
2.06
156

Bytes

1.0 6
8.5 G

-0.8.6

Mon 12:00 Tue 00:00 Tue 12:00

2009-04-20 4:41:19 to 2009-04-21 16:41:19
M memAvailSwap cur: 2,506 avg: 2.50G max: 2.54G

raddle_procs

Mon 12:00 Tue 00:00 Tue 12:00

< 2009-04-20 4:41:19 to 2009-04-21 16:41:19 =
M linuxNum = 1
M linuxNum > 1
d serverlum = 1 a
@ serverlum = 1

M procs =< 2

W procs = 2

H linuxMum cur: 1.00 avg:913.90m max: 1.00
M procs cur: 2.008 avg: 1.84 max: 2.00
O serverhum cur: 1.80 avg:927.82m max: 1.00

tirmevar

Figure 36: Performance graphs for the raddle_procs template demonstrating enabled thresholds

To better understand how zencommand runs scripts and to help debugging, modify the
parameters for zencommand to increase debugging in the logfile
S$ZENHOME |/ log | zencommand.log. Set:

logseverity 10

and recycle the zencommand daemon. This configuration can either be modified in the
GUI from Settings -> Daemons and use the edit config link and the Restart button;
alternatively edit $ZENHOME | etc | zencommand.conf directly and then restart
zencommand with zencommand restart (you will need to be the zenoss user).

46 © Skills 1st Ltd 24 Apr 2009

Session Edit View Bookmarks Settings Help

Z2009-04-21 15:57:22 DEBUG zen.zencommand: rrd save result: Z221775944.0 =
Z2009-04-21 15:57:22 INFO zen.zencommand: —--———-———--—-— - schedule has 15 commands

Z2009-04-21 15:57:22 DEBUG zen.zencommand: Mext command in 10.34830Z seconds

Z009-04-21 15:57:22 DEBUG zen.SshClient: command Ahomeszenplug/raddle_proc_check_datapolnts.sh data: 'RADDLE PROCS OK: A
11 processes OK. | procs=Z serverbum=1 linuxMum=1%n'

Z009-04-71 15:57:2Z DEBUG zen.zencommand: Process raddle_proc_check_datapoints.sh stopped (0}, 2.517116 elapsed
Z009-04-21 15:57:22 DEBUG zen.zencommand: The result of "shomeszenplugsraddle_proc_check_datapoints.sh” was "EADDLE PROC
S OK: ALl processes OK. | procs=Z serverMum=1 linuxMum=1

2009-04-21 15:57:22 DEBUG zen.zencommand: Queueing event §{'manager': 'localhost', 'eventKey': 'procs', ‘'device': 'bino.s
lkills-1st.co.uk', 'eventClass': '/Skills/raddle', 'summary': 'RADDLE FROCS OK: All processes OK.', 'component': '‘raddle’
, 'agent': 'zencommand', 'severity': 0}

2009-04-21 15:57:22 DEBUG zen.zencommand: storing procs = 2.0 in: Devices/bino.skills-1st.co.uk/procs_procs

2009-04-21 15:57:22 DEBUG zen.RROUtil: Ausr/local/zenoss/zenoss/perf/Devices/bino.skills-1st.co.uk/procs_procs.rrd: 2.0
2009-04-21 15:57:22 DEBUG zen.zencommand: rrd save result: 2.0

2009-04-21 15:57:22 DEBUG zen.thresholds: Checking wvalue 2.0 on Devices/bino.skills-1st.co.uk/procs_procs

Z2009-04-21 15:57:22 DEBUG zen.MinMaxCheck: Checklng procs_procs 2.0 against min 2 and max 2

Z2009-04-21 15:57:22 DEBUG zen.zencommand: storing serwverMum = 1.0 in: Dewvices/bilno.skills-1st.co.uk/procs_serverbum
2009-04-21 15:57:22 DEBUG zen.RRDUtil: fusr/local/zenoss/zenoss/perf/Devices/bino.skills-1st.co.uk/procs_serverum.rrd:
1.0

Z2009-04-21 15:57:22 DEBUG zen.zencommand: rrd save result: 1.0

B009-04-21 15:57:22 DEBUG zen.thresholds: Checking walue 1.0 on Devicessbino.skills-ist.co.uk/procs_serverNum
Z009-04-21 15:57:22 DEBUG zen.MinMaxCheck: Checking procs_serwverbum 1.0 against min 1 and max 1

Z009-04-21 15:57:22 DEBUG zen.zencommand: storing linuxMNum = 1.0 in: Devicessbino.skills-lst.co.uk/procs_linuxNum
Z009-04-21 15:57:22 DEBUG zen.RRDUtil: Ausr/local/zenoss/zenoss/perf/Devicessbino.skills-dst.co.uks/procs_linuxMNum.rrd: 1
.0

2009-04-21 15:57:22 DEBUG zen.zencommand: rrd save result: 1.0

2009-04-21 15:57:22 DEBUG zen.thresholds: Checking walue 1.0 on Devicessbino.skills-l1st.co.uk/procs_linuxMum

2009-04-21 15:57:22 DEBUG zen.MinMaxCheck: Checking procs_linuxMum 1.0 against min 1 and max 1

2009-04-21 15:57:22 INFO zen.zencommand: ———-—-——-—— - schedule has 15 commands

2009-04-21 DEBUG zen.zencommand: Mext command in 10.32554Z2 seconds

Figure 37: Fragment of ZENHOME /log | zencommand.log showing raddle_proc_check_datapoints.sh

The zencommand.log shows:
e The remote script being run by zen.SshClient, including the returned output

e zen.zencommand queueing an event, including the configured eventClass,
component and with the event summary field set to the text information output
(everything before the vertical bar in the script output line). The eventKey field
is set to the Data Source name.

e zen.RRDUtil storing away the latest values

e zen.thresholds and zen.MinMaxCheck checking the latest values against the
configured thresholds

5.2.2 Using Zenoss to run Nagios plugins through ssh

Nagios plugins integrate with Zenoss in a very similar manner to running standalone
commands. Nagios plugins will automatically be installed on a Zenoss manger under
/usr/local | zenoss | common [libexec. Some Nagios plugins can be used to check details
of remote systems, for example the check_http plugin tests URLs on a given
destination system:

check_http -H www.skills-lst.co.uk

Some Nagios plugins are designed to check details on a local system, such as the
check_procs plugin.

It is perfectly possible to install the check_procs Nagios plugin standalone on a remote
system and it can be placed in any directory. As an example, install check_procs into /
usr/local/zenoss/common/libexec on a remote system (not a Zenoss manager). Ensure
that the plugin runs standalone, locally, by:

47 © Skills 1st Ltd 24 Apr 2009

cd /usr/local/zenoss/common/libexec

./check _procs -w 1:4 -c¢ 1:10 -C sshd

Next ensure that the zProperties for this device are setup in the Zenoss GUI to permit
ssh communications between the Zenoss manager and the remote device. This is
exactly the same as described in Figure 24 above for running standalone ssh
commands.

To utilise information from the Nagios plugin, setup a Zenoss performance data
collection template in the same way as described above.

a IDevices /Server /ICmd /Templates /nagios_check_procs_vmware-vmx /nagios_check_procs_vmware-vmx

T Data Source
Main Views

Dashboard State at time: 2009/04/22 16:10:43
Event Console Name nagios_check_procs_vmware-vmx

Device List e COMMAND
Network Map Enabled

Classes HEE st

Events Component

D
S Event Key

Event Class =l

Processes Severity
Products Cycle Time.

Browse By
Systems
Groups
Locations
Networks

Reports ﬂl

Test Against Device Test
Management I
Add Device 4 st
Mibs Name Type
Collectors I procs RLISE

Figure 38: Performance data collection template using ssh to run remote Nagios check_procs plugin

Note that in this case, the full path to the plugin is supplied. It is checking for exactly
3 occurrences of a short process name vmware-vmx. The component field is set to
nagios_check_procs and a new event class of /Skills/nagios/check_procs has been
created for use with this template.

The advantage of using Zenoss plugins is that there are lots available in the
community. The disadvantage is that many of them do not provide performance data
values, simply a status and informational text. This means that creating DataPoints
in Zenoss from which to create thresholds and graphs is not useful; although
DataPoints can be specified, they have to exactly match the label of the data delivered
by the plugin (which doesn't exist), so any graphs based on such DataPoints will have
no data.

This doesn't mean that the Nagios check_procs plugin is necessarily useless. The
plugin can specify warning and critical ranges for metrics (such as number of
instances of a process, memory used, percentage CPU used) and delivers an exit status
from the script which will drive Zenoss events.

48 © Skills 1st Ltd 24 Apr 2009

Info

View Event History

| s TR s TN GEESS

Device List Select: All None Ackn Unackn 15015
Nety Aar col 3
]
Classes
Evel 1 iPerfiFilesystem thresheld of Free Space 90 Percent exceeded: current value 2009/04/09 14:29:14.000 200904722 17:12:52.000
175072836.00
[~ | nagios_check_procs iSkillsmagiosicheck procs | PROCS WARNING: 2 processes with command name 2009/04/22 17:10:32.000 2009/04/22 17:12:46.000 3
‘vmware-ymx'
s [[testt {Cmd/Fail This is atest 2009/04/01 12:47.58.000 2009/04/22 17:12:46.000 16809
ts
m jPerfiinterface Command timed out on device bino skills-1st.co.uk: 2009/04/22 17:09:47 000 2009/04/22 17:09:47 000 3
[—— iusrilocalibinizenplugin py intf vmnet2

Figure 39: Event console with warning event generated by Nagios check_procs plugin

As discussed with standalone events, the Nagios plugin “good news” status will deliver
a Zenoss event with Cleared status; thus Nagios-driven “good news” events will
automatically close their corresponding “bad news” events.

= :
iSkillsiraddle threshold of linuxNum not met current value 000 2009/0422 17-1351 000 2009/04/22 1715 56,000

raddle ills/raddle : Some processes . Raddle 13:51. : .

ddl {Skills/raddl RADDLE PROCS WARNING: 5 DOWN. Raddl 2009/04/22 17:13:51.000 2009/04/22 17:15:56.000 3
server status = OK: Raddle Linux status = WARNING

|_ nagios_check_procs iSkills/nagiosicheck procs PROCS WARNING: 2 processes with command name 2009/04/22 17:10:32.000 2009/04/22 17:15:56.000]
‘wmware-vmx' Q

Figure 40: Event history console with "good news” and "bad news” events generated by Nagios plugin

5.2.3 Using Zenoss to run Zenoss plugins through ssh

The Zenoss plugins are python libraries run by the zenplugin.py command. The
Zenoss plugins are not installed by default, even on the Zenoss manager, but they are
easily downloaded and installed as described in section 3.3.

Documentation for the Zenoss plugins is rather light, especially around the process
plugin; however the code can be examined, typically in:

/usr/local/lib/python2.5/site-packages/zenoss/plugins/linux2.py

This shows that a parameter is required to describe the process(es) to be monitored.
This parameter will match any process that includes that string so processes can be
specified as fully-qualified pathnames or short commands (try using zenplugin.py
process k on a system that uses kde — it reports the totals of resources of all processes
that include the letter k).

49 © Skills 1st Ltd 24 Apr 2009

| = jane@bino:...srﬁsﬁarelsnmp!mibs - Shell - Konsole <2>

Session Edit View Bookmarks Settings Help

ion for Linux:licenseversion=6.0 build-93057: -@ pipe=/tmp- unuware- jane-umx02cOe41634b993a7: readyEvent=26 ~home vnuaref
S5<=1 1000 32354 1 1139116 807032 9.3 vnuare-unx susrslibsunwarebincunware-unx —# product=1:nane=UMware Workst
ion for Linux:licenseversion=6.0 build-93057: -@ pipe=rtmp-unuare- jane-,umx343000c?86eb?b51:readyEuent=61 shome- vnuare-z
zenplug@bino:™> ~binsps axwo 'stat wid pid ppid usz rss pcpu comm args’ | grep unuware—

zenplug@bino:™> zenplugin.py process umuare

PROCESS OK: Isysten=1632311 mem=899903488 cpu-1875421 user=243110zenplug@bino:™> zenplugin.py process umware—umx

PROCESS OK: Isystem=1539262 men=864903168 cpu=1689450 user=150188zenplug@bino:™> zenplugin.py process umuwares

PROCESS DK: Isystem=1632927 mem=899903488 cpu=1876096 user=243169zenplug@bino:™> zenplugin.py process umuare

PROCESS OK: Isystemn=1633251 mem=899903488 cpu-1876445 user=243194zenplug@bino:™> zenplugin.py process k

PROCESS OK: Isystem=2317633 men=1329074176 cpu=3029985 user=712352zenplug@bino:™> zenplugin.py process sshd

PROCESS OK: Isystem=404 mem=134197248 cpu=5184 user=4780zenplug@bino:™> zenplugin.py process Xorg

PROCESS OK: Isystem=144134 mem=164110336 cpu=783336 user=63920Zzenplugfbino:™> zenplugin.py process X

PROCESS OK: Isystem=144146 mem=164409344 cpu=783354 user=639208zenplug@bino:™> zenplugin.py process

zenplug@bino: ">

zenplug@bino:™
zenplug@bino:™
zenplug@bino:™
zenplug@bino:™>

zenplug@bino:™> zenplugin.py process k

PROCESS OK: Isystem=2318626 mem=1329078272 cpu=3031107 user=712481zenplug@bino:™> zenplugin.py process kac
PROCESS OK: Isystem=193 mem=3411968 cpu=198 user=5zenplugfbino:™> zenplugin.py process kacpi

PROCESS OK:Isystem=194 men=3411968 cpu=205 user=11zenplug@bino:™> ||

;] = Shel |

Figure 41: Invocations of zenplugin.py process with different process matching parameters

There appears to be no way to specify a way to count instances of a process. If there
are multiple processes that match the description, then the cpu and memory values
are summed for all matching processes.

The plugin script shows that raw data is gathered by reading the stat file for the
process in /proc/<process id>. The “cpu” figure is derived by adding the “user” and
“system” values and is reported in “jiffies” (1/100 second) that this process has been
scheduled. The memory figure takes the resident set size of the process (plus 3 — for
administrative purposes), and multiplies by pagesize to produce a memory figure in
bytes.

50 © Skills 1st Ltd 24 Apr 2009

= jane@bino:...srisharelsnmpimibs - Shell - Konsole

Session Edit View Bookmarks Settings Help

"Elass ProcessCollector(Collector):
***Retrieves the CPU and memory usage for a process or a set of
processes that match a search criteria’’’

#t keys in the map
MEMORY_LABEL = ’men’
CPU_LABEL = ’'cpu’
USER_LABEL = 'user’
SYSTEM_LABEL = ’systen’

def _ init_ (self, =arqgs, skwargs):
Collector.__init_ (=self, =args, =xkwargs)

def find(=self, desc):
**'peturns the pid for the process with the desc provided. if the
desc is generic (e.g. httpd) then a list of pids will be
returned. if the desc does not match any process that is
found, an empty list is returned.’’”’

import popenZ, os

command = ’ps axwo pid,command | grep "#s" | grep -v grep’ ¥ desc
stdout, stdin = popenZ.popend(command)

pids = [1
for line in stdout.readlines():
pid = line.split()[0]
if pid *= os.getpid():
pid=s.append(pid)

return pids

def readProcCpulself, pid):
**’reads cpu usage information about the process identified from
sproc. the cpu information is inserted into the map if the
process has not been reported on before, or it is added to the
total if cpu information has already been collected. *°°

#t read the values from the stat file for the process
vals = open(’ sprocrussstat’ » pid).read(d.split()
user, system = vals[13:151]

user = int(user)

system = int(systen)

sum both wuser and system to be consistent with svmp output
cpu = user + system

if not self.map.has_key(ProcessCollector.CPU_LABEL):
insert values into the map
zelf .map[ProcessCollector.CPU_LABEL] = cpu
self .map[ProcessCol lector .USER_LABEL] = user
zelf .map[ProcessCollector .3YSTEM_LABEL] = systenm
else:
add values into existing map:
zelf .map[ProcessCollector.CPU_LABEL] += cpu
self .map[ProcessCollector .USER_LABEL] += user
self .map[ProcessCollector .SYSTEM_LABEL] += system

"linweZ .py" [readonlyl 445 lines ——37%x—

Figure 42: Zenoss plugin linux2.py showing process collection code

© Skills 1st Ltd 24 Apr 2009

Zenoss plugins can be used in exactly the same way as standalone scripts or Nagios
plugins. Performance data collector templates can be created that call zenplugin.py
on a remote system, using the ssh zProperties configured for a device.

Zenoss server time: 19:17

Saved at time: 19:08:46 2009/04/22 19:08:47
Name Eenp\uginipmcess

Source Type COMMAND
True |
True ~|

lzemplugm_pm(ess

Enabled

Classes HEE S

Component

Event Class iSkillsizenplugin/process |

s EventKey

ses Severity

oce Waming 7|
Products

CycleTime 60

P Auto ¥
Frmroty arser uto ¥|

Command Template
Systems

Groups
Locations
Networks
Reports

Save

Test Against Device

Test
Management
Add Device kv DataPoints

Mib Select All Mone

Type
COUNTER
GAUGE

Figure 43: Performance data collection template using Zenoss process plugin

In Figure 43 a new component value has been created, zenplugin_process, and a new
event class is referenced (/Skills/zenplugin / process). Note that the Command
Template field specifies a short name for zenplugin.py; this assumes that any device
that has the template bound, will have the zZCommandPath zProperty set to
/usr/local [bin.

The names of the DataPoints exactly match the label names of the cpu and mem
output of the Zenoss plugin. Note that the cpu DataPoint has the COUNTER type;
since cpu is the number of jiffies that the process has been scheduled, it will always be
an increasing number, whereas mem can go up and down so the GAUGE type is more
appropriate for mem. The COUNTER data type means that any graphs using it will
automatically display rate-of-change, rather than the absolute value which is simply a
large number that gradually increases.

52 © Skills 1st Ltd 24 Apr 2009

o
Wed 08: 60 Wed 12:00 Thu 80:00 =
2009-04-21 22:46:33 to 2009-04-23 10:46:33
E process_cpu cur:23.73 avg:90.40k max:11,93M

memaory

loee M

900 M “II_[' | %@

P .
200 M Lt — X
Wed 00: 00 Wed 12:00 Thu 00: 08
2009-04-21 22:46:33 to 2009-04-23 10:46:33 Q
M process_mem < 750,00M
B process_mem = 900.00M
B process_mem cur:844.46M avg:849.76M max:936.88M

Figure 44: Performance graphs and thresholds for data gathered by the Zenoss process plugin

Zenoss plugins provide different benefits to the Nagios plugins. You cannot count
instances of a process but, if you want the total cpu and memory resource used by the
total number of invocations of a particular process, then the Zenoss process plugin
matches that paradigm nicely. The other advantage of Zenoss plugins is that they not
only deliver output in Nagios API format, but they also tend to deliver performance
data in addition to the status and information text; hence they are more amenable to
being used directly to supply data for graphs and thresholds (indeed, all the standard
templates for /Server/Cmd devices uses Zenoss plugins).

The negative side is that there is no way within the Zenoss process plugin to set
acceptable thresholds for cpu and memory so the exit status is always “OK” unless the
plugin itself had problems retrieving data.. This means that if events are required on
thresholds based on the Zenoss plugin data, then thresholds must be setup within the
Zenoss performance data collector template — there are no “automatic” events.

53 © Skills 1st Ltd 24 Apr 2009

ZenQSS Core

/Devices [Server /Cmd /T ‘emplates /zenplugin_process /mem

Min/Max Threshold

State at time: 2009/04/22 19:46:56

Mame mem

Main Views
Dashboard
Event Console

Device List Zenplugin_process_cpu

Data Points x

Network Map zenplugin_process_mem
Min Value |750000000

Classes
Max Value |soooo0000

Events
C
Services

Ewvent Class I.-’Skills.fzenplugin.fprocess j

IWarning J

Ii

ITrue J
Save I

Severity

Escalate Count
Processes

Products Enabled

Browse By
Figure 45: Threshold on memory for Zenoss process plugin DataPoint

Note that the threshold shown above demonstrates the use of the Escalate Count field.
When the third similar event arrives, the severity will be escalated from the
configured Warning to the next level, Error.

os

Main Views
Dashboard Last updated 2009-04-22 20:01:50 View Event History...
~ - - i

Event Console i Sl Info |G Acknowledged -|[ECT R0 -]
Device List Select All None Acknowledged Unac) d 16016
Network Map component " eventClass summary firstTime lastTime count
Classes) - ‘ = i : SR I
Events n [Perfiinterface Command timed out on device bino skills-1st.co.uk 2008/04/22 20:01:44.000 2009/04/22 20.01:44.000 2
D just/localibinzenplugin.py intf vmnets
e

u [PerifFilesystemn threshold of Free Space 30 Percent exceeded: current value 2009/04/09 14:29:14.000 2009/04/22 20:01:29.000 23808

175086404.00

Processes [|testt JCmdiFail This is a test 2009/04/01 12:47 58 000 2009/04/22 20:01:28.000 16927
Products

[~ | zemplugin_process ISkillsizenpluginiprocess | threshold of mem exceeded: current value 534182912 00 2009/04/22 19:54:32.000 2009/04/22 195537 000 2
Browse By
S l_ ISecurity/Auth snmp trap snmp_authenticationFailure 2009/04/22 19:15:57.000 20090422 19:16:01.000 6
Systems
Groups

Figure 46: Event console showing |Skills/zenplugin | process threshold event escalated from Warning to

Error

Events are generated by Zenoss when the threshold is exceeded and, as with all the
other techniques already discussed, “good news” thresholds will automatically close
“bad news” threshold events.

To summarise, the Zenoss plugins are better performance data collectors and the
Nagios plugins more easily deliver threshold events.

6 Conclusions

A number of different process monitoring techniques have been discussed, each having
their own merits. If devices cannot be monitored using SNMP, perhaps because of

54

© Skills 1st Ltd

24 Apr 2009

firewall limitations, then ssh provides access for standalone commands, Nagios
plugins and Zenoss plugins. The choice between these three depends on what aspects
of process monitoring are required.

Standalone scripts are the most flexible but you have to develop, test, maintain and
deliver them.

Many Nagios plugins are available in the community but the standard check_procs
offering does not deliver performance data and there is still the task of delivering the
Nagios plugin to the remote system. check_procs does provide a flexible way for

defining a “healthy” process and can automatically generate events based on this
health.

Zenoss plugins also need installing remotely and add the prerequisite of a Python
environment, but the Zenoss process plugin is good for delivering cpu and memory
performance data for the combined instances of a given process. If events are
required, they need to be configured through thresholds on performance data
collection templates.

One of the advantages of using performance data collection templates, driven by
zencommand, is that you control the data collection interval at the Data Source level.
If performance data is collected using SNMP, there is a single polling interval (default
5 mins) for all data collected by the zenperfsnmp daemon.

SNMP is the simple, default method of discovering and monitoring processes and is
used by Zenoss's zenmodeler and zenprocess daemons, relying on the Host Resources
MIB. The zenprocess daemon has the advantage of very low administrator setup
time as performance information is automatically gathered for monitored processes
and events are automatically generated if a process is no longer detected. Provided
targets support SNMP and Host Resources, there is no agent setup beyond basic
configuration of the SNMP agent. The negative aspect of using the built-in Zenoss
methods to configure, discover and monitor processes, is that they are still a little
“quirky” and do not always deliver the results expected.

For environments where SNMP agent configuration skills exist, the net-snmp agent
can be configured well beyond the ability of the Host Resources MIB by using the
UCD-SNMP-MIB process monitoring table. Events can be generated by incorporating
the DisMan Event MIB and automatic recovery actions can also be enabled at the
agent. For time critical process monitoring, this should be the most responsive
solution as monitoring and action can both be taken at the monitored device; there is
no polling interval between Zenoss manager and managed device before an event is
received. The negative side of extensive agent configuration is that it really only
provides event information; there is no performance data provided by this solution.

In practise, some organisation may deploy combinations of all these process
monitoring techniques, in order to satisfy their requirements.

55 © Skills 1st Ltd 24 Apr 2009

References
1. net-snmp SNMP agent from http:/www.net-snmp.org/

2. Host Resources MIB, RFC 2790 obsoletes RFC 1514 -
http:/ www.ietf.org/rfc/rfc2790.txt and http:/www.ietf.org/rfc/rfc1514.txt

3. UCD-SNMP-MIB - http:/www.net-snmp.org/docs/mibs/UCD-SNMP-MIB.txt
4. DisMan Event MIB, RFC 2981, http:/www.ietf.org/rfc/rfc2981.txt

5. Nagios plugin API - http:/nagiosplug.sourceforge.net/developer-
guidelines.html#PLUGOUTPUT

6. Zenoss FAQ - http:/www.zenoss.com/community/docs/faqgs/faqg-english/

7. Zenoss HowTo for Zenoss plugins -
http://www.zenoss.com/community/docs/howtos/zenoss-plugins

8. Zenoss download site - http://www.zenoss.com/download/links?creg=no

9. “Zenoss Event Management”, by Jane Curry -
http://www.zenoss.com/Members/jcurry/zenoss_event management paper.pdf/view

10.“Learning Python” by Mark Lutz, published by O'Reilly

11.Zenoss Administration Guide - http:/www.zenoss.com/community/docs

Acknowledgements

56 © Skills 1st Ltd 24 Apr 2009

http://www.zenoss.com/community/docs
http://www.zenoss.com/Members/jcurry/zenoss_event_management_paper.pdf/view
http://www.zenoss.com/download/links?creg=no
http://www.zenoss.com/community/docs/howtos/zenoss-plugins
http://www.zenoss.com/community/docs/faqs/faq-english/
http://nagiosplug.sourceforge.net/developer-guidelines.html#PLUGOUTPUT
http://nagiosplug.sourceforge.net/developer-guidelines.html#PLUGOUTPUT
http://www.ietf.org/rfc/rfc2981.txt
http://www.net-snmp.org/docs/mibs/UCD-SNMP-MIB.txt
http://www.ietf.org/rfc/rfc2790.txt
http://www.ietf.org/rfc/rfc2790.txt
http://www.net-snmp.org/

	1 Overview of process management
	1.1 Defining “process management” requirements
	1.2 Methods for monitoring Unix / Linux processes
	1.2.1 Native SNMP access to process information
	1.2.2 Using ssh to gain process information
	1.2.3 Using Zenoss's zenprocess daemon to monitor process information

	2 Native net-snmp process management
	2.1 Host Resources MIB
	2.2 Process table of UCD-SNMP-MIB
	2.3 DisMan Event MIB

	3 Monitoring processes with ssh
	3.1 Setting up ssh
	3.1.1 Using to ssh to directly monitor processes

	3.2 Nagios plugin architecture
	3.2.1 Using Nagios plugins to monitor processes

	3.3 Zenoss plugins
	3.3.1 Using Zenoss plugins to monitor processes

	4 Monitoring processes with Zenoss's zenprocess daemon
	4.1 Process configuration
	4.2 Process discovery
	4.3 Process status checking

	5 Integrating process monitoring with other Zenoss capabilities
	5.1 SNMP MIBs, TRAPs and Zenoss
	5.1.1 Configuring event mapping for SNMP TRAPs
	5.1.2 Responding to SNMP TRAPs with Zenoss

	5.2 Zenoss and ssh
	5.2.1 Using Zenoss to run stand-alone ssh commands
	5.2.2 Using Zenoss to run Nagios plugins through ssh
	5.2.3 Using Zenoss to run Zenoss plugins through ssh

	6 Conclusions
	References
	Acknowledgements

