]st

Event Management
for Zenoss Core 4

January 2013
Jane Curry
Skills 1st Ltd

www.sKkills-1st.co.uk

Jane Curry
Skills 1st Ltd
2 Cedar Chase

Taplow

Maidenhead

Sl?é ;EUea Event Management for Zenoss Core 4
01628 782565 by Jane Curry is licensed under a

Creative Commons Attribution-ShareAlike 3.0

Unported License.

jane.curry@skills-1st.co.uk

To view a copy of this license, visit
www.skills-1st.co.uk http://creativecommons.org/licenses/by-sa/3.0/

http://www.skills-1st.co.uk/
mailto:jane.curry@skills-1st.co.uk
http://www.skills-1st.co.uk/
http://creativecommons.org/licenses/by-sa/3.0/deed.en_GB
http://creativecommons.org/licenses/by-sa/3.0/deed.en_GB
http://www.skills-1st.co.uk/papers/jcurry.html
http://creativecommons.org/licenses/by-sa/3.0/deed.en_GB

Synopsis

This paper is intended as an intermediate-level discussion of the Zenoss event system in
Zenoss Core 4. The event architecture has changed dramatically in Zenoss 4 from
previous versions.

It is assumed that the reader is already familiar with the Zenoss Event Console and
with basic navigation around the Zenoss Graphical User Interface (GUI). It looks in
some detail at the architecture behind the Zenoss event system — the daemons and how
they are inter-related — and it looks at the structure of a Zenoss event and the event life
cycle.

Zenoss can receive events from many sources in addition to Zenoss itself. Events from
Windows, Unix syslogs and Simple Networks Management Protocol (SNMP) TRAPs are
all examined in detail.

The process by which an incoming event is converted into a particular Zenoss event is
known as event mapping and there are a number of different possible techniques for
performing that conversion. These will all be explored along with the creation of new
event classes.

Once an event has been received, classified and stored by Zenoss, automation may be
required. Alerting to users by email and page is discussed, as are background actions to
run commands or generate TRAPs.

Logging and debugging techniques are discussed in some details as is the JSON API for
extracting data out of Zenoss.

This paper was written using Zenoss Core 4.2.3

The paper is a companion text to the Zenoss 4 Event Management Workshop.

Notations

Throughout this paper, text to by typed, file names and menu options to be selected, are
highlighted by italics; important points to take note of are shown in bold.

n Points of particular note are highlighted by an icon.

2 Event Management for Zenoss Core 4 © Skills 1st Ltd 1 February 2013

Table of Contents

1
2

| 50N 00 1 T 7 (o) o WO SPPPPPPPPPPP 6
Zenoss event architecture.............c..ovviiiiiiiiiici e 6
2.1 EVENT CONSOIE... e e e e e e e eaaaaaaeeeeeeaannnnn 6
2.2 Event Manager SEttiNgS.....cccceiiiiiiiiiiiiiiiiiee e eeeeteee e e e e e e e e eeaaa e e e saaeeeeaaas 10
2.3 Event database tables ..o 11
2.3.1 Zen0SS 2.X AN 3.Xuuuuuuiiiiiiieeeieeeiiiiiiiiteeeeeeeeaaeirttereeeeeeeeaaaaartaeaeetaaa——————————————————_- 11
2.83.2 ZIBNOSS ..o 14
2.4 New eVent dACIMONS............uuuuuueuiriiiiiiieiiriiieeeereeerrerrrrer..——————————————————..ree.....——.—————————— 20
P B S 1 o) o 1\ (8 TSP 20
2.4.2 ZENEVEINESEIVETcciiiiiiiiiiee e e e eeeeeitieee e e e e eeetetiat e eeeeeeeeeeeeeassnaaaaeeeeeesesssssnnnnaeeseeesennn 22
P B =Y 4 = =) 0 1 o PSR 22
P X =3 o - Ut 103 Lo A USRS TUR 23
2.4.5 MEMCACNEd........cooiiiiiiiiiiiiieee e e e e e e e e e e e e e araraeeeas 23
2.5 Other database-related changes in Zenoss 4..........oeeenen. 24
2.6 EVENt Life CYCle. .o e e e e e 25
2.6.1 Event generation.........cccccoiiiiiiiiiiiiiiieeeeecceceeceeee e e e e ee et e e e e e e e e eaara e e e aa e eeanas 27
2.6.2 Application of device context...........cccoeeeiiiiiiiiii 29
2.6.3 Event class MapPIing......ccccoeeuuuuuuueiiiiiiiiiiiieenieenannnnnennnnnnnnnnnnnnnneeesresrnaaeaaees 29
2.6.4 Application of event CONTEXt............ovvvviiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeee e 30
2.6.5 Event transforms............ccoooiiiii e 30
2.6.6 Database insertions and de-duplication...........cccccceeeeeeieeiiiieeieeieeenniieiceeeeees 31
D ST A AT T) R 7 o) o VPP 32
2.6.8 Ageing and archivVing..........ccccoceeeiieiiiiiiiiii e e e eeeesanaenas 34
Events generated by Zenoss.......cccooeeeeeeeeieeeeeeeeeeeeeeeeeeeeeee e 34
B B0 1210 0§ o V=S U U O UUPUPPRI 35
B I =) 1] 7 17 D T PP UPUPRPPPUPRPRt 36
B T =3 0] o) ¢TSS UPTPRRRRt 36
B 13 0 4 T o DU UPUPPPPR 37
3.5 ZENWINPETT ..o e e e e e e e e e e e e e e e e e e e 37
3.6 ZEeNPEIrfSIMIP...cccciiiiiiiiiiiiiceeee e 37
3.7 ZENCOMIMAN......cceiiiiiiiiiiiiiiiieeeceeeeeeeeeeeeeeeeeeeee e e e e e e e e e eeeeeeeeeeeeeeaeeeesaaennaeeeeseessnnnaaeaesesnnnn 38
NN AS] (0T cA] o L ST 38
4.1 Configuring SYSIog.CONTcoovviiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeee e e 39
4.2 Zenoss processing of syslog messages.........ccceeeeeeiiiiiiiiiii e, 40
Zenoss processing of Windows event 1ogs..........cccccooiiiii 48
5.1 Management using the WMI protocol............cccoovviiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeen 48
5.2 Management of Windows systems using SySlog.......cccoeeeeeeeeeeiieeiieeiieeiceeeceeeee e, 51
| DRSS LAY 2 o) 03 o VU UU PRSPPI 51
6.1 Working with event classes and event mappings........ccccccvvevevveieeeeeeeeriiieeeeeeerennnns 52
6.1.1 Generating teSt @VENTS.........uuvvviiiiiiiiiiiiiieiieiiieeerireereerereerrrerrrrar—a——————————————————————— 54
6.2 Regex in event MappingS.......ccceiiiiiiiiiiiiiicceceeeeeeeeeeeeeeeee e 55

1 February 2013 Event Management for Zenoss Core 4 © Skills 1st Ltd 3

6.3 Rules in event mappings........cccccceiiiiiiiiiiiiiii 57

6.4 Other elements of event MAaPPINGS ...cccoeeeeieeiiiieieeecccccccceeccee e 58

T Event transforms.........ooooiiiiiiiiec e aaaaa 58
7.1 Different ways to apply transforms...........cccccceoiiiiiiiiie 59
7.2 Understanding fields available for event processing..........cccccceeeeeviviiiiiiieeeeeerennnnnnn. 60
Q0 T =) 4 N g 0>« U= 63
7.2.2 EVent Details.........uuuuuiuiiiiiiii e e e e e e e annaans 66

7.3 Transform eXampPLes........ccoooieiiiiiiiiieieeeeeeeeee eeeeaaaas 68
7.3.1 Combining user defined fields from Regex with transform............................. 68
7.3.2 Applying event and device context in relation to transforms.......................... 69

8 Testing and debugging AidS........cceviiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeee e 71
T N I Yo 1 TP PP PP PP PPPPPUPPRPPRIN 71
T I 13 s Loy =) 0 1o BN Lo Y= PSPPSR PPPPPPRR 71
8.1.2 ZeNeVENTSEIVET.JOZ.......uuuuieiii e 72
8.1.3 Other 10g fleS...ccceeeiieee e 75

8.2 Using zendmd to run Python commands...........cccccoeiiiiiiiiiiiiiiiiiiicccccee e, 75
8.2.1 Referencing an existing Zenoss event for use in zendmd...............cceeeuuvvnnnnnnn. 75
8.2.2 Using zendmd to understand attributes for an EventSummaryProxy........... 79

8.3 Using the Python debugger in transforms...........ccccccovviiiiiiiiiiiiiiiiiiiiieeceee e, 83

9 Zenoss and SINIMP.........oooiiiieeeeee e e e e e e e et e e e e e e e e e e e e e e e e aaeans 87
9.1 SNMP introducCtion.......ccccoeeeeeiieeeeeeeee e e 87
9.2 SNMP 0N LIiNUX SYSTEINIS.....cevvvrririiiiiiiiiieiiieerereeeereeeereeeeeeereerreerrrerreerrrerree——————— 88
9.3 Zenoss SNMP archit@cture..............eeueeeiiiiiiiiiee e e e eevaaee e e e e e eeaaaaans 91
9.3.1 The zentrap daemoOn................evvviiiiiiiiiiiiiiiiiieiirrerererreeeeeeerrr.—————————————————————————————. 91

9.4 Interpreting MIBS.........coo oo e e e e e e e et eeeeae e e e eraeeeesaaeaees 93
9.4.1 zenmib eXamPle..........uuuuuiiiiiiiiiii e aaae 94
9.4.2 A few comments on importing MIBs with Zenoss.........ccccccvvvvevveveeeveeeeeeeeeeneennns 99

9.5 The MIB Browser ZenPack..........ccccooooeeeieiieiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 100
9.5.1 Modifying Zenoss Core 4.2 to make the MIB Browser ZenPack work.......... 102

9.6 Mapping SINIMP @VENLS.........uuiiiiiiiiiiiiiiiiieee e e e e e eereeeee e e e e e e e e e e e eaeeeeeeeneeens 103
9.6.1 SNMP event mapping eXample........ccccceeeiiiiieiiiiiiiiiiieeeeeeeeireeee e 103

10 Event Triggers and NotificationsS..............eevvviiiiiiiiiiiiiiiiiiriireeeeeeeeeeiieeeeeeeeverieeeeeeeseenans 108
10.1 ZenosSS PTIOT 10 VA.....uueeeiii e anneaaaaens 108
10.2 Zenoss 4 architecture..........ccouvviiiiiiiiiiiccccee e 109
0TS T I o= TP 110
10.4 NOTIICATIONS ..ciieiiiiiiiiieeee e e e e e e e et r e e e e e e e e e anraareeeaaeeeaaaaans 111
10.4.1 email Notifications.......ccccveiiiiiiiieiiiiieeee e e e e e e e e e e e eeeees 113
10.4.2 Page NoOtifICationS. ...ccooeeeeieeeeeeeceeeeeeeceeeeeeee e e e e e e e e e e e e e vvaae e e e eeeens 118
10.4.3 Command Notifications.........cccceeeeiiiieiiiiiiiiiieee e 118
10.4.4 TRAP Notifications.........cvuvviiiiiiiiiiiiiiiiiiiieiieiieeereeeeeeereereeerrerer e eeesrsrneeaaeens 120

10.5 Notification Schedules..........ccccciieeeiiiiiiiiiiee e 122
10.6 Using zenactiond.1og..........cccoiieiiiiiiiiiiiie et e e e ee s 123
10.7 The effect of device Production State..............ccccooeiiiiiiiii 125
11 Accessing events with the JSON API.........iiiiiiieeeeeeeeeeeeeeeeeeeeeee e 126

4 Event Management for Zenoss Core 4 © Skills 1st Ltd 1 February 2013

B 0 A B 23 55 51 7 o) o 1< T OO SORRUOPR O PP UOPRRUPPRPRRR 126

11.2 Understanding the JSON APL...........uuii e 127
11.3 Using the JSON APL........ooooiiiiiiiiieeiieeeeeeeeeeeeeeeeeereeeeeeereeeaeeeraerarer e esrsrr s 130
11.3.1 Bash eXamples.....cccooeeeeoeeeieeeeeeeeeeeee e e e 130
11.3.2 Python eXamples..........uuviiiiiiiiiiiiiiiiiiieiiiieirieeeeeeeeereereeeeeeesreerseer e srernn s 134

12 CONCIUSIONS. .. .eeiiiiiiieciiiiee e e ettt e e e e e e e e e eettr e e e e e e e e e e s asraaaaeeeaeesaaassssssseaaaeeeessannsssnnes 139
13 ADPPENAIX Aottt e e e e e e e e et e e e e e e e e e aabaraaaaeaeeeeaeaeaaaeeaeereeaees 143
S 0 B o1 e) o =)P 143
13.2 ZeNSENAEVEILccoeeiiiiiiiee e e e e e e e e e e e er e e e e eeeeeraaans 148
14 REfEIEINCES. .. .uveiiiiiieeeeeeeeee ettt e e ettt e e e e e e e e s s tbaaaeaeaeeeeessnsssaaeaaeeeeessannsssnnes 152

1 February 2013 Event Management for Zenoss Core 4 © Skills 1st Ltd 5

1 Introduction

Zenoss is an Open Source, multi-function systems and network management tool. There
is a free, Core offering (which has most things you need), and a chargeable offering,
Zenoss Resource Manager, which has extra add-on goodies such as high availability
configurations, distributed management servers, service management and event
correlation; it also includes a support contract.

Zenoss offers configuration discovery, including layer 3 topology maps, availability
monitoring, problem management and performance management. It is designed around
the ITIL concept of a Configuration Management Database (CMDB), “the Zenoss
Standard Model”. Zenoss is built using the Python-based Zope web application server
and uses the object-oriented Zope Object Database (ZODB) as the CMDB, used to store
Python objects and their states. Zenoss 3 used ZEO, as a layer between Zope and the
ZODB; in Zenoss 4 the ZODB data is stored in a MySQL database.

The relational MySQL database is also used to hold current and historical events.
Performance data is held in Round Robin Database (RRD) files.

The default protocols for monitoring are typically “agentless” - the Simple Network
Management protocol (SNMP), Windows Management Instrumentation (WMI) and
collecting events from syslogs. It is also possible to monitor devices using telnet, ssh and
to use Nagios plugins.

Zenoss provides documentation at
http:/community.zenoss.org/community/documentation. There is also a wealth of
information on the Zenoss website in various forums, FAQs, and the Wiki. A useful
book is available from PACKT Publishing, “Zenoss Core 3.x Network and System
Monitoring” by Michael Badger, which provides much of the same information as the
Zenoss Administration Guide but in a much clearer format with plenty of screenshots.
Although this is a Zenoss 3 text, it still provides good basic information.

This paper is an attempt to expand on the event information in the Zenoss Core 4
Administration Guide by drawing on my own experience and the collected wisdom of
several Zenoss employees and contributors from the community.

2 Zenoss event architecture

2.1 Event Console

When an event arrives at Zenoss, it is parsed, associated with an event classification
and then typically (but not always), it is inserted into the event_summary table of the
zenoss_zep database. Events can then be viewed by users using the Event Console of
the Zenoss Graphical User Interface (GUI).

6 Event Management for Zenoss Core 4 © Skills 1st Ltd 1 February 2013

http://community.zenoss.org/community/documentation

There are a number ways to access the Event Console. The main Event Console is
reached from the top EVENTS -> Event Console menu. The default is to show events
with a severity of Info or higher, sorted first by severity and then by time (most recent
first). Events are assigned different severities:

Name Number Colour
Critical 5 Red
Error 4 Orange
Warning 3 Yellow
Info 2 Blue
Debug 1 Grey
Cleared 0 Green

All events also have an eventState field. Zenoss 3 eventState had three possible values
- New, Acknowledged and Suppressed. Zenoss 4 has enhanced these definitions so we
now have:

Name Number Description

New 0 New event - no previous “similar” event

Acknowledged 1 Acknowledged by user or rule

Suppressed 2 Typically from beyond a single point of
failure

Closed 3 Closed by a user

Cleared 4 Closed by a rule

Dropped 5 Discarded - not saved in the database

Aged 6 Auto-closed due to age / severity

Note that Closed, Cleared and Aged events all have the same status icon in the Event
Console.

By default, New and Acknowledged events are shown in the Event Console. Any event
which has been Acknowledged has a tick in its status column. A Suppressed event is
not shown by default but can be filtered in if desired; it has a “snowflake” icon. Zenoss
builds an internal topology of the network it is managing (using nmap). If an event is
received for a device that the topology map knows is unreachable, the event is
automatically suppressed. Thus Zenoss has a built-in mechanism for pinpointing failure
devices and suppressing the flood of events from behind such failure points.

Events can be sorted by clicking on a desired column header; clicking again sorts in the
reverse order. To change the order of columns, simply drag a column header.

1 February 2013 Event Management for Zenoss Core 4 © Skills 1st Ltd 7

There is a filter box above each column header to help select relevant events. Most
filters are a match for a partial text string (you don't need to supply wild cards). Date
fields provide a calendar icon to select an earliest date. The count field permits you to
enter a range, for example to show events with count > 10, use 10: (if you type
something illegal in the count filter it will supply help for the required syntax).

To select fields to display, hover the mouse at the end of a header to see the down-arrow
for sorting; the third option on the dropdown menu is to configure the fields to display.

9 Zenoss: Events - Mozilla Firefox]
File Edit View History Bookmarks Tools Help
C Zenoss: Events L | v
« [c_} zen42.class.example.org:8080/zport/dmd/Events/evconsole v @l [-"v ﬂ] ﬂ # v
‘-ﬂ 1s DASHBOARD EVENTS INFRASTRUCTURE REPORTS ADVANCED Event ID v * jane SIGNOUT
f e o o A i i A S A G i i i e i e s s Fingerprint L i e i o
Event Console Event Archive ~ Event Cla Triggers Page
v| Status
v| Severity G Refresh -][Actions ~ ” Commands -I
h&wm&@! i uasiseen i
4| sortAscending v| Count @
(1] laplow-13 skills-1st.cou... 151 10.0.0.13 is DOWN! f\l Sort Descending v| Summary 2012-11-27 17:17... zenping :
Vv o zen3i.class.example.or... 322 zen31.class.example.org is DOWN! o Columns - v| Component 2012-11-27 17:17... zenping
zendi.class.example.or... 2 SNMP agent down - no response received ——— (7] EventClass 2012-11-27 16:36... zenperfsnmp
zendi.class.example.or... 2 Unable to read processes on device zen31.class.examp... Status/Sn 7] |First Seen 2012-11-27 16:38... zenprocess
1 group-100-si.class.exa... 2 threshold of high utilization exceeded: current value 111... 4 Perfinter e 2012-11-27 17:15... zenperfsnmp
1 group-100-si.class.exa... 9 threshold of high utilization exceeded: current value 111... 4 Perf/inier 2012-11-27 17:15... zenperfsnmp
1 group-100-si.class.exa... 4 threshold of high utilization exceeded: current value 111... A Perfinter v] Agent 2012-11-27 17:15... zenperfsnmp
! group-100-si.classexa... 3 threshold of high utilization exceeded: current value 111... 14 Perfinter fuckr Bae 2012-11-27 17:15... zenperfsnmp 1
1 group-100-s2.class.exa... 3 threshold of high utilization exceeded: curreni value 110... FasiEth... (Perfinier edce oty 2012-11-27 17:15... zenperfsnmp
! EC2Manager 42 No data returned for command CmdiFail BEEE IS 2012-11-2717:13... zencommand
1 aroup-100-s2.classexa... 5 threshold of high utilization exceeded: current value 111... FasiEih... (Perfinier Event Class Key 2012-11-27 17:10... zenperfsnmp
! zend2.class.example.or... 2 honeyd_logstart: fopen("/var/log/raddie/honeyd.log”): P... honeyd {Unknowrn Event Group 2012-11-27 15:56... zensyslog
o zend2.class.example.or... § could not grab keyboard: 3 gnome-. Unknown Event Key 2012-11-27 17:10... zensyslog
o win2003 class.example.... 9 Logon attempt by: MICROSOFT_AUTHENTICATION_PA... Security {Unknown Collector 2012-11-27 16:46... zeneventlog
o zend2.class.example.or... 2 Demoting process privileges to uid 99, gid 99 honeyd Unknown Owner 2012-11-27 15:56... zensyslog |
a zend2.class.example.or... 2 listenina on le: ip and (dst host 10.191.100.4 or dstnet 1... honevd {Unknown Syslog Facillty 2012-11-27 1.’;.’;6;[.‘.“;?‘5\!:20:“7 naw;l'sz
MyFooter » B L | 1) 0Jobs +

Figure 1: Zenoss Event Console

From the Event Console, one or more events can be selected by clicking on the line - be
careful not to click something that is a link (like the device name or event class). The
icons at the top-left can be used to Acknowledge, Close, Map to an Event Class,
Unacknowledge or ReOpen. The “+” icon at the end of this row of icons can be used to
generate test events.

Double-click an event to show the details of an event. This shows both standard fields
and any user-defined fields organised under several groupings which can be expanded
and contracted. Any Acknowledge, Close or ReOpen will be shown at the bottom,
including who performed the action. Free-form notes can also be logged here.

8 Event Management for Zenoss Core 4 © Skills 1st Ltd 1 February 2013

Mozilla Firefox

|@ zend2.class.example.org:8080/zport/dmd/Events/viewDetail?evid=000c29d9-f87b-8389-11

Resource: zend2.class.example.org

Component: honeyd
Event Class: /Unknown
Status: Acknowledged
listening on lo: ip and (dst host 10.191.100.4
Message: ordstnet172.30.100.0/30 or dst net
172.31.100.0/24)

Event Management...

Device State...
Event Data...
Event Details...
LOG

Note added by Jane - honeyd fine

jane 2012-11-27 17:27:24: state changed to Acknowledged
[~
http://zen42.class.ex...7c0-aea2-a38a932c15ef _J_Ii]_

#
Figure 2: Event details showing Acknowledgement and added note

The summary and message fields are free-form text fields. The summary field allows up
to 255 characters; the message field allows up to 4096 characters. These fields usually
contain similar data. For details of other fields, see section 7.1.2 of the Zenoss Core 4

Administration guide.

By default, the Event Console is refreshed every minute. The dropdown beside the
Refresh button allows you to change the interval or to refresh manually.

1 February 2013 Event Management for Zenoss Core 4 © Skills 1st Ltd

9

Event Consoles are also available at various places in the GUI which have filters
already applied:

From a device's detail page, select Events in the lefthand menu

For a device class, click the DETAILS link and then Events in the lefthand
menu

For a Location, Group or System, click the DETAILS link and then Events in
the lefthand menu

From an Event Class, select Events in the lefthand menu

Prior to V4, Zenoss events were either “Open” or “Closed”. Open events were stored in
the MySQL events database in the status table. When an event was closed, it was
moved to the history table of the events database.

With Zenoss 4 there is a significant change. The MySQL database for events is called
zenoss_zep and it has far more tables, including event_summary and
event_archive. Open events will be stored in the events_summary table. Be aware
that the events_summary table will also hold closed, cleared and aged events - this
catches out many people migrating from older versions of Zenoss to Zenoss 4. Check the
Status filter in the Event Console to show Closed, Cleared and Aged events (they all
have the same status icon). Closed, Cleared and Aged events may be automatically
moved to the event_archive table based on age (after 3 days, by default).

2.2 Event Manager settings

From the ADVANCED -> Settings menu, choose Events in the lefthand menu to setup
various parameters that control the events subsystem, including how events are aged
and finally purged.

Figure 3 on page 11 shows largely default settings. Events of severity Warning and
below will be Aged after 240 minutes (4 hours). After 4320 minutes (3 days) events with
status of Closed, Cleared or Aged will be Archived (moved to the events_archive table).
After 7 days Archived events will be deleted entirely (note this last setting is 90 days by
default and can result in a very large database).

See chapter 7 of the Zenoss Core 4 Administrators Guide for more information.

10 Event Management for Zenoss Core 4 © Skills 1st Ltd 1 February 2013

‘ [O zen4d2.class.example.org:8080/zport/dmd/eventConfig

4—@ 1 DASHBOARD EVENTS INFRASTRUCTURE REPORTS

€D cCollectors Monitoring Templates Jobs MIBs

Settings

Commands

(e Don't Age This Severity and Above:

ZenPacks Error El

[P):::zsm Event Aging Threshold (minutes): .

Versions i : |

Backups Event Aging Interval (milliseconds):

60000 =

st Event Aging Limit: .
1000 =)
Event Archive Threshold (minutes):
4320 =
Event Archive Interval (milliseconds):
60000 2
Event Archive Limit:
1000 ==
Delete Archived Events Older Than (days):
7 S
Default Syslog Priority:
|3 ES

MyFooter ~

Figure 3: Event Manager parameters for ageing and archiving

2.3 Event database tables

2.3.1 Zenoss 2.x and 3.x

The events architecture was the same for versions 2 and 3 and was relatively simple.
Events were generated from “somewhere”. The zenhub daemon processed them and
usually then saved them either in the status table of the MySQL events database or
could send them to the history table.

The database fields of the status and history tables matched the details seen in an
Event Console and if you wrote rules and transforms to process events, they were based
on these same field names.

The events database is created automatically when Zenoss is installed and can typically
be accessed by the zenoss user with a password of zenoss - see Figure 4.

1 February 2013 Event Management for Zenoss Core 4 © Skills 1st Ltd 11

= jane@bino:~ - Shell - Konsole <2>

Session Edit View Bookmarks Settings Help

zenossBzenoss : susrslocal zenoss> mysql -u zenoss -pzenoss
Welcome to the MySQL monitor. Commands end with | or Mg,
Your My3S(L connection id is 9

Server version: 5.0.45 MyS(L Community Server (GPL)

Type 'help:’ or ’sh' for help. Type '“c’ to clear the buffer.

mysql> use events

Reading table information for completion of table and column names

You can turn off this feature to get a gquicker startup with -A

Databaze changed
mysql> status

~usrslocal- zenosssmysql- binsmysgl.bin Uer 14,12 Distrib 5.0.45, for pc-linwx-gnu (i686) wusing readline 5.0

Connection id: 9

Current database: events

Current user: zenoss@localhost
SSL: Not in use
Current pager: less

Uzing outfile:
U=zing deliniter:
Server verszion:
Protocol version:

5.0.45 MySQL Community Server (GFPL)
10

Connection: Localhost via UNIX socket
Server characterset: latinl
Db characterset: latinl
Client characterset: latinl
Conn. characterset: latinl

UNIX =socket:
Uptime:

Threads: 5 Questions:

I 0.604

mysql> show tables
=» i

Tables_in_events

I alert_state
I detail

I heartbeat
I history

I log

I status

susrslocal/zenosssmnysql tmprsmysql . sock
1 day 5 hours 30 min 37 sec

64218 Slow gueries: @ Opens: Z2 Flush tables: 1 Open tables: 16 [ueries per second avg

6 rows in set (0.00 sec)

mysgl>
mysgl>
mysql> []

| = shell |

Figure 4: Zenoss events database prior to Zenoss 4

The format of each of these tables and the valid fields for a Zenoss event can be seen by
examining the Zenoss database setup file in

$ZENHOME | Products | ZenEvents | db | zenevents.sql , where $ZENHOME will be
/opt [zenoss for a Core 4.2 Zenoss on RedHat / CentOS (the only currently supported
platform).

12 Event Management for Zenoss Core 4 © Skills 1st Ltd 1 February 2013

= jane@bino:~ - Shell - Konsole <2> (=l |x]
Session Edit View Bookmarks Settings Help
EREﬁTE TABLE IF NOT EXISTS status -
(
dedupid varchar (255 not null,
evid char(25) not null,
device varchar (128) not null,
component varchar (128 default ",
eventClass varchar(128) default "/Unknoun",
eventKey varchar(128) default "",
summary varchar (128]) not null,
nessage varchar (4096) default ",
severity smallint default -1,
eventState smallint default 0,
eventClassKey varchar(128) default ",
eventGroup varchar(64) default ",
stateChange timestanp,
firstTime double,
lastTime double,
count int default 1,
prod3tate smallint default 0,
suppid char(36) not null,
manager varchar (128 not null,
agent varchar (64) not nwull,
DeviceClass varchar(128) default "",
Location varchar(128) default """,
Systems varchar(255) default """,
DeviceGroups varchar(255) default ",
ipAddress char(15) default "",
facility varchar(8) default "unknown",
priority smallint default -1,
ntevid smallint unszigned default 0O,
ounerid varchar(32) default ",
clearid char(25),
DevicePriority smallint(6) default 3,
eventClassMapping varchar(128) default ",
monitor varchar (128) default "",
PRIMARY KEY (dedupid),
Index evididx (evid),
Index clearidx (clearidl,
Index severityidx (severityl,
Index deviceidx (device)
) ENGINE=INNODE;
"zenevents.sql" [readonlyl 163 lines —0x— 1,1 Top
@ shell |

Figure 5: Definition of status event fields in zenevents.sql prior to Zenoss 4

zenevents.sql also defines the history table in a similar fashion.

A further four tables are defined for heartbeat, alert_state, log and detail . The detail
table can be used to extend the default event fields to include any information that the

Zenoss administrator requires for an event.

1 February 2013

Event Management for Zenoss Core 4 © Skills 1st Ltd

13

@ jane@bino:~ - Shell - Konsole <2> =g (x]
Session Edit View Bookmarks Settings Help
i =

CREATE TABLE IF NOT EXISTS heartbeat
(

device varchar (128) not null,
component varchar(128) default ",
timeout int default @,

lastTime timestamp,

PRIMARY KEY (device,component)
) ENGINE=INNDDB;

CREATE TABLE IF NODT EXISTS alert_state
(

euid char(25) not wnull,
userid varchar(64),

rule varchar(255),

lastSent timestanp default now(),

PRIMARY KEY (evid, userid, rule)
) ENGINE=INNODB;

CREATE TABLE IF NOT EXISTS log
(

euid char(25) not wnull,
userName varchar(64),

ctime timestanp,

text text,

Index evididx (evid)
) ENGINE=INNODE ;

CREATE TABLE IF NOT EXISTS detail
(

euid char(25) not wnull,
SEQUENCE int,

name varchar(255),
value varchar(255),

PRIMARY KEY (evid, name),
Index evididx (evid)
) ENGINE=INNODB;
"zenevents.sql" [readonlyl 163 lines —75<— 123,0-1 Bot

= | = Shel

Figure 6: zenevents.sql showing heartbeat, alert_state, log and detail tables - zenoss 2 and 3 only

If you are using Zenoss prior to version 4, get the older version of this Zenoss Event
Management paper from http:/www.skills-
1st.co.uk/papers/jane/zenoss event management paper.pdf .

2.3.2 Zenoss 4

With Zenoss 4 events are still held in a MySQL database which is now called
zenoss_zep and it is created when Zenoss is installed. As with earlier versions, the
zenoss user can access this database with a password of zenoss.

Note that with Zenoss 4.2.3, if installed with the core-autodeploy script, then the
password for the MySQL zenoss user is changed to a robust, random password that is
then saved in $ZENHOME | etc/global.conf. Permissions for $ZENHOME /etc and its
contents are all set to full access for the zenoss user and no access for anyone else.

14 Event Management for Zenoss Core 4 © Skills 1st Ltd 1 February 2013

http://www.skills-1st.co.uk/papers/jane/zenoss_event_management_paper.pdf
http://www.skills-1st.co.uk/papers/jane/zenoss_event_management_paper.pdf

Zzenoss@zend42:/opt/zenoss/local

File Edit View 5Search Terminal Help

[zenoss@zend2 localls

[zenoss@zend2 localls

[zenoss@zend? locall$ mysgl -uzenoss -pzZenoss

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 78697

Server version: 5.5.27 MySQL Community Server (GPL)

Copyright (c) 2008, 2011, Oracle and/or its affiliates. ALl rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its

affiliates. Other names may be trademarks of their respective

oWners.

Type 'help;' or "\h' for help. Type '\c' to clear the current input statement.

mysql> show databases;

e +
| Database |
e LA EE T +
| information schema |
| test |
| zenoss zep |
| zodb |
| zodb session |
+----- e +

5 rows in set (0.80 sec)

mysql= use zenoss zep;
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Database changed
mysql=

Figure 7: Accessing MySQL databases with Zenoss 4

In passing, note that in addition to the zenoss_zep database, their is also a zodb and a
zodb_session database. The Zope database (ZODB) that stores all the objects (devices,
device classes, processes, networks, etc) is now in MySQL.

Examining the tables of the zenoss_zep database is where things diverge significantly
from previous versions.

1 February 2013 Event Management for Zenoss Core 4 © Skills 1st Ltd 15

| File Edit View 5Search Terminal Help
Imysgl> show tables;

e e +
| Tables in zenoss zep |
M iy N +
agent
config

I I
I I
| daemon_heartbeat |
| event archive |
| event archive index queue |
| event class |
| event class key |
| event detail index config |
| event group |
| event key |
| event summary |
| event summary index queue |
| event time |
| event trigger |
| event trigger signal spool |
| event trigger subscription |
| index metadata |
| monitor |
| schema version |
| v daemon heartbeat |
| v event archive |
| v event archive index queue |
| v event summary |
| v event summary index queue |
| v event time |
| v event trigger |
| v event trigger signal spool |
| v _event trigger subscription |
| v index metadata |

29 rows in set (8.80 sec)

mysql>
Figure 8: Tables in the Zenoss 4 zenoss_zep
database

The main tables are now event_summary and event_archive but the structure is

more complicated. Some of the data is held in separate tables with pointers to them
from the main tables. These include:

16

agent
event_class
event_class_key
event_group
event_key
monitor

Event Management for Zenoss Core 4 © Skills 1st Ltd

1 February 2013

The details of the event_summary table is shown below. The event archive table is very
similar with just the two fingerprint_hash fields omitted.

Figure 9: Fields in the event_summary table in Zenoss 4

1 February 2013

zenoss@zend42:/opt/zenoss/local/json_api_python/4.2

File Edit View 5Search Terminal Help
mysql=> describe event summary;
P S [
| Field | Type

R e T R
| wuid | binary(16)

| fingerprint hash | binary(2@)

| fingerprint | varchar(255)
| status id | tinyint(4)

| event group id | int(11)

| event class id | int(11)

| event class key id | int(11)

| event class mapping uuid | binary(16)

| event key id | int(11)

| severity id | tinyint(4)

| element wuid | binary(16)

| element type id | tinyint(4)

| element identifier | varchar(255)
| element title | varchar(255)
| element sub uuid | binary(16)

| element sub type id | tinyint(4)

| element sub identifier | varchar(255)
| element sub title | varchar(255)
| update time | bigint(2@)

| first seen | bigint(2@)

| status change | bigint(2@)

| last seen | bigint(28)

| event count | int(11)

| monitor id | int(11)

| agent id | int(11)

| syslog facility | int(11)

| syslog priority | tinyint(4)

| nt event code | int(11)

| current user uuid | binary(16)

| current user name | varchar(32)
| clear fingerprint hash | binary(2e)

| cleared by event uuid | binary(16)

| summary | varchar(255)
| message | varchar(4096)
| details json | mediumtext

| tags json | mediumtext

| notes json | mediumtext

| audit json | mediumtext
L R LR T
38 rows in set (0.81 sec)

MUL
MUL

MUL

MUL

MUL

MULL
NULL
NULL
MULL
MULL
NULL
MULL
MULL
NULL
NULL
NULL
MULL
MULL
NULL
MULL
MULL
NULL
NULL
NULL
MULL
MULL
NULL
MULL
MULL
NULL
NULL
NULL
MULL
MULL
NULL
MULL
MULL

Event Management for Zenoss Core 4 © Skills 1st Ltd

17

The eagle-eyed will also spot that some of the field names have changed from those in
Figure 5. eventClass in the old version becomes event_class in V4; firstTime in Figure 5
becomes first_seen in the later version - and there are a number of other similar, subtle
changes.

As mentioned above, some of the data is held in separate tables so agent_id,
event_class_id, event_class_key_id, event_group_id, event_key_id and monitor_key are
links to separate tables with the corresponding data.

Some data has changed fairly subtly:

Old New

evid uuid

eventState status_id

eventClassMapping event_class_mapping_uuid

severity severity_id

stateChange status_change

firstTime first_seen

lastTime last_seen

count event_count

facility syslog_facility

priority syslog_priority

ntevid nt_event_code

ownerid current_user _uuid / current_user_name
clearid clear_fingerprint_hash / cleared_by_event_uuid

All references to the device have changed significantly. device is replaced by the four
fields, element_uuid, element_type_id, element identifier and element_title
whilst the component field is replaced by element_sub_uuid,
element_sub_type_id, element_sub_identifier and element_sub_title.

dedupid has become fingerprint and fingerprint_hash.

Other fields with device context such as prodState, DeviceClass, Location, Systems,
DeviceGroups, ipAddress, monitor and DevicePriority will now be found from the
tags_json field; they are also available in the event details.

Prior to Zenoss 4 there was a separate log table whose role is now taken by the
notes_json field of the event_summary table.

Event details rather than being in a separate table, are now reached from details_json.

update_time has been added - the last time an event was updated.

18 Event Management for Zenoss Core 4 © Skills 1st Ltd 1 February 2013

suppid (which was never used) has disappeared in the Zenoss 4 schema. manager has
also disappeared from Zenoss 4.

These tables are created by the files in $ZENHOME / share | zeneventserver [sql | mysql.

zenoss@zen42:/opt/zenoss/share/zeneventserver/sql/mysql - 0O X

File Edit View Search Terminal Help
CREAQE TABLE ‘event_summary’ E
{

“uuid® BINARY(16) NOT NULL,

‘fingerprint_hash™ BINARY(20) NOT NULL COMMENT 'SHA-1 hash of the fingerprint.',

“fingerprint® VARCHAR(255) NOT NULL COMMENT 'Dynamically generated fingerprint that allows the system to perform de-duplication on repeat
ing events that share similar characteristics.',

‘status_id‘ TINYINT NOT MNULL,

“event_group_id" INTEGER COMMENT 'Can be used to group similar types of events. This is primarily an extensien point for customization.®,

“event class id® INTEGER NOT NULL,

‘event_class_key id’ INTEGER COMMENT 'Used as the first step in mapping an unknown event into an event class.’,

“event_class_mapping_uuid® BINARY({16) COMMENT 'If this event was matched by one of the configured event class mappings, contains the UUID
of that mapping rule.',

‘event_key id" INTEGER,

“severity_id" TINYINT NOT NULL,

“element uuid® BINARY(16),

‘element_type id" TINYINT,

“element_identifier® VARCHAR({255) NOT NULL,

“element title VARCHAR(255),

‘element_sub_uuid® BINARY(16),

“element_sub_type_id" TINYINT,

“element sub identifier”™ VARCHAR({255),

‘element_sub_title’ VARCHAR(255),

‘update_time” BIGINT NOT NULL COMMENT 'Last time any modification was made to the event.',

“first seen” BIGINT NOT NULL COMMENT 'UTC Time. First time that the event occurred.',

‘status_change’ BIGINT NOT NULL COMMENT 'Last time that the event status changed.',

‘last_seen’ BIGINT NOT NULL COMMENT 'UTC time. Most recent time that the event occurred.’,

“event count’ INTEGER NOT NULL COMMENT 'Number of occurrences of the event.',

‘monitor_id® INTEGER COMMENT 'In a distributed setup, contains the name of the collector from which the event originated.’,

‘agent_id® INTEGER COMMENT 'Typically the name of the daemon that generated the event. For example, an SNMP threshold event will have zen
perfsnmp as its agent.',

“syslog facility INTEGER COMMENT 'The syslog facility.',

‘syslog priority’ TINYINT COMMENT 'The syslog prierity.’,

‘nt event code” INTEGER COMMENT ‘The Windows NT Event Code.',

‘current_user_uuid’® BINARY(16) COMMENT 'UUID of the user who acknowledged this event.',

‘current_user_name’ VARCHAR(32) COMMENT ‘Name of the user who acknowledged this event.',

“clear fingerprint hash™ BINARY(20) COMMENT 'Hash of clear fingerprint used for clearing events.',

‘cleared_by event uuid’ BINARY(16) COMMENT 'The UUID of the event that cleared this event (for events with status == CLEARED).',

‘summary’ VARCHAR(255) NOT NULL DEFAULT '',

‘message’ VARCHAR(4096) NOT NULL DEFAULT '*,

“details_json’ MEDIUMTEXT COMMENT 'JSON encoded event details.’,

‘tags_json’ MEDIUMTEXT COMMENT 'JSON encoded event tags.',

‘notes json” MEDIUMTEXT COMMENT °JSON encoded event notes (formerly log).',

‘audit_json® MEDIUMTEXT COMMENT 'JSON encoded event audit log.’,

PRIMARY KEY (uuid),

UNIQUE KEY (fingerprint hash},

INDEX (status id"),

INDEX (' clear_fingerprint_hash’),

INDEX (' severity id"),

INDEX (' last_seen’),

INDEX (' element uuid®, element type id", element identifier’),

INDEX (element_sub uuid™, element sub type id", element_sub identifier”)
) ENGINE=InnoDB CHARACTER SET=utf8 COLLATE=utf8 general ci;
"001.sql" [readonly] line 63 of 275 --22%-- col 5 (1 of 4) [~

Figure 10: Part of the 001.sql file that defines MySQL tables in the zenoss_zep database for Zenoss 4

Some of these event fields are particularly pertinent depending on how the event was
generated:

e Syslog events populate the facility and priority fields
e Windows events populate the ntevid field

e SNMP TRAPs populate at least community and oid fields in the event detail.

They also use the event detail to provide any variables passed by an SNMP
TRAP.

e The agent field denotes which Zenoss daemon generated or processed the
incoming event; for example, zentrap, zeneventlog, zenping .

1 February 2013 Event Management for Zenoss Core 4 © Skills 1st Ltd 19

n Fundamentally Zenoss administrators should not be accessing the zenoss_zep database

directly. Zenoss have provided an internal event mapping so that, largely,
administrators can continue to use the same event attribute names as have been used
previously. This event proxy mapping will be discussed in more detail later. In
general, this paper will use the old names unless explicitly stated otherwise.

If you do need to access event data in the database tables, perhaps for reporting on
events, it is possible with the JSON API (also more on this later).

2.4 New event daemons

Prior to Zenoss 4 most of the work of processing an event was performed by the zenhub
daemon which also has lots of other roles to fulfil. Event processing could become a
severe bottleneck. Zenoss 4 has introduced several new subsystems and daemons to
dramatically improve the throughput of event processing.

2.4.1 RabbitMQ

A Message Queueing architecture has been implemented to speed up processing and to
offer an API so that Zenoss and other application providers can interact with events. It
is also used by the new Job architecture. It uses the Advanced Message Queueing
Protocol (AMQP) standard, and the open source RabbitMQ implementation in
particular, for the event pipeline.

When Zenoss is installed the RabbitMQ subsystem is also installed and configured with
a vhost of zenoss, user zenoss, password zenoss. The rabbitmgctl utility can provide
information about the state of the MQ environment; note that rabbitmgctl commands
must be run by the root user.

jane@zend42:/home/jane

File Edit View 5Search Terminal Help

[root@zen42 janel# rabbitmgctl -p /zenoss list gueues
Listing queues ...

celery @

Zenoss.queues.zep.signal]
zenoss.queues.zep.modelchange 0@
Zenoss.queues.zep.migrated. summary 0
Zenoss.queues.zep. rawevents 0
Zenoss.queues.zep.heartbeats 4]
Zenoss.queues.zep.zZenevents 0
zen42.class.example.org.celeryd.pidbox ©
Zenoss.queues.zep.migrated.archive]
...done.

[root@zend2 janel# |}
Figure 11: Using the rabbitmaqctl utility to show queues for the [zenoss vhost

An easy way to see queues building up is to temporarily stop zeneventd and the
rawevents queue will then build rapidly.

20 Event Management for Zenoss Core 4 © Skills 1st Ltd 1 February 2013

http://www.rabbitmq.com/
http://www.amqp.org/

rabbitmqctl on its own or with insufficient arguments provides the usage help.
rabbitmqctl report gives a good overall view of the subsystem.

If the Zenoss server is renamed then you must clear and rebuild queues before the
zenhub and zenjobs daemons will restart. To resolve this, issue the following
commands as the root user (although any data queued at restart time will be lost):

export VHOST='"/zenoss"

export USER='"zenoss"

export PASS='"zenoss"

rabbitmgctl stop app

rabbitmgctl reset

rabbitmgctl start app

rabbitmgctl add vhost "$SVHOST"

rabbitmgctl add user "SUSER" "SPASS"
rabbitmgctl set permissions -p "SVHOST" "SUSER" '.*' ' . *' ' *'

See section 14.8 of the Zenoss Core 4 Administrators Guide for this information.

Note that with Zenoss Core 4.2.3 installed using the auto-deploy script, or if the
secure_zenoss.sh script has been run standalone, then the password in the third line
above will have been changed. Examine $ZENHOME | etc/global.conf for the
amqppassword and substitue that value, rather than using zenoss as the password.

Provided the RabbitMQ subsystem is running, any missing queue will automatically be
recreated when Zenoss is restarted.

To simply have the queues recreated, start as the zenoss user:

zenoss stop

su (to become root user)

rabbitmgctl delete_vhost /zenoss

rabbitmgctl add_vhost /zenoss

rabbitmgctl add_user zenoss zenoss # might create an error

zenoss rabbitmgctl set_permissions -p /zenoss zenoss '.*' ' k1 1 %1
rabbitmgctl list_vhosts (should have zenoss again)
rabbitmgctl -p /zenoss list_queues (should be none)

exit (back to zenoss user)

zenoss start
su
rabbitmgctl -p /zenoss list_queues (should be several)

There is a further script available at gist, written by cluther, to reset RabbitMQ -
https://gist.github.com/4192854 .

Two utilities are available for the zenoss user to get RabbitMQ information:

zengdump <queue name>

dumps the events in a queue, converting the binary “blobs” (which is how the events are
actually stored) into human-readable text.

Note that the zenqdump utility has parameters for user and password for
authentication, that default to zenoss / zenoss (you can find this code in

S$ZENHOME /lib / python | zenoss | protocols | amqpconfig.py). In Zenoss 4.2.3, passwords
are likely to have been improved on installation so the simple command shown above

1 February 2013 Event Management for Zenoss Core 4 © Skills 1st Ltd 21

https://gist.github.com/4192854

will fail. Examine $ZENHOME /etc/global.conf for the parameters amqpuser and
amqppassword and supply those values. For example:

zengdump -u zenoss -p uy+680bEubHgdPow8Tfh zenoss.queues.zep.rawevents

The zenq utility has three different options to manage a queue:

zenqg count <queue name>
zeng purge <queue name>
zenqg delete <queue name>

The count parameter gives a continual output of timestamp and queue length.

The purge parameter purges events from a queue. This command is safe when Zenoss is
running.

The delete parameter deletes the queue and should not be used when Zenoss is running.

zenq does not have authentication parameters.

2.4.2 zeneventserver

A new Java daemon, zeneventserver (also known as zep), has been created. Its role is to
present events to the user interface and other clients, and to manage the flow of data
between the RabbitMQ queues and the MySQL database. Data is presented to clients
via JSON calls.

2.4.3 zeneventd

zeneventd is a new Python daemon whose responsibility is to take data from the
incoming raw event queue, classify it (if the event does not already have a class), add
device context and event context, and perform any transforms. It then outputs to the
zenevents queue so that the zeneventserver daemon can manage its progress to the
MySQL database, to the user interface and for alerting action.

22 Event Management for Zenoss Core 4 © Skills 1st Ltd 1 February 2013

Collecting Dasmons

zenping
zensyslog
zenstatus

|| ——heartbeat—3p> | ° | i
| | | Databases
|
: ——entze— | | : in MySaL
===Data managementsge		
.2 I i		

zentrap d——Ul-relatedm— |
zenmodeler !
zenperfenmp TR v v
zencommand
ZENProcess
Zenwin
zeneventlog Collecting
zenwinperf Bacrane

All quewss arein [,

rabhit 1Q

—(heartbeat %
Other key
processes;
zen jobs ")
| ST e I S
.....................

zen hub o zen eventF
> jt .
X T X :
' A A
H J modelchange -

/,.L.“

memcached

] i

———

N
. | archive I

migrated

Berall

v

[
1
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA L o -__A___A_.AA.__A__AA_._A._AA._AA._’
zen actiong

ST |
T via email, SM

fan () 2o b @

GP Reich
20121031

J Curry
20121207

Figure 12: Zenoss 4 event architecture

2.4.4 zenactiond

zenactiond has been completely rewritten for Zenoss 4. It is responsible for executing
actions associated with notifications such as paging, email, executing background
commands and raising notification TRAPs. zenactiond will periodically inspect the
signal queue for signal messages, dump them in to its share of memcached and
subsequently act on the messages as instructed in the associated notification.

2.4.5 memcached

Prior to Zenoss 4 each of the daemons had its own cache. This could be a wasteful
allocation of memory. With Zenoss 4, a memcached subsystem is introduced which
provides shared L2 memory cache for all daemons, offering much better performance.

memcached is configured in /etc/sysconfig / memcached. The default is to configure
64Mb for memcached (which is not pre-allocated; it is only used as necessary). This
should be increased to at least 1Gb on production systems with more than 100 devices
(and run /etc/init.d /memcached restart) . Also ensure that memcached is enabled in
S$ZENHOME | etc | zope.conf.

1 February 2013 Event Management for Zenoss Core 4 © Skills 1st Ltd 23

2.5 Other database-related changes in Zenoss 4

Not directly related to the events subsystem, but the Zope database (ZODB) that used to
be held in $ZENHOME/var/Data.fs and accessed by the zeoctl daemon, is now stored
in the same MySQL instance as zenoss_zep (and ZEO has gone).

The zodb database is the main Zope database and there is also a zodb_session
database which holds user preferences - think of zodb_session as an expanded set of
user's cookies; if necessary, it can be deleted and it will be recreated automatically.

Z0ODB is where all the object data is stored relating to devices, components, processes,
services, networks, MIBs, etc. The event processing daemons need access to the zodb
database to enrich events with device and component information.

Zope objects are known as pickles, typically a string representation of encoded data (a
blob) - in other words, treat the ZODB database as a “black box” (just as Data.fs was).
A JSON interface is provided to access data in the ZODB and the zendmd tool still
works in exactly the same way as in previous versions of Zenoss, despite the ZODB now
being in MySQL.

24 Event Management for Zenoss Core 4 © Skills 1st Ltd 1 February 2013

FileStorage & ZEO RelStorage & Memcached

= Per-process L1 memory cache. = Per-process L1 memory cache.

= Per-process L2 disk cache. = Shared L2 memory cache.

= Database layer caching provided = Database layer caching provided
exclusively by operating system's by MySQL.
file cache. = Must poll for invalidations.

= Must listen for invalidations. = Authenticated connections to

= Unauthenticated connections to database.
database.

Zope —
l zurm:tlnns
i

E—

FileStorage I“H"““

I zenvs
e
D o >
D o >

memcached

Figure 13: Comparison of old and new technologies to hold Zope ZODB database

To provide access to the the zodb MySQL database, a RelStorage subsystem is used as
a high performance backend to ZODB. RelStorage may also use memcached to further
enhance performance.

The older versions of Zenoss did not do much by way of indexing the events database.
With Zenoss 4 holding ZODB data as well as events data in MySQL, an effective
indexing mechanism was required so the Lucene package is used from Apache. Lucene
is a high-performance, full-featured text search engine library written entirely in Java.
It is used to hold indexes for both zodb and zenoss_zep.

2.6 Event life cycle

The life cycle of an event has eight phases:
e Event generation
e Device context — additional information about the device that generated the event
e Event class mapping — to distinguish one type (class) of event from another

e Event context - additional information pertinent to a class of event

1 February 2013 Event Management for Zenoss Core 4 © Skills 1st Ltd 25

e Event transform — manipulation of event fields
e Database insertion and de-duplication
e Resolution

e Ageing and archiving

Event Life Cycle — generation to initial database insertion

Event Generaiion Device Mapping Event Database
: context context Transform insertion
(intemal) =
eventClass —
" \ component] [
zenping . E
> Device | __ S |
zendisc '_p Context ! T dedupid / fingerprint
R LzEventaction E . evid / uuid
zenstatus iRl | ZEventClearClasse I eventState / status
Location i W
; ZEventSeverity 7] count
DEVIEEinay) O = [stateChange
| zenprocess I DEVIEESTOUpE i O firstTime
}— =) Systems Event | | .

. ipAddress Rule v astime .
| zenwin I Context J [eventClassMapping
| zenwinperf I l ' I

Regex :
lzencommandl g Drop L
eventClass event
lzenperfsnmpl J ;
L ‘- ZeNnoss_zep
zensyslog : database
£ .
o =
zeneventlog message £S
facility a2
zentrap priority £ 8|
. ntevid —
Event Generation ;4

(external)
Figure 14: Event life cycle, generation to database insertion

Processing of an event depends on the event class that an event is assigned to — the
value of its eventClass field. A description of each of these phases will be given here:
subsequent sections of the paper provide more details of some areas.

In Figure 14, the first six phases of the event life cycle are shown. The blue, dashed
path shows the progress of an internally generated Zenoss event, which does not pass
through an event mapping phase. An eventClass field is produced by the daemon that
generated the event. Its only way to apply a transform is as a class transform.

The purple path shows the progress of an event that is generated externally to Zenoss.
The initial parsing daemon must provide an eventClassKey field which is then used,
along with other fields, in an event class mapping Rule and/or Regex, which in turn
provides an eventClass field. After mapping, the event may pass through both an
event class transform and an event mapping transform.

26 Event Management for Zenoss Core 4 © Skills 1st Ltd 1 February 2013

An area that has changed fairly significantly in Zenoss 4 is the mechanism for resolving
and ageing events. Prior to Version 4, an event was fundamentally open (which also
encompassed eventState of Acknowledged and Suppressed as well as New) and such an
event resided in the status table of the events database; alternatively, an event was
Closed, in which case it was moved to the history table of the events database.

With Zenoss 4, the possible values of eventState have been expanded to include:

e Name Number Description

e New 0 A new event

e Acknowledged 1 Acknowledged by user or transform

e Suppressed 2 Event typically beyond a single point of failure
e Closed 3 Event resolved by a user

e C(leared 4 Event resolved by an automatic rule

e Dropped 5 Would never reach the MySQL database

o Aged 6 Event automatically closed according to the

severity and last seen time of the event.

These are well described in chapter 7 of the Zenoss Core 4 Administration Guide. The

huge difference here is that the new event_summary table in the MySQL database will
probably have Closed / Cleared / Aged events in it. The event_archive table has events
that have been automatically aged-out based on their severity and age.

2.6.1 Event generation

Fundamentally, events will either be generated by Zenoss itself in the process of
discovery, availability and performance checking, or events will be generated outside
Zenoss and captured by specialised Zenoss daemons.

1 February 2013 Event Management for Zenoss Core 4 © Skills 1st Ltd 27

Zenoss daemon Example of when event generated
zenping ping failure on interface
zendisc new device discovered
zenstatus TCP / UDP service unavailable
zenprocess process unavailable
zenwin Windows service failed
zenwinperf WMI performance data collection failure / threshold
zencommand ssh performance data collection failure / threshold
zenperfsnmp SNMP performance data collection failure / threshold
zenmodeler Configuration data changed on zenmodeler poll

Table 2.1.: Events generated by Zenoss itself

Zenoss daemon Example of when event generated
zensyslog processes syslog events received on UDP/514 (default)
zeneventlog processes Windows events received using WMI
zentrap processes SNMP TRAPs received on UDP/162

Table 2.2.: External events captured by specialised Zenoss daemons

Events generated internally by Zenoss need no further processing to interpret the event.
The daemon that generates the event parses the native information and assigns a value
to the eventClass field and any other relevant fields such as component, summary,
message and agent. Typically the eventClassKey field will be blank. Some Zenoss
daemons populate the eventKey field (for example an Interface discovery event will
populate the eventKey field with the IP address of the discovered interface).

Events that are initially generated outside Zenoss are captured by zensyslog,
zeneventlog or zentrap. These daemons each have a parsing mechanism to interpret
the native event into the Zenoss event format. The Python code for the zensyslog and
zentrap parsing is in $ZENHOME | Products | ZenEvents. (By default, $ZENHOME will
be /opt/zenoss). SyslogProcessing.py decodes syslog events; zentrap.py decodes SNMP
TRAPs.

The daemons for processing Windows WMI data used to be a standard part of the Core
code but with Zenoss 4 this has moved to a Zenoss-supplied ZenPack -
ZenPacks.zenoss.WindowsMonitor. zenwin, zenwinperf and zeneventlog can all be
found under that ZenPack's base directory.

Typically, the external event parsing mechanisms do not deliver a value for eventClass;
rather they deliver a value for the eventClassKey field, along with values for some

28 Event Management for Zenoss Core 4 © Skills 1st Ltd 1 February 2013

other fields such as component, summary, message and agent. It is then the job of the
event mapping phase to distinguish the event class.

2.6.2 Application of device context

Early in the event processing life cycle, the zeneventd daemon applies device context
to the event. This means that seven fields of the event are populated by determining the

device that generated the event and then looking up the following values for the device
in the ZODB database:

prodState

DevicePriority

Location

DeviceClass

DeviceGroups

Systems

ipAddress (may have already been assigned)

2.6.3 Event class mapping

Event class mapping tends only to be applicable to events that originate outside the
Zenoss system. It is the process by which an event is assigned a value for its
eventClass field and, potentially, other fields.

Typically, the event generation phase will deliver an event with a few fields populated;
generally this does not include the eventClass field but does include the eventClassKey
field. Often the Zenoss parsing daemon (such as zensyslog), will use the same
eventClassKey for several different native events. For example, an eventClassKey of
dropbear is used for several login security events. The component, summary, message
and agent fields may also be populated.

The event class mapping phase examines the event (such as it is, so far) and then uses a
number of tests to determine the eventClass to assign to this event:

1. An eventClassKey field must exist for mapping to be successful.

2. A Python Rule can be written to test any available field of the event or any
available attribute of the device from which the event came. Such rules can be
complex Python expressions, including logical ANDs and ORs. If the rule is
satisfied, the incoming event's eventClass field will be given the class associated
with that mapping. If the rule is not satisfied, this mapping is discarded, the
class is not associated, and the next mapping will be tested for a match. A Rule
does not have to exist in a mapping instance.

3. Ifthe Rule is satisfied (or does not exist), the mapping can then use a Regex
Python regular expression to parse the event's summary field, checking for
particular strings. The Regex can also assign parts of the summary field to new,

1 February 2013 Event Management for Zenoss Core 4 © Skills 1st Ltd 29

user-defined detail fields of the event. If a Rule exists and is satisfied, the class
mapping will apply, even if the Regex is not satisfied; any user-defined fields in
the Regex will not be created if the Regex does not match. If a Rule does not
exist then the Regex must be satisfied for the mapping (and any transform) to
apply.

4. The GUI dialogue that defines the mapping specifies the eventClassKey, the Rule,
the Regex and any Transform. A sequence number is also available so that if
multiple incoming events have the same eventClassKey then the sequence
number defines the order in which the various mappings will be applied, lowest

number first. The first Rule / Regex mapping combination that matches will be
applied.

Event class mapping is executed by the zeneventd daemon.

2.6.4 Application of event context

Event context is defined by the Configuration Properties (zProperties) of an event.
Event context can be defined at the event class level, for an event subclass, or at the
event mapping level. As with all object-oriented attributes, the values are inherited by
child objects so applying event context to a class automatically sets it for any subclasses
and subclass mappings. The three event context attributes are:

e zEventAction status | history | drop default is status
e zEventClearClasses by default this is an empty Python list of strings
e zEventSeverity Original by default

Event context is applied in the event life cycle, after Rule and Regex processing but
before any event transforms. Thus, the zEventAction zProperty can specify history but
an event transform could override that action by setting the evt._action value to
“status”.

Note that the status and history values reflect the old database tables prior to Zenoss 4.
status now maps to an eventState of New and history maps to an eventState of Closed,;
both will be stored in the event_summary database table.

Event context is applied by the zeneventd daemon.

2.6.5 Event transforms

Event transforms can be specified for an event class mapping or for an event class (or
subclass). A transform is written in Python and can be used to modify any available
fields of either the event or the device that generated the event. It can also create user-
defined fields.

From Zenoss 2.4, cascading event transforms mean that class transforms are applied
from every level in the appropriate class hierarchy, followed by any transform for an

30 Event Management for Zenoss Core 4 © Skills 1st Ltd 1 February 2013

applied event mapping. Prior to Zenoss 2.4, either a mapping transform was applied,
or a class transform, but not both. Class transforms were only applied to the exact
class, not from the event class hierarchy.

A transform in an event mapping will only be executed once the eventClassKey has been
matched, and the Rule has been satisfied (if it exists). If a Rule does not exist, any
Regex has to be satisfied for the transform to be executed.

Event transforms are executed by the zeneventd daemon.

2.6.6 Database insertions and de-duplication

Zenoss events are now stored in a MySQL database called zenoss_zep (used to be
events). The main tables for the event life cycle are the event_summary table for
recent events, the event_archive table for old events.

Some fields of the event are only assigned at database insertion time — they are not
available at event mapping or event transform time. These include:

count

eventState

evid

stateChange
dedupid
eventClassMapping
firstTime

lastTime

It is the Java zeneventserver daemon that is responsible for getting events into the database.

Zenoss automatically applies a duplication detection rule so that if a “duplicate” event
arrives, then the repeat count of an existing event will be incremented. “duplicate” is
defined as having the following fields the same:

device
component
eventClass
eventKey
e severity

If the event does not populate the eventKey field, then the summary field must also
match. The dedupid field is created by concatenating the above fields together,
separated by the pipe (vertical bar) symbol. Thus an example dedupid might be:

zenoss.skills-1st.co.uk|su|/Security/Su| |5|FAILED SU (to root)jane on /dev/pts/1

where the device is zenoss.skills-1st.co.uk, component is su, eventClass is /Security /Su ,
the eventKey is unset, severity is 5 (Critical), and the summary is FAILED SU (to root)
jane on /dev/pts/1 .

In Zenoss 4, the dedupid field is also known as the fingerprint.

1 February 2013 Event Management for Zenoss Core 4 © Skills 1st Ltd 31

When a new event is received by the system, the dedupid is constructed by the
zeneventd daemon. Transforms may modify either component fields of the fingerprint or
may directly modify the dedupid field.

When zeneventserver comes to insert the event in the database, if it matches the
dedupid for any active event, the existing event is updated with properties of the new
event occurrence, the event's count is incremented by one, and the lastTime field is
updated to be the created time of the new event occurrence.

Note that this is a subtle but significant change from prior versions of Zenoss as the
existing event is updated with properties of the new event; older versions of Zenoss
simply updated the count and lastTime fields. For example, if the fingerprint includes
an eventKey so does not include the summary, the resulting event will now show the
summary of the latest received duplicate event.

If the incoming event does not match the dedupid of any active events, then it is inserted
into the active event table with a count of 1, and the firstTime and lastTime fields are
set to the created time of the new event.
2.6.7 Resolution
Resolution of a problem represented by an event can happen in several ways:

A user closes the event (eventState = Closed)

The event context zEventAction zProperty for an event class is drop (the event is
discarded). For example, event class /Ignore.

The event context zEventAction zProperty for an event class is history
(eventState=Closed). For example, event class /Archive.

A transform sets evt._action to 'drop' (the event is discarded)
A transform sets evt._action to 'history' (eventState=Closed)
Another clearing event arrives that clears the initial event (eventState=Cleared)

The Event Manager settings have severity and lastSeen parameters that denote
which events will be automatically aged (eventState=Aged)

All the above events will still be in the event_summary table of the MySQL database.
The Event Manager parameter for Event Archive Threshold is the only automatic action

that moves events from event_summary to event_archive and it will move all events
with eventState of Closed, Cleared and Aged.

The more interesting forms of event resolution involve correlation of events; there are
two different mechanisms. The basic principle is that “good news” clears “bad news”.

The first clearing mechanism is that any event with a severity of Clear will search the
event_summary table for “similar” active events and set their eventState to Cleared
(not Closed).

The Zenoss Core 4 Administrators Guide defines this auto-clear fingerprint as:

32 Event Management for Zenoss Core 4 © Skills 1st Ltd 1 February 2013

e If component UUID exists:
o component UUID
o eventClass
o eventKey (can be blank)
e If component UUID does not exist:
o device
o component (can be blank)
o eventClass
o eventKey (can be blank)

n This can be a little confusing. The Event Console shows a “component” field. It does not
show a component UUID field. Strictly the component field in the Event Console shows
the element_sub_identifier field from the MySQL database table - the name of the
component. Some events generate a component UUID (Universally Unique Identifier)
and some do not. Inspecting the event in the database or using the JSON interface is
the only way to determine whether this unique component id field exists or not. Ifit
does exist then it should also, by implication, denote the device that the component
belongs to, hence the device field is unnecessary. (Versions of Zenoss prior to 4 did not
have a component UUID; “similar” was defined as having the same eventClass, device
and component fields.)

Either way in Core 4, the eventClass and the eventKey fields are significant. If the
component UUID does not exist then it is the element_sub_identifier (component name)
that must match, along with the device name (element_identifier in the MySQL table).

The second automatic clearing mechanism extends the auto-clear fingerprint definition
of eventClass. The event context of an event class includes zEventClearClasses which is
a list of other event classes that this “good news” event will clear, in addition to its own
class. The other conditions of the auto-clear fingerprint remain the same.

Note that the same effect can be achieved in a transform by assigning a list of class
names to evt._clearClasses .

All events with the same auto-clear fingerprint are cleared, not just the most recent.

The clearing event will automatically have its eventState set to Closed, provided it

n matches one or more “bad news” events. If it does not match any events then the
clearing event is dropped and will not be persisted to the zenoss_zep database. This is
to avoid filling up the database with redundant “good news” events.

When correlation takes place some of the existing “bad news” event fields are updated;
stateChange becomes the time when the event was resolved; clearid is populated
with the evid field of the clearing, “good news” event.

This automatic resolution of events is performed by the zeneventserver daemon.

1 February 2013 Event Management for Zenoss Core 4 © Skills 1st Ltd 33

2.6.8 Ageing and archiving

Maintenance is required on the tables of the zenoss_zep database or the disk will simply
fill up eventually. Three mechanisms are provided by the Event Manager:

e By default, events with severity less than Error will be Aged after an Event
Ageing Threshold of 4 hours; that is, the eventState will be set to Aged (strictly
the value 6).

e By default, the Event Archive Threshold is 4320 minutes (3 days). This means
any event with eventState of Closed, Cleared or Aged will be moved from the
event_summary table to the event_archive table of the zenoss_zep database.

e The Delete Archived Events Older Than (days) parameter is 90 by default. This is
the only parameter that automatically deletes data. It is not possible to fine-tune
this to delete, say, lower severity events after different intervals.

Zenoss prior to version 4 provided a utility,

$ZENHOME | Products | ZenUtils | ZenDeleteHistory.py

which could delete events selectively based on age and severity. This utility is not
shipped with Zenoss 4 and currently has no equivalent function.

Deleting data from the old history table in Zenoss 3 used to be very slow. In Zenoss 4,
the event_archive table is partitioned, by day, rather than being one huge file. This
means that deleting data is simply a matter of dropping partition files. This can be seen
from the mysql interface with:

show create table event_archive;

3 Events generated by Zenoss

In the course of discovery, availability monitoring and performance monitoring, Zenoss
may generate events to represent a change in the current status. Although many events
are “bad news” it should be recognised that events can also be “good news” - Interface
Up, Threshold no longer breached, etc.

Events generated by Zenoss are dependent on the various polling intervals configured.
To examine the default parameters, use the ADVANCED -> Collectors menu. Click on
localhost (the collector on the Zenoss system). Note that early versions of Zenoss used
the term and menu-option Monitors rather than Collectors.

34 Event Management for Zenoss Core 4 © Skills 1st Ltd 1 February 2013

vg][.-lv ﬂ]ﬂ # v

Edit
Performance

DASHBOARD EVENTS INFRASTRUCTURE REPORTS

ettings Collectors Monitoring Te

Collectors > localhost

Performance Collecior Configuration
Event Log Cycle Interval (secs)

SNMP Performance Cycle Interval (secs)
Process Cycle Interval (secs)

Process Parallel Jobs

Status Cycle Interval (secs)

Windows Service Cycle Interval (secs)
Windows WMI batch size (data objects)
Windows WMI query timeout (millisecs)
Config Cycle Interval (mins)

Ping Time Out (secs)

Ping Tries

Maximum Ping Packets in Flight

Ping Cycle Time (secs)

Maximum Ping Failures

Modeler Cycle Interval (mins)

Default Discovery Networks

Render URL

ADVANCED

* jane sicnour H

1440
720

None

/zport/RenderServer E

MyFooter ~ < 0Jobs~

Figure 15: Default parameters for localhost Collector

Parameters to note particularly are:

e SNMP Performance Cycle Interval 300 secs (5 mins)
e Process Cycle Interval 180 secs (3 mins)
e Status Cycle Interval 60 secs (1 min)
e Windows Service Cycle Interval 60 secs (1 min)
60 secs (1 min)

420 mins (12 hours)

e Ping Cycle Time
e Modeler Cycle Interval

3.1 zenping

The most basic level of availability checking is to ping-poll. The zenping daemon will,
by default, ping-poll each interface, every minute. An interface down event is generated
when the ping fails to get a response. This event is automatically cleared when a
similar ping is successful; meantime, while an interface remains down, the count field of
the event is increased.

The zenping daemon can detect when the network path to a device is broken, for
example if a single-point-of-failure router is down. With Zenoss 4 this is achieved using
nmap; with earlier versions, Zenoss built an internal topology based on querying
routing tables with SNMP.

If an event is received for an isolated element, an event is generated with an eventState
field of Suppressed and the summary field reports not only the interface for which the
ping failed, but also the causal device; for example:

ip 10.191.101.1 is down, failed at bino.skills-1st.co.uk

1 February 2013 Event Management for Zenoss Core 4 © Skills 1st Ltd 35

All other device availability monitoring is dependent on ping access. Once a ping has
failed, SNMP, process, TCP/UDP service and windows service monitoring will all be
suspended until ping access is restored. The count field of the higher level monitoring
events will not increase until ping access is resumed.

Also note that if there is no ping access, no performance information will be collected. If
a device really does not support ping, perhaps because of firewall restrictions, then
ensure that the zProperty zPingMonitorlgnore is set to True; this will permit SNMP and
ssh availability monitoring and performance data collection.

The logfile for zenping is zenping.log in $ZENHOME | log.

3.2 zenstatus

The zenstatus daemon can be configured to check for access to various TCP and/or UDP
ports on both Windows and Unix architectures. By default, it checks every minute.
Zenoss comes with a huge number of services pre-configured; these can be examined
from the INFRASTRUCTURE -> Ip Services menu. By default, the only service
monitors that are active are for smitp and http; the rest are set with monitoring disabled.

As with ping polling, a “good news” service event for a device automatically clears a
similar “bad news” event and the count field of the event increases whilst the service
remains down.

The logfile for zenstatus is zenstatus.log in $ZENHOME /log.

3.3 zenprocess

zenprocess monitors Windows and Unix systems for the presence of processes. In a
Unix context, this would be whether the process appears in a ps -ef listing; in a Windows
context, the process must appear in the Windows Task Manager (and note that this
check is case sensitive on both architectures). Monitoring is every 3 minutes, by default.

Configuration of process monitoring for a device is similar as for services — the
INFRASTRUCTURE -> Processes menu provides a way to configure processes to be
monitored. Zenoss 4 comes with definitions preconfigured for all the Zenoss processes.

Process monitoring is actually achieved using the Host Resources Management
Information Base (MIB) of SNMP, by retrieving the hrSWRun table. This means that
if SNMP access to a device is broken, there will be no process information.

As with the other availability daemons, “good news” events clear “bad news” events and
the count field increases on subsequent failed polls.

The logfile for zenprocess is zenprocess.log in $ZENHOME | log.

36 Event Management for Zenoss Core 4 © Skills 1st Ltd 1 February 2013

3.4 zenwin

The zenwin daemon ships with the ZenPacks.zenoss.WindowsMonitor ZenPack with
Zenoss 4 (it was a standard part of the Core code in earlier versions). It monitors
Windows services (not TCP / UDP services). These can be examined from the

INFRASTRUCTURE -> Windows Services. By default, none of these monitors are
active.

zenwin uses the Windows Management Instrumentation (WMI) interface to access
services on the remote system every minute, by default. The zProperties for a device (or
device class) must be configured to allow access to WMI before windows service polling
can be successful.

As with ping polling, a “good news” windows service event for a device automatically
clears a similar “bad news” event and the count field increases on subsequent failed
polls.

The logfile for zenwin is zenwin.log in $ZENHOME /log.

3.5 zenwinperf

zenwinperf is a new daemon for Zenoss 4 which is also part of the
ZenPacks.zenoss.WindowsMonitor ZenPack. With earlier versions of Zenoss, many
users deployed the excellent community WMI Data Source and WMI Windows
Performance ZenPacks to achieve something very similar to this new daemon.

zenwinperf provides performance monitoring of interfaces, filesystems, memory, CPU
and paging using the WMI protocol. Default thresholds are configured for some metrics
which then generate events when exceeded. It can be extended by the user to monitor
other perfmon metrics using the WMI protocol.

Data is gathered every 5 minutes.

The logfile for zenwinperf is zenwinperf.log in $ZENHOME | log.

3.6 zenperfsnmp

zenperfsnmp polls each device every 5 minutes, by default. It can collect both SNMP
performance information and status information for processes. Even if SNMP
performance monitoring is not configured, zenperfsnmp checks that the SNMP agent is
available.

Within 5 minutes of an SNMP poll failure, an “snmp agent down” event should be
generated. Within a further 3 minutes there should be an “Unable to read processes on
device ..” event, if process monitoring is configured. Note also that the count field for
individual missing process events should stop increasing. While SNMP access to the
device remains broken, the count field for the “Unable to read processes on device ..”
event will increase every 3 minutes.

1 February 2013 Event Management for Zenoss Core 4 © Skills 1st Ltd 37

The logfile for zenperfsnmp is zenperfsnmp.log in $ZENHOME | log.

3.7 zencommand

The zencommand daemon performs monitoring based on running commands, typically
over an ssh connection. Like zenperfsnmp and zenwinperf it uses performance
templates to monitor metrics and can generate an event if a threshold is breached.

The logfile for zencommand is zencommand.log in $ZENHOME /log.

4 Syslog events

The Unix syslog mechanism is pervasive throughout all versions of Unix / Linux
although slightly different versions and formats exist. There are also open source
implementations of syslog for Windows systems and many networking devices also
support the syslog concept.

Typically system messages are output to one or more log files such as

/var/log | messages. The syslog subsystem can also be configured to send syslog
messages to a central syslog rather than holding files on each system. The well-known
default port for forwarding syslog messages is UDP/514.

A standard syslog system is configured by the syslog.conf file, typically in /etc . A newer
version of syslog is implemented on some systems, syslog-ng, which has greater filtering
capabilities. The syslog-ng configuration file is typically /etc/syslog-ng/syslog-ng.conf.

Another variation is rsyslogd which is typically shipped with newer RedHat / CentOS
SuSE systems, configured through /etc/rsyslog.conf.

A syslog message includes a priority and a facility. The priorities are:

0 emerg
alert

crit

err
warning
notice

info

debug
Facilities include:

auth (4) authpriv (10)

<N O Ot WO N

cron (9) daemon (3)
ftp (11) kern (0)
lpr (6) mail (2)

38 Event Management for Zenoss Core 4 © Skills 1st Ltd 1 February 2013

news (7) syslog (5)
user (1) uucp (8)

These definitions can be found in syslog.h (typically in /usr/include/sys). Both priority
and facility are encoded in a single 32-bit integer where the bottom 3 bits represent
priority and the remaining 28 bits are used to represent facilities.

For example, if the facility/priority tag is <22>, this would be 00010110 in binary, where
the bottom 110 represents a priority of 6 (info) and the top 00010 represents a facility of
2 = mail.

4.1 Configuring syslog.conf

Any device that is going to report syslog events to Zenoss must have its syslog.conf file
configured with the destination address of the Zenoss system. The original syslog.conf
permits filtering based on priority and facility so, a catch-all statement to send all
events to the Zenoss system, would be:

*.debug @<IP address of your Zenoss system>
This also works for rsyslogd. See Figure 16 for an rsyslog / syslog example that forwards
to zen42.class.example.org all facilities with priority of notice and above but all cron
messages are filtered out; authpriv messages will be forwarded with severity info and
above.

jane@zen42:/etc

File Edit View Search Terminal Help
uucp,news.crit /var/log/spooler

Save boot messages also to boot.log

local?.* /var/log/boot. log
begin Torwarding rule

The statement between the begin ... end define a SINGLE forwarding

rule. They belong together, do NOT split them. IT you create multiple
forwarding rules, duplicate the whole block!

Remote Logging (we use TCP for reliable delivery)

#

An on-disk queue is created for this action. If the remote host is

down, messages are spooled to disk and sent when it is up again.

#sWorkDirectory /var/lib/rsyslog # where to place spool files
#sActionQueueFileName fwdRulel # unique name prefix for spool files
#sActionQueueMaxDiskSpace 1g # lgb space limit (use as much as possible)
#sActionQueueSaveOnShutdown on # save messages to disk on shutdown
#sActionQueueType LinkedlList # run asynchronously
#sActionResumeRetryCount -1 # infinite retries if host 1is down

remote host is: name/ip:port, e.g. 192.168.0.1:514, port optional
#* * @@remote-host:514

#* .warning @zend2.class.example.org

#*,* @zend2.class.example.org

*.notice;cron.!debug;authpriv.info @zend2.class.example.org

5 ### end of the forwarding rule ###

"rsyslog.conf" line 83 of 83 --100%-- col 1

Figure 16Configuration file for rsyslog sending selected events to Zenoss server

1 February 2013 Event Management for Zenoss Core 4 © Skills 1st Ltd 39

syslog-ng.conf requires at least a source, a destination and a log statement. syslog-ng
offers superior filtering over the original syslog so one or more filter statements may
also be present.

= jane@bino:~ - Shell - Konsole <2> (_Io] [x]

Session Edit View Bookmarks Settings Help

'E -
source src i
include internal syslog-ng messages
internal();
the default log socket for local logging:
unix—dgram (" deuslog");
i
uncomment to process log messages from network:
You DON'T want to do this on a Zenoss system?
i
#udp(ip("0.0.6.0") port(514));

¥

Filter definitions

i

filter f_iptables { facilitytCkern) and match("IN=") and match("OUT="): }:

filter f_console { level(warn) and facilityCkern) and not filter(f_iptables)
or level(err) and not facilityCauthpriv): }:

filter f_mailinfo { level(info) and facility(maill: *:
filter f mailwarn { level (uwarn) and facility(maill): ¥:
filter f_mailerr { level(err, crit) and facility(maill): *:
filter f_mail { facility(mail): *:
filter f crom { facility(crom): %:
filter f_local { facility(local®, locall, localZ, local3,

local4, local5, localb, local?): X:
level (warn, err, crit) and not filter(f_iptables): }:
level(alert): X:

filter f warn
filter f_alert

Logs to zenoss on 10.0.0.131

destination zenoss { wdp(“10.0.0.131" port(514)): ¥:

#tlog { source(src): filter(f warn); destination(zenoss): }:
log { sourcelsrc): destination(zenoss); ¥;

[| shel |

Figure 17: syslog-ng.conf to send all events to Zenoss system at 10.0.0.131 (no filtering active)

44,1 25 |«

4.2 Zenoss processing of syslog messages

To collect syslog messages with Zenoss, the zensyslog process automatically starts on
port UDP/514 and collects any syslog messages directed from other systems. zensyslog
then parses these messages into Zenoss events. You must ensure that the syslog.conf
file on the Zenoss system does not enable collecting remote syslogs or the syslogd and
zensyslog processes will clash over who gets UDP/514 (it is possible to reconfigure either
daemon, if required).

40 Event Management for Zenoss Core 4 © Skills 1st Ltd 1 February 2013

To examine the incoming syslog messages and the parsing that zensyslog performs, the
level of zensyslog logging can be increased.

1.
2.
3.

9.

Use the INFRASTRUCTURE -> Settings -> Daemons menu.
Click the edit config link for the zensyslog daemon.
Change the following parameters and click Save:
logorig select this
logseverity Debug
Inspect the underlying configuration file in $ZENHOME |/ etc | zensyslog.conf.

The logorig line says to log the original incoming syslog message; it will be in
$ZENHOME |/ log | origsyslog.log. Note that this parameter is unique to zensyslog
and is useful for debugging.

The logseverity line is a generic Zenoss daemon parameter; a value of 10 is the
maximum Debug level.

Don't forget to Save this change

Use the Restart link to recycle zensyslog. Alternatively, as the zenoss user, issue
the command:

zensyslog restart

Examine the zensyslog log file in $ZENHOME |/ log | zensyslog.log

10.A new incoming event starts with a line showing hostname and ip address, eg.

host=zen241.class.example.org, ip=172.16.222.241

11.The next 2 lines show the raw message and the decoding for facility and priority.

12. Lines starting with tag show the zensyslog parsing process as it tests the

incoming line against various Python regular expressions, hopefully ending with
a tag match line.

13.1If a match is successful, an eventClassKey may be determined

14.The last line for a parsed event should be a Queueing event .

1 February 2013 Event Management for Zenoss Core 4 © Skills 1st Ltd 41

= zenoss@zen42:/opt/zenoss/log - ox
File Edit View Search Terminal Help

2012-12-14 11:58:26,943 DEBUG zen.Syslog: host=zend2.class.example.org, ip=192.168.10.42 =
2012-12-14 11:58:26,943 DEBUG zen.Syslog: <85>Dec 14 11:58:26 zend42 su: pam unix(su:auth): authentication failure; logname=jane uid=1337 euid=8 tty=pts/0 ruser=zenoss rho
st= user=root

2012-12-14 11:58:26,944 DEBUG zen.Syslog: fac=1@ pri=35

2012-12-14 11:58:26,944 DEBUG zen.Syslog: facility=10 severity=2

2012-12-14 11:58:26,944 DEBUG zen.Syslog: Dec 14 11:58:26 zend2 su: pam_unix(su:auth): authentication failure; logname=jane uid=1337 euid=0 tty=pts/@ ruser=zenoss rhost=
user=root

2012-12-14 11:58:26,944 DEBUG zen.Syslog: parseHEADER timestamp=Dec 14 11:58:26

2012-12-14 11:58:26,944 DEBUG zen.Syslog: zend2 su: pam unix(su:auth): authentication failure; logname=jane uid=1337 euid=0 tty=pts/0 ruser=zenoss rhost= user=root
2012-12-14 11:58:26,944 DEBUG zen.Syslog: tag regex: ~(?P<summary>-- (?P<eventClassKey>MARK) --)

2012-12-14 11:58:26,944 DEBUG zen.Syslog: tag regex: ~: \d{4} ‘\w{3}\s+\d{1,2}\s+\d{1,2}:\d\d:\d\d \w{3}: (?P<eventClassKey=[":]+): (?P<summary=.*)

2012-12-14 11:58:26,945 DEBUG zen.Syslog: tag regex: ~(?P<component>.+)\[(?P<ntseverity=\D+)\] (?P<ntevid=\d+) (?P<summary=.*)

2012-12-14 11:58:26,945 DEBUG zen.Syslog: tag regex: %CARD-\S+:(SLOT\d+) %(?P<eventClassKey>\S5+): (?P<summary=.*)

2012-12-14 11:58:26,945 DEBUG zen.Syslog: tag regex: %(7P<eventClassKey>(?P<component>\S+)-\d-\5+): *(7P<summary>.*)

2012-12-14 11:58:26,945 DEBUG zen.Syslog: tag regex: ~(?P<ipAddress>\5+)\s+(?P<summary>(7P<eventClassKey>CisACS \d\d \S+)\s+(?P<eventKey>\5+)\5.%)

2012-12-14 11:58:26,945 DEBUG zen.Syslog: tag regex: device id=\S+\s+\[\S+\](?P<eventClassKey>\S+\d+):\s+(?P<summary>.*)\s+\((?P<originalTime>\d\d\d\d-\d\d-\d\d \d\d:\d\d|_
\dvd)\) 1
2012-12-14 11:58:26,945 DEBUG zen.Syslog: tag regex: “\[[":]+: (?P<component=[":]1+)["\]]+\]: (?P<summary>.*)

2012-12-14 11:58:26,945 DEBUG zen.Syslog: tag regex: (?P<component>\S+)\[(?P<pid>\d+)\]:\s*(?P<summary>.*

2012-12-14 11:58:26,945 DEBUG zen.Syslog: tag regex: (?P<component=\S+): (?P<summary=.*)

2012-12-14 11:58:26,945 DEBUG zen.Syslog: tag match: {'component': 'su', 'summary': 'pam unix(su:auth): authentication failure; logname=jane uid=1337 euid=0 tty=pts/0 rus
er=zenoss rhost= user=root'}

2012-12-14 11:58:26,946 DEBUG zen.Syslog: [eventClassKey=su

2012-12-14 11:58:26,946 DEBUG zen.zensyslog: Queued event (total of 1) {'firstTime': 1355486306.942583, 'severity': 2, 'facility': 10, 'eventClassKey': u'su', 'component
: 'su’, ‘summary': 'pam_unix(su:auth): authentication failure; logname=jane uid=1337 euid=6 tty=pts/@ ruser=zenoss rhost= user=root', 'priority': 5, 'eventGroup': 'syslo
g', 'originalTime': 'Dec 14 11:58:26', 'device': 'zen42.class.example.org', 'lastTime': 1355486306.942583, 'ipAddress': '192.168.10.42', 'monitor': 'localhost'}
2012-12-14 11:58:27,853 DEBUG zen.zensyslog: Sending 1 events, @ perfevents, @ heartbeats.

2012-12-14 11:58:27,879 DEBUG zen.zensyslog: Events sent

2012-12-14 11:58:38,953 DEBUG zen.pbclientfactory: pinging perspective

2012-12-14 11:58:38,956 DEBUG zen.pbclientfactory: perspective ponged

E612-12-14 11:58:38,957 DEBUG zen.pbclientfactory: Cancelling ping timeout

"zensyslog.log" [readonly] line 56062 of 56062 --188%-- col 1

Figure 18: zensyslog.log showing parsing process

Whenever different native event log systems are integrated there is almost inevitably a
mismatch of severities. The following table demonstrates this.

Zenoss syslog priority Windows
Critical (red) (5) emerg (0) Error (1)
Error (orange) (4) alert (1) Warning (2)

Warning (yellow) (3) crit (2) Informational (3)
Info (blue) (2) err (3) Security audit success (4)

Debug (grey) (1) warning (4) Security audit failure (5)

Clear (green) (0) notice (5)
info (6)
debug (7)

Table 4.1.: Event severities for Zenoss, syslog and Windows

Note that the numeric value of Zenoss event severity decreases as events get less
critical but that the priority of syslog events increases as events get less critical.

Default mapping from syslog priority to Zenoss event severity, is performed by
$ZENHOME |/ Products | ZenEvents | SyslogProcessing.py — search for defaultSeverityMap
around line 187 in Core 4.2. The result is that:

e syslog priority < 3 (emerg, alert, crit) map to Zenoss severity 5 (Critical)
e syslog priority 3 (err) maps to Zenoss severity 4 (Error)
e syslog priority 4 (warning) maps to Zenoss severity 3 (Warning)

e syslog priority 5 or 6 (notice , info) map to Zenoss severity 2 (Info)

42 Event Management for Zenoss Core 4 © Skills 1st Ltd 1 February 2013

Out-of-the-box, all syslog events map to the Zenoss event class of /Unknown .

SyslogProcessing.py is the code that parses any incoming syslog message and generates
a Zenoss event.

The first section has a series of Python regular expressions to match against the
incoming syslog line. Each expression is checked in turn until a match is found. If no
match is found then an entry goes to $ZENHOME /log | zensyslog.log with parseTag
failed .

zenoss@zend2:/opt/zenoss/Products/ZenEvents

File Edit View Search Terminal Help

Regular expressions that parse syslog tags from different sources

A tuple can also be specified, in which case the second item in the

tuple is a boolean which tells whether or not to keep the entry (default)
or to discard the entry and not create an event.

parsers = (

generic mark

r"~(?P<summary>-- (?P<eventClassKey>MARK) --)",

Cisco UCS
: 2010 Oct 19 15:47:45 CDT: snmpd: SNMP Operation (GET) failed. Reason:2 reqId (257798979) errno (42) error index (1)
r'~:ond{4} wwi{3hs+d{l,2s+\d{1,2}:\dvd:vdrvd \w{3}: (?P<eventClassKey=[":]+): (7P<summary=.*)',

ntsyslog windows msg
r"~(?P<component>.+)\ [(?P<ntseverity>\D+)\] (?P<ntevid>\d+) (?P<summary>.*)",

cisco msg with card indicator
r"%CARD-\5+: (SLOT\d+) %(?P<eventClassKey>\S+): (?P<summary>.*)",

cisco standard msg
r"%(?P<eventClassKey>(?P<component>\S+)-\d-\5+): *(?P<summary>.*)",

Cisco ACS
r“~(?P<ipAddress=>\5+)\s+(?P<summary>(?P<eventClassKey>CisACS \d\d \S+)\s+(?P<eventKey=\5+)\s.*)",

netscreen device msg
r*device id=\5+\s+\[\S+\](?P<eventClassKey>\S+\d+):\s+(?P<summary>.*)\s+\((?P<originalTime>\d\d\d\d-\d\d-\d\d \d\d:\d\d:
\dN) Y,

NetApp

[deviceName: 10/100/1000/ela:warning]: Client 10.0.08.101 (xid 4251521131) is trying to access an unexported mount (fil
d 64, snapid @, generation 6111516 and flags 8x® on volume @xc97d8%a [No volume name available])

r"~\[[~:]+: (?P<component>[~:]+)[~\]]+\]: (?P<summary>.*}",

unix syslog with pid
r" (?P=component=4\5+)\ [(?P<pid=\d+)\] :\s*(?P<summary=.*)",

unix syslog without pid
r" (?P<component>\S+): (?P<summary>.*}",

adtran devices
r*~(?7P<deviceModel=["\[]+)\ [(?P<deviceManufacturer=ADTRAN)\] : (?P<component=[~% |]+\ | \d+\ | \d+)\ | (?P<summary=.*)",

"SyslogProcessing.py" 299 lines --21%-- 64,8-1 9

Figure 19: SyslogProcessing.py regular expressions to match syslog tags

The main body of SyslogProcessing.py starts by assigning values from the incoming
event to Zenoss event class fields, as follows:

1 February 2013 Event Management for Zenoss Core 4 © Skills 1st Ltd 43

def process(self, msg, ipaddr, host, rtime):
evt = dict (device=host,
ipAddress=ipaddr,
firstTime=rtime,
lastTime=rtime,
eventGroup='syslog')

At this stage, no account of duplicates is taken so the firstTime and lastTime fields are
both set to the timestamp on the incoming event. Note that the Zenoss eventGroup field
is hardcoded at this stage to syslog .

zenoss@zend42:/opt/zenoss/Products/ZenEvents

File Edit View Search Terminal Help

process(self, msg, ipaddr, host, rtime):

Process an event from syslog and convert to a Zenoss event

@param msg: message from a remote host
@type msg: string
@param ipaddr: IP address of the remote host
@type ipaddr: string
@param host: remote host's name
@type host: string
@param rtime: time as reported by the remote host
@type rtime: string
evt = dict({device=host,
ipAddress=ipaddr,
firstTime=rtime,
lastTime=rtime,
eventGroup="syslog')
slog.debug("host=%s, ip=%s", host, ipaddr)
slog.debug(msg)

evt, msg = self.parsePRI{evt, msg)
f evt['priority'] > self.minpriority:

evt, msg = self.parseHEADER(evt, msg)
evt = self.parseTag(evt, msg)
I evt:
#rest of msg now in summary of event
evt = self.buildeventClassKey(evt)
evt['monitor'] = self.monitor
self.sendEvent(evt)

"SyslogProcessing.py" 299 lines --41%--

Figure 20: SyslogProcessing.py process main routine

parsePRI is the Python function called to parse out the syslog priority and facility.

The defaultSeverityMap function is called from within the parsePRI function to set the
severity field of the Zenoss event.

44 Event Management for Zenoss Core 4 © Skills 1st Ltd 1 February 2013

El Zenoss@zend2:/opt/zenoss/Products/ZenEvents

File Edit View Search Terminal Help
def parsePRI(self, evt, msg):

Parse RFC-3164 PRI part of syslog message to get facility and priority.

@param evt: dictionary of event properties

@type evt: dictionary

@param msg: message from host

@type msg: string

@return: tuple of dictionary of event properties and the message
@type: (dictionary, string)

pri = self.defaultPriority
fac = None
if msg[:1] = '<':

pos = msg.finé('>']
fac, pri = LOG_UNPACK(int(msg[l:pos]))
msg = msg[pos+1:]

elif msg and msg[@] < * ':
fac, pri = LOG KERM, ord(msg[@])
msg = msg[1l:]

evt['facility'] = fac

evt['priority'] = pri

evt(['severity'] = self.defaultSeverityMap(pri)

slog.debug("fac=%s pri=%s", fac, pri)

slog.debug("facility=%s severity=%s", evt['facility'], evt['severity'])
eturn evt, msg

def defaultSeverityMap(self, pri):

Default mapping from syslog priority to severity.

@param pri: syslog priority from host
@type pri: integer

@return: numeric severity

@type: integer

sev =1
if pri < 3: sev =5
elif pri == 3: sev = 4
=117 pri == 4: sev = 3
elif pri == 5 or pri == 6: sev = 2
et sev
"SyslogProcessing.py" 299 lines --67%-- 201,9

Figure 21: SyslogProcessing.py parsing of priority, facility and severity

Next, the parseHEADER function is called to extract the timestamp and host name from
the incoming event. The device and ipAddress fields of the Zenoss event are set at the
end of this function.

1 February 2013 Event Management for Zenoss Core 4 © Skills 1st Ltd 45

El zenoss@zend42:/opt/zenoss/Products/ZenEvents

Eile Edit View Search Terminal Help

timeParse = \

re.compile("~(%S{3} [\d 1{2} [\d 1{2}:[\d 1{2}:[\d]{2}(?:\.\d{1,3})?) (.#*)").search

notHostSearch = re.compile("[\[:]").search

" parseHEADER(self, evt, msg):
Parse RFC-3164 HEADER part of syslog message. TIMESTAMP format is:
MMM HH:MM:55 and host is next token without the characters '[" or ':'

@param evt: dictionmary of event properties
@type evt: dictionary
@param msg: message from host
@type msg: string
@return: tuple of dictionary of event properties and the message
@type: (dictionary, string)
slog.debug(msg)
m = re.sub("Kiwi Syslog Daemon ‘\d+: \d+: "
"\S5{3} [\d {2} [\d 1{2}:[\d 1{2}:[":]+: ", "", msg)
m = self.timeParse(msg)
if m:
slog.debug("parseHEADER timestamp=%s", m.group(1))
evt['originalTime'] = m.group(1)
msg = m.group(2).strip()
msglist = msg.split()
f self.parsehost and not self.notHostSearch(msglist[@]):
device = msglist[8]
if device.find('@') »>= 0:
device = device.split('@', 1)[1]
slog.debug("parseHEADER hostname=%s", evi['device'])
msg = " ".join{msglist[1:])
evt['device'] = device
f isip(device):
evt['ipAddress'] = device

if 'ipAddress' in evt:
del(evt['ipAddress'])
et evt, msg

"SyslogProcessing.py" 299 lines --80%--

Figure 22: SyslogProcessing.py processing the header information

241,0-1

The parseTag function is called to parse out the syslog tag, using the regex expressions
at the beginning of the file. If no match exists then a parseTag failed message is logged.
The end of the function returns the remainder of the incoming message in the Zenoss
event summary field.

46

Event Management for Zenoss Core 4 © Skills 1st Ltd

1 February 2013

El zenoss@zen42:/opt/zenoss/Products/ZenEvents

File Edit VWiew Search Terminal Help
r parseTag(self, evt, msg):

Parse the RFC-3164 tag of the syslog message using the regex defined
at the top of this module.

@param evt: dictionary of event properties

@type evt: dictionary

@param msg: message from host

@type msg: string

@return: dictionary of event properties

@type: dictionary

slog.debug(msg)

‘or parser, keepEntry in compiledParsers:
slog.debug("tag regex: %s", parser.pattern)
m = parser.search(msg)
1 ot m:

elif ~fmkeepEntry:
slog.debug("Dropping syslog message due to parser rule.")
et None
slog.debug("tag match: %s", m.groupdict()})
evt.update(m.groupdict())

.élog.info(“No matching parser: '%s'", msg)

evt['summary'] = msg
et evt
"SyslogProcessing.py" 299 lines --90%-- 271,
Figure 23: SyslogProcessing.py parsing the syslog tag

The crux of event processing in Zenoss is to derive an eventClassKey — this is done
with the buildEventClassKey function.

1 February 2013 Event Management for Zenoss Core 4 © Skills 1st Ltd 47

El zenoss@zend2:/opt/zenoss/Products/ZenEvents

File Edit View Search Terminal Help

buildEventClassKey(self, evt):

Build the key used to find an events dictionary record. If ewventClass
is defined it is used. For NT events "Source Evid" is used. For other
syslog events we use the summary of the event to perform a full text
or'ed search.

@param evt: dictionary of event properties
@type evt: dictionary

@return: dictionary of event properties
@type: dictionary

'eventClassKey' evt 'eventClass' evt:
evt
'ntevid’ evt:
evi['eventClassKey'] = "%s %s" % (evt['component'],evt['ntevid'])
'component’ evt:
evi['eventClassKey'] = evt['component']
‘eventClassKey' evt:

slog.debug("eventClassKey=%s", evt['eventClassKey'])
:evt['euentclassKey'] = evi['eventClassKey'].decode('latin-1")
evé['eventClassKey'] = evi['eventClassKey'].decode('utf-8")
;log.debugf”No eventClassKey assigned")

evt
"SyslogProcessing.py" 299 lines --180%-- 299,

Figure 24: SyslogProcessing.py determining the EventClassKey
Note that if the event has the component field populated then that is used as the
eventClassKey after checking for a pre-existing eventClassKey and for an ntevid field.

5 Zenoss processing of Windows event logs

5.1 Management using the WMI protocol

Zenoss prior to version 4 shipped Windows monitoring as part of the Core code. Zenoss
4 ships Windows support with the ZenPacks.zenoss.WindowsMonitor ZenPack which
has a prerequisite of ZenPacks.zenoss.PySamba. These are Zenoss-provided Core
ZenPacks.

If a Windows device supports SNMP then it is perfectly possible to use that protocol,
especially as most Windows SNMP agents also support the Host Resources MIB so some
system information is available in addition to the standard MIB-2 network type
information.

The Zenoss Windows ZenPacks introduce the /Server/Windows/WMI device class which
has both WMI modeler plugins and WMI performance templates associated with it.
Target devices should be added to this class or subclasses thereof. This allows
monitoring using the Windows Management Instrumentation (WMI) protocol. A userid
and password need to be configured on target hosts to permit WMI access from the

48 Event Management for Zenoss Core 4 © Skills 1st Ltd 1 February 2013

Zenoss server; it also means that firewalls both on the Windows devices and any
intervening network firewalls, must be configured to permit WMI access. The Zenoss
Server must then be configured with matching Windows zProperties (zWinUser and
zWinPassword) for the target devices / device classes. There are a few other Windows-
specific Configuration Properties - see Figure 25. These zProperties can be changed for
a device class or for a specific device.

1-@ Ist DASHBOARD EVENTS INFRASTRUCTURE REPORTS ADVANCED Q v * jane siGnouT H
':"-"--' """""""'”,"""'","’"""""""""""""'
PN MNetworks Processes IP Services Windows Services Network Map Manufacturers Page Tips
g;:gomq?dg’ls?v? #.2xample.on | I m @0 Up 0 | Production | Normal
- 172.16.222.203 DEVICE STATUS PRODUCTICN STATE PRIORITY
e o) @] osee oca com
Events Jalocal, Caiegory Mamel e el
4 Components win
o Network Routes (4) ‘Windows zWinEventlog true /Server/Windows
OImarfacas (7) ‘Windows zWinEventlogClause
@ Processors (1) Yes Windows ZWinEventiogMinSeverity 4 /ServerWindows/\WMI/devices/win2. ..
@ Windows Services (102) Windows zWinPassword e /ServerWindows
@File Systems (1) 3 Window's zWinPerfCycleSeconds 300 /Server’Windows/WMI
Graphs Windows zWinPerfCyclesPerConnection 10 /ServerWindows/WMI
Modeler Plugins Windows zWinPerfTimeoutSeconds 10 /
Windows zWinUser zenwmi /Server'Windows
Software
My Example Menu 1
Custom Properties
Administration L
4_Monitarina Temnlates "’i DISPLAYING 1 - 6 of 8 ROWS
CT20 8 A e

Figure 25 zProperties for Windows targets

ZenPacks.zenoss.WindowsMonitor provides three new daemons:

e zenwin monitors windows services using WMI
e zenwinperf collects performance data using the WMI protocol
e zeneventlog retrieves Windows event log information using WMI

The three zWinPerf... zProperties fine-tune the configuration of the zenwinperf daemon;
the zWinEventlog parameter must be True to collect Windows events from a target
device.

The zWinEventlogMinSeverity property defines the least serious severity events that
will be forwarded from Windows to Zenoss. Note that the numeric denotation of
windows event severities and their names and support currency, have changed over the
life of Zenoss. See Table 4.1 on page 42 for current valid severities. Also note that if you
change this parameter you are presented with a list of Zenoss severities, not Windows-
style severities; again refer to the earlier table for a translation. If you want to include
all Windows severities, including security audit failure (5), you need to select the Clear
severity in the dropdown menu when changing zZWinEventlogMinSeverity.

The zWinEventlogClause was introduced during the lifetime of Zenoss 3 to help filter
events from Windows devices. Consult the Zenoss Core 4 Administrators Guide, chapter

1 February 2013 Event Management for Zenoss Core 4 © Skills 1st Ltd 49

6.6.6 for documentation and examples. This parameter is rather obtuse. Fundamentally
a Windows Query Language (WQL) query is constructed to be run by zeneventlog:

SELECT * FROM __ InstanceCreationEvent
WHERE TargetInstance ISA 'Win32_NTLogEvent'
AND TargetInstance.EventType <= zWinEventlogMinSeverity

Any zWinEventlogClause is logically AND'ed with this WQL; thus if you want to ONLY
see events with event id of 528 and 529 (Successful logon and Logon failure), configure
zWinEventlogClause to be:

(TargetInstance.EventCode = 529 or TargetInstance.EventCode = 528)

Strictly, the zeneventlog daemon polls target Windows systems for events and parses
them in to Zenoss-style events. Typically, the Source field on the Windows event maps to
the component field in the Zenoss event; the Zenoss eventClassKey is composed of the
Windows <Source>_<Event ID> (eg. Perflib_2003); the Zenoss eventGroup becomes the
Windows log file name (Application, Security, etc) and the Windows Event ID is mapped
to the Zenoss ntevid field.

To see the workings of zeneventlog, change the logging level to Debug (10), restart the
daemon and inspect $ZENHOME |/ log | zeneventlog.log.

A good way to see the WQL statement being used is to run zeneventlog as a one-off

command in the foreground:

zeneventlog run -v 10 -d win2003.class.example.org
Zenoss@zen42:/opt/zenoss/etc

File Edit View Search Terminal Help

2012-12-17 19:24:16,511 DEBUG zen.zeneventlog: Scanning device win2@@3.class.example.org [172.16.222.2083] [~
2012-12-17 19:24:16,511 DEBUG zen.zeneventlog: Connecting to win2®03.class.example.org [172.16.222.203]
2012-12-17 19:24:16,511 DEBUG zen.collector.scheduler: Task win2@@3.class.example.org changing state from RUNNING to CONNE
CTING
2012-12-17 19:24:16,511 DEBUG zen.Watcher: Starting watcher on win2@803.class.example.org
2012-12-17 19:24:16,511 DEBUG zen.Watcher: connecting to win2083.class.example.org
2012-12-17 19:24:16,726 DEBUG zen.pysamba: OK: win2803.class.example.org - Connect
2012-12-17 19:24:16,727 DEBUG zen.Watcher: connected to win2083.class.example.org sending query

SELECT * FROM _ InstanceCreationEvent

WHERE TargetInstance ISA 'Win32 NTLogEvent'

AND TargetInstance.EventType <= 5

AND (TargetInstance.EventCode = 529 or TargetInstance.EventCode = 528)
2812-12-17 19:24:16,743 DEBUG zen.pysamba: OK: win2803.class.example.org - ExecNotificationQuery
2012-12-17 19:24:16,743 DEBUG zen.Watcher: got guery response from win20@3.class.example.org
2012-12-17 19:24:16,744 DEBUG zen.zeneventlog: Connected to win2@@3.class.example.org [172.16.222.283]
2012-12-17 19:24:16,744 DEBUG zen.zeneventlog: Polling for events from win2@@3.class.example.org [172.16.222.283]
2012-12-17 19:24:16,744 DEBUG zen.collector.scheduler: Task win2@@3.class.example.org changing state from CONNECTING to PO
LLING
2012-12-17 19:24:16,744 DEBUG zen.Watcher: Fetching events for win2803.class.example.org
2012-12-17 19:24:16,875 DEBUG zen.pysamba: OK: win2803.class.example.org - Retrieve result data.
2012-12-17 19:24:16,875 DEBUG zen.Watcher: Events fetched for win2083.class.example.org
2012-12-17 19:24:16,875 DEBUG zen.collector.scheduler: Task win2@@3.class.example.org changing state from POLLING to PROCE
SSING
2012-12-17 19:24:16,875 DEBUG zen.zeneventlog: Successful collection from win20@83.class.example.org [172.16.222.283], resu
1t=[]
2012-12-17 19:24:16,876 DEBUG zen.zeneventlog: Queued event (total of 1) {'device': 'win2@83.class.example.org’, 'euentCla[{

ss': '/Status/wWmi', "component': 'zeneventlog', 'severity': @, 'summary’: 'WMI connection to win20@3.class.example.org up.
'}

2812-12-17 19:24:16,876 DEBUG zen.zeneventlog: Device win2083.class.example.org [172.16.222.283] scanned successfully, 8 e
vents processed [v

Figure 26Partial output from zeneventlog run -v 10 -d win2003.class.example.org showing WQL statement

50 Event Management for Zenoss Core 4 © Skills 1st Ltd 1 February 2013

Many Windows event log events are automatically mapped to event classes but they
may have a low severity (such as Debug) and they may have their zEventAction event
zProperty set to history so that they do not appear in the status table of the events
database.

5.2 Management of Windows systems using syslog

There is also a syslog utility available for Windows systems from Datagram Consulting
at http:/syslogserver.com . The client utility is SyslogAgent and is made available
under the GNU license. Syslog server utilities for Windows are also available as
chargeable products. This means that Windows event logs can also be collected with
the zensyslog daemon.

Note that the Syslog agent is capable of being configured to monitor Windows
application log files, in addition to the standard Windows event logs. When monitoring
the standard event logs, there are better filtering capabilities with Syslog then with
zeneventlog.

6 Event Mapping

Zenoss events are categorised into a hierarchy of event Classes, many of which are
defined out-of-the-box but which can easily be modified or augmented. The process of
Event Class Mapping is about associating an incoming event with a particular Zenoss
Event Class (setting its eventClass field) and, potentially, modifying other fields of that
event by using an event transform.

Event classes and subclasses are treated identically from the point-of-view of event class
mapping. The class hierarchy can be useful in that event context, as implemented by
event zProperties (zEventSeverity, zEventAction, zEventClearClasses), follows the
normal rules for object inheritance — if zEventAction is set to drop on the event

class /Ignore , then any subclasses of /Ignore will also inherit that property.

Notable out-of-the-box event zProperties are that /Ignore classes and subclasses drop
incoming events totally; /Archive classes and subclasses automatically set the
eventState field to Closed.

Most event classes have one or more mappings associated with them — these are known
as instances. Note that an event does not have to have any mappings associated, in
which case an event of that class will only appear in an Event Console if the daemon
that generates the event, assigns the event class at that time (/Perf events may well
come into this category, for example). Out-of-the-box event class mappings are defined in
S$ZENHOME | Products | ZenModel | data [events.xml . They can be inspected from the
Zenoss GUI by selecting the EVENTS -> Event Classes menu.

1 February 2013 Event Management for Zenoss Core 4 © Skills 1st Ltd 51

http://syslogserver.com/

Most out-of-the-box event class mappings simply match on the eventClassKey field
which is populated by the native event parsing mechanism (such as zensyslog,
zeneventlog, zentrap). These mechanisms may generate several different events with
the same eventClassKey field; thus other techniques are needed to distinguish between
such events and potentially to separate them into different event classes.

The sequence number in an event mapping gives the order in which mappings are tested
against the incoming event - lowest numbers are tested first. Depending on which
mapping actually matches (if any) will determine the resulting eventClass of the event.

6.1 Working with event classes and event mappings

Events are organised in an object-oriented hierarchy; thus attributes assigned to a
“parent” event class are inherited by a “child” event subclass.

New event classes can be defined by navigating to an event class and using the
dropdown menu alongside SubClasses to Add New Organizer. The name supplied is the
name of the new event class. For example, drill down to the /Security event class and
create a new subclass called Su.

Any event which does not map to an event class is the given the class of /Unknown. The
simplest way to map such an event is to start from an existing event in the Event
Console. The following scenario explains this, creating a new event class mapping called
su which maps an incoming event to the event class /Security/Su.

1. Generate a syslog “authentication failure” event at the Zenoss system.
2. Open an Event Console that shows the event and inspect its details.

3. Select the event and use the Reclassify Event icon at the top of the console. Select
your new /Security/Su class from the dropdown list. You should be shown the
event class mapping panel. Click the lefthand Edit menu.

4. You should find that the name of the new event class mapping is set to su and
the Event Class Key is set to su (note lower case s in both cases). The
eventClassKey field is actually derived from the component field of the incoming
event in SyslogProcessing.py (around line 289). The summary field of the event
should have been copied into the mapping Example box.

5. Add a text string to the Explanation box such as “Auto added by event mapping”.
6. Add a text string to the Resolution box such as “This is a dummy resolution”.

7. Open a Zenoss GUI window that shows all Su events (you may find it useful to
have several browser tabs open to focus on different aspects of the Zenoss GUI).
Select all the Su events and Close them.

8. Generate a new Su event.

9. Check the details of the new event in the Event Console. The event should have
mapped to eventClass /Security /Su . The severity should be Info (blue). The

52 Event Management for Zenoss Core 4 © Skills 1st Ltd 1 February 2013

details of the event should show the eventClassMapping field set to
/Security/Su/su .

Any existing event mapping can be modified in a similar fashion.

* IE) zen42.class.example.org:8080/zport/dmd/Events/Security/Sujinstances/sujeventClassinstEdit ~ @] E‘v Google ﬂ] ‘ o 7

tﬁ 1 DASHBOARD \ s INFRASTRUCTURE REPORTS ~ ADVANCED

Event Console Event Archive Event Classes Triggers Page Tips

Events > Security > Su> su
Status

Edit
Sequence
Configuration Properties
Events

Name [su

Event Class Key [su

Example
pam_unix(su:auth). authentication failure; logname=jane uid=1337 euid=0 tty=pts/3 ruser=zenoss rhost= user=root

Transform

Explanation
|Autu added by event mapping

Figure 27: Edit dialogue for event class mapping

[<]

Whenever you change an event mapping, it is advisable to clear any existing events of
that category before testing the new configuration.

When you are working with event mappings, don't forget the Event menu which filters
an Event Console by Event Class.

It is useful to refer to event classes using the breadcrumb path seen at the top of a
page, such as /Events/Security/Su .

1 February 2013 Event Management for Zenoss Core 4 © Skills 1st Ltd 53

6.1.1 Generating test events

Event Console
Elec'. ~ || Export - || Configure -~ Last
Slatus ~ Severity Hesource Component Event Class Summary
'

su .. pam_unix(su:auth): authentication failure; logname=jane uid=1337 euid=0 tty=pts/1 ruser=zeno..

. su ... pam_unix(su-l:session): session opened for user zenoss by jane(uid=0)

su ... pam_unix(su:session): session opened for user root by jane(uid=500)

Create Event

Summary:

UBMIT CANCEL

Figure 28: Dialogue to create a test event

Test events can be created from the Event Console using the “+” icon.

updated at 12:48:46PM |€¥ Refresh ~ || Actions - || Commands ~ |

First Seen

2012-12-1812...
2012-12-1810...
2012-12-1810...

Last Seen Count Agent
zensys

2012-12-18 12 1 zensyslog

2012-12-1812... 2 zensyslog

2012-12-1812... 2 zensyslog

DISPLAYING 1- 3 of 3 ROWS

Alternatively, the command line zensendevent can be used (you should ensure you are
the zenoss user). This takes parameters:

-d device

-p component

-k eventClassKey
-S severity

-c eventClass

-y eventKey
-1 IP address

-h help

-0 <field> = <value> (for any other attribute; can have multiple -o0)
--monitor collector this event came from

--port=PORT default is 8081

--server=SERVER default is localhost

--auth=AUTH default is admin:zenoss

The remainder of the line after these options is used for the summary field
(strictly the Message field in the GUI dialogue populates the event summary field)

The core-autodeploy script delivered with Zenoss 4.2.3 has new functionality to increase
security on a Zenoss installation. For many years the Zenoss user of admin with a
password of zenoss has been configured as standard. The new installation script

changes this, generating a robust password which is stored in several configuration files
in $ZENHOME |/ etc, including global.conf and hubpasswd.

54

Event Management for Zenoss Core 4 © Skills 1st Ltd

1 February 2013

zensendevent is a standalone Python utility in $ZENHOME / bin that communicates
with the zenhub daemon. Note in the usage description above, that the default --auth
parameter value is admin:zenoss; typically this means that zensendevent commands will
fail with an Unauthorized message unless the --auth parameter is added with the
correct user and password, found in $ZENHOME /etc /| hubpasswd.

A discussion on modifying zensendevent to automatically look-up the correct
authentication parameters, can be found on the Zenoss wiki at
http://wiki.zenoss.org/Zensendevent in Zenoss 4.2.3

The code is supplied in Appendix A.

6.2 Regex in event mappings

The Regex element of an event class mapping can be used to parse the summary field of
the incoming event, which is presented by the parsing daemon (zensyslog, zeneventlog,
zentrap). The Regex element uses the Python format for regular expressions and can
use the Python named group syntax to not only check for literal strings but also to
define regular expressions for variable parts of a string, and associate that variable part
with a name. Variable parts of the string are captured into Python named groups —
this means that:

e You can have one expression match lots of similar but different incoming events

e The variable part (typically between the (?P and \S+)) can be passed to the rest
of the event processing mechanism as a named field of the event.

e Thus, in the product-shipped dropbear event mapping for /Security/Login /Fail,
the Regex is as follows:

® exit before auth \(user '(?P<eventKey>\S+)', (?P<failures>\S+) fails \): Max auth tries reached

o (?P<eventKey>\S+) will parse the characters after user " upto the next
single quote and place that string into the eventKey field of the event.
Similarly (?P<failures>\S+) will parse the string that follows a comma and
space and is ended by space and fails, into a new event attribute called
failures.

e Matching the literal string representing a bracket requires the backslash
escape or the bracket will be interpreted as a metacharacter.

e The rest of the event summary must match the literal text in the Regex;
however, other text can appear beyond the end after tries reached .

e The Example box should shows a sample event summary that is matched
by the regular expression in the Regex box. If you attempt to Save a regex
that does not match the example, the regex field will be shown in red.

For more information on Python regular expressions, see
http://docs.python.org/2/library/re.html .

1 February 2013 Event Management for Zenoss Core 4 © Skills 1st Ltd 55

http://docs.python.org/2/library/re.html
http://wiki.zenoss.org/Zensendevent_in_Zenoss_4.2.3

See Figure 29 for an example of a more specific mapping, su_root, for the event class
/Security /Su. The regex is used to ensure that the summary has the string
pam_unix(su:auth): authentication failure; followed by some fixed and some variable
elements.

pam_unix\ (su:auth\): authentication failure; logname=(?P<logonUser>\S+)
uid=(?P<uuid>\d+) euid=(?P<euid>\d+) tty=(?P<tty>\S+) ruser=(?
P<fromUser>\S+) rhost=\s+user=(?P<toUser>\S+)

*ﬁl DASHBOARD EVENTS INFRASTRUCTURE REPORTS ADVANCED - jane sigNout H

Event Console Event Archive Event Classes Triggers Page Tips

Events > Security > Su> su_root
e -

Edit

Sequence =
—_— y Name [su_root
Configuration Properties -
Evenis Event Class Key [su
Sequence 0
Rule
Regex

pam_unix\(su:authl): authentication failure; logname=(?P<logonUser>\S+) uid=(?P<uuid>\d+) euid=(?P<euid>\d+) tty=(?P<tty\S+) ruser=(?P<fromUser>\S +) host= \s+user=(2P<ioUser>\5+)

Example
pam_unix(su:auth): authentication failure; logname=jane uid=1337 euid=0 tty=pts/3 ruser=zenoss rhost= user=root

[<]

Transform

8]
Figure 29: Event mapping dialogue with Regex for authentication failure

«

The event summary field can be parsed to generate new, user-defined fields for the event
which will be shown in the details of the event and can be used in any subsequent event
transforms.

Additionally, the Configuration Property of zEventSeverity has been set to Warning for
this mapping.

Eile Edit View History Bookmarks Tools Help

[6 Zenoss: Devices ® Hf} Zenoss: su_root b4][f; Zenoss: group-100-rl.class.e... 3 u Y. -
Kevicedetal | @ zendz.cla: le.org:8080/zport/dmd/Events/viewDetail ?evid=000c29d9-f87b-917d-11e2-4ac19(

Mozilla Firefox I

ﬁ [f) zen42.class.example.org:8080/zport/dmd/Devices/Server/Linux/devices/zend2.class.example.org,

«@I DASHBOARD EVENTS N URE REPORTS ADVANCED A /

PENTY Networks Processes IP Services Windows Services Network Map Manufaciurers lastTime 2012-12-20 16:23:15
| owner
stateChange 2012-12-20 16:23:15
Event Details...
QOverview
id 0
Events eur
4 Components eventClassMapping su_root
@ Network Routes (7) et R explanation authentication failure mapping
comm... [Cmd/Error
@ SNMP Commands (2) ez [— T—
ol e ® sshd {Unknown
nterfaces)

@0s Pr 22) su ISecurity/Su logonUser Jane

@ File Systems (3) mm=na; Ry zend2.class.example.org

@ P services (16) originalTime Dec 20 16:23:15

@ Processors 2) resolution Catch the thief!
Braehs toUser root
Modeler Plugins . -
Configuration Properties & 3
Software L uuid 1337
My Example Menu 1 zenoss.device.device class /Server/Linux =
Custom Properties . <] =
Administration X

Figure 30Event details for authentication failure event showing new event fields created by the regex

56 Event Management for Zenoss Core 4 © Skills 1st Ltd 1 February 2013

The Regex element is only used if both the eventClassKey and the Rule (if any) are
satisfied. If the Rule fails, the Regex will not be tested, nor will any named group, user-
defined fields be generated. If a Rule does not exist and the Regex does not match, the
user-defined fields will not be generated and the event class mapping to this event class
will fail. No event transforms will take place. If a Rule does exist and is satisfied but
the Regex fails then any user-defined fields will not be generated but the event class
mapping will be successful and any mapping transform will take place.

6.3 Rules in event mappings

The Rule element of an event class mapping uses Python expressions to test any
instantiated field of the incoming event against a value. Expressions can be complex
including Python method calls and logical ANDs and ORs. The default event fields that
are defined, are given in Appendix D3 of the Zenoss Core 4 Administration Guide. Note
that some of these fields are not actually available at event mapping time — notably
evid, stateChange, count, dedupid, firstTime, lastTime and

eventClassMapping .

DASHBOARD EVENTS ' INFRASTRUCTURE REPORTS ADVANCED

—
Event Classes

Events > Skills > linetest

B Status

Sequence
- Evens

Configuration Properties
Events

EventClassinst
Event Class Key linetest
Sequence 10

Rule

evt.component==Tlinetest' and device.snmpConlact == "Jane Curry’
Regex

test line [?P<line_nums='d+)

Example

This is test line 1

Transform

evt.myDevId = device.id .
evt.mySnmpSysLoc = device.snmpLocation
evt.mySnmpS{s[ontact =_dev1ce.snmg[onta(t i
evt.mySnmpStatus = de\.rlge.%etSnmp tatusstrln?{}

evt.summary = "Problem is %s on device %s. Please call %s" % (evt.summary, evit.myDevId, evt.mySnmpSysContact)

Explanation

Resolution

Figure 31: Event mapping linetest, showing complex Rule testing event and device attributes

The Rule element can also use Python expressions to test for values of attributes of the
device that generated the event. Some of the methods and attributes that are
available for devices are documented in Appendix D2 of the Zenoss Core 4
Administration Guide, under the section on TALES expressions (Template Attribute

1 February 2013 Event Management for Zenoss Core 4 © Skills 1st Ltd 57

Language Expression Syntax is part of Zope. Zope is the application server that Zenoss
is built on).

The Rule element will only be used if the eventClassKey field in the mapping has
achieved a match with the incoming event. After that, if a Rule exists, it must be
satisfied before this mapping (and hence class) is applied.

6.4 Other elements of event mappings

The Example element of an event class mapping is a sample string that is useful when
constructing a Regex. The Regex will turn red if the Regex does not match the Example
string when the Save button is used.

The Explanation and Resolution elements of an event class mapping are strings that
can be configured to provide further information to Zenoss users. They appear in the
event detail. Note that these elements can only be literal strings; they cannot use
either standard or user-defined fields from the event.

The combination of eventClassKey, Rule and Regex determine the event class that will
be associated with the incoming event and what transforms (if any) will take place.
There may still be multiple combinations of these that satisfy any given incoming event.
If so, the Sequence menu is used to decide the precedence of evaluation of matching
event mappings. The mappings will be tested from the lowest to the highest sequence
number. Once a match is found, any subsequent mappings (with higher sequence
numbers) will be ignored. Generally, a mapping with more specific matching criteria
will have a lower sequence number.

In the examples above for the /Security/Su class, the generic su mapping has sequence
number 1 and the more specific su_root mapping has sequence 0.

A particular example of event mappings that use sequence numbers, is the event class
mapping called defaultmapping which must have an eventClassKey of
defaultmapping . There are at least 6 mappings, all called defaultmapping , out-of-the-
box. Each maps to a different class. A default mapping is a special case that is used by
the event mapping process if no match can be found for the eventClassKey field (note
that if the eventClassKey field does not exist then no mapping at all will be applied). In
the case where an eventClassKey match is not found, the mapping process re-evaluates
looking for a match with the special eventClassKey of defaultmapping . It is possible to
create new mappings, either with the name of defaultmapping or, indeed, with a
different name, provided the eventClassKey is defaultmapping . The sequence numbers
of all such default mappings should be adjusted to prioritise these default mappings.

7 Event transforms

Transforms can be used to modify fields of an event, create new, user-defined fields or
fields can be retrieved from events already in the MySQL database.

58 Event Management for Zenoss Core 4 © Skills 1st Ltd 1 February 2013

7.1 Different ways to apply transforms

You can have simple assignments of field values or set them based on complex Python
programs. The transform mechanism can be applied in two ways:

e event class transforms
e event class mapping transforms

Prior to Zenoss 2.4, an event class transform was only used for events inserted directly
to that exact event class by the parsing mechanism (zenping, zenperfsnmp,
zencommand, AddEvent with Event Class specified, etc). If a transform existed in an
event class mapping that was used, the event class transform was not used.

Zenoss 2.4 introduced cascading event transforms. This changed things in two ways.
Given an event class /Toptest with a subclass of /T'1, if an event arrives that already
has class /Toptest/T1, then the Toptest transform will be applied, followed by the T1
transform. If an event arrives that does not have a pre-allocated class but whose event
class is determined to be /Toptest/T1, by the Rule / Regex of the event class mapping,
t1, then transforms will be applied in the order:

e Toptest class -> T1 class -> t1 event class mapping

It is perfectly possible for a transform to use user-defined event fields instantiated by
earlier transforms; however, be very aware that if any statement in a transform fails
(perhaps because a field doesn't exist), then the processing of that transform will stop at
that point and no further statements will be executed. Any further transforms will be
executed (at least until an error is reached).

All transforms are executed once the Rule and Regex elements of a mapping have been
successfully tested and after device and event context have been applied. Thus, at
transform time, most of the standard event fields are available, except those populated
at database insertions time (evid, stateChange, eventState, dedupid, count,
eventClassMapping, firstTime and lastTime). Any user-defined fields created by the
Regex are also available.

Event class transforms can be useful on the /Unknown class to selectively change the
class for events that would otherwise be /Unknown .

Note that if a transform tries to reference a field of an event that does not yet exist
(like count) then that line of the transform and any subsequent lines will be ignored.
Such an error will not trigger any error messages in the transform dialogue.
Transforms are implemented by the zeneventd daemon so inspect the end of
S$ZENHOME |/ log | zeneventd.log to see the error message reporting the absence of the
attribute.

A class transform is configured from the Action icon at the bottom of the lefthand menu
for an event class.

1 February 2013 Event Management for Zenoss Core 4 © Skills 1st Ltd 59

A mapping transform is specified as part of the same event mapping dialogue that
defines the Rule and Regex fields. In each case, if the Python syntax is incorrect, when
you use the Save button, then the transform is all displayed in red text, indicating an
error.

Figure 31 on page 57 showed an event mapping called linetest which includes a
transform to create several user-defined event fields, some based on values from the
event and some with values from the device that generated the event. The event
summary field is set to a string constructed from literal text, standard event fields and
user-defined fields.

evt.myDevId = device.id

evt.mySnmpSysLoc = device.snmpLocation

evt.mySnmpSysContact = device.snmpContact

evt.mySnmpStatus = device.getSnmpStatusString()

evt.summary = "Problem is %s on device %s. Please call %s" % (evt.summary,
evt.myDevId, evt.mySnmpSysContact)

Most of the user-defined fields are assigned to simple attributes of either the event or
the device; for example, device.snmpContact. The line before the end demonstrates
using a Python method to get values; for example device.getSnmpStatusString() (note
the () at the end — this is the clue that it is a method rather than an attribute).

7.2 Understanding fields available for event processing

So — how does one work out what attributes and methods are available? The Zenoss
Core 4 Administration Guide documents the TALES Event Attributes in Appendix D3
but this is only a starting point.

Similarly, Appendix D2 documents TALES Device Attributes and methods but this
information is very incomplete.

When zeneventd is processing an event, strictly it is working on a number of Python
dictionaries that make up a ZepRawEventProxy object class. Remember from the
architecture section that zeneventd takes elements from the rawevents queue, processes
them and outputs the result to the zenevents queue to be further processed by the
zeneventserver daemon (Figure 12, Zenoss 4 event architecture). The messages on the
rawevent queue (like all other queue messages) are blobs of binary data.

There are a number of modules in ZENHOME /lib / python [zenoss [protocols that
manipulate this message data using Google protobufs as a data interchange format for
the structured queue message data.

$ZENHOME | Products | ZenEvents [events2 contains three Python files that are crucial
for understanding the details of how zeneventd processes the raw event:

e processing.py
o fields.py
® Droxy.py

60 Event Management for Zenoss Core 4 © Skills 1st Ltd 1 February 2013

$ZENHOME |/ Products | ZenEvents [zeneventd.py has a number of pipelines that an
event passes through. Their effect can be seen be analysing zeneventd.log if the Debug
logging level is turned on.

=l zenoss@zend2:/opt/zenoss/Products/ZenEvents

Eile Edit View 5Search Terminal Help
class EventPipelineProcessor(object):

SYNC EVERY EVENT = False

def __init_ (self, dmd):
self.dmd = dmd
self. manager = Manager(self.dmd)
self. pipes = (
EventPluginPipe(self. manager, IPreEventPlugin, 'PreEventPluginPipe’),
CheckInputPipe(self. manager),
IdentifierPipe(self. manager),
AddDeviceContextAndTagsPipe(self._manager),
TransformAndReidentPipe(self. manager,
TransformPipe(self. manager),
[
IdentifierPipe(self. manager),
UpdateDeviceContextAndTagsPipe(self. manager),
1),
AssignDefaultEventClassAndTagPipe(self. manager),
FingerprintPipe(self. manager),
SerializeContextPipe(self. manager),
EventPluginPipe(self. manager, IPostEventPlugin, 'PostEventPluginPipe'),
ClearClassRefreshPipe(self. manager),
)

"zeneventd.py" [readonly] line 69 of 278 --24%-- col 1
Figure 32Event Pipeline Processor object class in zeneventd.py

processing.py contains the code to implement each of the pipeline stages executed by
zeneventd. There are methods to processes a raw event, add device and event context,
process rule and regex to establish an event class, and to perform transforms. There is
also a method to generate the fingerprint field.

1 February 2013 Event Management for Zenoss Core 4 © Skills 1st Ltd 61

Zenoss@zend2:/opt/zenosy

File Edit View 5Search Terminal Help

class EventField:
UUID = 'uuid’
CREATED TIME = 'created time'
FINGERPRINT = 'fingerprint’
EVENT CLASS = 'event class’
EVENT CLASS KEY = 'event class key'
EVENT CLASS MAPPING UUID = 'event class mapping uuid'
ACTOR = 'actor'’
SUMMARY = 'summary'
MESSAGE = 'message’
SEVERITY = 'severity'
EVENT KEY = 'event key'
EVENT GROUP = 'event group'
AGENT = 'agent'
SYSLOG PRIORITY = 'Syalng_priurity'
SYSLOG FACILITY = 'syslog facility'
NT EUENT CODE = 'nt event code’
MONITOR = 'menitor’
DETAILS = 'detalls’
STATUS = 'status'
TAGS = 'tags’

class Actor:
ELEMENT TYPE ID = 'element type id®
ELEHENT IDENTIFIER = 'element identifier’
ELEHENT TITLE = 'element title’
ELEHENT UUID = 'element uuid®
ELEHENT SUB TYPE ID = ‘element sub type id'
ELEHENT SUB IDENTIFIER = 'element sub identifier’
ELEHENT SUB TITLE = 'element sub title’
ELEMENT SUB UUID = 'element sub uuid'

class Detail:
NAME = 'name'’
VALUE = 'value’

class Tag:
TYPE = 'type'
UUID = 'uuid’

"fields.py" [readonly] line 9 of 67 --13%-- col 1
Figure 33EventField object class in $ZENHOME | Products | ZenEvents | events2/ fields.py

62 Event Management for Zenoss Core 4 © Skills 1st Ltd 1 February 2013

$ZENHOME |/ Products | ZenEvents [events2/ fields.py contains object class definitions
for:

o EventField

o The EventField attributes match up with the base MySQL database fields in
Zenoss_zep.

o The Actor, Detail and Tag fields are defined as sub classes of the object
e EventSummaryField

o Has the additional fields that are populated when the event is inserted into
the zenoss_zep database event_summary table.

Zzenoss@zend42:/opt/zenoss/Products/ZenEvents/events2

File Edit View Search Terminal Help
i
lclass EventSummaryField:

: UUID = 'wuid'

OCCURRENCE = 'occurrence'

STATUS = 'status'

FIRST SEEN TIME = 'first seen time'

f STATUS CHANGE TIME = 'status change time'

3 LAST SEEN TIME = 'last seen time'

COUNT = 'count'

CURRENT USER UUID ‘current user uuid’

CURRENT USER NAME ‘current user name'
CLEARED BY EVENT UUID = 'cleared by event uuid'’
NOTES = 'notes’

AUDIT LOG = 'audit log’

class ZepRawEventField:

EVENT = 'event’

CLEAR EVENT CLASS = 'clear event class'
"fields.py" [readonly] line 50 of 67 --74%-- col 1

Figure 34EventSummaryField and ZepRawEventField definitions

e ZepRawEventField

o Has the same fields as EventField but also has clear_event_class as that is
needed by the zeneventd processing pipelines as it is part of the event context.

n Note that the definitions in fields.py are not helpful when deciding what attributes are
available to transforms; these are the fields one finds in the zenoss_zep database.
7.2.1 Event Proxies

$ZENHOME | Products | ZenEvents [events2 [proxy.py is the key to understanding what
n attributes are available when writing rules and transforms. proxy.py provides

1 February 2013 Event Management for Zenoss Core 4 © Skills 1st Ltd 63

translations between encoded formats of events and a human-readable JSON
(JavaScript Object Notation) format.

As far as possible, the attributes presented by a proxy are the same in Zenoss 4 as they
were in previous versions.

zenoss@zend2:/opt/zenoss/Products/ZenEvents/events2

File Edit View Search Terminal Help
clasﬂ EventProxy(object):

Wraps an org.zenoss.protobufs.zep.Event
and makes it look like an old style Event.

DEVICE PRIORITY DETAIL KEY = "zenoss.device.priority"
PRODUCTION STATE DETAIL KEY = "zenoss.device.production state"
DEVICE IP ADDRESS DETAIL KEY = 'zenoss.device.ip address'
DEVICE SYSTEMS DETAIL KEY = 'zenoss.device.systems'

DEVICE GROUPS DETAIL KEY = 'zenoss.device.groups'

DEVICE LOCATION DETAIL KEY = 'zenoss.device.location'
DEVICE CLASS DETAIL KEY = 'zenoss.device.device class'

def init (self, eventProtobuf):
self. dict [' event'] = ProtobufWrapper(eventProtobuf)
self. dict [' clearClasses'] = set()
self. dict [' readOnly'] = {}
self. dict ['details'] = EventDetailProxy(self. event)

self. dict [' tags'] = EventTagProxy(self. event)

def updateFromDict(self, data):
for key, value in data.iteritems():
setattr(self, key, value)

@property
def created(self):
t = self. event.get(EventField.CREATED TIME)
if t:
return t / 1000
@property
def agent(self):
return self. event.get(EventField.AGENT)

@agent.setter
def agent(self, val):
self. event.set(EventField.AGENT, val)

"proxy.py" [readonly] line 226 of 632 --35%-- col 5
Figure 35EventProxy definition in $ZENHOME | Products | ZenEvents [events2 [proxy.py

64 Event Management for Zenoss Core 4 © Skills 1st Ltd 1 February 2013

An EventProxy is several Python dictionaries:
e The main body of the event is a dictionary called _event
e A details dictionary
e An _tags dictionary
e A dictionary for _clearClasses
e A dictionary for _readOnly attributes

There are a large number of Python @property decorator constructs whose purpose is to
present an attribute using a method, for example:

@property
def device(self):
return self. event.actor.element_ identifier

defines an attribute called device which is delivered by a method that returns the
value of the event's actor's element_identifier. device is the field that we have (have
always had) to manipulate in transforms.

The @property definitions at the end of Figure 35 show simpler definitions that return
the value of a basic field of an event (using the EventField definitions defined in
fields.py).

When a user views event details using the Zenoss GUI or accesses data from from the
event_summary table of the zenoss_zep database using the JSON API, the event data
presented is an EventSummaryProxy, which is a JSON format. The
EventSummaryProxy inherits from the EventProxy but also has attributes that are
added on database insertion:

e evid

e stateChange
e clearid

o firstTime

e lastTime

e count

e ownerid

e eventState

The EventSummaryProxy was originally designed with an idea of keeping all event
data, treating duplicates as multiple occurrences within the EventSummaryProxy;
however the scalability was not feasible so, in practise the fields of an event are in the
zero'th element of an EventSummary occurrence list.

1 February 2013 Event Management for Zenoss Core 4 © Skills 1st Ltd 65

El zenoss@zend42:/opt/zenoss/Products/ZenEvents/events2

File Edit View Search Terminal Help

class EventSummaryProxy(EventProxy):

Wraps an org.zenoss.protobufs.zep.EventSummary

and makes it look like an old style Event.
def init (self, eventSummaryProtobuf):
self. dict [' eventSummary'] = ProtobufWrapper(eventSummaryProtobuf)
if not self. eventSummary.occurrence:
self. eventSummary.occurrence.add()

event = self. eventSummary.occurrence[0]
EventProxy. init (self, event)

@property
def evid(self):
return self. eventSummary.get(EventSummaryField.UUID)

@property
def stateChange(self):
t = self. eventSummary.get(EventSummaryField.STATUS CHANGE TIME)
if t:
return LocalDateTimeFromMilli(t)

@property
def clearid(self):
return self. eventSummary.get(EventSummaryField.CLEARED BY EVENT UUID)

@clearid.setter
def clearid(self, wval):
self. eventSummary.set(EventSummaryField.CLEARED BY EVENT UUID, val)

@property
def firstTime(self):
t = self. eventSummary.get(EventSummaryField.FIRST SEEN TIME)
if t:
I return LocalDateTimeFromMilli(t)
"proxy.py" [readonly] line 516 of 632 --81%-- col 5

Figure 36EventSummaryProxy object class

proxy.py also defines a class for ZepRawEventProxy which inherits from EventProxy.
The additional properties for ZepRawEventProxy are for _ClearClasses, _action and
eventClassMapping.

It is the attributes defined in proxy.py for the ZepRawEventProxy object class that are
available for use in rules and transforms.

7.2.2 Event Details

So what happens to a user-defined event attribute generated, say, by the varbinds that
come in on an SNMP TRAP?

Remember that the EventProxy has a number of dictionaries, including a details
dictionary. Examination of the EventProxy object class in proxy.py shows that any

66 Event Management for Zenoss Core 4 © Skills 1st Ltd 1 February 2013

fields that don't match the standard fields are put in <name> , <value> pairs in the
event's details dictionary.

zenoss@zend2:/opt/zenoss/Products/ZenEvents/events2

File Edit View Search Terminal Help

Just put everything else in the details
def getattr_ (self, name):
if name in self. readOnly:
return self. readOnly[name]

try:

return self. dict ['details'][name]
except KeyError:

raise AttributeError(name)

def setattr (self, name, value):
if hasattr(self. class , name):
object. setattr (self, name, value)
else:
self. dict ['details'][name] = value

"proxy.py" [readonly] line 463 of 632 --73%-- col 1

Figure 37Processing event details in proxy.py

The evt.details dictionary is available as an EventDetailProxy object (also defined in
Proxy.py).

1 February 2013 Event Management for Zenoss Core 4 © Skills 1st Ltd 67

zenoss@zen42:/opt/zenoss/Products/ZenEvents/events2

File Edit View Search Terminal Help
class EventDetailProxy(object):

A proxy for a details dictionary. Maps org.zenoss.protocols.zep.EventDetail
to a dictionary.
def init (self, eventProtobuf):

self. dict_ [' eventProtobuf'] = eventProtobuf

self. dict [' map'] = {}

for detail in self. eventProtobuf.details:
self. map[detail.name] = detail

def getattr (self, name):
try:
return self[name]
except KeyError:
raise AttributeError(name)

def setattr (self, name, value):
self[name] = value

def delitem (self, key):
if key in self. map:
item = self. map.pop(key)
This doesn't work - see http://code.google.com/p/protobuf/issues/detail?id=286

#savedetails = [det for det in self. eventProtobuf.details if det is not item]
savedetails = []
for det in self. eventProtobuf.details:

if det.name != item.name:

cloned = EventDetail()
cloned.MergeFrom(det)
Eavedetails.append(cloned)
self. map[cloned.name] = cloned
del self. eventProtobuf.details[:]
"proxy.py" [readonly] line 139 of 632 --21%-- col 21

Figure 38EventDetail Proxy object class in proxy.py

To access these details in a rule or transform they can be referred to as evt.<name of
detail field> if the name does not include a . (dot); otherwise to use these details in a
rule or transform, they need to be accessed through the _map dictionary.

7.3 Transform examples

7.3.1 Combining user defined fields from Regex with transform

In this example, we will return to the /Security /Su subclass of events and combine
regular expressions and transforms. The objective is, for “important devices”, to escalate
the event severity if a user tries to su to root but to decrease the severity if the su event
comes either from an “unimportant” device or if the su is to a particular userid (student
in this case). “Important” devices are determined by the event field DevicePriority (note
two capital letters in this field name). The device priority for a device can be changed
from the Overview menu on a device's details page.

This example is the same as shown in Figure 29 but a transform has been added.

68 Event Management for Zenoss Core 4 © Skills 1st Ltd 1 February 2013

DASHBOARD EVENTS INFRASTRUCTURE REPORTS ADVANCED v * jane SIGNOUT H

Event Classes

Events > Security > Su > su_root
Status
Edit

Sequence B33 Total Event Count i

Configuration Properties

Events EventClassinst
Event Class Key su
Sequence 0

Rule

Regex

pam_unix\(su:auth): authentication failure; logname=(?P<logonUser=\S+) uid=(?P<uuid>\d+) euid=(?P<euids\d+) tty=(?P<tty=\S+) ruser=(?P<fromUser=\S+) rhost= \s+user=({?P<toUser>\S+)
Example

pam_unix(su:auth): authentication failure; logname=jane uid=1337 euid=0 tty=pts/3 ruser=zenoss rhost= user=root

Transform

if evt.toUser == 'root' and evt.DevicePriority > 2:
evt.severity = 5

elif evt.toUser == 'student' or evt.DevicePriority < 3:
evt.severity =

evt. action = 'history’

Explanation

authentication failure mapping

Resolution

Figure 39: su_root event mapping with transform

n Note that the Status menu of a mapping loses any Python indentations you have
carefully created! The transform should be entered as:

if evt.toUser == 'root' and evt.DevicePriority > 2:
evt.severity = 5

elif evt.toUser == 'gstudent' or evt.DevicePriority < 3:
evt.severity = 1
evt._action = 'history'

The user-defined field toUser, created by the Regex, is tested against the literal string
‘root’. The result is logically AND'ed with a test of the standard event field
DevicePriority for > 2. If the result is True then the standard event field severity is set
to 5 (Critical). Remember that the default severity for the su_root mapping was set to
Warning by the zEventSeverity event context zProperty.

In the elif statement, if this condition is True then the event's severity is set to 1 (Debug)
and the zProperty zEventAction is overridden by setting evt._action = 'history’ in the
transform. In this case, the event's eventState is set to Closed.

n Note with any Python test that includes multiple clauses, the test fails as soon as a
condition fails so in the if statement if evt.toUser is not 'root' then evt. DevicePriority will
not be evaluated. Performance can be improved by careful consideration and ordering of
such tests.

7.3.2 Applying event and device context in relation to transforms

Event context (zEventSeverity, zEventAction, zEventClearClasses) is applied through
the Configuration Properties menu of an event class or event class mapping.

Device context comprises the event fields prodState, Location, DeviceClass,
DeviceGroups, Systems and DevicePriority. ipAddress and the monitor
(collector) responsible for the event also tend to be bracketed with the device context but
these latter fields are information received on the incoming event, rather than the
device context data that is looked-up in the Zope database.

1 February 2013 Event Management for Zenoss Core 4 © Skills 1st Ltd 69

The following device_context event mapping example demonstrates the order in which
device context, event context and the mapping transform are applied.

Create a new event subclass, Device_context, under the /Skills class.

Create a mapping, device_context, for this new event class. Ensure that the
eventClassKey is device_context. Set the Regex to the literal string:

This is a device context event
Set a Rule as follows (all on one line):

getattr (evt, 'Location', '')=="/Kandersteg" and getattr(evt, '_action','"')
== "gtatus" and '/Skills' not in evt._clearClasses and getattr(evt,
'severity','') > 4 and not evt.component

Using the Configuration Properties menu for the mapping, set the zEventSeverity event
context value to Error (4), zEventAction to history and zEventClearClasses to /Skills.
Test the mapping with a zensendevent (all on one line):

zensendevent -d group-100-rl.class.example.org -s Critical -k

device context This 1s a device context event 1

The test event set the device field to group-100-ri.class.example.org which is included in
the Location called /Kandersteg . The eventClassKey should be set to device_context, the
component field should be blank and the eventClass should be blank.

i—@]" DASHBOARD EV S INFRASTRUCTURE REPORTS ADVANCED Q hd *jane sienout H

RO BTN = = = 5 A
Event Console vent Archive Triggers Page Tips

Events > Skills > Device_context > device_context

Status

I)
Sequence Event Class Key |device_context m
Configuration Properties Sequence 1
Events Rule
getattr(evt, 'Location’, ")=="/Kandersteg" and getattr(evt, '_action",") == "status" and /Skills' not in evt._clearClasses and getattr(evt, 'severity’,") > 4 and not evt.component
Regex
This is a device context event
Example
This is a device context event
Transform
evi.severity = 3 (4
evt.component = 'device context' E
evt.myAction=evt._action
evt.mvClearClasses =" . join(evt. clearClasses)
Explanation o
o - Fhr - ') 0Jobs +

Figure 40: Combining a Rule, context and a transform for the device_context event mapping

The Rule demonstrates the Python getattr function to test:

e The evt.Location field set by device context, which should evaluate TRUE at Rule
time ie. device context has been applied

e The evt._action field that is set by event context to history. The test shown above
actually evaluates TRUE showing that event context has not been applied at
Rule time.

70 Event Management for Zenoss Core 4 © Skills 1st Ltd 1 February 2013

e Similarly, the evt._clearClasses field test evaluates TRUE showing that event
context has not been applied. The Python syntax for checking evt._clearClasses is
a little different as this attribute is defined as a Python list rather than a string.

e The evt.severity starts at 5 in the generated event and event context sets it to 4.
This test evaluates TRUE confirming that event context has not been applied.

e The evt.component must be blank (the null string evaluates to the boolean False)

e Note that the syntax for the last field of the getattr is two single quotes to supply
a null default

In summary, the Rule and Regex should evaluate successfully and the transform will be
applied.

The transform demonstrates:

e Changing the evt.severity field again — it would have been modified from the
original value (5) down to (4) when the event context was applied after Rule and
Regex processing. The transform changes it to 3.

e Changing the evt.component field is interesting. Remember that the fingerprint
dedupid field includes the component. Although the raw event did not include a
component field, the fingerprint is generated after the transform as the dedupid
in the event does contain the component.

e Several user-defined variables are created. The evt.myClearClasses line
demonstrates that all user-defined fields appear to be of type string but
evt._clearClasses is defined as a Python list . You cannot assign
evt.myClearClasses to something of type list unless you use the join function to
stick together the list elements back into a string type.

e The user-defined fields demonstrate that both device context and event context
have been applied by transform time

8 Testing and debugging aids
8.1 Log files

8.1.1 zeneventd.log

Device context, event context, rule, regex and transforms are all applied by the
zeneventd daemon. It also constructs the dedupid fingerprint field. See the event
processing pipeline code for zeneventd in Figure 32 on page 61.

Turning up the debug flag in ZENHOME | etc | zeneventd.conf to 10 (Debug) provides an
opportunity to track the progress of each of the stages in this pipeline in

S$ZENHOME |/ log | zeneventd.log, noting that the event gains more fields as processing
continues.

1 February 2013 Event Management for Zenoss Core 4 © Skills 1st Ltd 71

zeneventd.log is also the place to look for problems with event processing. Even with the
usual debug level of 20 (Info), rule, regex and transform problems are highlighted.
Search for WARNING in the log.

The following extract shows a transform attempting to change evt.Location (which
appears not to be allowed). Note that although the message is definitely helpful, its
ideas about line numbers are way out!

2012-12-20 10:02:01,923 WARNING zen.Events: Error processing
transform/mapping on Event Class
/Skills/Device_context/instances/device_context

Problem on line 475: AttributeError: can't set attribute

Transform:
0 evt.Location ='/Taplow'
1 evt.severity = 3
2 evt.myProdState = evt.prodState
3 evt.myDeviceClass = evt.DeviceClass
4 evt.myDeviceGroups = evt.DeviceGroups
5 evt.mySystems=evt.Systems
6 evt.myAction=evt._action
7 evt.myClearClasses = '' . join(evt._clearClasses)

With Zenoss 4, you will also receive an event from the Zenoss server with similar
information (and equally creative line numbers!). With versions of Zenoss prior to 4
there was no warning event and all the event processing was performed by zenhub so
zenhub.log was the place to search for errors.

8.1.2 zeneventserver.log

The zeneventserver daemon is written in Java. This means that error messages are
difficult to comprehend in ZENHOME |/ log | zeneventserver.log without an intimate
knowledge of the Java code.

What is useful to help understanding of the architecture is to inspect this log around
daemon start-up.

72 Event Management for Zenoss Core 4 © Skills 1st Ltd 1 February 2013

zenoss@zen42:/opt/zenoss/log x

File Edit View Search Terminal
Bo12-12-19T09: 721
2012-12-19T0 .721
2012-12-19T0 .842
2012-12-197T09:50:06.425

a/lib.

2012-12-19T69 .585
505
.512
.603
603
.603
603
.603
.603
603
.625
.630
.643

2012-12-19T69

Help
[Thread-2] INFO
[Thread-2] INFO
[main] INFO org.
[main] WARN org.

[main] INFO org.
[INDEX REBUILDER EVENT SUMMARY]
[INDEX REBUILDER_EVENT ARCHIVE]
[INDEX_REBUILDER_EVENT SUMMARY]
[INDEX REBUILDER EVENT SUMMARY]
[INDEX REBUILDER EVENT SUMMARY]
[INDEX REBUILDER EVENT SUMMARY]
[INDEX REBUILDER EVENT SUMMARY]
[INDEX_REBUILDER_EVENT SUMMARY]
[INDEX REBUILDER EVENT SUMMARY]
[INDEXER EVENT ARCHIVE] INFO
[INDEXER EVENT SUMMARY] INFO
[main] WARN org.zenoss

INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO

org.
org.
org.
org.
org.
org.
org.
org.
org.

zenoss.zep.impl.PluginServiceImpl -
zenoss.
Zenoss.
Z€n0ss.
zenoss.
zenoss.
zenoss.
Zenoss.
Z€n0ss.
zenoss.
org.zenoss.zep.index.impl.EventIndexerImpl - Indexing thread started for:
org.zenoss.zep.index.impl.EventIndexerImpl - Indexing thread started for: %
.utils.impl.ZenPackImpl - No egg-info found for ZenPack in /opt/zenoss/ZenPacks/ZenPacks.zenoss.

zep.
zep.
zep.

zep

zep.
zep.
zep.

zep

zep.

org.zenoss.zep.impl.PluginServiceImpl - Stopping plug-in:
org.zenoss.zep.impl.PluginServiceImpl - Shutdown plug-ins
zenoss.zep.dao.ConfigDao - Maximum archive days:
zenoss.utils.impl.ZenPackImpl - No egg-info found for ZenPack in /opt/zenoss/ZenPacks/ZenPacks.zenoss.PySamba-1.0.0-py2.7-1inux-x86_64.eqgg/ZenPacks/zenoss/Pysamb|

EventFanOutPlugin

leee

No external plug-ins found.

index.
index.
index.
.index.
index.
index.
index.
.index.
index.

impl.
impl.

impl.
impl.
impl.
impl.
impl.
impl.
impl.

EventIndexRebuilderImpl - Index
EventIndexRebuilderImpl - Index
IndexedDetailsConfigurationImpl
IndexedDetailsConfigurationImpl
IndexedDetailsConfigurationImpl
IndexedDetailsConfigurationImpl
IndexedDetailsConfigurationImpl
IndexedDetailsConfigurationImpl
IndexedDetailsConfigurationImpl

rebuilding thread started for:
rebuilding thread started for:
- Indexed event detail:
- Indexed event detail:
- Indexed event detail:
- Indexed event detail:
- Indexed event detail:
- Indexed event detail:
- Indexed event detail:
event_archive

event summary

ZEnoss.
zenoss.
zenoss.
.device.
.device.
.device.
zenoss.

event_summary

event_archive

device.location (PATH)
device.device class (PATH)
device.priority (INTEGER)
systems (PATH)

groups (PATH)
production_state (INTEGER)

device.ip address (IP_ADDRESS)

Pysamba-1.6.6-py2.7-1inux-x86_64.egg/ZenPacks/zenoss/PySamb
a/lib.
2012-12-19T@9:

50:07.860 [AmgpConnectionManager] INFO org.zenoss.amgp.AmgpConnectionManager - Attempting to connect to message broker at amgp://zenoss@localhost:5672/zenoss
.129 [AmgpConnectionManager] INFO org.zenoss.amqp.AmgpConnectionManager - Connected to message broker at amqp://zenoss@localhost:5672/zenoss
.271 [main] INFO org.zenoss.zep.impl.PluginServiceImpl - Starting plug-in: TriggerPlugin 1
.284 [main] INFO org.zenoss.zep.impl.PluginServiceImpl - Starting plug-in: EventFanOutPlugin 1
.285 [main] INFO org.zenoss.zep.impl.PluginServiceImpl - Initialized plug-ins
.285 [main] INFO org.zenoss.zep.impl.Application - Initializing ZEP
.389 [main] INFO org.zenoss.utils.dao.impl.MySqlRangePartitioner - Adding partition p20121222 086060 to table event archive
.458 [main] INFO org.zenoss.zep.impl.Application - Starting event aging at interval: 60960 milliseconds(s), inclusive severity: false
.460 [main] INFO org.zeness.zep.impl.Application - Starting event archiving at interval: 60600 milliseconds(s)
.461 [main] INFO org.zenoss.zep.impl.Application - Starting database table optimization at interval: 6@ minutes(s)
.532 [main] INFO org.zenoss.zep.impl.Application - Completed ZEP initialization
.680 [zenoss.queues.zep.zenevents] INFO org.zenoss.amgp.AmgpConnectionManager$Queueworker - Worker started, consuming messages on qUEUE: ZENOss.qUEUES.Zep.zenevents
601 [zenoss.queues.zep.modelchange] INFO org.zenoss.amgp.AmgpConnectionManager$QueueWorker - Worker started, consuming messages on queue: zenoss.queues.zep.modelchange
.609 [zenoss.queues.zep.migrated.archive] INFO org.zenoss.amgp.AmgpConnectionManager$Queueworker - Worker started, consuming messages on queue: zenoss.queues.zep.migrated.archive
.613 [zenoss.queues.zep.heartbeats] INFO org.zenoss.amgp.AmgpConnectionManagersQueueWorker - Worker started, consuming messages on Queue: Zenoss.queues.zep.heartbeats
.613 [zenoss.queues.zep.migrated.summary] INFO org.zenoss.amqgp.AmgpConnectionManager$QueueWorker - Worker started, consuming messages on queue: zenoss.queues.zep.migrated.summary
.719 [INDEXER EVENT SUMMARY] INFO org.zenoss.zep.impl.TriggerPlugin - Initializing Jython

.740
.573
.596
531
.563
.620

[INDEXER EVENT SUMMARY] INFO org.zenoss.zep.impl.TriggerPlugin - Completed Jython initialization

[ZEP_EVENT ARCHIVE PURGER] INFO org.zenoss.utils.dao.impl.MySqlRangePartitioner - Pruning table event archive partition p20121212 800080: prune timestamp 2012-12-12 09:51:08.573
[ZEP_EVENT_ARCHIVE_PURGER] INFO org.zenoss.zep.index.impl.EventIndexDaoImpl - Purging events older than Wed Dec 12 09:51:08 GMT 2012

[ZEP_EVENT TIME PURGER] INFO org.zenoss.utils.dao.impl.MySqlRangePartitioner - Pruning table event time partition p28121218 16600@: prune timestamp 2012-12-18 10:51:88.531
[ZEP_EVENT TIME PURGER] INFO org.zenoss.utils.dao.impl.MySqlRangePartitioner - Adding partition p26121219 120000 to table event time

[ZEP_EVENT_TIME_PURGER] INFO org.zenoss.utils.dao.impl.MySqlRangePartitioner - Pruning table event_time partition p20121218 110000: prune timestamp 2012-12-18 11:51:08.62

[ZEP EVENT TIME PURGER] INFO org.zenoss.utils.dao.impl.MySqlRangePartitioner - Adding partition p2ﬂ121219713ﬂﬂﬂﬂ to table event time

"zeneventserver loq" [readonly] line 11765 of 12037 --97%-- col 1

Figure 41: zeneventserver.log showing daemon startup

2
=

In Figure 41 lines highlighted in yellow show Event Manager configuration parameters
that can be check against the ADVANCED -> Settings -> Events menu.

e Maximum archive days: 1000

e Starting event ageing at interval: 60000 milliseconds(s)

e Starting event archiving at interval: 60000 milliseconds(s)

e Starting database table optimization at interval: 60 minutes(s)

Lines highlighted in green show operations associated with the MySQL database and
the associated Lucene indexes.

1 February 2013 Event Management for Zenoss Core 4 © Skills 1st Ltd 73

f‘-@ Ist DASHBOARD EVENTS INFRASTRUCTURE REPORTS

m Collectors Monitoring Templates Jobs MiBs

Settings
Commands Don't Age This Severity and Above:
Users Error a
ZenPacks
Porllets Event Aging Threshold (minutes):
Daemons 60 -
Versions Event Aging Interval (miliseconds):
Backups 60000 A
T Event Aging Limit:
1000 &
Event Archive Threshold (minutes):
1440 i
Event Archive Interval (miliseconds):
60000 2
Event Archive Limit:
1000 2
Delete Archived Events Older Than (days):
7 =

Figure 42: Event Manager parameters that match with zeneventserver.log startup log

Lines highlighted in red are interacting with Rabbit MQ AMQP system. The first
section shows zeneventserver connecting to the MQ subsystem,; if this is unsuccessful
then many of the Zenoss daemons will fail.

The second section shows the threads starting up to consume the various queues that
zeneventserver processes.

e zenoss.queues.zep.zenevents

e zenoss.queues.zep.modelchange

e zenoss.queues.zep.heartbeats

e zenoss.queues.zep.migrated.summary
e zenoss.queues.zep.migrated.archive

Note that you would not expect to see zeneventserver working on
zenoss.queues.zep.rawevents - the consumer of that queue is the zeneventd daemon.

Lines highlighted in light blue are subsequent, periodic operations by zeneventserver
performing maintenance on the MySQL database. The log shows an event table
partition being pruned every hour and a new one being created, as a section of events
are aged into the event_archive table.

74 Event Management for Zenoss Core 4 © Skills 1st Ltd 1 February 2013

8.1.3 Other log files

Other log files that may have a bearing on events are:

e zenhub.log interactions between daemons) more useful prior

e event.log problems seen by event.log) to V4 for event issues
e zenperfsnmp.log issues with performance data and threshold events

e zenwinperf.log issues with performance data and threshold events

e zencommand.log issues with performance data and threshold events

e zensyslog.log daemon that receives syslog events

e zeneventlog.log daemon that receives Windows events

e zentrap.log daemon that receives SNMP TRAPs

8.2 Using zendmd to run Python commands

Zenoss provides a Python command line interface, zendmd, where code for transforms
can be tested out and the attributes and methods available can be explored.

Note carefully the indentation of statements. Python is very particular about
indentation to interpret structure such as for loops. It doesn't matter how many spaces
you indent the body of the for loop but it must be indented from the for line and each
line in the main body of that for loop must have the same indentation. The body of a for
loop, inside a for loop, would indent further — and so on.

You should run zendmd as the zenoss user. This section is not supposed to be a Python
tutorial; that said, here are a couple of tricks with zendmd.

Note that these techniques for accessing events have changed substantially between
previous versions of Zenoss and Zenoss 4.

8.2.1 Referencing an existing Zenoss event for use in zendmd

If you want to explore the attributes and methods available for an event or the device
that generated the event, using zendmd, you need a way to reference an event. When
executing a transform, these objects are made available to you automatically as the evt
variable and the device variable — but in a zendmd test environment you need to supply
these.

With earlier versions of Zenoss there was a method on the ZenEventManager,
getEventDetailFromStatusOrHistory, which took as a parameter the string value of a
unique evid and delivered an EventDetail object (see Figure 43).

To find the evid, simply display an appropriate event in the Event Console, bring up the
detailed data, and cut and paste the evid value into the statement in zendmd.

1 February 2013 Event Management for Zenoss Core 4 © Skills 1st Ltd 75

LUHNIEC L LU LU ZENUSSE C1USEN .

jane@bino:”> ssh zenoss

Passuord: I
Last login: Tue Jan 13 12:53:06 2009 from bino.skills-1st.co.uk
Have a lot of fun...

Jjane@zenoss: "> cd ~usrslocalszenoss”
Jjanel@zenoss - usrslocalszenoss> . /zenconsole

Welcome to Zenoss console.

bash-3.25 su

Password:

zenoss i -usrslocalszenoss # su - zenoss

ZenossEzenoss:” »

zenossBzenoss "y

ZENossEZENDSS >

zenoss@zenoss:” » zendmd

Welcome to zenoss dmd command shell?t

use zhelp() to list commands

»>» eut=dmd.ZenEventManager .getEventDetailFronStatusOrHistory("0a00008337acdd92f ff2ced")
»»> print evt

{Products.ZenEvents.EventDetail .EventDetail object at OxBc3aaBc>
>>» print eut.summary

This is a device context event

>>> print eut.device

server.class.example.org

»»>]

Figure 43: Using zendmd. to set the evt variable to an existing Zenoss event - Zenoss prior to V4

With Zenoss 4, it is a little more complex. We really need to get back to the
ZepRawEventProxy format to test transform code, but that is no longer available - the
data from the rawevent queue is gone.

What we do have access to is the event in the MySQL database; however we don't want
it with database-style attributes, we want EventProxy attributes.

76 Event Management for Zenoss Core 4 © Skills 1st Ltd 1 February 2013

= zenoss@zend2:/opt/zenoss/local - o X
Eile Edit View Search Terminal Help

>>> from Products.Zuul import getFacade E|
>>> from zenoss.protocols.jsonformat import from_dict

>>> from zenoss.protocols.protobufs.zep pb2 import EventSummary

>>> from Products.ZenEvents.events2.proxy import EventSummaryProxy

>>> zep = getFacade('zep')

>>> evt=zep.getEventSummary('0008c29d9-f87b-94fb-11e2-494936a92109")

>>> rawevt=EventSummaryProxy(from_dict(EventSummary, evt))

>>> rawevt

<Products.ZenEvents.events2.proxy.EventSummaryProxy object at 0x7832890>

>>> rawevt.device

u'zen42.class.example.org’

>>> rawevt.component

u'linetest’

>>> rawevt.myLine_num

u'2'

>>> rawevt.eventClassMapping

u'/Skills/linetest’

>>> rawevt.count

>>> evt
{'status': ©, 'count': 1, 'update_time': 1355911768995L, ‘occurrence': [{'severity': 5, 'tags': [{'type': u'zenoss.device.device class', 'uuid': [u’
95f886d0-0dOb-4bd8-ad04-2d0fdc7faac6', u'310d557e-d943-492e-aed2-0426c8df136d']}, {'type': u'zenoss.device.groups', 'uuid': [u'548a69f6-e5d1-484c-9b
6d-0e9f4aB830ae9 ']}, {'type': u'zenoss.device.location', 'uuid': [u'65cc35ef-2ef3-46f4-8aad-32708ff52fd2']}, {'type': u'zenoss.device.systems', 'uuid
": [u'e47bce9c-9070-4544-a6al-46725f5df24e’, u'f22226bb-63df-408a-9d59-ded2fecl29cl 1}, {'type': u'zenoss.event.event class', 'uuid': [u'efdad870-da
ed-4c48-851b-878f309c3ac0’, u'2710549c-6b39-423a-aa39-6cae94491735']}], 'event_key': u'', 'actor': {'element_type id': 1, 'element_ identifier': u'ze
nd42.class.example.org', ‘'element sub identifier': u'linetest', ‘element uuid': u'fl873f7d-210e-47c0-aea2-a38a932cl5ef’', 'element sub_title': u'linet
est', 'element_sub_type_id': 2, 'element_title': u'zend42.class.example.org'}, 'summary': u'Problem is test line 2 on device zend42.class.example.org.
Please call Jane Curry', ‘event class_mapping uuid': u'efdad870-daed-4c48-851b-878f309c3ac@’', 'details': [{'nmame': u'zenoss.device.ip address', 'v
alue': [u'192.168.10.42"]}, {'name': u'zenoss.device.production_state', ‘value': [u'l000']}, {'name': u'zenoss.device.priority', 'value': [u'3']}, {
'name': u'zenoss.device.location', 'value': [u'/Taplow']}, {'name': u'zenoss.device.device class', 'value': [u'/Server/Linux']}, {'name': u'zenoss.d
evice.groups', 'value': [u'/Skills 1st'l}, {'name': u'zenoss.device.systems', 'value': [u'/Test', u'/Real'l}, {'name': u'line num', ‘'value': [u'2']}
, {'name': u'eventClassMapping', 'value': [u'/Skills/linetest']}, {'name': u'mySummary', ‘value': [u'This is NOT good news / bad news event test lin
e 2'1}, {'name’: u'mylLine num', ‘'value': [u'2']}, {'name': u'myDevId', ‘'value': [u'zend42.class.example.org']}, {'name’': u'mySnmpSyslLoc', 'value': [u
'Cedar Chase']}, {'name': u'mySnmpSysContact', 'value': [u'Jane Curry'l}, {'name': u'mySnmpStatus', 'value': [u'Up'1}1, 'fingerprint': u'zend2.class
.example.org|linetest|/Skills|5|Problem is test line 2 on device zen42.class.example.org. Please call Jane Curry', 'created_time': 1355858957252L
'event_class_key': u'linetest', 'message’': u'test line 2', 'event_class': u'/Skills', 'monitor': u'localhost'}], 'status_change_time': 1355811659162
L, ‘'current_user_uuid': u'9bbb5148-1dfe-477d-b353-b890d6e57859', 'current_user_name': u'jane', 'first_seen time': 1355858957252L, 'last_seen_time':
1355858957252L, 'audit log': [{'timestamp': 1355911659162L, 'user_uuid': u'9bbb5148-1ldfe-4f7d-h353-b890d6e5f859', 'new status': 0, 'user _name': u'ja
ne'}, {'timestamp': 1355911654847L, 'user_uuid': u'9bbb5148-ldfe-4f7d-b353-b890d6e5f859", 'new_status': 1, 'user_name': u'jane'}], 'notes': [{'creat 5

Figure 44: Using zendmd. to retrieve an event from the MySQL database, convert to an
EventSummaryProxy and extract various fields

$ZENHOME | Products | Zuul | facades | zepfacade.py provides a number of utilities to
access data from the zenoss_zep database and manipulate it, typically providing JSON-
format data.

Figure 44 demonstrates using zendmd to access events in the MySQL database, convert
them to EventSummaryProxy format and then print out various fields.

® zep = getFacade('zep') provides access to the zenoss_zep database
® evt=zep.getEventSummary ('000c29d9-f87b-94fb-11e2-494936a92109")

o Retrieves the event with the specified uuid - the result is in JSON

® rawevt=EventSummaryProxy (from dict (EventSummary, evt))

o The EventSummaryProxy class takes a protobuf-style event as parameter,
not the JSON-style event we currently have. Use from dict to convert
from JSON to protobuf

® rawevt.device standard attribute

® rawevt.myLineNum attribute from details

® REMEMBER that this is an EventSummaryProxy, not a ZepRawEventProxy so you
have access to fields that are not available at transform time (like count,
firstTime, ...)

® evt the JSON-format event (dictionary)

The JSON-style events are very hard to read as shown above. zendmd understands the
pprint method to pretty-print complex structures. It can be useful to capture the output
of pprint(evt) into a file and then use the vi editor % technique to help match opening
and closing brackets.

1 February 2013 Event Management for Zenoss Core 4 © Skills 1st Ltd 77

(= rwshare : vi g & &
File Edit View Bookmarks Seftings Help

>>> pprint(evt) S
{'audit_log': [{'new_status': O,
"timestamp': 1355911659162L,
'user_name': u'jane’,
'user_uuid': u'Sbbb5148-1dfe-4f7d-b353-b890d6e5fB59'},
{'new_status': 1,
'timestamp': 1355911654847L,
'user_name': u'jane’,
'user_uuid': u'9bbb5148-1dfe-4f7d-b353-bB90dEe5fB59"}],
‘count': 1,
‘current_user_name': u'jane’,
‘current_user_uuid': u'9bbb5148-1dfe-4f7d-b353-bBI0dEe5TE5D",
'first_seen_time': 1355858957252,
'‘last seen time': 135585895725ZL,
'notes': [{'created time': 1355811768935L,
'message': u'Second note',
‘User_name': u'jane’,
'user_uuid': u'9bbb5148-1dfe-4f7d-b353-bBI0d6e57859",
‘uuld': u'B00c29d9-f87b-917d-11e2-49c42celcf78'},
{'created_time': 13553911638767L,
'message ' : u'added by JC',
'user_name': u'jane',
'user_uuid': u'9bbb5148-1dfe-4f7d-b353-bB90dEe51859",
‘uuid': u'G08c29d9-T87b-917d-11e2-49c3df429825"'}],
‘occurrence': [{'actor': {'element_identifier': u'zen42.class.example.org',
'element_sub_identifier': u'linetest’,
‘element_sub_title': u'linetest’,
‘element sub type id': 2,
'‘element_title': u'zend42.class.example.org',
‘element_type_id': 1,
‘element_uuid': u'fl87377d-210e-47cl-aea2-a38a932cl5ef '},
'created_time': 1355858957252L,
'details': [{'name': u'zenoss.device.ip_address’',
‘value': [u'l92.168.10.42'1},
{'name': u'zenoss.device.production_state',
'value': [u'lEEe']},
{'name': u'zenoss.device.priority',
‘value': [u'3']},
{'name': u'zenoss.device.location',
'value': [u'/Taplow']},
{'name': u'zenoss.device.device class',
‘value': [u'/Server/Linux']},
{'name': u'zenoss.device.groups',
'value': [u'/Skills 1st']},
{'name': u'zenoss.device.systems',
'value': [u'/Test', u'/Real']},
{'name': u'line_num', 'value': [u'2']},
{'name': u'eventClassMapping',
‘value': [u'/Skills/linetest']},
f'name' : u'mySummary',
50,30 Top '~
W

= rwshare : vi

Figure 45First part of zendmd pprint(evt) command displaying summary event in JSON format

Remember that Figure 45 and Figure 46 are showing the JSON-style event, not the
EventSummaryProxy that delivers suitable attributes for transform manipulation.

78 Event Management for Zenoss Core 4 © Skills 1st Ltd 1 February 2013

I!l - rwshare : vi ¥ &

File Edit “iew Bookmarks Seftings Help

'value': [u'This is NOT good news / bad news event test line 2']}, =
{'name': u'mylLine_num', ‘'value': [u'2'l},
{'name': u'myDevId',
'value': [u'zendZ.class.example.org'l},
{'name': u'mySnmpSyslLoc',
‘value': [u'Cedar Chase']l},
{'name': u'mySnmpSysContact',
'value': [u'Jane Curry'l},
{'name': u'mySnmpStatus', 'value': [u'Up'l1}]1.
'event_class': u'/Skills’',
'event_class_key': u'linetest’,
'event_class_mapping_uuid': u'efdadB70-daed-4c48-851b-878f309¢c3acl’,
‘event_key': u''
'fingerprint': u'zendZ.class.example.org|linetest|/Skills|5|Problem is test 1ine 2 on device zen4Z.c
lass.example.org. Please call Jane Curry',
'message': u'test line 2°',
‘monitor': u'localhost',
'severity': 5,
'summary': u'Problem is test line 2 on device zen4Z.class.example.org. Please call Jane Curry',
'tags': [{'type': u'zenoss.device.device_class',
'uuid': [u'S5f8B86d0-0dOb-4bd8-adB4-2d0fdc7 faact "',
u'310d557e-d943-492e-aed2-0426c8dfl36d']},
{'type': u'zenoss.device.groups',
'uuid': [u'548a69f6-e5dl-484c-9b6d-0e974a830ae9']},
{'type': u'zenoss.device.location',
'uuid': [u'65cc35ef-2ef3-46T4-8aad-32708Ff52fd2']},
{'type': u'zenoss.device.systems',
'uuid': [u'ed47bcedc-9070-4544-a6al-46725F5df24e ",
u' f22226bb-63df-408a-9d59-d0d2fec129¢1 ']},
{'type': u'zenocss.event.event_class',
'uuid': [u'efdad870-daed-4c48-851b-878f309c3acO’,
u'2710549c-6b39-423a-aa39-6cae94491735'1}1}],
'status': 0,
'status_change_time': 1355811659162,
'update_time': 1355911768935L,
'uuid': u'0BOc29d9-f87b-94fb-11e2-494536a92109 "'}
86,0-1 Bot |2
v

rwshare : vi

Figure 46Second part of zendmd pprint(evt) command displaying summary event in JSON format

8.2.2 Using zendmd to understand attributes for an EventSummaryProxy

An EventSummaryProxy is an object class representing a Zenoss event — it is a Python
dictionary data type — a data structure of <key> , <value> pairs. To see what keys
(attributes) are available, use the method shown in the following figure. Built-in
methods starting with a double underscore are deliberately excluded.

1 February 2013 Event Management for Zenoss Core 4 © Skills 1st Ltd 79

zenoss@zen42:/opt/zenoss/local

File Edit View Search Terminal Help
=== for attr in dir(rawevt):
if not attr.startswith('_ '):
print attr, getattr(rawevt,attr)

DEVICE CLASS DETAIL KEY zenoss.device.device class
DEVICE GROUPS DETAIL KEY zenoss.device.groups

DEVICE IP ADDRESS_DETAIL KEY zenoss.device.ip address
DEVICE LOCATION_DETAIL_KEY zenoss.device.location
DEVICE PRIORITY DETAIL_KEY zenoss.device.priority
DEVICE SYSTEMS DETAIL KEY zenoss.device.systems
DeviceClass /Server/Linux

DeviceGroups |/Skills 1st

DevicePriority 3

Location /Taplow

PRODUCTION STATE DETAIL KEY zenoss.device.production state

Systems |/Test|/Real

_clearClasses set([])

_event <Products.ZenEvents.events2.proxy.ProtobufWrapper object at ©x7839cde>
_eventSummary <Products.ZenEvents.events2.proxy.ProtobufWrapper object at @x7839658>
_readOnly {}

tags <Products.ZenEvents.events2.proxy.EventTagProxy object at @x77e9150>
agent None

clearid None

component linetest

count 1

created 1355858957

details <Products.ZenEvents.events2.proxy.EventDetailProxy object at 0x7839dle=
device zen42.class.example.org

eventClass /Skills

eventClassKey linetest

eventGroup None

eventKey

eventState @

eyvid 000c29d9-f87b-94fb-11le2-494936a92109
facility Mone

firstTime 2012/12/18 19:29:17.080
ipAddress 192.168.10.42

lastTime 2012/12/18 19:29:17.000

message test line 2

dedupid zen42.class.example.org|linetest|/Skills|5|Problem is test line 2 on device zen42.class.example.org.

FIELDS ['DeviceClass', 'DeviceGroups’, ‘DevicePriority', 'Location’, 'Systems®', ‘agent', ‘clearid', 'component', ‘count', ‘'created’', 'de
dupid’', 'device’, ‘eventClass', 'eventClassKey', 'eventGroup', 'eventKey', ‘eventState', 'evid', 'facility', 'firstTime', 'ipAddress', '
lastTime', 'message’, 'monitor', 'ntevid', 'ownerid', ‘'prierity', 'prodState’, 'severity', 'stateChange', 'summary', 'tags']

Please call Jane Curry

Figure 47: Using zendmd to print event attribute <key> <value> pairs (partial listing)

These are the primary event fields that are available to use in a transform
(remembering to also exclude those that don't exist at rawevent time eg. count,

firstTime, eventState, ...).

Note that some of the dictionary elements are themselves dictionaries eg. details. To
find out what the details attributes are, see Figure 48. Remember from Figure 38, that
the EventDetailProxy class has an _map dictionary with name,value pairs in it.

80 Event Management for Zenoss Core 4 © Skills 1st Ltd

1 February 2013

= Zzenoss@zen42:/opt/zenoss/local
Eile Edit View Search Terminal Help
>>>
>>>
>>> for d in rawevt.details. map.keys():
print d,rawevt.details.get(d)

mySummary This is NOT good news / bad news event test line 2
mySnmpSysContact Jane Curry
eventClassMapping /Skills/linetest
zenoss.device.location /Taplow
line num 2
mySnmpStatus Up
zenoss.device.ip_address 192.168.10.42
zenoss.device.groups /Skills 1st
zenoss.device.device class /Server/Linux
myLine_num 2
zenoss.device.production state 1000
mySnmpSysLoc Cedar Chase
myDevId zend2.class.example.org
zenoss.device.priority 3
Traceback (most recent call last):
File "<console>", line 2, in <module>
File "/opt/zenoss/Products/ZenEvents/events2/proxy.py", line 188, in get
return self[key]
File "/opt/zenoss/Products/ZenEvents/events2/proxy.py", line 153, in _ getitem_

_message.RepeatedScalarContainer object at 0x748bcb0>
zenoss.device.systems >>>
>>> rawevt.mySnmpSyslLoc
u'Cedar Chase'
>>> rawevt.mySummary
u'This is NOT good news / bad news event test line 2'
>>> rawevt.zenoss.device.ip address
Traceback (most recent call last):
File "<console>", line 1, in <module>
File "/opt/zenoss/Products/ZenEvents/events2/proxy.py", line 472, in getattr
raise AttributeError(name)
AttributeError: zenoss
>>=>

Figure 48zendmd to display event details dictionary name,value pairs

raise Exception('Detail %s has more than one value but the old event system eipects only one: %s' % (item.name, item.value))

Exception: Detail zenoss.device.systems has more than one value but the old event system expects only one: <google.protobuf.internal.cpp

B

The get method of EventDetailProxy delivers values when that item is a single, scalar
value. If the item has multiple values, a list for example, then the get method breaks as

shown above on the zenoss.device.systems attribute. Note that it “gets away with” the

zenoss.device.groups attribute because, although a device may be in multiple groups, in

this case the device is only in a single group, whereas it is a member of two Systems.

This is also echoed in the Event Details of the Zenoss GUI.

1 February 2013 Event Management for Zenoss Core 4 © Skills 1st Ltd

81

7y

Mozilla Firefox

- 0O X

Event Details...

eveniClassMapping
line_num

myDevld

myLine num
mySnmpStatus
mySnmpSysContact
mySnmpSysLoc
mySummary
zenoss.device.device class
Zenoss.device.groups
zenoss.device.ip_address
zenoss.device.location
zenoss.device.priority
zenoss.device.production_state
Zenoss.device.systems

zenoss.device.systems

LOG

2
zend2.class.example.org
2

Up

Jane Curry

Cedar Chase

This is NOT good news / bad news event test line 2
/Server/Linux

/Skills 1st

192.168.10.42

Taplow

3

1000

Mest

/Real

|@ zen42.class.example.org:8080/zport/dmd/Events/viewDetail 7evid=000c29d9-f87b-94fb-11e2-49493¢

1

zenoss.device.systems

Figure 49Zenoss GUI Event Details showing one instance of zenoss.device.groups and 2 instances of

[»]

If an event details attribute is not a scalar, use the getAll method rather than the get

method. For example:

>>> print list(rawevt.details.getAll('zenoss.device.systems'))

[u'/Test', u'/Real']
>>>

Also note in Figure 48 that user-defined detail attributes can simply be referred to as

[<]

rawevt.mySummary or rawevt.mySnmpSysLoc but you cannot refer to detail fields that
contain a . (dot) in this way thus excluding the default details attributes (those starting
with zenoss.) and excluding SNMP TRAP varbind fields that typically contain a dot; use
the get and getAll methods to access such detail fields.

82 Event Management for Zen

oss Core 4 © Skills 1st Ltd

1 February 2013

8.3 Using the Python debugger in transforms

A very powerful aid when debugging any Python is to use the Python Debugger, pdb.
See http://docs.python.org/2/library/pdb.html for detailed documentation.

pdb allows you to break execution, display the state of objects and their values and step
through the code. When used in transforms, this means running zeneventd in the
foreground in debug mode (so definitely not a technique for use in production).

When using pdb to examine transforms, it is not easy to step through the transform code
(using s to step or n for next) as you end up nested many layers deep in the methods of
the zeneventd code; however it is very useful to examine the state of the event (evt) and
also explore the device (device).

If you are doing this, you may wish to reduce the Zenoss system to a minimum set of
daemons to avoid events from lots of other sources.

If $ZENHOME /etc/ DAEMONS_TXT ONLY exists then the only Zenoss daemons that
will be manipulated by a zenoss start / zenoss stop / zenoss status will be those listed in
$ZENHOME /etc/daemons.txt. A minimum set of daemons would be:

e zeneventserver
e zopectl

e zeneventd

e zenhub

e zenjobs

e zenactiond

When you have restarted Zenoss, go to ADVANCED -> Settings -> Events, scroll to the
bottom of the page and click Clear . This prevents the heartbeat from periodically
checking all those daemons that are now down and generating heartbeat events..

To put a break point at the start of a transform, add the following line:

import pdb; pdb.set_trace()

Stop the zeneventd daemon and start it in the foreground in debug mode:

zeneventd stop
zeneventd run -v 10

Generate an event that will trigger the transform; for example:

zensendevent -d zen42.class.example.org -s Error -k linetest -p linetest test line 24

In the zeneventd foreground window you should see a pdb prompt. You should now have
access to:

o evt a ZepRawEventProxy object

e device a Device object

1 February 2013 Event Management for Zenoss Core 4 © Skills 1st Ltd 83

http://docs.python.org/2/library/pdb.html

= zenoss@zen42:/opt/zenoss/log
File Edit View Search Terminal Help

'uuid': [u'65cc35ef-2ef3-46f4-8aad-32708Ff521fd2']1}, {'type': u'zenoss.device.systems', 'uuid': [u'ed7bce9dc-9070-4544-a6al-46725F5df(~]

24e', u'f22226bb-63df-408a-9d59-d0d2fecl29cl']}, {'type': u'zenoss.event.event_ class', 'uuid': [u'efdad870-daed-4c48-851bh-8787309c3aco
', u'2710549c-6b39-423a-aa39-6cae94491735"']}], 'event_key': u'', 'actor': {'element_identifier': u'zen42.class.example.org', 'element_

sub type id': 2, 'element uuid': u'f1l873f7d-210e-47c0-aea2-a38a932cl5ef', 'element type id': 1, 'element sub identifier': u'linetest'}
, 'summary': u'test line 31', ‘'event_class_mapping_uuid': u'efdad870-daed-4c48-851b-8787309c3ac0’, 'monitor': u'localhost', 'details':
[{'name': u'zenoss.device.ip address', 'value': [u'l92.168.10.42']}, {'name': u'zenoss.device.production_state', ‘'value': [u'l@00']},
{'name': u'zenoss.device.priority', 'value': [u'3'1}, {'name': u'zenoss.device.location', 'value': [u'/Taplow'l}, {'name': u'zenoss.d

evice.device_class', 'value': [u'/Server/Linux']}, {'name': u'zenoss.device.groups', ‘'value': [u'/Skills 1st']}, {'name’: u'zenoss.dev

ice.systems', 'value': [u'/Test', u'/Real'l]}, {'name': u'line num', 'value': [u'31']}, {'name': u'eventClassMapping', 'value': [u'/Ski

1ls/linetest']}, {'name': u'mySummary', 'value': [u'This is NOT a good news / bad news event test line 31']}], 'created time': 1356118

065037L, 'event_class_key': u'linetest', 'message': u'test line 31', 'event_class': u'/Skills', ‘severity': 4}}}

2012-12-21 19:27:45,253 DEBUG zen.Events: Applying transform/mapping at Event Class /Events/Skills/instances/linetest

> <string>(2)<module=>()

(Pdb)

(Pdb)

(Pdb) evt.summary

u'test line 31°'

(Pdb) evt.device

u'zend?2.class.example.org'

(Pdb) evt.component

u'linetest’

(Pdb) evt.line num

u‘31'

(Pdb) device.id

'zend?.class.example.org’

(Pdb) device.managelp

'192.168.10.42"

(Pdb) device.getRRDTemplates()

[<RRDTemplate at /zport/dmd/Devices/rrdTemplates/b_fping>, <RRDTemplate at /zport/dmd/Devices/Server/Linux/rrdTemplates/Device>, <RRDT

emplate at /zport/dmd/Devices/Server/Linux/rrdTemplates/testl>]

(Pdb) device.getPingStatusString()

2012-12-21 19:29:44,203 DEBUG zen.protocols.services: Creating new HTTP connection pool to: http://localhost:8084/zeneventserver/api/1l

.0/events/

2012-12-21 19:29:44,216 DEBUG zen.protocols.services: Elapsed time calling http://localhost:8084/zeneventserver/api/l.0/events/: 0.009

90509986877

2012-12-21 19:29:44,250 DEBUG zen.protocols.services: Elapsed time calling http://localhost:8084/zeneventserver/api/l.0/events/: 0.027

0450115204

‘Up*

(Pdb) I

Figure 50: pdb dialogue in zeneventd foreground - generated by pdb.set_trace() in transform

- 0 X

(T

Figure 50 demonstrates exploring some of the attributes of both evt and device. Note
that entering a simple carriage-return repeats the previous pdb command.

¢ in pdb continues execution.

To see legal attributes and methods for the Device object, examine the Device class
definition in $ZENHOME |/ Products | ZenModel | Device.py.

pdb does not have the pprint method seen in zendmd but it does have an equivalent pp
utility. For example, to print all primary event fields, excluding built-in methods, use:

pp [x for x in dir(evt) if not x.startswith('__')]

84 Event Management for Zenoss Core 4 © Skills 1st Ltd 1 February 2013

File Edit VWiew Search Terminal Help

zenoss@zen42:/opt/zenoss/log

(Pdb) pp [x for x in dir(evt) if not x.startswith(' '}]

["ACTION ALERT STATE',

"ACTION DETAIL',

"ACTION DROP',

"ACTION HEARTBEAT',

"ACTION HISTORY',

"ACTION LOG"',

"ACTION STATUS',

"ACTION STATUS MAP',
"DEVICE CLASS DETAIL KEY',
'"DEVICE GROUPS DETAIL KEY',
'"DEVICE IP ADDRESS DETAIL KEY',
'"DEVICE LOCATION DETAIL KEY',
'"DEVICE PRIORITY DETAIL KEY',
'"DEVICE SYSTEMS DETAIL KEY',
‘DeviceClass’,
‘DeviceGroups’,
‘DevicePriority’',

"FIELDS',

‘Location’,
"PRODUCTION STATE DETAIL KEY',
"STATUS ACTION MAP',
'Systems',

' action',

_clearClasses’,
_clearClassesSet’,

_event',

_readOnly"',
_refreshClearClasses’,
_tags',

_zepRawEvent ',

‘agent’',

‘component’,

'created’,

'dedupid’,

'details"’,

'device’',

'eventClass',
'eventClassKey',

Figure 51: Using pdb to pretty print all primary event fields

To show detail fields:

pp evt.details._map.keys ()

1 February 2013

Event Management for Zenoss Core 4 © Skills 1st Ltd

85

(Pdb) pp evt.details. map.keys()
["mySummary "',
'eventClassMapping',
'Zenoss.device.location',
‘line num',
u'zenoss.device.ip address',
'zenoss.device.groups',
'Zenoss.device.device class’,
‘Zenoss.device.production state’,
'zenoss.device.priority’',
'zenoss.device.systems']
(Pdb) |}

Figure 52: Using pdb to display detail event fields
To print a scalar value for a detail event field, try:

(Pdb) print evt.details.get('zenoss.device.device_class')
/Server/Linux

(Pdb) print evt.details.get ('mySummary')

This is NOT a good news / bad news event test line 31
(Pdb)

To print a non-scalar (a list for example):

(Pdb) print list(evt.details.getAll ('zenoss.device.systems'))
[u'/Test', u'/Real']

An attempt to print all detail field names and values might be:

pp [(v,evt.details.get(v)) for v in evt.details._map.keys ()]

**% Exception: Exception(u'Detail zenoss.device.systems has more than one
value but the old event system expects only one:
<google.protobuf.internal.cpp_message.RepeatedScalarContainer object at
0x5e0lef0>"',)

(Pdb)

This comes up against the problem described in the zendmd section where the get
method fails with non-scalar values. A partial circumvention, given the knowledge that
none of the user-defined variables are non-scalar, would be:

(Pdb) pp [(v,evt.details.get(v)) for v in evt.details._map.keys() if not
v.startswith('zenoss.device')]

('mySummary', u'This is NOT a good news / bad news event test line 31'),

('eventClassMapping', u'/Skills/linetest'),

('"line_num', u'31'")]

Pdb)

[

(

Perhaps a better solution is to accept all values as lists and use the getAll method,
which then works for all event details name,value pairs.

(Pdb) pp [(v, list(evt.details.getAll(v))) for v in evt.details._map.keys ()]

[("mySummary', [u'This is NOT a good news / bad news event test line 31']),
('eventClassMapping', [u'/Skills/linetest']l),
('zenoss.device.location', [u'/Taplow']),

('line _num', [u'31']),

(u'zenoss.device.ip_address', [u'l92.168.10.42']),
('zenoss.device.groups', [u'/Skills 1st']),

('zenoss.device.device_class', [u'/Server/Linux']),

86 Event Management for Zenoss Core 4 © Skills 1st Ltd 1 February 2013

zenoss.device.production_state', [u'l1000']),

(

('zenoss.device.priority', [u'3'l),
('zenoss.device.systems', [u'/Test', u'/Real'])]
(Pdb)

9 Zenoss and SNMP

9.1 SNMP introduction

The Simple Network Management Protocol (SNMP) defines Management Information
Base (MIB) variables that can be polled to provide performance and configuration
information. The SNMP standard also provides for agents to send “events” to a manager.
Version 1 of SNMP defines these as TRAPSs; versions 2 and 3 of the standard calls them
NOTIFICATIONSs (Zenoss supports all three versions of SNMP). Both MIB variables
and TRAPs / NOTIFICATIONSs use Object Identifiers (OIDs) to denote different
variables and events.

SNMP TRAPs are distinguished by their Enterprise Object Id (OID), the generic TRAP
number and the specific TRAP number.

Natively, OIDs are defined as strings of dotted decimals that represent a path through a
tree-based hierarchy, where the root of the tree is 1 and represents the ISO
organisation; it has a sub-branch, 3, which represents organisations (org); it has a sub-
branch, 6, which represents the US Department of Defense (dod); it has a sub-branch, 1,
which represents internet, and so on. Thus, all OIDs start with 1.3.6.1 .

There is a standard, MIB-2, which defines a number of variables that every SNMP-
capable device must support; these are largely simple, network-related variables, such
as interfaceInOctets. In addition to MIB-2, there are a large number of standardised
MIBs defined in Request For Comment (RFC) documents; an example would be RFC
1493 defining the bridge MIB.

The third category of MIBs are known as Enterprise Specific, which are specific to a
particular vendor's particular agent — for example , the Cisco Firewall MIB. Enterprise
specific MIBs often include definitions of Enterprise Specific TRAPs , in addition to MIB
variables.

MIB source files translate dotted-decimal OIDs into more meaningful text. MIB files
are available for many standards (like the HOST-RESOURCES MIB) and, typically, any
supplier who generates their own enterprise specific MIB variables and TRAPs, should
make available a source MIB file to aid this translation.

SNMP agents typically come as part of the base Operating System (Windows, Unix,
Linux, Cisco IOS); however they may not be activated automatically and will require
some configuration. Some agents support little more than MIB-2; others support a wide
range of standard MIBs and enterprise specific MIBs.

The SNMP communication protocol varies depending on the version of SNMP. Versions
1 and 2 (strictly 2c¢) use a community name string as an authentication mechanism

1 February 2013 Event Management for Zenoss Core 4 © Skills 1st Ltd 87

between SNMP manager and agent. Managers must be configured with the correct
community names to use for an agent; SNMP agents must be configured for which
manager(s) are allowed access to them, and which SNMP manager(s) to send TRAPs to.

SNMP V3 is more complex to configure but provides facilities for strong authentication
on SNMP packets and for encryption of data if so desired.

In addition to requesting MIB-2 variables, Zenoss will try to access the standard Host
Resources MIB to get process information for server machines. It will also attempt to
access the Windows Informant MIB for all Windows server systems, in order to get CPU
and file system information. The Informant MIB is a free extension subagent and MIB
available from Informant at http:/www.wtcs.org/informant/index.htm . Note that the
base Windows SNMP agent should be installed and configured before installing the
Informant extension.

Once SNMP agents are configured with community name and TRAP destination, a
simple way to test them is simply to recycle the SNMP agent (indeed they will need
recycling after any configuration changes). On a Windows system, use the Services
utility to stop and start SNMP; on a Linux system, /etc/init.d/snmpd restart will
usually suffice. In either case you should either see a cold start TRAP (generic TRAP
0) or a warm start TRAP (generic TRAP 1) in the Zenoss Event Console. The event
details should show the community name from the TRAP packet.

Another good way of generating TRAPs is to force an authentication TRAP (generic
TRAP 4). An easy way to do this is to use the snmpwalk command with a bad
community name. If the community is public, for a host system called zenoss, try:

snmpwalk -v 1 -c public zenoss system test with good community
snmpwalk -v 1 -c fred zenoss system to generate several TRAP 4's

9.2 SNMP on Linux systems

Most Linux systems come with some flavour of the net-snmp agent (formerly the UCD
agent). Many Linux default configurations for this agent provide very limited SNMP
access. The snmp agent configuration is typically called snmpd.conf; the location of this
file varies between different Linux implementations but /etc/snmp is a common choice.
You will need root authority to manipulate the SNMP configuration and daemon.

88 Event Management for Zenoss Core 4 © Skills 1st Ltd 1 February 2013

http://www.wtcs.org/informant/index.htm

El zenoss@zend2:fetc/snmp

File Edit View Search Terminal Help

sec.name source community

com2sec local rw localhost public

com2sec zend2 r zend2 public

com2sec zend2 w zen42 fraclmye

com2sec default default public

A

Second, map the security names into group names:

sec.model sec.name

group local group vl local rw

group zend42 read group wl zend2 r

group zend42 write group vl zend2 w

group default group vl default

group local group v2c local rw

group zend42 read group w2c zend2 r

group zend42 write group v2c zend2 w

group default group V2C default

HAHRH

Third, create a view for us to let the groups have rights to:
incl/excl subtree mask
view all included .1 80
HHHH

Finally, grant the 2 groups access to the 1 view with different
write permissions:

context sec.model sec.level match read write notif
access local group " any noauth exact all all none
access zen42 read group " any noauth exact all none none
access zen42 write group " any noauth exact all all none
access default group o any noauth exact all none none

authtrapenable 1
trapcommunity public
trapsink zen42

syslocation Cedar Chase
syscontact Jane Curry
"snmpd.conf" [Modified] line 14 of 391 --3%-- col 1

Figure 53: snmpd.conf for net-snmp agent

Figure 53 shows an snmpd.conf that configures for SNMP V1 and SNMP V2¢, providing
access to the entire MIB (the all view). TRAPs , including Authentication TRAPs, are
sent to the zen42 host. The sysContact and sysLocation variables are set (these are
retrieved as standard by a Zenoss modeler poll).

The snmpd agent should be stopped and restarted after any changes to snmpd.conf.

/etc/init.d/snmpd stop
/etc/init.d/snmpd start

1 February 2013 Event Management for Zenoss Core 4 © Skills 1st Ltd 89

A simple way to test that TRAPs are configured is to generate an Authentication TRAP.

snmpwalk -v 1 -c¢ public zend42 system test with good community
snmpwalk -v 1 -c fred zen42 system to generate several TRAP 4's

Where available, the V3 of the SNMP standard should really be used as it provides
strong authentication (not just a community name that passes over the network in clear)
and it also provides data encryption if desired. Although slightly harder to set up, it is
not too onerous. On the agent, a user id must be generated with parameters for
authentication and encryption (privacy), specifying the encryption algorithm and the
encryption password to be used.

For SNMP V3
Uncomment next 5 lines

com2sec snmpv3test localhost dummycontext

com2sec snmpv3test zend2 dummycontext

group snmpv3group usm snmpv3test

#access snmpv3group nn usm auth exact all all all
access snmpv3group nn usm priv exact all all all

rwuser jane

rwuser jane created by STOPPING SNMPD and running
net-snmp-config --create-snmpv3-user -a fraclmyea -x fraclmyex -X DES -A MD5 jane
/var/lib/net-snmp/snmpd.conf is modified with (hidden) encryption key and
rwuser jane is added to this file (/etc/snmp/snmpd.conf)
test with following if no privacy (data encryption)
snmpwalk -v 3 -a MD5 -A fraclmyea -1 authNoPriv -u jane zen42 system
or, with encryption
snmpwalk -v 3 -a MD5 -A fraclmyea -X fraclmyex -1 authPriv -u jane zend42 system

Restart the snmpd daemon
Note that on CentOS net-snmp-devel must be installed to provide
net-snmp-config

FH o R

Zenoss must also be configured to have matching SNMP V3 parameters for this agent.

tﬁ 1 DASHBOARD EVENTS INFRA URE | REPORTS ADVANCED Q

Networks ~ Processes [P Services Windows Services Network Map Manufacturers Page Tips
)
1§ n & ‘4 JB:Q[Q | KR, - (i 1]
28
- | 0] ons acicn
e |slocal Calegoy Names o VEue
4 Components ‘ snmp
L °Netwum Routes (7) ‘ Yes SNMP zSnmpAuthPassword e [Server/Linuxidevicesizend2 class....
oSNMP Commands (2) ‘ Yes SNMP zSnmpAuthType MDS /ServeriLinux/idevicesizen42 class....
°Interfaces @) ‘ SNMP zSnmpCollectioninterval 300
9()8 Processes (19} ‘ SNMP zSnmpCommunities public private
°Fl\e Systems (3) ‘ SNMP zSnmpGommunity public
QP services (16) ‘ SNMP 2SnmpEngineld ;
°Procecsors 2) \ SNMP zSnmpMonitorignore false
G DNS forward SNMP zSnmpPort 161
Modeler Plugins DNS reverse Yes SNMP zSnmpPrivPassword et /ServeriLinux/idevicesizen42 class....
ping Yes SNMP zSnmpPrivType DES /ServeriLinuxidevicesizen42.class....
Software Yes SNMP zSnmpSecurityName jane /Server/Linuxidevicesizend2 class....
My Example Menu 1 [P SNMP zSnmpTimeout 1
Custom Properties Smpeea s SNIMP zSnmpTries [
Administration hiseastily Yes SNMP zSnmpVer v3 IServer/Linux/devicesizend2.class....
[l DISPLAYING 1 - 14 of 14 ROWS

4_Wnnitaring Temnlatee

[vrootr - [- & - Gammance = s e]
Figure 54: Configuration Properties for agent with SNMP V3

90 Event Management for Zenoss Core 4 © Skills 1st Ltd 1 February 2013

Note that the standard snmpwalk command from the Command icon does not work for
SNMP V3 but it is relatively easy to create a new command from ADVANCED ->
Settings -> Commands which runs an appropriate snmpwalk with the SNMP V3
parameters substituted.

Gﬂl' DASHBOARD EVENTS INFRASTRUCTURE REPORTS ADVANCED jane SIGNOUT H

m Collectors Monitoring Templates Jobs MIBs Page Tipg

Commands Name)
s Add User Command...
Users D DNS Name to

ZenPacks forward lookup Delete Commands...

et [/DNS IPaddret Add to ZenPack... eio)

Daemons reverse lookup 3¢p;

Versions [ping :Z:;:ﬁ;’?o S ${device/pingCommand} -c2 ${device/managelp}
Backups

Display the OIDs snmpwalk -${device/zSnmpVer} -c${device/zSnmpCommunity} ${device/snmpwalkPrefix}${here/managelp}:${here/zZSnmpPort}
Events LSTmEWER available on a device system
UearibiznEss snmpwalk -${device/zSnmpVer} -l authNoPriv -a ${device/zSnmpAuthType} -x ${device/zSnmpPrivType} -A
${device/zSnmpAuthPassword} -X ${device/zSnmpPrivPassword} -u ${device/zSnmpSecurityName}

${device/snmpwalkPrefix}${here/managelp}:${here/zZSnmpPort} system

snmpwalkV3

Show the route fo the

[traceroute ${device/tracerouteCommand} -q 1 -w 2 ${device/managelp}

device
[zendmd Run zendmd zendmd
1of7 DNS forward | show all Page Size | 40 ok

Figure 55: Creating a new Command option to run snmpwalkV3

Note that different implementations of net-snmp on different Operating Systems may
work slightly differently. For example, Open SuSE does not need the net-snmp-devel
package and the rwuser is created in a separate snmpd.conf under /usr/share/snmp
(which is created automatically if it doesn't exist).

9.3 Zenoss SNMP architecture

9.3.1 The zentrap daemon

zentrap is the Zenoss daemon that processes incoming SNMP TRAPs. By default,
zentrap will sit on the well-know SNMP TRAP port of UDP/162 — this can be
reconfigured, if required. Both SNMP version 1 TRAPs and SNMP version 2
NOTIFICATIONS are supported.

zentrap processing is implemented by the Python program
$ZENHOME | Products | ZenEvents/zentrap.py.

1 February 2013 Event Management for Zenoss Core 4 © Skills 1st Ltd 91

File Edit View Search Terminal Help
def ﬂecodeSnmpvl(self, addr, pdu):
eventType = 'unknown'
result = {}

variahles = self.getResult(pdu)

Sometimes the agent_addr is useless.

Use addr[@] unchanged in this case.

Note that SNMPv1l packets *cannot* come in via IPv6

new _addr = '.'.join(map(str, [pdu.agent_addr[i] for i1 in range(4)]))
result["device"] = addr[0] if new addr == "0.0.0.0" else new addr

enterprise = self.getEnterpriseString(pdu)
eventType = self.old2name(

enterprise, exactMatch=False, strip=False)
generic = pdu.trap type
specific = pdu.specific type

Try an exact match with a .0. inserted between enterprise and
specific 0ID. It seems that MIBs fregquently expect this .0.

to exist, but the device's don't send it in the trap.
result["oid"] = "%5.0.%d" % (enterprise, specific)

name = self.oidZname(result["oid"], exactMatch=True, strip=False)

IT we didn't get a match with the .0. inserted we will try
resolving with the .0. inserted and allow partial matches.

if name == result["oid"]:
result["oid"] = "%5.%d" % (enterprise, specific)
name = self.oidZ2name(result["oid"], exactMatch=False, strip=False)

Look for the standard trap types and decode them without
relying on any MIBs being loaded.
eventType = {
'snmp_coldStart',
‘snmp_warmStart',
"snmp_linkDown',
"snmp_linkUp',
'snmp_authenticationFailure',
'snmp_egpNeighorLoss ',
name,
}.get(generic, name)
"zentrap.py" [readonly] line 562 of 766 --73%-- col 9

SO BEWN eSO

Figure 56: zentrap.py part 1 - checking for extra 0 and processing of generic TRAPs
zentrap.py parses the incoming SNMP Protocol Data Unit (PDU) to retrieve the
enterprise OID, the generic TRAP number and the specific TRAP number.

The algorithm for interpreting incoming TRAP Enterprise fields has changed several
times over the years because some agents have an extra 0 defined in their MIB which
they do not send on an actual TRAP (see the comments in the code in Figure 56). In
Zenoss 4.2, the algorithm first tries to find a MIB in the ZODB database that
corresponds with the incoming TRAP, with the extra 0; if this fails, then a partial
match is attempted without the extra 0 (note that the comment in the code is
inaccurate). Either way, the oid field of the event is set to the concatenation of the
enterprise and the specific trap number, with or without the 0 in the middle, depending
on the outcome of the oid2name lookup function.

The generic TRAPs (0 through 5) are translated to strings such as snmp_coldStart.
using the eventType dictionary. For specific TRAPs (generic TRAP 6), eventType delivers
the concatenation of the enterprise OID and the specific TRAP number; for example,
1.3.6.1.4.1.123 is the enterprise, the specific trap number is 1234, so eventType delivers

92 Event Management for Zenoss Core 4 © Skills 1st Ltd 1 February 2013

1.3.6.1.4.1.123.1234. Any variables of the TRAP (varbinds) are also parsed out into OID
/ value pairs if the MIB provides this translation.

The oid2name function looks up in the ZODB database to see if translations are
available for the enterprise OID, the specific TRAP number and the varbind identifiers,
to translate from dotted-decimal notation to textual strings.

Zenoss@zen42:/opt/zenoss/Products/ZenEvents

File Edit View Search Terminal Help

i [
summary = 'snmp trap %s' % eventType
self.log.debug(summary)
community = self.getCommunity(pdu)
result.setdefault('component', '')
result.setdefault('eventClasskey', eventType)
result.setdefault('eventGroup', 'trap')
result.setdefault('severity', SEVERITY WARNING)
result.setdefault('summary', summary)
result.setdefault('community', community)
result.setdefault(' firstTime', startProcessTime)
result.setdefault('lastTime', startProcessTime)
result.setdefault('monitor', self.options.monitor)
self. eventService.sendEvent(result)
self.stats.add(time.time() - startProcessTime)

"zentrap.py" [readonly] line 670 of 766 --87%-- col 1 g

Figure 57: zentrap.py part 2 - event field settings

The following event fields are then set:
e component left blank

e eventClassKey set to eventType

e eventGroup trap

e severity 3

e summary snmp trap followed by eventType

e community set to community name string (this is a user-defined field)
o firstTime set to timestamp

e lastTime set to timestamp

e monitor set to Collector that received the TRAP

9.4 Interpreting MIBs

To help decode SNMP TRAP enterprise OIDs from dotted decimal (such as .
1.3.6.1.4.1.8072.4.0.2) into slightly more meaningful text (like nsNotifyShutdown) the
zenmib command can be used to import both standard MIB source files (such as
SNMPv2-SMI which defines standard OIDs) and vendor-specific MIBs. The base
directory for MIBs in later versions of Zenoss is $ZENHOME | share / mibs.

1 February 2013 Event Management for Zenoss Core 4 © Skills 1st Ltd 93

The zenmib command without parameters will try to import all MIB files that are in
S$ZENHOME | share/ mibs/site . A specific MIB file can be provided as a parameter; the
command should either be run from the $ZENHOME |/ share / mibs /site directory (in
which case a full pathname is not required and the file is expected to be in that
directory) or a fully qualified pathname can be specified.

9.4.1 zenmib example

To help understand the zenmib command, here is a worked example. It uses the agent
for net-snmp which is the agent typically shipped with a Linux system. The enterprise
OID for net-snmp is .1.3.6.1.4.1.8072.

1. Recycle a net-snmp agent with /etc/init.d/snmpd restart . In addition to the
generic cold start TRAP, you should also see TRAP .1.3.6.1.4.1.8072.4.2 . This
comes from the net-snmp enterprise (.1.3.6.1.4.1.8072).

2. The actual TRAP is defined in the file NET-SNMP-AGENT-MIB.txt which should
be shipped as part of the Operating System net-snmp package. Typically this
MIB file can be found under /usr/share/snmp/mibs . Find and examine NET-
SNMP-AGENT-MIB.txt. Strictly, the MIB file is defining SNMP V2
NOTIFICATIONS , rather than SNMP V1 TRAPs — search in the file for the
string NOTIFI to find the relevant lines. Also note the IMPORTS section at the
top of the MIB file, especially the import from NET-SNMP-MIB. This indicates
that NET-SNMP-AGENT-MIB is dependent on also loading NET-SNMP-MIB in
addition to some standard SNMPv2 MIBs.

jane@bino:~ - Shell - Konsole <3>

‘Session Edit View Bookmarks Setlings Help

1
&
3
4
=]
2]
7
8
)
10
11
12
13
14
15
16
17
18
19
Z0
Z1
ZZ
23

H-’.I] = Shell |

MET-SHMP-AGENT-MIB DEFINITIONS ::= BEGIN

—— Defines control and monitoring structures for the Net-SNMP agent.

IMPORTS
SnmpAdninString
FROM SHMP-FRAMEWORK-MIB

netSnmp0b jects, netSnmpModulelDs, netSnmpMotifications, netSnmpGroups
FROM NET-SNMP-MIB

OBJECT-TYPE, NOTIFICATION-TYPE, MODULE-IDENTITY, Integer32, Unsigned32
FROM SNMPu2-SMI

OBJECT-GROUP, NOTIFICATION-GROUP
FROM SNMPuZ-CONF

TEXTUAL-CONVENTION, DisplayString, RowStatus, TruthUalue
FROM SHMPuZ-TC:

"NET-SNMP-AGENT-MIB.txt" [readonlyl 550 lines ——0x— 1,1

Top

Figure 568: MIB file for NET_SNMP_AGENT-MIB showing IMPORTS section

94 Event Management for Zenoss Core 4 © Skills 1st Ltd

1 February 2013

= jane@bino:~ - Shell - Konsole <3> (O] [x
Session Edit View Bookmarks Settings Help
463 — MNotifications relating to the basic operation of the agent -
164 —
465
466 nsNotifyStart HOTIFICATION-TYPE
467 STATUS current
168 DESCRIPTION
469 "An indication that the agent has started ruming."
470 := { netSnmpMotifications 1 ¥
471
172 nsNot ifyShutdown MOTIFICATION-TYPE
473 STATUS current
474 DESCRIPTION
475 "An indication that the agent is in the process of being shut down.”
476 = { netSnmpNotifications 2 ¥
477
478 nsMotifyRestart NOTIFICATION-TYPE
479 STATUS current
480 DESCRIPTION
481 "An indication that the agent has been restarted.
482 This does not imply anything about whether the configuration has
483 changed or not (unlike the standard coldStart or warnStart traps)"
484 = { netSnmpNotifications 3 ¥
485 0
485,4 g%
‘-m? @ Shell |

Figure 59: MIB file for NET-SNMP-AGENT-MIB showing notifications
3. Inspect the NET-SNMP-MIB.txt file and search for the string Notifications. You
should see that the netSnmpNotificationPrefix is defined as branch 4 beneath
netSnmp and that netSnmpNotifications is branch 0 under
netSnmpNotificationPrefix .

[@ jane@bino:~ - Shell - Konsole <3> [_[o] [x]

‘Session Edit View Bookmarks Settings Help

—— A subtree specifically designed for private testing purposes.
—— No "public” management objects should ever be defined within this tree.

—— It is provided for private experimentation, prior to transferring a MIB
—— structure to another part of the overall 0ID tree

netSnnpP laypen OBJECT IDENTIFIER ::= {netSnmpExperimental 9999}

- Motifications

metSnampNotificationPrefix OBJECT IDENTIFIER ::
metSnnpNotifications OBJECT IDENTIFIER ::
metSnmpNotificationObjects OBJECT IDENTIFIER ::

{net3nmp 43
{netSnmpNotificationPrefix O)
{netSnmpNotificationPrefix 1)

—— Conformance
—— (No laughing at the back!)

"MET-SNMP-MIE.txt"” [readonlyl 67 lines —-74x— 50,5 86 =

m = Shell |

Figure 60: MIB file for NET-SNMP-MIB showing OIDs for notification hierarchy

4. At the top of the file you should find the lines that define the enterprise OID for
netSnmp .

1 February 2013 Event Management for Zenoss Core 4 © Skills 1st Ltd 95

96

NET-SNMP-MIB DEFINITIONS ::= BEGIN

—— Top-level infrastructure of the Net-SHMP project enterprize MIB tree

IMPORTS
MODULE-IDENTITY, enterprises FROM SHMPu2Z-SMI:

netSnmp MODULE-IDENTITY
LAST-UPDATED "200201300000Z2"
ORGANIZATION "wwu.net-snmp.org"
CONTACT-INFO

"postal: Wes Hardaker
P.0. Box 382
Davis CA 95617
email: net-snnp-coders@lists.sourceforge .net"
DESCRIPTION
"Top-level infrastructure of the Net-SHMP project enterprise MIB tree"
REVISION YZ002013000002"
DESCRIPTION

“First draft”
1= { enterprises BO7Z}

Figure 61: MIB file for NET-SNMP-MIB showing OID for netSnmp

5. Between them, these files give us (almost) the OID for the unknown TRAP we

received -1.3.6.1.4.1.8072.4.0.2 .

e 1.3.6.1.4.11is the standard iso.org.dod.internet.private.enterprises OID
which is defined in the IMPORT from SNMPv2-SMI

netSnmp is {enterprises 8072 }

netSnmpNotificationPrefix is branch 4 under netSnmp

netSnmpNotifications is branch 0 under netSnmpNotificationPrefix

nsNotifyShutdown is NOTIFICATION 2 under netSnmpNotifications

. Note that some SNMP agents (including the net-snmp agent) are known to omit

the 0 from the TRAP that they actually generate, which is why the oid field in the
details of the event does not quite match the OID specified in the MIB file.

. $ZENHOME | share/ mibs contains five subdirectories four of which contain

source MIB files provided with Zenoss (iana, ietf, irtf, tubs). The fifth directory,
site, is where other MIBs to be imported, should be placed.

. The site directory should contain ZENOSS-MIB.txt which is provided as standard

to define TRAPs that are sent by the Notification function (this will be discussed
later).

. Copy NET-SNMP-AGENT-MIB.txt to the site directory. At this point do not copy

NET-SNMP-MIB.txt; we will demonstrate the error message when corequisite
MIBs are not available.

Event Management for Zenoss Core 4 © Skills 1st Ltd 1 February 2013

10.To import into Zenoss use:

zenmib run -v10 NET-SNMP-AGENT-MIB.txt
11.You should see that the NET-SNMP-AGENT-MIB.txt file is imported but with
errors; there should be a WARNING message saying the NET-SNMP-MIB could
not be found.

zenoss@localhost:/opt/zenoss/share/mibs/site

File Edit View Search Terminal Help

NSIONS -- skipping (~]
2012-12-24 11:12:30,269 DEBUG zen.ZenMib: Processing /opt/zenoss/share/mibs/ietf/MTA-MIB

2012-12-24 11:12:30,313 DEBUG zen.ZenMib: Processing fopt/zenoss/share/mibs/ietf/SONET-MIB

2012-12-24 11:12:308,484 INFO zen.ZenMib: Found 1 MIBs to import.

2012-12-24 11:12:308,484 DEBUG zen.ZenMib: Attempting to load /opt/zenoss/share/mibs/site/NET-SNMP-AGENT-MIB.txt

2012-12-24 11:12:30,485 WARNING zen.ZenMib: Unable to find a file that defines NET-SNMP-MIB

2012-12-24 11:12:30,485 DEBUG zen.ZenMib: Running smidump --keep-going --format python --preload /opt/zenoss/share/mibs/ietf/
SNMPv2-TC --preload fopt/zenoss/share/mibs/ietf/SNMPv2-SMI --preload /opt/zenoss/share/mibs/ietf/SNMP-FRAMEWORK-MIB --preload
Jfopt/zenoss/share/mibs/ietf/SNMPvZ-CONF /opt/zenoss/share/mibs/site/NET-SNMP-AGENT-MIB. txt

2012-12-24 11:12:30,511 DEBUG zen.ZenMib: Found warnings while trying to import MIB:
/opt/zenoss/share/mibs/site/NET-SNMP-AGENT-MIB.txt:12: failed to locate MIB module “NET-SNMP-MIB'
/opt/zenoss/share/mibs/site/NET-SNMP-AGENT-MIB.txt:41: unknown object identifier label “netSnmpModuleIDs'
/opt/zenoss/share/mibs/site/NET-SNMP-AGENT-MIB.txt:44: unknown object identifier label “netSnmpObjects’
/opt/zenoss/share/mibs/site/NET-SNMP-AGENT-MIB.txt:110: index element "nsCached0ID' of row "nsCacheEntry' should but cannot h
ave a size restriction

/opt/zenoss/share/mibs/site/NET-SNMP-AGENT-MIB.txt:418: index element ‘“nsmRegistrationPoint' of row ‘"nsModuleEntry' should bu
t cannot have a size restriction

/opt/zenoss/share/mibs/site/NET-SNMP-AGENT-MIB.txt:470: unknown object identifier label “netSnmpNotifications®
/opt/zenoss/share/mibs/site/NET-SNMP-AGENT-MIB.txt:499: unknown object identifier label ‘netSnmpGroups'

smidump: module " /opt/zenoss/share/mibs/site/NET-SNMP-AGENT-MIB.txt' contains errors, expect flawed output

2012-12-24 11:12:30,788 DEBUG zen.ZenMib: Committing a batch of objects

2012-12-24 11:12:308,748 DEBUG zen.ZenMib: Committing a batch of objects

2012-12-24 11:12:30,756 INFO zen.ZenMib: Parsed © nodes and © notifications from NET-SNMP-AGENT-MIB
2012-12-24 11:12:308,756 DEBUG zen.ZenMib: Committing a batch of objects

2012-12-24 11:12:308,758 INFO zen.ZenMib: Loaded MIB NET-SNMP-AGENT-MIB into the DMD

2012-12-24 11:12:30,759 INFO zen.ZenMib: Loaded 1 MIB file(s)

[zenoss@localhost sitels l

Figure 62: Importing NET-SNMP-AGENT before pre-requisites in place

12.Note in the Running smidump line that the standard SNMPv2 prerequisite files
that were listed as IMPORTS in Figure 58 have automatically been located in
S$ZENHOME | share / mibs | ietf; however ultimately 0 nodes and 0 notifications
were loaded.

13.From the Zenoss GUI, use the ADVANCED -> MIBs menu. The NET-SNMP-
AGENT-MIB is listed but, as suggested, it has no OID Mappings and no TRAPs.

1 February 2013 Event Management for Zenoss Core 4 © Skills 1st Ltd 97

ZeNOSS ™ DASHBOARD EVENTS INFRASTRUCTURE REPORTS
E

Settings Collectors Monitoring Templates Jobs GEB

MIE Overview

4 5 MIBS (1)
NET-SNMP-AGENT-MIB Name: NET-SNMP-AGENT-MIB Language:
Contact: postal: Wes Hardaker P.O. Box 382 Davis CA 95617 email: net-snmp- Description: Defines control and
coders@lists.sourceforge.net monitoring structures for

the Net-SNMP agent.

OID Mappings -

LR ' Mapping Overview

Name:
oID:

: Traps

Access:
Node Type:
Status:
Description:
NO RESULTS
,A'JOUO') 0Jobs ~
Figure 63: MIB GUI with imported NET-SNMP-AGENT-MIB but no OIDs or TRAPs

14.Copy NET-SNMP-MIB.txt to $ZENHOME |/ share / mibs / site and rerun the
zenmib command.

zenoss@localhost:/opt/zenoss/share/mibs/site

Eile Edit View Search Terminal Help
2012-12-24 11:29:16,165 DEBUG zen.ZenMib: Processing /opt/zenoss/share/mibs/ietf/SONET-MIB
2012-12-24 11:29:16,253 INFO zen.ZenMib: Found 1 MIBs to import.
2012-12-24 11:29:16,254 DEBUG zen.ZenMib: Attempting to load /opt/zenoss/share/mibs/site/NET-SNMP-AGENT-MIB.txt
2012-12-24 11:29:16,254 WARNING zen.ZenMib: MIB definition NET-SNMP-AGENT-MIB found in /opt/zenoss/share/mibs/site/NET-SNMP-A
GENT-MIB.txt is already loaded at /.
2012-12-24 11:29:16,255 DEBUG zen.ZenMib: Running smidump --keep-going --format python --preload /opt/zenoss/share/mibs/site/
NET-SNMP-MIB.txt --preload fopt/zenoss/share/mibs/ietf/SNMPv2-SMI --preload /opt/zenoss/share/mibs/ietf/SNMPv2-CONF --preload
Jfopt/zenoss/share/mibs/ietf/SNMPv2Z-TC --preload /fopt/zenoss/share/mibs/ietf/SNMP-FRAMEWORK-MIB /opt/zenoss/share/mibs/site/N
ET-SNMP-AGENT-MIB. txt

2012-12-24 11:29:16,362 DEBUG zen.ZenMib: Found warnings while trying to import MIB:
/opt/zenoss/share/mibs/site/NET-SNMP-AGENT-MIB.txt:110: index element “nsCached0ID' of row "nsCacheEntry' should but cannot h
ave a size restriction

/opt/zenoss/share/mibs/site/NET-SNMP-AGENT-MIB.txt:418: index element "nsmRegistrationPoint' of row “nsModuleEntry' should bu
t cannot have a size restriction

[>]

2012-12-24 11:29:16,398 DEBUG zen.Relations: obj /zport/dmd/Mibs/mibs/NET-SNMP-AGENT-MIB already exists on /zport/dmd/Mibs/mi
bs

2012-12-24 11:29:16,481 DEBUG zen.Relations: obj /zport/dmd/Mibs/mibs/NET-SNMP-AGENT-MIB already exists on /zport/dmd/Mibs/mi
bs

2012-12-24 11:29:16,522 DEBUG zen.ZenMib: Committing a batch of objects

2012-12-24 11:29:16,537 DEBUG zen.ZenMib: Committing a batch of objects

2012-12-24 11:29:17,183 DEBUG zen.ZenMib: Committing a batch of objects

2012-12-24 11:29:17,360 DEBUG zen.ZenMib: Committing a batch of objects

2012-12-24 11:29:17,410 INFO zen.ZenMib: Parsed 45 nodes and 3 notifications from NET-SNMP-AGENT-MIB

2012-12-24 11:29:17,411 DEBUG zen.ZenMib: Committing a batch of objects

2012-12-24 11:29:17,413 INFO zen.ZenMib: Loaded MIB NET-SNMP-AGENT-MIB into the DMD

2012-12-24 11:29:17,413 INFO zen.ZenMib: Loaded 1 MIB file(s)

[zenoss@localhost site]$ l

Figure 64: Successful import of NET-SNMP-AGENT given correct pre-requisites
15.There is a DEBUG line noting that the NET-SNMP-AGENT-MIB is already
imported; this is not an issue. This import will overwrite any existing MIB of that
name.

(T

98 Event Management for Zenoss Core 4 © Skills 1st Ltd 1 February 2013

16.Note that the Running smidump line also looks in the site directory and finds the
pre-requisite NET-SNMP-MIB.txt in addition to finding the standard SNMPv2
MIBs in the ietf directory. 45 nodes and 3 notifications have been loaded.

17.Return to the Zenoss GUI and refresh the MIBs menu. Clicking on the NET-
SNMP-AGENT-MIB should now display 45 OID Mappings and three TRAPS,
including nsNotifyShutdown.

18.Restart the snmp agent on the Zenoss system with /etc/init.d/snmpd restart. You
should see an event in the Event Console that now contains snmp trap
nsNotifyShutdown in the summary field, rather than snmp trap
1.3.6.1.4.1.8072.4.2 . If this does not work, you may need to recycle the zentrap
daemon. You can do this with the GUI from the ADVANCED -> Settings ->
Daemons menu or, as the zenoss user from a command line, use zentrap restart.

19.Zenoss has implemented a number of changes in the way MIBs are interpreted.
Remember from Figure 60 that netSnmpNotifications is branch 0 under
netSnmpNotificationPrefix; however, some agents omit this 0 when they actually
generate TRAPs. Zenoss 4.2 has processing in
S$ZENHOME | Products | ZenEvent | zentrap.py to try and interpret actual TRAPs
both with and without the extra 0. The event console showed an event with OID
1.3.6.1.4.1.8072.4.2 for the original event; compare the event details of the
original event with the new one that contains nsNotifyShutdown in the summary
field. You should find that the new event has an oid field of 1.3.6.1.4.1.8072.4.0.2.

20.Examine $ZENHOME |/ Products | ZenEvent | zentrap.py (around line 580 in Zenoss
Core 4.2) to see the code that handles this extra 0 digit processing.

9.4.2 A few comments on importing MIBs with Zenoss

There are a few quirks to do with importing MIBs into Zenoss and the quirks have
changed subtly over several versions of Zenoss.

e Note that MIBs imported into Zenoss are only used for interpreting SNMP V1
TRAPs and SNMP V2 NOTIFICATIONSs for use in the Event subsystem.
Although the OIDs are imported from MIBs, they cannot be used for MIB
browsing or when working with OIDs for performance sampling, thresholding and

graphing.

e Always ensure you do MIB work as the zenoss user .

e By default. zenmib run -v10 will try and import everything under
S$ZENHOME | share / mibs /site. The -v10 simply adds more verbose output.
zenmib should check in the other directories for prerequisites.

e Whenever you have imported a MIB, check at the GUI on the MIBs page. You
should see the name of the MIB and you should usually see non-zero counts
under the OID Mappings and TRAP dropdown menus.

1 February 2013 Event Management for Zenoss Core 4 © Skills 1st Ltd 99

e There are some MIBs that will result in zero counts, for example if the MIB

source file only defines SNMP structure and does not include the definition for
any OIDs or TRAPs .
e Check the output of the zenmib command carefully for error messages.

e If OID translations do not appear to be working in events after importing a MIB,
recycle the zentrap daemon from the ADVANCED -> Settings -> Daemons menu
or, as the zenoss user, run zentrap restart.

e Ifevent mappings and transforms are built assuming that a MIB has been
imported, for example, testing the eventClassKey field for enterprises.8072.4.2,
and that MIB is then removed from the Zope database, then the mapping and/or
transform will fail. Especial care should be taken with any ZenPack that imports
MIBs as the removal of the ZenPack is likely to remove those MIBs.

e Zenoss 4.2 (and 3.2.1) appear to have a timing bug that affects some installations.
The symptom is that zenmib apparently satisfies its checks but then reports
Loaded 0 MIB file(s). The only solution I have found (which appears to work
perfectly) is to use a zenmib.py from a Zenoss 3.1 installation. This file belongs in
$ZENHOME |/ Products | ZenModel.

El zenoss@localhost:/opt/zenoss/Products/ZenModel — @ 53
File Edit View Search Terminal Help

2012-12-24 12:22:39,998 DEBUG zen.ZenMib: Processing /opt/zenoss/share/mibs/ietf/SIP-MIB [~]
2012-12-24 12:22:40,025 DEBUG zen.ZenMib: Processing /opt/zenoss/share/mibs/ietf/CHARACTER-MIB

2012-12-24 12:22:40,038 DEBUG zen.ZenMib: Processing /opt/zenoss/share/mibs/ietf/BGP4-MIB

2012-12-24 12:22:40,072 DEBUG zen.ZenMib: Processing /opt/zenoss/share/mibs/ietf/URI-TC-MIB

2012-12-24 12:22:40,076 DEBUG zen.ZenMib: Processing /opt/zenoss/share/mibs/ietf/DOT12-RPTR-MIB

2012-12-24 12:22:40,144 DEBUG zen.ZenMib: Processing /opt/zenoss/share/mibs/ietf/ISIS-MIB

2012-12-24 12:22:40,425 DEBUG zen.ZenMib: Processing /opt/zenoss/share/mibs/ietf/P-BRIDGE-MIB

2012-12-24 12:22:40,461 DEBUG zen.ZenMib: Processing /opt/zenoss/share/mibs/ietf/T11-FC-FSPF-MIB

2012-12-24 12:22:40,492 DEBUG zen.ZenMib: Processing /opt/zenoss/share/mibs/ietf/DNS-SERVER-MIB

2012-12-24 12:22:40,523 DEBUG zen.ZenMib: Processing /opt/zenoss/share/mibs/irtf/IRTF-NMRG-SMING-EXTENSIONS

2012-12-24 12:22:48,524 WARNING zen.ZenMib: Unable to parse information from /opt/zenoss/share/mibs/irtf/IRTF-NMRG-SMING-EXTE
NSIONS -- skipping

2012-12-24 12:22:40,525 DEBUG zen.ZenMib: Processing /opt/zenoss/share/mibs/ietf/MTA-MIB

2012-12-24 12:22:40,562 DEBUG zen.ZenMib: Processing /opt/zenoss/share/mibs/ietf/SONET-MIB

2012-12-24 12:22:40,664 INFO zen.ZenMib: Found 1 MIBs to import.

2012-12-24 12:22:40,664 DEBUG zen.ZenMib: Attempting to load /opt/zenoss/share/mibs/ietf/SNMPv2-TC

20812-12-24 12:22:40,665 DEBUG zen.ZenMib: Running smidump --keep-going --format python --preload /opt/zenoss/share/mibs/ietf/
SNMPv2-SMI /opt/zenoss/share/mibs/ietf/SNMPv2-TC

20812-12-24 12:22:40,793 INFO zen.ZenMib: Loaded & MIB file(s)

[zenoss@localhost ZenModel]$ 1s -1 zenmib*

-rw-r--r-- 1 zenoss zenoss 38844 Dec 24 12:21 zenmib.py

-rw-r--r-- 1 zenoss zenoss 42454 Dec 24 12:21 zenmib.py.3 1

-rw-r--r-- 1 zenoss zenoss 31128 Dec 24 11:83 zenmib.pyc.orig

-rw-r--r-- 1 zenoss zenoss 31128 Dec 24 11:04 zenmib.pyo.orig

-rw-r--r-- 1 zenoss zenoss 38844 Dec 24 11:00 zenmib.py.orig

[zenoss@localhost ZenModel]$ pwd

fopt/zenoss/Products/ZenModel El
[zenoss@localhost ZenModel]s l

Figure 65: Occasional timing bug with Zenoss 4.2. Replace zenmib.py with a Zenoss 3.1 version.

9.5 The MIB Browser ZenPack

There is an excellent community ZenPack available to perform MIB Browsing. This is
not directly relevant to TRAP / NOTIFICATION processing, but it is useful for
investigating MIBs with a view to building SNMP performance templates.

It can be downloaded from http://wiki.zenoss.org/ZenPack:MIB Browser . Unfortunately
this ZenPack keeps getting broken by new versions of Zenoss. If you follow the link to

100 Event Management for Zenoss Core 4 © Skills 1st Ltd 1 February 2013

http://wiki.zenoss.org/ZenPack:MIB_Browser

Download for Zenoss Core 3.1, this does indeed work for Core 3.1; this version should be
downloaded and modified for Core 3.2; for Zenoss 4.2, follow the Download for Zenoss
Core 4.2 link and perform the same modifications which are documented in the
comments if you follow the documentation link http:/community.zenoss.org/docs/DOC-
10321 . Basically you revert the later Core files back to the 3.1 level of code.

It provides a MIB browser to explore any OID that has been loaded into Zenoss, along
with a test facility to snmpwalk a configurable device to retrieve values for any selected
part of the MIB tree. Note that it only supports SNMP V1.

The MIB Browser ZenPack changes the ADVANCED -> MIBs menu and creates a MIB
Browser lefthand menu. Selecting the MIB Browser menu offers a similar layout to the
Overview menu but it introduces new icons alongside the name of a MIB. Clicking the
icon starts the MIB Browser against the selected MIB.

*@I DASHBOARD EVENTS INFRASTRUCTURE REPORTS AD CED jane signouT H

Settings Collectors Monitoring Templates Jobs m Page Tips

Overview : D

MIB Browser

[y

O (i BRIDGE-MIB The Bridge MIB module for managing devices that support IEEE 802 67
e

O Q HOST-RESOURCES-MIB This MIB is for use in managing host systems. The term “host' is 97
e

O Q NET-SNMP-AGENT-MIB Defines control and monitoring structures for the Net-SNMP agent 45
1

O Q NET-SNME-MIB Top-level infrastructure of the Net-SNMP project enterprise MIB 14

e
O QG\SOH—BOIG—VOI

g
O QRF(HZIB—MIE!

@ =} 2} = @ o)

g
O Q SNMPV2-MIB The MIB medule for SNMP entities. Copyright (C) The Internet So 57

e
O QSNMFVZ—SMI 18 o

10f8 | BRIDGE-MIB | - | showal Page Size| 40 ok

Figure 66: Starting the MIB Browser - click against the magnifier icon for a given MIB

In order to perform an snmpwalk, you need to provide a target device and an SNMP v1
community name under the Test Settings tab. A right-hand mouse click then provides
the snmpwalk menu against the level of the MIB tree that you are positioned on.

The OID Details window gives the same information you would see if you inspected the
MIB source file. Use this window to cut-and-paste into OID fields in performance
templates.

1 February 2013 Event Management for Zenoss Core 4 © Skills 1st Ltd 101

http://community.zenoss.org/docs/DOC-10321
http://community.zenoss.org/docs/DOC-10321

@

© zen42.class.example.org:8080/zport/dmd/Mibs/mib_browser?n:
WNHD IV a> Ul 2V I L/ 14/4% 1 .40.v0

{ zen42.class.example.org:8080/zport/snmpwalk?device=zen42.class.example.org&oid=1.3.6.1.2.1.25.2& OID Details
MIB Info Lookup SNMP
Hide Tabs Command Output Name hrMemorySize
Output: 0ID 1361212522

The snmpwalk menu option uses this information to
snmpwalk the device with the selected OID. To select
the snmpwalk menu option, navigate to the desired OIEHDST—RESDURCES—MIB

Zenoss: Mibs - Mozilla Firefox — 0O x rend2:jopt/zenoss/log

- o x ¥) 0ID Details - Mozilla Firefo _ o x

Zenoss: MIBs - Mozilla Firefox O zend2.class.example.org:8080/zport:

@ Zenoss: Mibs - Mozilla Firefox

snmpwalk -v 1 -c¢ public zend2.class.example.org 1.3.6.1.2.1.25.2

Node type —_scalar

5 b : y ::hrMemorySize.@ = INTEGER: 3875024 KBytes Access :]
in the MIB tree and right-click to display the menu HOST-RESOURCES-MIB: :hrStorageIndex.1 = INTEGER: 1
options, and then click 'snmpwalk'. f HOST-RESOURCES-MIB: :hrStorageIndex.3 = INTEGER: 3 The amount of physical
Device1|zen42f'H example.org C ity public HOST-RESOURCES-MIB: :hrStorageIndex.6 = INTEGER: 6 read-write main memory,
HOST-RESQURCES-MIB: :hrStorageIndex.7 = INTEGER: 7 Description typically RAM, contained by
MIB Tree HOST-RESOURCES-MIB: :hrStorageIndex.10 = INTEGER: 10 the host.
HOST-RESOURCES-MIB: :hrStorageIndex.31 = INTEGER: 31
— ‘Nodes HOST-RESOURCES-MIB: :hrStorageIndex.35 = INTEGER: 35
Z ‘host HOST-RESQURCES-MIB: :hrstorageIndex.36 = INTEGER: 36 Status
HOST-RESOURCES-MIB: :hrStorageType.1 = 0ID: HOST-RESOURCES-TYPES::hrStorageRam
+ hrSystem HOST-RESOURCES-MIB: :hrStorageType.3 = 0ID: HOST-RESOURCES-TYPES::hrStorageVirtua) Save| New
— hrStorage HOST-RESOURCES-MIB: :hrStorageType.6 = 0ID: HOST-RESOURCES-TYPES::hrStorageOther X
HOST-RESOURCES-MIB: :hrStorageType.7 = 0ID: HOST-RESOURCES-TYPES::hrStorageOther
hrStorageTypes HOST-RESOURCES-MIB: :hrStorageType.10 = 0ID: HOST-RESOURCES-TYPES::hrStorageVirtualMemor
hrMemorySize HOST-RESOURCES-MIB: :hrStorageType.31 = 0ID: HOST-RESOURCES-TYPES::hrStorageFixedDisk 45
HOST-RESQURCES-MIB: :hrStorageType.35 = 0ID: HOST-RESOURCES-TYPES::hrStorageFixedDisk
+ hrStorageTable HOST-RESOURCES-MIB: :hrStorageType.36 = 0ID: HOST-RESOURCES-TYPES::hrStorageFixedDisk 14 0
—hrDevice HOST-RESOURCES-MIB: :hrStorageDescr.1 = STRING: Physical memory
DT e HOST-RESOURCES-MIB: :hrStorageDescr.3 = STRING: Virtual memory 43 5
yp HOST-RESQURCES-MIB: :hrStorageDescr.6 = STRING: Memory buffers 5
G &
a 5 18 0
X
. . 1 124t X
value': [u O < sNMPve-MIB I'he MIB module for SNMP entities. Copyright (C) The Infernet So 57 3
hold of high e ———
O A sNmPv2-sMI 16 0 ~

| [cpen

0Jobs ~

Figure 67: Using the MIB Browser ZenPack

9.5.1
1.

102

Modifying Zenoss Core 4.2 to make the MIB Browser ZenPack work

Download the egg file and install in the normal way. It should install with no
errors.

zenpack --install ZenPacks.community.mib_browser-1.2-py2.7.egg
zenhub restart
zopectl restart

Change to $ZENHOME / Products/ZenUI3 /browser. Backup backcompat.py,
navigation.zcml and backcompat.zcml.

In backcompat.py, comment out the lines at the end defining MibClass. If there
are also similar lines for MibNode and MibNotification, comment them out too.

#def MibClass (ob) :
id = '/'.join(ob.getPhysicalPath())
return '/zport/dmd/mibs#mibtree:' + id

In navigation.zecml, around line 233, change the url line to be
url="/zport/dmd/Mibs/mibOrganizerOverview". Note carefully the case sensitivity
on mibs / Mibs.

- url="/zport/dmd/mibs™"
+ url="/zport/dmd/Mibs/mibOrganizerOverview"

In backcompat.zcml, around line 260 comment out lines for the adapter for
Products.ZenModel. MibOrganizer.MibOrganizer. If adapter stanzas also exist for
MibNode, MibNotification and MibModule, comment them out too.

Change directory to $ZENHOME / Products | ZenModel | skins [zenmodel and
backup viewMibModule.pt.

Event Management for Zenoss Core 4 © Skills 1st Ltd 1 February 2013

7. Modify viewMibModule.py. Change the template in the first line .

<tal:block metal:use-macro="here/templates/macros/page2">
+ <tal:block metal:use-macro="here/page macros/old-new">

8. You will need to completely restart Zenoss and make sure your browser cache
is cleared.

9.6 Mapping SNMP events

Zenoss provides some event mappings for SNMP TRAPs out-of-the-box. As discussed in
an earlier section, the file $ZENHOME / Products | ZenModel | data [events.xml
configures all the standard mappings so searching this file for SNMP provides insight
for default customisation.

Most SNMP TRAPs map to the Zenoss /Unknown event class. There are one-or-two
exceptions for some generic TRAPs such as Link Up (3), Link Down (2) and the
Authentication TRAP (4). Event fields that are automatically populated by the zentrap
processing include summary, eventClassKey and agent. The event details shows the
community and oid Name / Value pairs. Note that the value of the oid field is always
in numeric format, not translated through an imported MIB.

This means that, typically, the event only maps on the Event Class Key, which is
interpreted by zentrap.py as enterprises.<enterprise number>.<specific trap> if the
SNMPv2-SMI has been imported or 1.3.6.1.4.1.<enterprise number>.<specific trap>
otherwise. The summary field will be snmp trap <enterprise OID><specific trap> and
the agent field will be set to zentrap . These translations assume that the enterprise-
specific MIB has not been imported.

TRAPs and NOTIFICATIONs may have one or more TRAP variables (varbinds). These
varbinds appear in the event details where the field name is the varbind OID (possibly
translated through a MIB lookup) and the corresponding field value is the value of that
varbind.

Event class mappings can be devised with various Rule, Regex and Transform elements,
to parse out the intelligence from SNMP TRAPs and either create new user-defined
event fields or modify existing fields (such as evt.summary).

Note that event mappings that parse out SNMP OIDs and varbinds must be aware of
whether the relevant MIBs have been imported, or not. If a MIB is imported, OID
mapping based on matching dotted-decimal notation will fail as the MIB OID
translations happen before event mapping.

9.6.1 SNMP event mapping example

In order to interpret enterprise specific TRAPs, mappings are usually required. Often
an action or modification is required, effectively based on what enterprise the TRAP
came from (Cisco, net-snmp, ...), so a subclass of events are required that inherit some

1 February 2013 Event Management for Zenoss Core 4 © Skills 1st Ltd 103

common characteristics but some event details vary depending on the exact enterprise
specific TRAP number.

Many enterprise TRAPs also include several varbinds that need to be interpreted and
processed.

In the mapping example shown here, three small scripts are used to generate TRAPs
from the 1.3.6.1.4.1.123 enterprise — one for each of specific TRAPs 1234, 1235 and 1236.
The first two have a single varbind whose string-type value is “Hello world 4”, where the
end number is 4 or 5; the third script generates a TRAP with 2 varbinds. Note that each
of the varbinds exhibit the “extra 0” behaviour, ie. the varbind field will be
1.3.6.1.4.1.123.0.1234.

#!/bin/bash

Generate a sample trap

Send trap using the snmptrap supplied with net-snmp

Trap here is Enterprise 1.3.6.1.4.1.123, trap 1236

Ensure you change the line for MANAGER to be your Zenoss Server

H H HHHHH

Uncomment next line for extra debugging
#set -x
MANAGER=zen42.class.example.org
HOST=zen42.class.example.org
ENTERPRISE=.1.3.6.1.4.1.123
GENTRAP=6
SPECTRAP=1236
TRAPVAR1=.1.3.6.1.4.1.123.0.12361
TRAPVAR2=.1.3.6.1.4.1.123.0.12362
VARBIND1="Hello world varbindl 61"
VARBIND2="Hello world varbind2 62"
TIMESTAMP=1
#
/usr/bin/snmptrap -v 1 -c¢ public $MANAGER $ENTERPRISE $HOST $GENTRAP
$SPECTRAP $TIMESTAMP \

$TRAPVARL s "$VARBINDL" \

$TRAPVAR2 s "$VARBIND2"
#

1. Without any mapping, when gen_mytrap_1234.sh is run, it will map to the

104

/Unknown event class.
Create a new event subclass Snmp under the class /Skills .

Map the “1234” event by selecting it and using the Reclassify an Event icon.
Choose /Skills/Snmp from the dropdown selection box. Leave the rest of the
Event Class Mapping parameters as defaults for now. This means that the event
only maps on the eventClassKey, which translates to <enterprise OID>.<specific
trap> . The mapping name is automatically assigned the name of the
eventClassKey (1.3.6.1.4.1.123.1234 if SNMPv2-SMI is not imported;
enterprises.123.1234 if it is). Refer back to the snippet of the zentrap code in
Figure 57 for more information on the parsing of the TRAP into event fields.
Check that your event class mapping works.

Event Management for Zenoss Core 4 © Skills 1st Ltd 1 February 2013

From here, ensure that the SNMPv2-SMI MIB is imported; thus any TRAP enterprise
field (and hence eventClassKey) will start with enterprises, not 1.3.6.1.4.1. In most
cases, the same will apply to the name field of a TRAP varbind.

The next step is to interpret the varbind. Each of the TRAPs generated by the test
scripts come from the Enterprise 1.3.6.1.4.1.123 and the name of each of the varbinds
also starts with 1.3.6.1.4.1.123 thus, in the detail of the interpreted event, the varbind
name fields will start with enterprises. A transform will extract that part of the OID
after enterprises . It will also substitute the value of the varbind into the event
summary.

At transform time, strictly the event is a ZepRawEventProxy object, which has a details
dictionary (an EventDetailProxy object) as part of it (refer back to Figure 35, Figure 37
and Figure 38). Also remember that although one can refer to detail event fields by
name (eg. evt.line_num) if they are simple names, you cannot use this method if the
detail name has a dot in it.

If one is interested in the values of such fields, the get or getAll methods are needed.
Since the get method fails with an attribute error if the value is non-scalar, it is safer to
assume that all values may be non-scalar and use the getAll method.

In versions of Zenoss prior to 4, a transform to interpret TRAP varbinds would look like
this:

for attr in dir (evt):
if attr.startswith('enterprises.123."'):

evt.myRestOfOID=attr.replace('enterprises.123.',"'")
evt.myFieldValue=getattr (evt,attr)
evt.summary=(evt.summary + “ “ + evt.myFieldValue)

This will fail with Zenoss 4 as the new event structure does not deliver detail event
fields as a result of dir(evt). A Zenoss 4 version would be:

for attr in evt.details._map.keys() :
if attr.startswith('enterprises.123'):
evt.myRestOfOID=attr.replace('enterprises.123.','")
evt.myFieldvValue=' '.Jjoin(list(evt.details.getAll (attr)))
evt.summary = (evt.summary + “ “ + evt.myFieldvalue)

1. The first line cycles through the event details attribute names.

2. The “startswith” line ensures that transforms only take place for attributes that
start with enterprises.123 — ie. varbind attribute fields.

3. Note that the “replace” line is replacing the OID specified, with the null string —
the syntax after the comma is single-quote single-quote . The rest of the attribute
(ie. the 0.1234 bit) is kept and becomes the value of the user-field myRestOfOID .

4. The evt.myFieldValue line uses the getAll method in case the varbind value is
non-scalar. To concatenate the resulting list with the evt.summary string, the
list is converted into a string with the join function.

1 February 2013 Event Management for Zenoss Core 4 © Skills 1st Ltd 105

5. Running the script to generate a “1234” TRAP should now generate an event
with:

e The event mapped to the /Skills/Snmp class

e The summary field should say “snmp trap enterprises.123.1234 Hello world
4,
e The Event Details should show values for community, oid, myFieldValue

and myRestOfOID, in addition to the default varbind name/value pair of
enterprises.123.0.1234 | Hello world 4

6. Running the script to generate a “1235” TRAP will still generate an event with
the /Unknown class as the event class mapping is based on the eventClassKey of
enterprises.123.1234 .

So far, we are only matching a single SNMP TRAP with the eventClassKey field. The
objective is to map all events from the enterprise 1.3.6.1.4.1.123 . With SNMP, you
often want to apply a transform to several similar events which are only distinguished
by the later parts of the OID field. The test scripts all generate events whose
eventClassKey start with 1.3.6.1.4.1.123. but they differ in the last number.

A Rule will be used to match all appropriate events. However, a Rule is only inspected
if the eventClassKey has already matched successfully and we have no control over the
eventClassKey — that is set by zentrap.py . Thus, the defaultmapping concept will be
used.

1. Clear all SNMP events for your Zenoss system.

2. Edit the enterprises.123.1234 mapping.
o Inthe Rule box put evt.eventClassKey.startswith('enterprises.123.")
o Change the Name of the mapping to enterprises.123

o In the Transform box put:

for attr in evt.details._map.keys() :
if attr.startswith('enterprises.123'):
evt.myRestOfOID=attr.replace('enterprises.123.','")
evt.myFieldvValue=' '.join(list(evt.details.getAll (attr)))
evt.summary = evt.summary + " defaultmapping " + evt.myFieldValue

o Save the mapping away
3. Run the gen_mytrap_1234.sh script and the gen_mytrap_1235.sh script.
4. Check the events in the Event Console

5. You should find that the 1234 TRAP maps successfully but the 1235 TRAP
doesn't. This is because the initial test for event class mapping checks the
eventClassKey — that is still set to enterprises.123.1234 so the processing never
even gets as far as checking our Rule! Note that we have no control over how the
eventClassKey field is populated by the event processing mechanism — it is parsed
out for us by zentrap.py (see Figure 57 again).

106 Event Management for Zenoss Core 4 © Skills 1st Ltd 1 February 2013

6. This is where the “magic string” of defaultmapping can be used in the Event Class
Key field. Set the Event Class Key to defaultmapping (Note it must be all lower
case). If the process of mapping an event cannot find a match for the Event Class Key
then it will re-run the mapping process with an Event Class Key of defaultmapping.

7. Save the mapping.

8. Check the Sequence menu. There are several mappings that all map on an Event
Class Key of defaultmapping. Choose a suitable sequence number for the new
defaultmapping. Save the mapping.

9. Clear existing events. Rerun both scripts. Check that both events now map
correctly.

DASHBOARD EVENTS INFRASTRUCTURE REPORTS ADVANCED * jane SIGNoOUT R

" Event Classes

Events > Skills > Snmp > enterprises.123

Edit Status
Sequence
‘ ‘ ‘ Events Total Event Gount 3
Configuration Properties
Events
EventClassinst
Event Class Key defaultmapping
Sequence 8
Rule
evi.eventClassKey.startswith('enterprises.123')
Regex
Example
snmp trap enterprises.123.1234
Transform
for attr in evt.details._map.keys():
if attr.startswith('enterprises.123'):
evt.myRest0f0ID=attr.replace('enterprises.123.','")
evt.myFieldvalue=' '.join(list(evt.details.getAll(attr)))
evt.summary = evt.summary + " defaultmapping " + evt.myFieldvalue =
Explanation
€|

Figure 68: Mapping for SNMP TRAP with rule, transform and eventClassKey of defaultmapping

The test events used so far, only have one varbind. What if your TRAP has several
varbinds and you want to use information from each of them? The script
gen_mytrap_1236.sh generates a specific TRAP 1236, with two varbinds:

e varbind1 1.3.6.1.4.1.123.0.12361 Hello world varbind1 61”

e varbind2 1.3.6.1.4.1.123.0.12362 Hello world varbind1 62”

Running the script gen_mytrap_1236.sh should result in an event that maps to the
/Skills /| Snmp class, with the myFieldValue and myRestOfOID fields matching the data in
the last varbind that was processed, and the summary reflecting the data from all varbinds.

To provide a more elegant transform solution where you do not know if a detail value is
scalar or not, the Python ¢ry / except construct could be used:
for attr in evt.details._map.keys() :

if attr.startswith('enterprises.123'):
evt.myRestOfOID=attr.replace('enterprises.123."',"'")

try:
evt.myFieldValue=evt.details.get (attr)
except:
evt.myFieldvValue=' '.Jjoin(list(evt.details.getAll (attr)))

evt.summary = evt.summary + " defaultmapping " + evt.myFieldValue

Check the end of ZENHOME | log | zeneventd.log for debugging help.

1 February 2013 Event Management for Zenoss Core 4 © Skills 1st Ltd 107

10 Event Triggers and Notifications

10.1 Zenoss prior to V4
Prior to Zenoss 4, there were two ways of automating responses to events.
e User Alerting Rules
o Email to users
o Paging to users
e Event Commands
o Scripts run in the background

The user actions were configured on a per-user or per-user-group basis. This meant that
similar emails / pages for many users or groups had to be created individually; there was
no easy way to copy an Alerting Rule from one user to another.

Event Commands used a very similar method to define when a command should be
automatically run in the background.

Alerting Rules and Event Commands were executed by the zenactiond daemon which
processed any requests every 60 seconds. Duplicate events did not create multiple
actions and this was handled by the alert_state table of the MySQL events database.

This is probably the area that has changed most for users of Zenoss 4.

108 Event Management for Zenoss Core 4 © Skills 1st Ltd 1 February 2013

10.2 Zenoss 4 architecture

Zenoss 4 has completely changed the architecture of the MySQL events database. There
is no alert_state table in the zenoss_zep database. zenactiond is still responsible for
executing actions but it has been completely rewritten and takes input from a RabbitMQ
queue called signal which is fed by the zeneventserver daemon. This makes alerting
much more responsive.

ABGEND— — — — — —— S e e =

|
[JE—r Y — o | |
: : | | Databases
e | i in MySQL
| ===Data managements=e | | |
[S—" hing===== » : g |
I -
|
| {
£ |

Collecting Dasmons

zenping
zensyslog
zenstatus

zentrap | af—ll-relatete—pe |
zenmodeler \ !
zenperfsnmp e b b e
zencommand
ZENProcess
Zenwin
zenevertlog Collecting
zenwinperf Dagrmans
All queues are in [,
—(heartbeat ;

Other kay
processes;
zen jobs ._ .,

‘ ST

0

Y

GP Reich
20121031

J Curry
20121207

Figure 69: Zenoss event architecture - action processing in bottom-right

Alerting Rules have gone in Zenoss 4 and are replaced by the concepts of:
o Triggers
e Notifications

Triggers define what causes a response. A Notification is the response. This is better
in several ways. Both mechanisms are decoupled from users and from each other.
Notifications now include event commands as well as the traditional email and paging,
and SNMP TRAPs have also been added as a notification action.

Trigger and NotificationSubscriptions objects are defined in the Zope database (though
the Trigger is a stub object that is used for managing permissions and does not contain
the actual trigger rules).

There is a new EVENTS -> Triggers menu for defining both Triggers and Notifications.

1 February 2013 Event Management for Zenoss Core 4 © Skills 1st Ltd 109

10.3 Triggers

Triggers define under what conditions some action should take place. They are defined
from the EVENTS -> Triggers menu. Use the + icon to add a new trigger; double-click
an existing trigger to modify it.

Triggers

Edit Trigger - zen42_trigger x
Notifications + | @ o Trigger Users

Enabled Name
Name: zen42_trigger

Enabled: v

Rule: all i

Device Priority j equals = T + ;15

Figure 70: Creating a new Trigger
Note that by default, a new trigger is created as Enabled but with an illegal rule!
DevicePriority equals without a value will cause lots of errors in zeneventserver.log.

When creating the Trigger rule, combinations or logical ANDs and ORs can be used (the
all and any options). Use the + icon to add further conditions. All the standard event
attributes are available to select from the dropdown boxes. User-defined event fields are
not available here although it is possible in ZenPacks to provide for user-defined event
fields.

Unlike earlier versions of Zenoss, it is also possible to nest criteria to build up the
overall rule. Use the right-most icon to add a nested clause.

_"' % Edit Trigger - zen42_trigger x
- Trigger | Users

Name: kena2_trigger
Enabled: v

Rule: all N }
= *[@]
Is greater than or equal to 3| | Warning ol F”S [E
™ +|@]
w *[on
| [starts with | | rsecurityrsu i FIE @
| | starts with PIET = FIE E

Device Production State equals N I Production

Severity

i K K

Status equals N I New

Event Class

Event Class

MyFooter ~

Figure 71: A Trigger rule with nested clause

The Users tab of the Trigger definition is to control who can manipulate this Trigger.
Both global and specific roles can be allocated. Users who have either the global
Manager or ZenManager role will automatically have manage access to triggers, as will
the trigger “owner” (creator).

110 Event Management for Zenoss Core 4 © Skills 1st Ltd 1 February 2013

‘_ﬂ P R - o =

Edit Trigger - zen42_trigger

| Trigger | Users

Notifications

admin (User)

jane (User)
test1 (User)
testgroup (Group)

Figure 72: Trigger Users tab for global and user-specific roles

Note that this Users tab has no effect on who receives any related Notifications.

10.4 Notifications

Notifications are created from the same menu path as Triggers. A name and a
notification type are the initial requirements.

n Note that a careful naming convention for Triggers and Notifications makes the

environment much easier to work with.

4.# 1st DASHBOARD EVENTS INFRASTRUCTURE REPORTS ADVANCED Q v

Triggers

o+ o]
Enabled ID Trigger Action Subscribers Enabled ID Start
No MSExchangelSWMT.. command 0
{ Add Notification

zen42_email_traps_su

No group100r1_Notification
Yes group100r1_log

Action:

Email

Command

SUBM z
| Email

Page
SNMP Trap

Figure 73: Creating an email Notification

The Notification is created not Enabled by default. You can choose whether to send
“good news” Clear notifications and whether to delay a Notification (useful for less
critical events that may self-clear). Events can be sent repeatedly or only on the initial
occurrence.

1 February 2013 Event Management for Zenoss Core 4 © Skills 1st Ltd 111

Edit Notification - zen42_email_traps su (email)

Motification Content Subscribers

Enabled:] Delay (seconds): 0 5=
Send Clear: [v Repeat (seconds): 0 ::
Send only on Initial Occurrence?: (v

Triggers

zen42_trigger] @ (]

i group100r1_trigger
zend2_trigger

Figure 74: Notification details

A key field for a Notification is the Trigger that causes the Notification. Configured
Triggers will be offered in the dropdown box. Make sure you select a Trigger and click
Add - if you simply select the Trigger and then SUBMIT the entire Notification, the
Trigger will not be saved.

Depending on the Notification type selected when the Notification is created, the
Content tab will vary; the others remain the same, though for Command and Trap
notifications the Subscriber tab is not relevant to whether the action takes place as
these are background actions not user-related actions.

The different Notification actions are encoded in
$ZENHOME | Products | ZenModel | actions.py.

112 Event Management for Zenoss Core 4 © Skills 1st Ltd 1 February 2013

zenoss@zend2:/opt/zenoss/Products/ZenModel
File Edit View Search Terminal Help
i =
EmailAction(IActionBase, TargetableAction):
implements(IAction)
id = 'email’
name = 'Email’
actionContentInfo = IEmailActionContentInfo
shouldExecuteInBatch = True
init (self):
super(EmailAction, self). init ()
getDefaultData(self, dmd):
dict(host=dmd.smtpHost,
port=dmd.smtpPort,
user=dmd.smtpUser,
password=dmd.smtpPass,
useTls=dmd.smtpUseTLS,
email from=dmd.getEmailFrom())
setupAction(self, dmd):
self.guidManager = GUIDManager(dmd)
executeBatch(self, notification, signal, targets):
log.debug("Executing %s action for targets: %s", self.name, targets)
self.setupAction(notification.dmd)
data = signalToContextDict(signal, self.options.get('zopeurl'), notification, self.guidMan
ager)
signal.clear:
log.debug('This is a clearing signal.')
subject = processTalSource(notification.content['clear subject format'], **data)
body = processTalSource(notification.content['clear body format'], **data)
subject = processTalSource(notification.content['subject format'], **data)
body = processTalSource(notification.content['body format'], **data)
log.debug('Sending this subject: %s' % subject)
"actions.py" 735 lines --35%-- 260,0-1 37% |-

Figure 75: $ZENHOME | Products | ZenModel | actions.py implements Notification actions

10.4.1 email Notifications

The Content tab for email allows you to customise the email subject and body, using
standard fields from the event, using TALES expressions (Template Attribute
Language Expression Syntax, from Zope) to reference fields of the event, evt. See
Appendix D of the Zenoss Administration Guide for more details. Note that you must
use TALES — the evt.<event field> syntax used in mapping rules and transforms does not
work in event commands. TALES syntax takes the form:

S{evt/<event field>}

Also see section 2.6 of the Zenoss Core 4 Administrators Guide.

1 February 2013 Event Management for Zenoss Core 4 © Skills 1st Ltd 113

Edit Notification - zen42 email traps su (email)

Notification Content Subscribers

Body Content
Type:

Message (Subject)
Format:

html

[zenoss] ${evi/device} ${evi'summary}

Body Format:
Device: ${evi/device}
Component: ${evi/component}
Severity: ${evi/severity}
Time: ${evtlastTime]
Message:
${eviimessage}
Event Detail
Acknowledge
Close
Device Events

Clear Message
{Subiect) Format:

[zenoss] CLEAR: ${evi/device} ${clearEvi/summary}

SUBMIT CANCEL

Figure 76: The Content tab of a Notification - part 1

Also note that previous versions of Zenoss provided access to the dev variable to access
attributes of the device that caused the event. The dev variable is no longer legal for use
in Notification content.

Separate definitions can be provided for the problem and clearing Notifications.

The bottom of the Notification configuration panel allows you to override default
configurations for mail host parameters.

114 Event Management for Zenoss Core 4 © Skills 1st Ltd 1 February 2013

Edit Notification - zend42_email traps su (email)

Notification Content Subscribers

CDEVEIILY . JIEVIISVEIILY | EI
Message:

${evt/message}

Reopen

From Address for | zenoss@skills-1st.co.uk

Emails:

SMTP Host: mailhub.ourshack.com

SMTP Port A L
587

(usually 25): v

v| Use TLS?

SMTP Usemame | thisisadummy]|
(blank for none):

SMTP Password
(blank for none):

SUBMIT CANCEL

Figure 77: Notification Content with mail server parameters

These parameters are specified globally from the ADVANCED -> Settings -> Settings
menu.

1 February 2013 Event Management for Zenoss Core 4 © Skills 1st Ltd 115

“‘@ Ist DASHBOARD EVENTS INFRASTRUCTURE REPORTS ADV

m Collectors Monitoring Templates Jobs MIBs

|
Settings

Commands

Instance Identifier |Zenass
Users -
SMTP Host |mailhub.ourshack.com
ZenPacks
Porflets SMTP Port (usually 25) [587
Daemons SMTP Username (blank for none) |lhisisadummyi
Versions SMTP Password (blank for none) [ssveeee
Backups : -
From Address for Emails |ze noss@skills-1st.co.uk
Events
Use TLS?
User Interface
Page Command |$ZENHOME/bin/zensnpp It
Dashboard Production State Threshold |1000
Dashboard Priority Threshold |2
Production:1000
Pre-Production:500
Test:400
State Conversions Maintenance:300
Decommissioned:-1

Figure 78: Default settings for mail server and paging

Do ensure that the From Address for Emails settings are legal for mailservers. A
difficult scenario to debug is where email notifications never arrive because they are
discarded by a mail server because of the From address.

The third tab, Subscribers, on the Notification definition panel defines who receives the
notification. In addition, this panel also servers a similar purpose to the Users tab for
Triggers in that it defines who is allowed to manage the Notification definition. Unlike
Triggers, if no subscriber (user or user-group) is specified (and explicitly Added) then no
email will be received. It is not necessary to specify any management roles though.

116 Event Management for Zenoss Core 4 © Skills 1st Ltd 1 February 2013

Edit Notification - zen42 email traps su (email)

Motification Content Subscribers

Local Notification Permissions

[] Everyone can view

| Everyone can edit content

(| Everyone can manage subscriptions

Subscribers

jane (User)|

i admin (User) Write Manage
jane (User) Iser) O U
test1 (User)

testgroup (Group)

SUBMIT CANCEL

Figure 79: Subscribers to Notifications

1 February 2013 Event Management for Zenoss Core 4 © Skills 1st Ltd 117

10.4.2 Page Notifications

4-@ Is DASHBOARD EVENTS INFRASTRUCTURE REPORTS ADVANCED * jane SIGNOUT H

€D Collsclors Monitoring Templates ~ Jobs ~ MIBs Page Tips

Edn— ol e

FLESTL QI PIGISIEIUES SULL G Y1 GUILI 11D
Administered Objects and filters to their default values. Reset Preferences
. USER SETTINGS
Manager @ ||
ZenManager
fcke ZenUser I
]
testgroup
Groups
Email [jane.cuny@skills—lsl.co.uk test
Pager I
Default Page Size 40
Default Admin Role ZenUser j ||
Network Map Start Object group-100-r2.class.example
Set New Password €]

Figure 80: User settings showing email and page parameters

A Page notification is very similar to email, simply providing a Content tab to specify a
Message format and a Clear Message format. As with email, the evt variable is available
for parameter substitution. The command used to send page messages is that specified
globally from ADVANCED -> Settings -> Settings (see Figure 78). The individual
recipient comes from those users / groups specified in the Subscribers tab who must have
their pager details configured on that users home page (this is also where a user's email
address is specified).

10.4.3 Command Notifications

The Content tab for a Command Notification specifies a “bad news” and a “good news”
command, a time parameter for how long the command may run until it is deemed to
have failed, and environment variables can also be specified as <variable>=<value>.

The latter is useful as in past versions of Zenoss a common issue was to create an Event
Command but forget to source any necessary environment variables in the script. Since
the script is run by zenactiond, it has very little default context in which to run so things
like $ZENHOME, $PATH were not automatically set.

118 Event Management for Zenoss Core 4 © Skills 1st Ltd 1 February 2013

Edit Notification - group100r1_log (command)

Motification Content Subscribers

Command

Timeout 60 2
(seconds):

Command: echo " "date’ zenpath is $$ZENHOME jane var is $$JANE path var is

$$PATH bad news ${evt'summary} " >> /tmp/group-100-r1.log
Clear Command: | echo "date’ good news ${evt/summary}" >> /timp/group-100-r1.log

Environment ZENHOME=/opt/zenoss;JANE=/home/jane
variables:

SUBMIT CANCEL

Figure 81: A Command Notification

Note that to use these environment variables in a script you need to escape the dollar
with a dollar eg. $$ZENHOME. Multiple environment variable are semicolon separated
and you do not include the dollar when you specify the name of the environment
variable.

Also note that, although a subscriber is not typically required as the Command
notification is a background script, due to a bug In Core 4.2, environment variables will
be ignored unless there is a subscriber. It is not onerous to setup a dummy user
subscriber as a circumvention to this issue.

Command Notifications may be simple built-in shell commands as shown above or they
can be complex scripts in other languages, provided they can be executed from a shell
environment. Again, standard fields from the event can be substituted using TALES
expressions. Note in the figure above the use of back-tics around the date command to
run the date command before adding the output of the environment variables and the
good news / bad news message.

1 February 2013 Event Management for Zenoss Core 4 © Skills 1st Ltd 119

10.4.4 TRAP Notifications

SNMP TRAP notifications are new with Zenoss 4. It was possible to create TRAP
forwarding scenarios using Event Commands in the past but this ability is now
standard. The Content tab in this case configures trap destination.

Edit Notification - zen42_ trap (trap)

Motification Content Subscribers

SNM.P Trap zend2 class.example.org

Destination:

SNMP public

Community:

SNMP Version: V2ec o
SNMP Port 162 =
(usually 162): i

Figure 82: Trap notification

The trap destination may either be a resolvable name or an IP address.

Note that with Zenoss Core 4.2 there is a bug that means selecting SNMP v1 results in
no TRAP being issued, even though zenactiond.log reports that a TRAP has been
successfully sent.

The TRAP is defined in $ZENHOME/share/mibs/site/ZENOSS-MIB.txt. It is a single
TRAP with many varbinds that are populated with the fields of the original event. It
would be good practise to import this MIB into a Zenoss server that is receiving such
notification TRAPs.

120 Event Management for Zenoss Core 4 © Skills 1st Ltd 1 February 2013

Mozilla Firefox g - Mozilla Firefox =B

R/ evicedetail #deviceDetailNav:dey | v z] @v Google

Event Details... 'ANCED
community public
acturers Page Ti
enterprises 6666bf2b-bif9-4fee-al1d-bf020f1d3e07
enterprises.14296.1.100.1 000c29d9-f87b-81d8-11e2-558c07367dal
enterprises.14296.1.100.10 6
enterprises.14296.1.100.11 su
enterprises.14296.1.100.12 syslog |
enterprises.14296.1.100.14 1357207067176
: m_unix(su:auth): authenticati... 2013-01-02 19:... zensysl
enterprises.14296.1.100.15 1357207067176 pemEumig) syslog
enterprises.14296.1.100.16 q threshold of sizevar21To30 viol... 2013-01-02 17:... 2013-01-04 10-... zencommand
o . 1 110047 1000 snmp trap enterpris .1.10... 20130102 19.... 2013-01-03 10:... zentrap
enterprises.14296.1.100.

Did not receive identification str...

2013-01-0210:... 2013-01-04 10:...

zen42.class.example.org|su|/Security

enterprises.14296.1.100.2 /Su|2|pam_unix(su-l:session): session opened for
user zenoss by jane({uid=0)
enterprises.14296.1.100.20 zensyslog
enterprises.14296.1.100.21 [Server/Linux
enterprises.14296.1.100.22 [Taplow
enterprises.14296.1.100.23 [Test|/Real
enterprises.14296.1.100.24 /Skills 1st DISPLAYING 1 - 4 of 4 ROWS
enterprises.14296.1.100.25 192.168.10.42 L T2 odJobs »
-

K

[T2

Figure 83: Trap resulting from a Notification TRAP without the ZENOSS-MIB.txt imported

Thus the varbind names will be translated to something more helpful.

Mozilla Firefox

[@ zen4?2.class.example.org:8080/zport/dmd/Events/viewDetail?evid=000c29d9-f8 Tb-81d8-11e2-565affi ample.org - Mozilla Firefox - o x

~nple.org/devicedetail#deviceDetailNav.dev v z] @v Google

Event Detalils...
community public ADVAN
evtAgent zensyslog
p— /SecuritySu Manufacturers Page Tips
evtClassKey su
eviClassMapping 89e88c75-18d4-4cfe-8333-04cdcee32ac8
eviComponent su
evtCount 1 P S — S —
zend2.class.example.org|sul/Security

/Sul5|pam_unix(su:auth): authentication failure;

evtDedupid logname=jane uid=1337 euid=0 tty=pts/1 pam_unix(su:auth): authenticatl... 2013-01-04 10:... zensyslog
Tuser=zenoss rhost= user=root pam_unix(su:auth): authentication... 2013-01-04 10:... 2013-01-0410:... 1 zensyslog

evtDevice zend?2.class.example.org pam_unix(su:auth): authentication... 2013-01-04 10:... 2013-01-0410:... 1 zensyslog
eviDeviceClass IServer/Linux threshold of sizevar21To30 viol... 2013-01-02 17-... zencommand
evtDeviceGroups /Skills 1st snmp trap zenGenTrap 2013-01-04 10:.... =2 zentrap
eviDevicePriority 2 snmp trap enterprises. 14296.1.10... zentrap

snmp tr; enterprises.14296.1.10... 3 zZentr;
evtFacility 10 il i

snmp trap enterprises. 14296.1.10... 2013-01-02 19.... 2013-01-0410.... 8 zentrap
evtFirstTime 1357295956135

Did not receive identification sir... 20130102 10=... 2013-01-04 10:... 2924 zensyslog
eviGroup syslog
evtld 000c29d3-187b-81d8-11e2-565afeledbd2
evilpAddress 192.168.10.42 DISPLAYING 1-9 of § ROWS

~|

pe—

Figure 84: Trap resulting from a Notification TRAP)with the Zenoss MIB imported

Careful inspection of the TRAP with the Zenoss MIB imported reveals an omission in
the MIB; varbind 8 for the message field is not defined so it shows in the event details
with the name zenTrapDef.8.

1 February 2013 Event Management for Zenoss Core 4 © Skills 1st Ltd 121

Note that the version of ZENOSS-MIB.txt shipped with Core 4.2.3 has been modified
from the 4.2 version in such a way that it does not import cleanly (there are non-
printing characters in the file). For a description of the problem and a working file, see
http:/jira.zenoss.com/jira/browse/ZEN-5060 .

10.5 Notification Schedules

Any Notification type may have one or more schedules associated with it. These are
effectively Maintenance Windows (and are indeed implemented by the same code as
Maintenance Windows). They allow different responses to take place at different times.
If no Notification Schedule exists then the Notification is always active.

Triggers

Triggers
+ Q|G + | Q@O
Enabled ID Trigger Action Subscribers Enabled ID Start
MSExchangelSW... command 0

group100r1_Notifi..

Edit Notification Schedule - 1115_to_1130
group100r1_log
Enabled:

Start Date: 01-04-2013

zen42 page

Start Time: 11:.07

Repeat: Daily|

Duration Never

(minutes): Daily

Every Weekday

Weekly

Monthly

First Sunday of the Month

SUBMIT C.

MyFooter =

Figure 85: Notification schedule

The schedule is created as not Enabled by default. Typically the schedule will repeat
over certain periods - see Figure 85.

With debug logging turned on for the zenactiond daemon, the start of a Notification
schedule can be clearly seen.

An Info severity event is created when any Maintenance Window starts and it is cleared
by the Clear severity event generated when the Maintenance Window ends.

122 Event Management for Zenoss Core 4 © Skills 1st Ltd 1 February 2013

http://jira.zenoss.com/jira/browse/ZEN-5060

Zenoss@zen42:/opt/zenoss/log

File Edit View Search Terminal Help

2013-01-04 11:14:05,671 DEBUG zen.zenoss.protocols.amgp: Publishing with routing key zenoss.heartbeat.localhost to exchange zenoss.heartbeats
2013-01-04 11:14:05,672 DEBUG zen.maintenance: Rescheduling maintenance in 6@s
2013-01-04 11:15:05,685 DEBUG zen.Schedule: Maintenance window starting 1115 to 1130 for zend2 trap
2013-81-94 11:15:05,692 DEBUG zen.Events: =============== incoming event ===s=s=========
2013-01-04 11:15:05,767 DEBUG zen.queuepublisher: About to publish this event to the raw event queue:uuid: "fdf36b54-565f-11e2-abel-000c29d9T8
7b"
created time: 1357298185691
fingerprint: “"zenjobs|localhost|1115 to_1130|zen42_trap”
event_class: "/Status/Update”
event_class_key: "mw_change”
actor {
element_type_id: DEVICE
element_identifier: "localhost"
element_sub_type id: COMPONENT
element sub_identifier: "zenjobs"
H
summary: "Maintenance window starting 1115 to 1130 for zen42 trap"
severity: SEVERITY INFO
event_key: "1115_to 1130|zen42_trap"
details {
name: "maintenance devices”
value: "zen42 trap"

1
details {
name: "maintenance_window"
value: "1115_to_1138"

, with this routing key: zenoss.zenevent.status.update

2013-81-04 11:15:05,876 DEBUG zen.zenoss.protocols.amgp: Connecting to RabbitMQ...
2013-01-04 11:15:05,984 DEBUG zen.protocols: Creating exchange: zenoss.zenevents.raw
2013-01-04 11:15:05,913 DEBUG zen.zenoss.protocols.amgp: Publishing with routing key zenoss.zenevent.status.update to exchange zenoss.zenevent
s.raw

2013-81-04 11:15:06,178 DEBUG zen.Schedule: Waiting 893.324852 seconds

2013-01-04 11:15:06,179 INFO zen.maintenance: Performing periodic maintenance
2013-01-94 11:15:06,179 DEBUG zen.maintenance: calling hearbeat sender

2013-01-04 11:15:06,179 DEBUG zen.maintenance: sending heartbeat monitor: "localhost"
daemon: "zenactiond"

timeout_seconds: 180

2013-81-84 11:15:06,179 DEBUG zen.zenoss.protocols.amgp: Publishing with routing key zenoss.heartbeat.localhost to exchange zenoss.heartbeats
2913—51—94 11:15:06,181 DEBUG zen.maintenance: Rescheduling maintenance in 6@s
“zenactiond.log" [readonly] line 76999 of 76999 --100%-- col 1

Figure 86: zenactiond.log showing the start of a Notification Schedule

(<]

DASHBOARD EVEN INFRASTRUCTURE REPORTS ADVANCED jane SIGN

Event Console Event Archive Event Classes Triggers

@ | Select ~ || Export ~ || Configure ~

o 0 T L S —

oon oos Mainten E] E
Q o localhost zenjobs /Status/Up... Maintenance window stopping 1115_to_1130 for zen42_trap 2013-01-04 11:29:59 2013-01-04 11:29:59
Q o localhost zenjobs /Status/Up... Maintenance window starting 1115_to_1130 for zen42_trap 2013-01-04 11:15:05 2013-01-04 11:15:05
Q o localhost zenjobs [Status/Up... Maintenance window stopping 7To8 for raddle_group 2013-01-03 19:59:59 2013-01-03 19:59:59
Q o localhost zenjobs /Status/Up... Maintenance window starting 7To8 for raddle_group 2013-01-03 19:00:00 2013-01-03 19:00:00
0 o localhost zenjobs /Status/Up... Maintenance window stopping test_1630_1640 for lotschy.skills-1st.co.uk 2013-01-03 16:44:59 2013-01-03 16:44:59 |
Q o localhost zenjobs [Status/Up... Maintenance window starting test_1630_1640 for lotschy.skills-1st.co.uk 2013-01-03 16:30:00 2013-01-03 16:30:00

Figure 87: Events for Maintenance Windows starting | stopping

10.6 Using zenactiond.log

All Notifications are processed by the zenactiond daemon. To debug issues and also as a
learning aid, it is helpful to set the debugging level to Debug (logseverity 10),
remembering to recycle zenactiond.

Inspecting zenactiond.log provides a good insight into how zenactiond processes events
from the RabbitMQ signal queue and then tests them against the configured
Notifications.

1 February 2013 Event Management for Zenoss Core 4 © Skills 1st Ltd 123

The Triggers are processed by the zeneventserver daemon to decide what to place on the
signal queue. There are obviously different signals for each Notification type.

A processing cycle starts with a processing message entry (highlighted in green) in
Figure 88.

Notifications are checked as to whether they are enabled or not (highlighted in blue).

E Zenoss@zen42:/opt/zenoss/log

File Edit View Search Terminal Help

[H013-01-04 11:17:45,142 DEBUG zen.zenactiond: Done processing signal. 4
2013-01-04 11:17:45,142 DEBUG zen.zenactiond: Acknowledging message. (pam unix(su:auth): authentication failure; logname=jane uid=1337 euid=0
tty=pts/5 ruser=zenoss rhost= user=root)

2013-81-84 11:17:45,147 DEBUG zen.zenactiond: processing message.

2013-81-04 11:17:45,149 DEBUG zen.notifications: Notification NOT enabled: MSExchangeISwMTotalleMBFreeBlocks

2013-01-04 11:17:45,149 DEBUG zen.zenactiond: Notification "<NotificationSubscription at MSExchangeISWMTotall6MBFreeBlocks>" is not active.
2013-01-04 11:17:45,149 DEBUG zen.notifications: Notification NOT enabled: groupl@@rl Notification

2013-01-04 11:17:45,149 DEBUG zen.zenactiond: Notification “"<NotificationSubscription at grouple@rl Notification=" is not active.

2013-01-04 11:17:45,149 DEBUG zen.notifications: Notification is enabled: groupl@erl log

2013-01-04 11:17:45,156 DEBUG zen.notifications: Notification is enabled, but has no windows, it is active.

2013-01-04 11:17:45,150 DEBUG zen.zenactiond: signal.subscriber uuid is "b91d92el-a7@e-4d81-891a-d66T30fc5e76"

2013-01-04 11:17:45,150 DEBUG zen.zenactiond: Notification "<NotificationSubscription at grouplB@rl log=" does not subscribe to this signal.
2013-91-84 11:17:45,151 DEBUG zen.notifications: Notification is enabled: zen42 email traps su

2013-01-84 11:17:45,151 DEBUG zen.notifications: Notification is enabled, but has no windows, it is active.

2013-81-84 11:17:45,151 DEBUG zen.zenactiond: signal.subscriber uuid is "b91d92el-a70e-4d81-891a-d66T30Tc5e76"

2013-01-04 11:17:45,151 DEBUG zen.zenactiond: Notification "<NotificationSubscription at zen42 email traps su>" does not subscribe to this sig
nal.

2013-01-04 11:17:45,151 DEBUG zen.notifications: Notification NOT enabled: zen42 page

2013-01-04 11:17:45,151 DEBUG zen.zenactiond: Notification "<NotificationSubscription at zen42 page=" is not active.

2013-01-04 11:17:45,152 DEBUG zen.notifications: Notification is enabled: zen42_trap

2013-01-84 11:17:45,152 DEBUG zen.notifications: Notification has (1) windows.

2013-01-04 11:17:45,152 DEBUG zen.notifications: Notification has enabled window: 1115 to 1130

2013-01-04 11:17:45,152 DEBUG zen.notifications: window is active: 1115 to_ 1130

2013-01-04 11:17:45,153 DEBUG zen.zenactiond: signal.subscriber uuid is "b91d92el-a70e-4d81-891a-d66f30fc5e76"

2013-01-04 11:17:45,153 DEBUG zen.zenactiond: Found matching notification: <NotificationSubscription at zen42 trap>

2013-81-04 11:17:45,153 DEBUG zen.zenactiond: Found these matching notifications: [<NotificationSubscription at /zport/dmd/NotificationSubscri
ptions/zen42 trap>]

2013-01-04 11:17:45,154 DEBUG zen.actions: Processing SNMP Trap action.

2013-01-84 11:17:45,158 DEBUG zen.actions: ('1.3.6.1.4.1.14296.1.1600.1", 's', '000c29d9-f87b-81dB8-11e2-566085cec5f52")

2013-01-04 11:17:45,158 DEBUG zen.actions: ('1.3.6.1.4.1.14296.1.100.2", 's', 'zen42.class.example.org|su|/Security/su|5|pam_unix(su:auth): au
thentication failure; logname=jane uid=1337 euid=8 tty=pts/5 ruser=zenoss rhost= user=root')

2013-81-84 11:17:45,158 DEBUG zen.actions: ('1.3.6.1.4.1.14296.1.100.3", 's', 'zend42.class.example.org')

2013-01-04 11:17:45,158 DEBUG zen.actions: ('1.3.6.1.4.1.14296.1.100.4"', 's', 'su')

2013-01-84 11:17:45,158 DEBUG zen.actions: ('1.3.6.1.4.1.14296.1.100.5"', 's', '/Security/Su')

2013-01-04 11:17:45,159 DEBUG zen.actions: ('1.3.6.1.4.1.14296.1.100.6", 's', ''")

2013-01-04 11:17:45,159 DEBUG zen.actions: ('1.3.6.1.4.1.14296.1.180.7', 's', 'pam_unix(su:auth): authentication failure; logname=jane uid=133
7 euid=0 tty=pts/5 ruser=zenoss rhost= user=root')

2013-01-04 11:17:45,159 DEBUG zen.actions: ('1.3.6.1.4.1.14296.1.100.8", 's', 'pam_unix(su:auth): authentication failure; logname=jane uid=133

7 euid=0 tty=pts/5 ruser=zenoss rhost= user=root

)

2013-01-04 11:17:45,159 DEBUG zen.actions: ('1.3.6.1.4.1.14296.1.1€8.9", 'i', '5")
2013-01-04 11:17:45,159 DEBUG zen.actions: ('1.3.6.1.4.1.14296.1.180.10', *i*, '@')
2013-091-04 11:17:45,159 DEBUG zen.actions: ('1.3.6.1.4.1.14296.1.100.11', 's', 'su'}

“zenactiond.log" [readonly] line 77190 of 77482 --99%-- col 1 =
Figure 88: zenactiond.log processing a signal against various Notifications

The event that generated this signal was a /Security/Su event and should trigger both
the zen42_email_traps_su Notification and the zen42_trap Notification. In Figure 88 the
log shows zen42_email_traps_su being discarded (highlighted in yellow); this is because
the signal message is keyed to a TRAP Notification type, not an email one
(unfortunately zenactiond.log does not show this detail).

The match with zen42_trap is highlighted in red where the checking for a notification
schedule window can also be seen. The start of the notification action to generate the
TRAP is also highlighted.

Once the action is completed, zenactiond.log shows similar iterations through the
Notifications list with a separate signal message, where the zen42_email_traps_su
Notification is selected and actioned and the zen42_trap Notification is discarded.

124 Event Management for Zenoss Core 4 © Skills 1st Ltd 1 February 2013

10.7 The effect of device Production State

The Production State of a device can be used to control different management aspects
of a system. Production State for a device is configured on the device's home page
Overview and may be modified by Maintenance Windows configured for a device, device
class, Group, System or Location.

When configuring a Maintenance Window, the production state is defined both for
during the window and the state to return to, where the latter is typically Original.

4-# 1st DASHBOARD EVENTS INFRASTRUCTURE REPORTS ADVANCED * jane SIGNOUT H

Devices

Linux ‘-‘; State at time: 2013/01/04 12:19:56
B Name StoSTest
Events Enabled False =|
Modeler Plugins o 09/05/2012 3
al =
Configuration Properties |ogjs||00|¢|
Overridden Objects Duration 0 Days |08 | Hours @ Minutes
Custom Schema Repeat
= | Start Production State Maintenance j
4 Monitoring Templates Stop Production State Qriginal
b_fping (/Devices) Save
Device (/Server/Linux)
MyFooter « O - | 0 Jobs ~

Figure 89: Maintenance Window for device class /Server/Linux for first Sunday in the month

Chapter 8 of the Zenoss Core 4 Administration Guide describes the different Production
States and the effect that these have. Three different types of “management” are
defined:

e Monitoring ping polling and event generation
e Alerting generating alerts (emails, pagers, commands, traps)
e Dashboard whether to include in the Device Issues portlet

In practise, anything to do with Notifications is controlled by the filters in the Trigger.
If no Production State filter is configured then the Notification will run, by default.

A device Production State of Production will result in events contributing to the Device
Issues portlet of the Zenoss Dashboard and all monitoring will take place.

A Production State of Decommissioned should result in all monitoring ceasing; hence, all
events generated by Zenoss will cease and no related Notifications will be generated;
however, externally generated events (from syslog, external TRAPs, Windows event
logs) will continue to be received and related Notifications will be generated unless a
trigger filter excluding on Production State exists. The device will not be recorded in the
Dashboard Device Issues portlet. Note that the overall Status icon on a device's Status
page will turn green !

1 February 2013 Event Management for Zenoss Core 4 © Skills 1st Ltd 125

Any Production State other than Production will result in the device not being included
on the Dashboard Device Issues portlet.

The only Production State that automatically stops all monitoring is Decommissioned,;
however, the zProperty of zProdStateThreshold can be set as part of the
Configuration Properties of a device or device class. This variable controls the
Production State value beneath which all monitoring ceases. By default this value is
300 which means that setting a Production State of Maintenance does not prevent ping
and snmp monitoring. If you want to prevent all monitoring for Maintenance state
devices, change the zProdStateThreshold value at the top device class level to 301.

11 Accessing events with the JSON API

During the life of Zenoss 3, the JSON API was introduced as a means of accessing data
within Zenoss. In some ways, it is similar to using the zendmd Python environment and
in many cases it reflects the same calls available in zendmd, but a great advantage of
the JSON API is that it can be used remotely from the Zenoss server and it requires no
intimate knowledge of Python.

11.1 Definitions

For those who are not from a development background (and possibly with apologies to
those who are), here are some definitions.

An Application Programming Interface (API) is a way of accessing “stuff”.

“Stuff” in the context of Zenoss means objects that represent real things. For example,
Python objects that represent devices, network interfaces, filesystems, processes and
users; database objects in the MySQL database that represent events.

JavaScript Object Notation (JSON) is a lightweight data-interchange format. It is easy
for humans to read and write being a text format that is completely language
independent but uses conventions that are familiar to programmers of the C-family of
languages, including C, C++, C#, Java, JavaScript, Perl, Python, and many others.

Thus the JSON API provides a documented way of accessing different sorts of data
within Zenoss, using a common interface. Whatever “stuff” is being accessed, we present
requests in a text format and the results are translated back into text format for us.

In order to present our requests for data, a URL is required plus a userid and password
that has authority to access the Zenoss data requested. As users, we can construct
requests in exactly the same way as the Zenoss GUI does; the Zenoss GUI itself uses the
JSON API to present data to us.

Another benefit of using the JSON API rather than using Python directly, is that Zenoss
Development may change the underlying Python in the Zenoss Core code but, provided
they maintain the JSON API interface, any access functionality built on top of the API

126 Event Management for Zenoss Core 4 © Skills 1st Ltd 1 February 2013

can remain unchanged. For this reason there is a recommendation that the API be used
in preference to writing Python code to access data directly.

11.2 Understanding the JSON API

The JSON API is shipped as standard with Zenoss Core. The documentation can be
found at

http:/community.zenoss.org/community/documentation/official documentation/api ; this
is actually a zipped bundle containing documentation in html format, a pdf guide and
both Python and Java samples for using the API.

There are also some samples of using the JSON API with bash and curl at
https:/gist.github.com/1901884 .

The JSON API exposes the methods that can be found in the Zenoss code under
$ZENHOME | Products | Zuul | routers.

The easiest way to view the documentation is to download the zip bundle, unzip it and
point a browser at the apidoc/html/index.html file.
@

Zenoss JSONAPI - hiozila Firefox v o X
Fils Edit View History Bookmarks Tools Help |

+ | Usingwe... | & Transform... | [} River Levs... | 35 Opening-T... | G Space:ze... [ZenossB... | RailNew ... | (] MewZsal... |58 Auckiand... | 38 SearchRe... | { Spacs Se... |[TiCatsgory.. | Space:Ze.. [[IRESTAPI.. | [} Zenos.. 3¢ L+ alhd ‘
G [@ fie) il ~ @ (]~ 6963 Q @

Table of Contents || | Trees Indices Help Zenoss JSON AP

Thide private]
Everything [frames] | no frames]
[Module Hierarchy | Class Hierarchy]
Modules
Products.Zuul.routers.device . Module Hierarchy
Products.Zuul.routers.messaging
- + Products.Zuul.routers.device: Operations for Device Organizers and Devices.
Products.Zuul.routers.mibs TR T e O . N
+ Products.Zuul.routers.messaging: Operations for Messaging.

Products.Zuul.routers.nav

+ Products.Zuul.routers.mibs: Operations for MIBs.

« Products.Zuul.routers.nav: Operations for Navigation

« Products.Zuul.routers.network: Operations for Networks.
+ Products.Zuul.routers.process: Operations for Processes.
+ Products.Zuul.routers.report: Operations for Reports.

+ Products.Zuul.routers.service: Operations for Services.

i + Products.Zuul.routers.settings: Operations for Settings.

+ Products.Zuul.routers.template: Operations for Templates.
+ Products.Zuul.routers.triggers

+ Products.Zuul.routers.zenpack: Operations for ZenPacks.
« Products.Zuul.routers.zep: Operations for Events.

Products.Zuul.routers.network
Products.Zuul.routers.process
Products.Zuul.routers.report
Products.Zuul.routers.service
Products.Zuul.routers settings
Products.Zuul.routers.template
Products.Zuul.routers triggers
Products.Zuul.routers.zenpack
Products.Zuul.routers.zep

|

Everything

All Classes \ Trees Indices Help Zenoss JSON AP|
Products.Zuul.routers.device.DeviceRouter Generated by Epydoc 3.0.1 on Tue Dec 20 08:48:02 2011 hitp:/fepydoc.sourceforge net
Products.Zuul.routers.messaging.MessagingRouter
Products.Zuul.routers.mibs MibRouter
Products.Zuul.routers.nav.DetailNavRouter
Products.Zuul.routers network.NetworkBRouter
Products.Zuul.routers.network.NetworkRouter
Products.Zuul.routers.process.ProcessRouter
Products.Zuul.routers.report.ReportRouter
Products.Zuul.routers.service ServiceRouter
Products.Zuul.routers.settings.SettingsRouter
Products.Zuul.routers.template. Template R outer
Products.Zuul.routers triggers. TriggersRouter
Products.Zuul.routers.zenpack.ZenPackRouter
Products.Zuul.routers.zep.EventsRouter =

s Find [wl 4 Previous b Next . Higniigntall []Matchcase
Figure 90: JSON API documentation in html format

The lefthand menus show the modules, effectively the files that can be found under
$ZENHOME | Zuul /| Products [routers. Typically these files each define one class though
the network file has a class for each of NetworkRouter and Network6Router.

Click on a module to see an overview of what it contains. Note the Available at line that
helps indicate the url that reaches this data.

Click on the link to the Class , EventsRouter, to see all the methods for this class.

1 February 2013 Event Management for Zenoss Core 4 © Skills 1st Ltd 127

https://gist.github.com/1901884
http://community.zenoss.org/community/documentation/official_documentation/api

P

Zenoss JSON API - Wozilla Frefox

File Edt View History Bookmarks Tosls Help
4 |é Using we. H C Transform. River Leve \| % Opening-T. H C Spate:ze. \| O Zznoss B H {7} Rail New ew Zeal H = Auckland H = search Re \| C Space & Category: \| C Space: Ze. H { I RESTAPI
e o> | file:) him| Q o
Table of Contents [Trees Indices Help Zenoss JSON AP|
Package Products :: Package Zuul :: Package routers :: Module zep [hids private]
Everything [frames] | no frames]
Module ze,
Modules P

: source code
Products.Zuul.routers.device

Products.Zuul.routers messaging
Products.Zuul.routers mibs
Products.Zuul.routers.nav
Products.Zuul.routers .network
Products.Zuul routers process
Products.Zuul routers report
Products.Zuul routers.service
Products.Zuul.routers settings
Products.Zuul routers template
Products.Zuul routers triggers
Products.Zuul.routers .zenpack
Products.Zuul routers.zep

Operations for Events.
Available at: /zport/dmd/evconsole_router x

Classes o

EventsRouter
A JSON/ExtDirect interface to operations on events in ZEP

Functions [hids private]

‘7merquuditLhooMuteS(evtsumm) source code

Variables [hide private]|

log = logging.getlogger('zen.%s' % _ name_)

Everything

_status_name = ProtcbufEnum(EventSummary, 'status').getPrettyName

All Classes
Products.Zuul.routers.device.DeviceRouter
Products.Zuul.routers messaging.MessagingRouter
Products.Zuul.routers . mibs .MibRouter
Products.Zuul routers .nav.DetailNavR outer
Products.Zuul routers .network.Network6Router
Products.Zuul.routers .network.NetworkR outer
Products.Zuul.routers process.ProcessRouter
Products.Zuul.routers report.ReportRouter
Products.Zuul.routers.service.ServiceRouter
Products.Zuul.routers settings.SettingsRouter
Products.Zuul.routers template. TemplateRouter
Products.Zuul.routers triggers.TriggersR outer
Products.Zuul routers .zenpack.ZenPackRouter
Products.Zuul routers .zep.EventsRouter

[Trees Indices Help

Zenoss JSON API
Generated by Epydoc 3.0.1 on Tue Dec 20 06:48.02 2011

http://epydoc.sourceforge net

® Find |um

4 Previous » Next

Highlight all [] Mateh case

Figure 91: JSON API - details of the zep module

@

File Edit View History Bookmarks Tosls Hslp

Zenoss JSON API - Mozilla Firefox

o @

4 | Using we.

Products.Zuul routers.device
Products.Zuul routers. messaging
Products.Zuul.routers mibs
Products.Zuul.routers.nav
Products.Zuul.routers .network
Products.Zuul.routers process
Products.Zuul.routers.report
Products.Zuul.routers.service
Products.Zuul.routers settings
Products.Zuul routers template
Products.Zuul routers triggers
Products.Zuul routers .zenpack
Products.Zuul.routers .zep

Everything

| [T

All Classes
Products.Zuul.routers.device.Devic
Products.Zuul.routers. messaging.|
Products.Zuul.routers mibs .MibRol
Products.Zuul.routers nav.DetailNa:

| C Transfarm River Leve. . | 3 Opening-T... | © Spaceize... |3 Zenoss B... | [} RailNew... |} NowZeal.. |33 Auckiand .. |38 SearchRe.. | (5 Space Se... |) Categonc... | () Space:Ze... | (I RESTAPI... | Zenos... 3 + 5
(Go | file:) html @ |:j- 66063 Q @
Table of Contents [Trees Indices Help Zenoss JSON AP|
Package Products :: Package Zuul :: Package routers :: Module zep :: Class EventsRouter [hide private]
Everything [frames] | no frames|
Modiles Class EventsRouter

source code

ZenUtils.Ext.DirectRouter --+

|
EventsRouter

A JSON/ExtDirect interface to operations on events in ZEP

Instance Methods [hids private]

dnit (self, context, request) source code

_getPathFromuuid(self, uuid) source code

_getNameFromUuid (self, uuid)

source code
Given a uuid this returns the objects name from the catalog, it does not wake the object up

_lookupEventClassMapping(self, mappingUuid) source code

_findDetails(self, event)

Event details are created as a dictionary like the following: c{detail = {name": 'zenoss foo.bar', 'value': 'baz', }} This
method maps these detail items to a flat dictionary to facilitate looking up details by key easier.

_singleDetail(self, value)

A convenience method for fetching a single detail from a property which correlates to a repeated field on the
protobuf.

dict source code

source code

_lookupDetailPath(self, prefix, values) source code

_mapToOldEvent(self, event_summary) source code

_timeRange (self, value) source code

_filterInvaliduuids(self, events)
When querying archived events we need to make sure that we do not link to devices and components that are no
longer valid

source code

queryArchive(self, limit=0, start=0, sort='lastTime', dir='desc', params=None, uid=None, detailFormat=False) source code

ers.Tri dictionary query(self, 1imit=0, start=e, sort='lastTime', dir='desc', params=None, archive=False, uid=None, detailFormat=False) source code
Products.Zuul.routers .zenpack.Zen Query for events.
i = generator queryGenerator(self, sort='lastTime', dir='desc', evids=None, excludelds=Nene, params=Nene, archive=False, uid=None, source code =l

5 Find: ur

4 Previous b Next

Highlightall [] Mateh case

Figure 92: JSON API - methods for the EventsRouter class

Click on a method to get a more detailed overview with descriptions of the input
parameters and the values returned.

128 Event Management for Zenoss Core 4 © Skills 1st Ltd 1 February 2013

@ v Zenoss JSON API - Mozila Firefox NI
File Edit VWiew History Bookmarks Tools Help

a \@ Using we Hcmnsmrm H | River Leve H}gouenmw \|(j,sna:e ze Huzennssa \| New Zzal \|9!_Auck\am1 |\= Search Re. ucspa:e Se. H | Gategory: H'QSpa:e-ze REST API x| + B - ‘
& [@ e) ntmi Q @
H PR 1y - [CRprr s " : P e e gl
Table of Contents query(self, limit=0, start=0, sort="lastTime', dir="desc’, params=None, archive=False, uid=None, source code
- detailFormat=False)
Everything
Query for events.
Modules
Products.Zuul.routers.device Parameters:

Products.Zuul.routers messaging
Products.Zuul.routers mibs

Products.Zuul.routers.nav
Products.Zuul.routers.network
Products.Zuul routers.process

Products.Zuul.routers.report
Products.Zuul routers.service

limit (integer) - (optional) Max index of events to retrieve (default: 0)

start (integer) - (optional) Min index of events to retrieve (default: 0)

sort (string) - (optional) Key on which to sort the return results (default: 'lastTime')

dir (string) - (optional) Sort order; can be either '"ASC' or 'DESC' (default: 'DESC')

params (dictionary) - (optional) Key-value pair of filters for this search. (default: None)

archive (boolean) - (optional) True to search the event history table instead of active events (default: False)

* uid (string) - (optional) Context for the query (default: None)
Products.Zuul.routers.settings Returns: dictionary
Products.Zuul.routers template L Properties: B
Products.Zuul.routers triggers * events: ([dictionary]) List of objects representing events
Products.Zuul.routers.zenpack » totalCount: (integer) Total count of events returned
Products.Zuul routers.zep =] + asof: (float) Current time
. = Decorators:
Everythin,
rything & @serviceConnectionError
All Classes ® @require('ZenCommon ')

Products.Zuul.routers.device.Devic
Products.Zuul.routers.messaging.

queryGenerator(self, sort="lastTime", dir="desc', evids=None, excludelds=None, params=None, archive=False, source code
uid=None, detailFormat=False)

Query for events.

Products.Zuul.routers.network.Ne
Products.Zuul.routers process.Pro
Products.Zuul.routers report.Report
Products.Zuul.routers.service.Senvi
Products.Zuul.routers settings.Setti
Products.Zuul.routers.template.Ten
Products.Zuul.routers.triggers.Trig .
Products.Zuul.routers.zenpack.Zen (TGS GG :

] Generator returning events.

L Decorators: =
s Find [un 4 Previous b Nedt . Highlightall [J Match case

Figure 93: JSON API - details for the query method in the EventsRouter class

Parameters:

sort (string) - (optional) Key on which to sort the return results (default: 'lastTime')

dir (string) - (optional) Sort order; can be either '"ASC' or 'DESC' (default: 'DESC')

params (dictionary) - (optional) Key-value pair of filters for this search. (default: None)

archive (boolean) - (optional) True to search the event archive instead of active events (default: False)
uid (string) - (optional) Context for the query (default: None)

At all levels of the documentation there are links to the source code. This should be very
close to the code that you see if you inspect the file $ZENHOME | Products | Zuul / routers
though the line numbers may not match exactly depending on the exact level of code you
are running.

@ Zenoss JSON API - Mozila Firefox Y @ &
File Edit View History Bookmarks Tools Help ‘

« | Usingwe... | G Transform... |] River Leve... | 45 Opening-T... | (5 Space:zs... | @@ Zsnoss B, New Zeal... |5® Auckland .. | g8 SsarchRe... | (5 SpaceSe... || (] Categony... | (5 Spacs:Zs... | {]RESTAPI... | Zenos x|' + [ea) v‘
oo [fie) il ~ @ [+ eees3 Q @
- e B
Table of C 249 @require(’ZenCommon')
256 - def guery(self, limit=0, start=0, sort='lastTime', dir='desc', params=None,
vervthin ;2 — archive=False, uid=None, detailFormat=False):
Modules 253 Query for events.
Products.Zuul routers. 5;; ot ichem Fom
ype limit: integer
ging 3 3
Erogucta %uu: muters mebssa W 256 @param limit: (optional) Max index of events to retrieve (default: o)
Products Zuul routers mibs = e Srks A
Produicts. Zuul.routers.nav 258 @param start: (optional) Min index of events to retrieve (default: o)
Products. Zuul routers.network 259 @type sort: string
Products Zuul reuters. process 260 @param sort: (optional) Key on which to sort the return results (default:
Products.Zuul.routers.report iz; - p 'tIEStT”“e‘)
ype dir: string
el Dot BT e BT T 262 @param dir: (optional) Sort order; can be either 'ASC' or 'DESC'
Products Zuul reuters seftings 264 (default: 'DESC')
Products.Zuul.routers.template 265 @type params: dictlonary
Products. Zuul.routers triggers 266 @param params: (optional) Key-value pair of filters for this search.
Products Zuul routers zenpack 267 (default: None)
Products Zuul reuters.zep a= @type archive: beolean
269 @param archive: (cptional) True te search the event histery table instead
" 276 of active svents (default: Falss)
Ihids private] 271 @type uid: string
272 @param uid: (opticnal) Context for the query (default: None)
: 273 @rtype: dictionary
Everything 274 @return: B{Properties}:
275 - events: ([dictionary]) List of objscts representing events
All Classes 276 - totalCount: (integer) Total count of events returned =
Products Zuul reuters 277 - asof: (float) current time

Products.Zuul.routers.messaging.Messa: 278 aon

Produicts.Zuul.reuters.mibs.MibRouter Z: - ”“21"“ i L E ort
. . return self.queryArchive(limit=limit, start=start, sort=sort,
Products Zuul routers nav DetailNavRouts | | 507 RS S S

Products Zuul reuters.network NetworkBR 282 Gl e e Rt W)

Products Zuul routers.network NetworkR: 283

Products. Zuul.routers.process. Processik 284 filter = self. buildFilter(uid, params)

Products. Zuul routers report ReportRoute 285 events = self.zep.getEventsummaries(limit=limit, offset=start, sert=self. buildsert(sort,dir), filter=filter)
Products. Zuul routers.senvice. ServiceRo = e

287 if detailFormat:
Products. Zuul.routers.settings. SettingsR 288 R T e e RS T

Products.Zuul.routers.template TemplateH 289

Products. Zuul.routers.triggers. TriggersR: 296 return DirectResponse.succesd(
Products. Zuul.router: npack.ZenPackR 291 events = [eventFormat(e) for e in events['events']],
Products. Zuul routers ventsRouter 292 totalCount = events['total'l,
293 asof = time.time()

All Functions ol 294)

z =\ [2e5
L g 205 Acarwicacannactiancrrar =l
2 Find: [url < Previous » Nexdt - Highlightall (] Match case

Figure 94: JSON API - source code for the query method

1 February 2013 Event Management for Zenoss Core 4 © Skills 1st Ltd 129

If you inspect the __init_ method source code for the EventsRouter class, you can see
that the zep attribute is set to:

self.zep = Zuul.getFacade('zep', context)

Each of the files in $ZENHOME | Products /| Zuul | routers has methods that call the
matching facade found under $ZENHOME / Products /| Zuul | facades.

Think of the routers as a way to reach the right basic area of data - device, mibs,
triggers, zep - with some top-level methods like query, _buildFilter; and think of the
facades as more detailed access methods; so, having gained access to the events
through the zep router, the facade provides createEventFilter, getEventSummaries,
acknowledgeEventSummaries, and so on.

11.3 Using the JSON API

The documentation bundle includes sample code for using the JSON API from Python
programs and Java programs. Further samples are available at
https:/gist.github.com/1901884/ that demonstrate a bash shell harness for driving the
API using the curl utility.

Note that the Python samples both require slight bug-fixes to device.py and zep.py
respectively in $ZENHOME |/ Products | Zuul | routers for the base Zenoss Core 4.2 code -
see a discussion and solutions on the Zenoss User's forum at
http:/community.zenoss.org/message/70052#70052 . These issues appear to be fixed
with Core 4.2.3.

11.3.1 Bash examples

Get the bash examples from https:/gist.github.com/1901884/ (use the Download Gist
link) and unpack the bundle to get zenoss_curlExamples.sh. Edit this file to reflect your
Zenoss server parameters, if required, though the code already has a default server of
localhost, port 8080, user of admin and password of zenoss so it will probably work as-is
if you have not changed install defaults.

All the code to do with services refers to the enterprise Zenoss Resource Manager
chargeable product so they can be removed. To cut the file down to a basic sample that
just adds a device, n7k1, to the /Network/Router/Cisco device class, also remove the
helper functions for UCS and VCS objects so that you end up with a shellscript as shown
in Figure 95. Note that the device class has also been changed from the original script
as the class must exist.

The single remaining body line of the script is:

zenoss_add_device n7kl "/Network/Router/Cisco"

calling the helper function:

zenoss_add device()

130 Event Management for Zenoss Core 4 © Skills 1st Ltd 1 February 2013

https://gist.github.com/1901884/
http://community.zenoss.org/message/70052#70052
https://gist.github.com/1901884/
file:///home/andrew/skills-1st/zenoss4/ZenossJSONAPI/apidoc/html/Products.Zuul.routers.zep-pysrc.html#

El zenoss@zen42:/opt/zenoss/local - o0 x
File Edit View Search Terminal Help
#ll/bin/sh
Uncomment next line for debugging

=%
r Zenoss server settings.
URL="http://zend42.class.example.org: 8080
USERNAME="admin
PASSWORD="zenoss

EIEES
mmm
W m e
[LRURT

=R-E-K-)

Generic call to make Zenoss JSON API calls easier on the shell.
zenoss api () {

ROUTER ENDPOINT=$%1

ROUTER ACTION=S$2

ROUTER METHOD=%3

DATA=%4
${DATA}
Usage: zenoss_apl <endpoint> <action> <method> <data>
1
curl \
-u "$ZENOSS USERNAME:3$ZENOSS PASSWORD" \
-X POST \

-H "Content-Type: application/json" \

-d "{\"action\":\"SROUTER ACTION\",\"method\":\"$ROUTER METHOD\",\"data\":[$DATA], \"tid\":1}" \
$ZENOSS URL/zport/dmd/$ROUTER ENDPOINT" \

/dev/null 2=&1

Helper call for adding standard device types.
zenoss_add_device() {
E_HOSTNAME=$%1

$DEVICE_CLASS
) "Usage: zenoss_add_device <host> <device class>
1

zenoss_api device_router DeviceRouter addDevice "{\"deviceName\":\"$DEVICE HOSTNAME\",\"deviceClass\":\"$DEVICE CLASS\",\"collecto
ost\",\"model\":true, \"title\":\"\",\"productionState\":\"10660\",\"priority\":\"3\",\"snmpCommunity\":\"\",\"snmpPort\":161,\"tag\":\"\",
vV N serialNumbery” s\ "\, \"hwManufacturery” :\ "\", \"hwProductName\ " : \"\",\"osManufacturer\":\"\",\"osProductName\" : \"\ ", \"comments\": \"\"}

#echo "Adding standard device."
Henoss_add_device n7kl " /Network/Router/Cisco

"zenoss_curlExamples.sh” 42L, 1528C 40,1 Top [~

Figure 95: Modified zenoss_curlExample.sh to add a single [Network | Router [Cisco device

This function takes 2 parameters where $1 is the hostname and $2 is the device class. It

then calls the zenoss_api function:
zenoss_api device_router DeviceRouter addDevice
"{\"deviceName\":\"$DEVICE_HOSTNAME\", \"deviceClass\":\"$DEVICE_CLASS\",\"c
ollector\":\"localhost\", \"model\":true, \"title\":\"\",\"productionState\":
\"1000\",\"priority\":\"3\", \"snmpCommunity\":\"\", \"snmpPort\":161,\"tag\"
:\"\",\"rackSlot\":\"\",\"serialNumber\":\"\", \"hwManufacturer\":\"\", \ "hwP
roductName\":\"\", \"osManufacturer\":\"\", \"osProductName\":\"\", \"comments

\||: \||\||} n

zenoss_api requires four parameters:

zenoss_api () {
ROUTER_ENDPOINT=$1
ROUTER_ACTION=$2
ROUTER_METHOD=$3
DATA=$4

where the ROUTER_ENDPOINT value of device_router is found from the JSON API
documentation by looking at the Available at: /zport/dmd / device_router line for the
module Products.Zuul.routers.device . The ROUTER_ACTION is DeviceRouter - the
Class shown in the documentation; the ROUTER_METHOD is addDevice - the method
found by exploring the DeviceRouter class; and the DATA parameter contains

1 February 2013 Event Management for Zenoss Core 4 © Skills 1st Ltd 131

<parameter name>:<parameter value> string pairs, comma-separated, with double
quotes carefully escaped by backslashes.

@ Zenoss JSON API - Mozl Firefox 2 & %
Eile Edit View Higtory Bookmarks Tools Help [
4 |G usingwe... | §Transform... | TIRwverLeve... | 35 Opening-T... | Spaceize... |@@ZenossB... | [IRailNew... | [TNewZeal.. |38 Auckiand... | SR SearchRe... | G SpaceSe... | {7categon:.. | (G JSONAPI... | [TRESTAPI... |[TiZznos... 3 + v
o [@ ne 8) il ~ © [+ JsonaPreuny Q o
| 5|
Table of Contents addDevice(self, deviceName, deviceClass, title=None, snmpCommunity="", snmpPort=161, model=False, source code
e collector="localhost’, rackSlot=0, locationPath="", systemPaths=[], groupPaths=[], productionState=1000,
Evenything comments="", hwManufacturer="", hwProductName="", osManufacturer="", osProductName="", priority=3,
Modules tag="", serialNumber="")
Products.Zuul.routers. messaging addalievice:
Products.Zuul.routers.mibs Parameters:
Products.Zuul.routers.nav * devicename (string) - Name or IP of the new device
Products.Zuul.routers.network * deviceclass (string) - The device class to add new device to
Products.Zuul.routers.process * title (string) - (optional) The title of the new device (default: ")
M@ * snmpCommunity (string) - (optional) A specific community string to use for this device. (default: ")
w * snmpport (integer) - (optional) SNMP port on new device (default: 161)
Products.Zuul routers settings * locationPath (string) - (optional) Organizer path of the location for this device
wﬂﬁ = * systemPaths (List (strings)) - (optional) List of organizer paths for the device
Products.Zuul routers friggers * groupPaths (List (strings)) - (optional) List of organizer paths for the device
Products.Zuul routers.zenpack + model (boolean) - (optional) True to model device at add time (default: False)
Products Zuul.routers zep = © collector (string) - (optional) Collector to use for new device (default: localhost)
Module device * rackslot (string) - (optional) Rack slot description (default: ")
* productionstate (integer) - (optional) Production state of the new device (default: 1000)
Classes * comments (string) - (optional) Comments on this device (default: ")
DeviceRouter * hwManufacturer (string) - (optional) Hardware manufacturer name (default:)
. * hwProductName (string) - (optional) Hardware product name (defauilt: *)
Variables * osManufacturer (string) - (optional) OS manufacturer name (default: ")
log * osProductiame (string) - (optional) OS product name (default: ")
{hids prvate] * prierity (integer) - (optional) Priority of this device (default: 3)
* tag (string) - (optional) Tag number of this device (default: ")
* serialNumber (string) - (optional) Serial number of this device (default: ")
Returns: DirectResponse J
Properties:
* jobld: (string) ID of the add device job
remodel(self, deviceUid) source code
Submit a job to have a device remodeled.

: i i (=]
s Fna ful 4 Previous b Net Highightall []Match case Lskype]
Figure 96: addDevice method for the DeviceRouter class detailing input parameters

Ensure that the shellscript is executable and run it. Check that the device is added.
The set -x line at the top of the script can be uncommented to provide debugging.

Here is a second example that explores the capabilities of the triggers interface.

Exploring the triggers module with the API documentation shows that some methods

need a data parameter and some don't. This is why there are two helper functions in
Figure 97.

132 Event Management for Zenoss Core 4 © Skills 1st Ltd 1 February 2013

zenoss@zen4d2:/opt/zenoss/local

File Edit View Search Terminal Help

i/ bin/bash]
#set -x

Your Zenoss server settings.

ZENOSS URL="http://zend42.class.example.org:8080"
ZENOSS USERNAME="admin"

ZENOSS PASSWORD="zenoss"

zenoss_api triggers() {
ROUTER_ACTION=$1

ROUTER_METHOD=%2
ROUTER_ENDPOINT="triggers_router

curl \
-u "$ZENOSS USERNAME:$ZENOSS PASSWORD" \
-X POST A
-H "Content-Type: application/json" \
-d "{\"action\":\"$ROUTER_ACTION\",%\"method\":\"$ROUTER_METHOD\", \"tid\":1}" \ 3
"$ZENOSS URL/zport/dmd/$ROUTER ENDPOINT"
y
zenoss_api get trigger() {

ROUTER_ACTION=$1

ROUTER_METHOD=$2

DATA=%3
ROUTER_ENDPOINT="triggers_router"

curl \
-u "$ZENOSS_USERNAME:$ZENOSS PASSWORD" \
-X POST \
-H "Content-Type: application/json" \
-d "{\"action\":\"$ROUTER_ACTION\",\"method\":\"$ROUTER METHOD\",\"data\":[$DATA], \"tid\":1}" \
'$ZENOSS_URL/zport/dmd/$ROUTER_ENDPOINT'

}
"zenoss_JSONAPI_curl Triggers.sh" 63 lines --1%-- 5.1 Top [~
Figure 97: zenoss_JSONAPI_curl_triggers.sh part 1 showing 2 helper functions

E zZenoss@zen42:/opt/zenoss/local
File Edit View Search Terminal Help

Call the query method. Then parse the JSON results with Python.
cho getTriggersList

zenoss_api_triggers
TriggersRouter
getTriggerList

) getTriggers

TriggersRouter
getTriggers

) getTrigger

zenoss apli get trigger
TriggersRouter
getTrigger
"{\"uuid\":\"2c76eaB2-9f18-4160-a8d0-4ddb6Tf0431dON\"}"

"zenoss_JSONAPI_curl Triggers.sh" 63 lines --100%-- 63,0-1 Bot
Figure 98: zenoss_JSONAPI _curl_triggers.sh part 2 calling the helper functions with different methods

a

The main body of zenoss_ JSONAPI curl_triggers.sh has two calls to zenoss_api_triggers
(with no data parameter) to produce a list of triggers and the detail for each trigger,
respectively; the third call uses the second helper function with the getTrigger method
and provides a uuid parameter to just get the detail of a specific trigger. The uuid was

1 February 2013 Event Management for Zenoss Core 4 © Skills 1st Ltd 133

determined from the getTriggerList output and then hardcoded back into the script as an
example.

Output looks like Figure 99.

zenoss@zend2:/opt/zenoss/local R =
File Edit View Search Terminal Help

[zenoss@zend2 locall$./zenoss JSONAPI_curl Triggers.sh [~
getTriggersList

"4f6bbofa-a5ee-4828-ba20-ce66b4278649", "action": "TriggersRouter”, "result": {"data": [{"name": "groupl@@rl trigger", "uuid": "a7fa85d7-8825-400d-9614-7a7f@5afol
73"}, {"name": "lotschy sec_auth", "uuid": "6d4c6949-fa@e-4fb1-9193-8Bclaea2ef956"}, {"name": "zen42 su trigger", "uuid": "1db2fdee-bBeB8-484b-ad52-a537b80f790f"}, {"name"
"zen42_trigger”, "uuid": "2c76ea02-9f18-4160-a8de-4ddb6fe431de"}], "success": true}, "tid": 1, "type": "rpc", "method": "getTriggerList"}

getTriggers

"a4277ec6-dB9c-4093-829d-c0d5a7a28b86", "action": "TriggersRouter”, "result": {"data": [{"globalWrite": false, "globalRead": false, "globalManage": false, "uuid"
"6d4c6949-fa00-4fb1-9193-8claea2ef956", "subscriptions”: [{"delay seconds": @, "uuid": "0@8c29d9-fB87b-81d8-11e2-566b71f643b1", "send initial occurrence": true, "repeat se
conds": @, "trigger_uuid": "6d4c6949-fag@-4fbl-9193-8claea2ef956", "subscriber uuid": "6lda@eff-f34f-471f-93ce-3b5b90d4eded”}], "userwWrite": 1, "enabled”: true, "rule": {"
source”: "(elem.name.startswith(\"lotschy\")) and (evt.event class.startswith(\"/Security/Auth\")}", "type" "api_version": 1}, "userRead": true, "userManage": 1, "user
s": [], "name": "lotschy sec auth"}, {"globalWrite": false, "globalRead": false, "globalManage": false, "uui "1db2fdee-bBe8-484b-ad52-a537b88F790T", "subscriptions": [{
"delay seconds": @, "uuid": "000c29d9-f87b-81d8-1le2-5500fchedabd”, "send initial occurrence": true, "repeat seconds": @, "trigger uuid": "1db2fdee-bBe8-484b-ad52-a537b80f
798", "subscriber uuid": "85db@70d-347b-4ecf-8513-f5b87b49e24b"}, {"delay seconds": @, "uuid": "@00c29d9-f87b-8651-11e2-54c1d52e9fb2", "send initial occurrence": true, "r
epeat_seconds": @, "trigger_ uuid": "1db2fdee-bBe8-484b-ad52-a537b80f790f", "subscriber uuid”: "b91d92el-a7@e-4d81-891a-d66T30fc5e76"}], "userWrite": 1, "enabled": true, "r
ule": {"source": "(elem.name.startswith(\"zen42\")) and (dev.production_state == 1000) and (evt.status == @) and (evt.event class.startswith(\"/Security/Su\"})", "type": 1
, "api_version": 1}, "userRead": true, "userManage": 1, "users": [], "name": "zen42 su trigger"}, {"globalWrite": false, "globalRead": true, "globalManage": false, "uuid":
"a7fag5d7-8825-400d-9614-7a7fe5af9173", "subscriptions”: [{"delay seconds": @, "uuid": "080c29d9-f87b-a71f-1lel-fde4e32589f2", "send initial occurrence": true, "repeat se
conds": @, "trigger uuid": "a7fa85d7-08825-400d-9614-7a7f05af9173", "subscriber uuid”: "9al19f12b-9cdf-4dd2-b99c-bee2ffe37d49"}, {"delay seconds": ®, "uuid": "©00c29d9-f87b-
ba®7-11e2-43797918ac7c”, "send initial occurrence”: true, "repeat_seconds": ©, "trigger_uuid": "a7fa85d7-8825-400d-9614-7a7f05af9173", "subscriber uuid": "dc250641-4f57-41
73-9ee6-fOb3f6b36d6b"}], "userWrite": 1, "enabled": true, "rule": {"source": "(evt.status == @) and (dev.production_state > 400) and (evt.severity >= 3) and (\"group-1080-r
1\" in elem.name)", “"type": 1, "api version": 1}, "userRead": true, "userManage": 1, "users": [{"write": false, "manage": false, "type": "user", "value": "9bbb5148-1dfe-4f
7d-b353-b896d6e5f859", "label": "jane (User)"}], “"name": “"groupl®@rl trigger"}, {"globalwrite": false, "globalRead": false, "globalManage": false, "uuid": "2c76ea®2-9f18-4
160-a8de-4ddb6fe431de”, "subscriptions”: [{"delay seconds": @, "uuid": "000c29d9-f87b-8651-11e2-532af543f798", "send_initial occurrence": true, "repeat_seconds": @, "trigg
er_uuid": "2c76ea®2-9f18-4160-a8d0-4ddb6fe431de”, "subscriber uuid": "5ff53c4e-17bb-4715-ace7-19d72289%e2ee"}, {"delay_seconds": @, "uuid": "008c29d9-f87b-8651-11e2-53243d2
ccbd2", "send_initial_occurrence": true, "repeat_seconds": @, "trigger_uuid": "2c76ea02-9f18-41608-a8d0-4ddb6fe431de", "subscriber uuid": "a6cl4f56-8f54-4ede-b658-8ed38b877

4bd"}], "userWrite": 1, "enabled": true, "rule": {"source": "(dev.production state == 1800) and (evt.severity >= 3) and (evt.status == 0) and ((evt.event class.startswith(

\"/Security/su\")) or (evt.event class.startswith(\"/skills\")})", "type": 1, "api version": 1}, "userRead": true, "userManage": 1, "users": [], "name": "zen42 trigger"}]
"success": true}, "tid": 1, "type": "rpc", "method": "getTriggers"}

getTrigger

{"uuid": "fe5e6854-3ebb-4f44-8590-f5a857fed273", “"action": "TriggersRouter", "result": {"data": {"subscriptions": [{"delay seconds": 0, "uuid": "008c29d9-f87b-8651-11e2-53

2af543f798", "send initial occurrence": true, "repeat seconds": ®, "trigger uuid": "2c76ea@2-9f18-4160-a8de-4ddb6fe431de", "subscriber uuid": "5ff53c4e-17bb-4715-ace7-19d7

2289e2ee"}, {"delay_seconds”: 8, "uuid": "000c29d9-f87b-8651-11e2-53243d2ccbd2”, "send initial occurrence": true, "repeat_seconds": @, "trigger uuid": "2c76ead2-9f18-4160-

a8de-4ddb6Te431de”, "subscriber_uuid": "a6cl4f56-8754-4ede-b658-8ed38b8774bd"}], “"enabled": true, "uuid": "2c76ea02-9f18-4160-a8de-4ddb6Te431de”, "rule": {"source": "(dev

production state == 1800) and (evt.severity >= 3) and (evt.status == @) and ((evt.event class.startswith(\"/Security/su\"}) or (evt.event class.startswith(\"/Skills\")))", |z
"type": 1, "api version": 1}, "name": "zen42 trigger"}, "success": true}, "tid": 1, "type": "rpc", "method": "getTrigger"}[zenoss@zend2 locall$

[zenoss@zend2 localls]

Figure 99: Output from zenoss_JSONAPI_curl_triggers.sh

Note that using the bash / curl interface with the EventsRouter class in the zep router
module, is much harder as many of the methods require a dictionary as an input
parameter. For this reason, it is easier to drive the events part of the JSON API from a
Python harness.

11.3.2 Python examples

The JSON API documentation bundle delivers a python subdirectory with examples. Be

sure to check http:/community.zenoss.org/message/70052#70052 if you are seeing
unexplainable errors.

api_example.py provides a generic class, ZenossAPIExample(), which connects to the
Zenoss server.

134 Event Management for Zenoss Core 4 © Skills 1st Ltd 1 February 2013

http://community.zenoss.org/message/70052#70052

File Edit View Search Terminal
import json

import urllib

import urllib2

Initialize the AP
Use the HTTPCoo
self.urlOpener =
if debug: self.ur
self.reqCount = 1

Contruct POST p
loginParams = url

s
C
self.urlOpener.op

"api_example.py.orig" [re

zenoss@zen42:/opt/zenoss/local/json_api_python/4.2

Help

ZENOSS INSTANCE = 'http://ZENOSS-SERVER:8080"

ZENOSS USERNAME = 'admin'

ZENOSS PASSWORD = 'zenoss'

ROUTERS = { 'MessagingRouter': 'messaging',
'EventsRouter': 'evconsole',
'ProcessRouter': 'process',
'ServiceRouter': 'service',
'DeviceRouter': 'device',
'NetworkRouter': 'network',
'TemplateRouter': 'template',
'DetailNavRouter': 'detailnav',
'ReportRouter': 'report’,
'MibRouter': 'mib',
'ZenPackRouter': 'zenpack' }

class ZenossAPIExample():

def init (self, debug=False):

I connection, log in, and store authentication cookie

kieProcessor as urllib2 does not save cookies by default
urllib2.build opener(urllib2.HTTPCookieProcessor())
10pener.add handler(urllib2.HTTPHandler(debuglevel=1))

arams and submit login.

lib.urlencode(dict(

_ac_name = ZENOSS USERNAME,

_ac_password = ZENOSS PASSWORD,

ubmitted = 'true',

ame_from = ZENOSS_INSTANCE + '/zport/dmd'))

en(ZENOSS INSTANCE + '/zport/acl users/cookieAuthHelper/login',
loginParams)

adonly] line 46 of 99 --46%-- col 1

Figure 100: api_example.py part 1 with connection logic and routers defined

The class has a _router_request method that has parameters for the router class to

[T

connect to, the method to execute and a data list that passes parameters to the method,
performing the translation between Python objects and JSON, as required.

Four helper functions are also provided in api_example.py, each of which utilises the

_router_request method.

1 February 2013

Event Management for Zenoss Core 4 © Skills 1st Ltd

135

zenoss@zen42:/opt/zenoss/local/json_api_python/4.2

File Edit View Search Terminal Help
def router request(self, router, method, data=[]):
if router not in ROUTERS:
raise Exception('Router "' + router + '" not available.')

Contruct a standard URL request for API calls
req = urllib2.Request(ZENOSS INSTANCE + '/zport/dmd/' +
ROUTERS[router] + ' router')

NOTE: Content-type MUST be set to 'application/json' for these requests
req.add header('Content-type', 'application/json; charset=utf-8')

Convert the request parameters into JSON
reqData = json.dumps([dict(
action=router,
method=method,
data=data,
type='rpc’,
tid=self.reqCount)])

Increment the request count ('tid'). More important if sending multiple
calls in a single request
self.reqCount += 1

Submit the request and convert the returned JSON to objects
return json.loads(self.urlOpener.open(req, reqData).read())

"apl example.py.orig" [readonly] line 47 of 99 --47%-- col 1
Figure 101: api_example.py part 2 with _router_request method

[T

- def get_devices(self, deviceClass='/zport/dmd/Devices'):
- def get_events(self, device=None, component=None, eventClass=None):
« def add_device(self, deviceName, deviceClass):

- def create_event_on_device(self, device, severity, summary):

zenoss@zen42:/opt/zenoss/local/json_api_python/4.2

File Edit View Search Terminal Help

def get devices(self, deviceClass='/zport/dmd/Devices'):

return self. router request('DeviceRouter’', 'getDevices',
data=[{'uid': device(Class,
'params': {} }])['result']

def get events(self, device=None, component=None, eventClass=None):
data = dict(start=0, limit=100, dir='DESC', sort='severity')
data['params'] = dict(severity=[5,4,3,2], eventState=[0,1])

if device: data['params']['device'] = device
if component: data['params']['component'] = component
if eventClass: data['params']['eventClass'] = eventClass

return self. router request('EventsRouter', 'query', [datal)['result']

def add device(self, deviceName, deviceClass):
data = dict(deviceName=deviceName, deviceClass=device(Class)
return self. router request('DeviceRouter', 'addDevice', [datal)

def create event on device(self, device, severity, summary):
if severity not in ('Critical', 'Error', 'Warning', 'Info', 'Debug', 'Clear'):
raise Exception('Severity "' + severity +'" is not valid.')

data = dict(device=device, summary=summary, severity=severity,
component="'", evclasskey='"', evclass='")
[eturn self. router request('EventsRouter', 'add event', [data])
"apl example.py.orig" [readonly] line 99 of 99 --100%-- col 9

Figure 102: api_example.py part 3 with helper methods to access device and events objects

[<T

136 Event Management for Zenoss Core 4 © Skills 1st Ltd 1 February 2013

event_curses.py is an example script that imports api_example and uses the get_events
method to access events in the MySQL database. The only other dependency is the
import of texttable which is also included in the same directory (see
JSONAPIQuickstart.txt in the top-level directory of the documentation).

zenoss@zen42:/opt/zenoss/local/json_api_python/4.2

ile Edit View Search Terminal Help
Zenoss-4.x JSON API Example (python)

Curses-based event console.

A very simple example showing use of the Zenoss JSON API. Program initializes
the screen, and fetches the top events from a Zenoss server. The events are
displayed in decending severity, with severities color-coded. Events update
every 5 seconds or so. Use 'q' or 'Q' to quit.

CEE .

import curses
import time

import texttable
import api example

def main(cw):

Set up colors

curses.init pair(l, curses.COLOR CYAN, curses.COLOR BLACK)
curses.init pair(2, curses.COLOR BLUE, curses.COLOR BLACK)
curses.init pair(3, curses.COLOR YELLOW, curses.COLOR BLACK)
curses.init pair(4, curses.COLOR MAGENTA, curses.COLOR BLACK) z
curses.init pair(5, curses.COLOR RED, curses.COLOR BLACK)
cw.nodelay(1)

Initialize Zenoss API connection
z = api_example.ZenossAPIExample()

cycles = 21
Quit on 'q' or 'Q'
while cw.getch() not in [ord(x) for x in ['qg', 'Q']1]:

Only update every 20 cycles (20 * .25 seconds = 5 seconds)
if cycles = 20:
Get events from Zenoss
rawEvents = z.get events()['events']
#rawEvents = z.get events('zend2.class.example.org')['events']

'Clean' events list, initialized with title row
events = [['Device', 'Component', 'Summary', 'Event Class']]
B Initialize title row color to O (white on black)

"event curses.py" [readonly] line 38 of 72 --52%-- col 13 [~

Figure 103: event_curses.py highlighting calls to the api_example functionality

When event_curses.py is run with python event_curses.py, a list of events is output to the
screen with Device, Component, Summary and Event Class fields, each line being
colour-coded by severity. As shipped, all New and Acknowledged status events of
severity 5, 4, 3 and 2, are retrieved from the MySQL database.

1 February 2013 Event Management for Zenoss Core 4 © Skills 1st Ltd 137

zenoss@zend42:/opt/zenoss/local/json_api_python/4.2
File Edit View Search Terminal Help

Figure 104: Output of python event_curses.py

Note that if event_curses.py does not run then open a new command terminal with a
default screen size and try again.

To be more selective on the event curses output, look closely at the commented out
rawEvents = line in Figure 103. The line restricts output to just events from
zen42.class.example.org.

For an extension of using the query method of the EventsRouter class, see get_events.py
in Appendix A. It takes parameters to select the filter criteria for active events and then
outputs a large number of fields. python get_events.py --help provides the usage.

138 Event Management for Zenoss Core 4 © Skills 1st Ltd 1 February 2013

zenoss@zen42:/opt/zenoss/local/json_api_python/4.2

File Edit View Search Terminal Help

[zenoss@zend2 4.2]%

[zenoss@zend42 4.2]% python get_events.py --help

Usage: python get events.py --severity=severity --eventState=evenState --device=device --eventClass=eventClass --component=component --agent=ag
ent --monitor=monitor --count=count --lastTime=lastTime --firstTime=firstTime --stateChange=stateChange --sort=lastTime --dir=DESC

Dl

Options:
-h, --help show this help message and exit
--severity=SEVERITY severity comma-separated numeric values eg.
severity=5,4 for Critical and Error
--eventState=EVENTSTATE
eventState comma-separated numeric values eg.
eventState=0,1 for New and Ack
--device=DEVICE eg. --device='zend2.class.example.org'
--eventClass=EVENTCLASS
el --eventClass="/Skills"'
- -component=COMPONENT

eg. --component='Test Component'
- -agent=AGENT eg. --agent='zensyslog'
--monitor=MONITOR eg. --monitor="localhost"'
- -count=COUNT numeric value eg. --count=3 or range --count 3,30

--lastTime=LASTTIME eg. for a range separate start & end with /
--lastTime='2012-09-07 ©7:57:33/2012-11-22 17:57:33"
--firstTime=FIRSTTIME
eg. --firstTime='2012-11-22 17:57:33'
--stateChange=STATECHANGE
eg. --stateChange='2012-11-22 17:57:33"
--sort=S0RT the key to sort on eg. --sort='lastTime'
--dir=DIR the direction to sort eg. --dir='ASC' or --dir='DESC'
[zenoss@zend2 4.2]%
[zenoss@zend42 4.2]1% python get_events.py --severity=5,4 --device='zen42.class.example.org'
eventState, DeviceClass, count, device, Location, Systems, severity, firstTime, lastTime, summary
New, /Server/Linux,8577,zend2.class.example.org,/Taplow,['/Test', '/Real'],4,2013-01-02 17:35:01,2013-01-08 16:21:54,threshold of sizevar2lTo30
violated: current value 22.000000
New,/Server/Linux,3,zend42.class.example.org,/Taplow,['/Test', '/Real'],4,2013-01-07 18:03:41,2013-01-08 14:34:16,Error processing transform/map
ping on Event Class /Skills/instances/linetest l:

New, /Server/Linux,1,zend42.class.example.org,/Taplow,['/Test', '/Real'],5,2013-01-08 14:34:16,2013-01-08 14:34:16,test line 3
New, /Server/Linux,1,zen42.class.example.org,/Taplow,['/Test', '/Real'],5,2013-01-07 20:52:29,2013-01-07 20:52:29,test line 2
New,/Server/Linux,1,zend42.class.example.org,/Taplow,['/Test"', '/Real'],5,2013-01-07 18:03:41,2013-01-07 18:03:41,test line 1
[zenoss@zend2 4.2]15 [o

Figure 105: get_events.py output to select active events and output to the console

12 Conclusions

Zenoss has an extensive event system capable of receiving events from Windows, syslogs
and SNMP TRAPs, in addition to receiving the events generated internally by Zenoss's
own discovery, availability and performance monitoring.

A large number of event classes are defined and configured when Zenoss is installed.
These can be modified, removed or added to.

An event follows a fairly complex event life cycle process whereby it is mapped to an
event class and then, optionally, it is transformed such that default fields of the event
can be changed and user-defined fields can be created.

Event mapping for events from Windows, syslogs or SNMP, depends on the initial
Zenoss parsing daemon delivering an eventClassKey field which must correspond to a
defined mapping. Subsequently, a Python Rule and/or a Python Regex can be used to
further distinguish between incoming events and map to different event classes.

1 February 2013 Event Management for Zenoss Core 4 © Skills 1st Ltd 139

Event attributes through the event life cycle (part 1)

Event Generation » Device Context s
(intemal)
\ evt.eventClass
zenpin evt.component
png evt.device

evt.summary
evt.message

evt.agent
} evt.eventGroup
evt.monitor
evt.severity
evt.eventKe
zenperfsnmp [ew.deta"s____y] evt.DeviceClass
P evt.DeviceGroups
. evt.Systems . -
Event Generation _ = . . ioccke i evt.Location Event Class Mapping >
. Y

external evt.prodState
() ::tt.ggmggnent evt.DevicePriority Rule: tests existing field(s)

evt.summary
evt.message
evt.agent
evt.eventGroup
evt.monitor
evt.severity
evt.details....

Regex: parses evt.summary
may create new
evt detail fields

Delivers: evt.eventClass

zensyslog ::::;10"::;

zeneventlog evt.ntevid

evt.details.community
zentrap evt.details.oid
evt.details......

Key: Fields in brackets are optional

Figure 106: Event attributes through the event life cycle (part 1)

Device context is applied to an incoming event from the ZODB database; device context
includes the prodState, DevicePriority, Location, DeviceClass, DeviceGroups and
Systems field values. Device context provides the ability for transforms to take account
of the device or device class hierarchy.

An event class includes event context — zEventAction, zEventSeverity and
zEventClearClasses — which can be applied to individual subclasses of events or to class
hierarchies. This means transforms can be affected by event type.

Event transforms can be simple assignment of event fields or can include complex
Python programs. A good environment for testing Python is the zendmd command line
utility. Transforms and/or the event context can be used to help clear events that have
been resolved. Any event with a severity of Cleared will automatically clear other
similar events; zEventClearClasses can be used to list extra classes that are cleared in
addition.

140 Event Management for Zenoss Core 4 © Skills 1st Ltd 1 February 2013

Event attributes through the event life cycle (part 2)

Event now has... plus... Event Context
: (zProperties)

(intemally

generated)
evt.eventClass [evt.eventKey]
evt.component
evt.device
evt.summary ZEventAction
evt.message (can affect evt.eventState)
evt.agent zEventSeverity
evt.eventGroup (can affect evt.severity)
evt.monitor ZEventClearClasses
evt.severity (can affect evt.eventState)
evt.details....

evt.DeviceClass

evt.DeviceGroups

evt.Systems

evt.Location

evt.prodState

evt.DevicePriority (externally
generated)
[evtfacility |
[evt.priority |

[evt.ntevid]
[evt.details.community]

[evt.details.oid]

evt,details......

Figure 107: Event attributes through the event life cycle (part 2)

Transforms

Class transform:

Manipulate existing field(s)
Create new detail fields

\J

Mapping transform:

_...

Manipulate existing field(s)
Create new detail fields

Events are saved in the MySQL zenoss_zep database in the event_summary table.
Events can be Closed by users or Cleared by other events; they can also be Aged based
on severity and length of time that the event has persisted. After a configurable
interval, non-active events (with eventState of Closed, Cleared and Aged) are moved to
the event_archive table of the database. Eventually, archived events can be deleted.

1 February 2013 Event Management for Zenoss Core 4 © Skills 1st Ltd

141

Event attributes through the event life cycle (part 3)

Event now has..

evt.eventClass
evt.component
evt.device
evt.summary
evt.message
evt.agent
evt.eventGroup
evt.monitor
evt.severity
evt.details....
evt.DeviceClass
evt.DeviceGroups
evt.Systems
evt.Location
evt.prodState
evt.DevicePriority

evt.lastTime

(externally m
generated) ;:‘gaél

[evt.facility] command script
[evt.priority] SNMP TRAP

[evt.ntevid]

[evt.details.community]
[evt.details.oid]

evt,details......

plus database insertion Modifyving / Archive to
into zenoss zep Clearing / Zenoss zep
(intemally event summary Ading event archive
generated) table table
[evt.eventKey |
evt.eventState
evt.count evt.owner
evt.evid evt.clearid —
evt.stateChange evt.stateChange all the
evt.dedupid same fields
evt.eventClassMapping
evt.firstTime

\J

Delete
Archived
Events
Older Than

Figure 108: Event attributes through the event life cycle (part 3)

When events occur, actions can be generated either to alert users by using email or a
paging system; alternatively, background actions can be configured to run a command
on the Zenoss server or to generate an SNMP TRAP.

The JSON API provides a generic interface for accessing data in the Zenoss system.

As with any enterprise management system, Zenoss has the tools to configure almost
any response to any event.

142

Event Management for Zenoss Core 4 © Skills 1st Ltd

1 February 2013

13 Appendix A
13.1 getevents.py

get_events.py to select active events.

import json

import urllib
import urllib2
from optparse impo
import pprint

#ZENOSS_INSTANCE =
Change the next
#

ZENOSS_INSTANCE =

Zenoss-4.x JSON API Example (python)
#

To quickly explore, execute 'python
#

>>> z = getEventsWithJSON ()

>>> events = z.get_events/()

etc.

rt OptionParser

'http://ZENOSS-SERVER:8080"
line(s)

-1 get_events.py

to suit your environment

'http://zen42.class.example.org:8080"

ZENOSS_USERNAME = 'admin'

ZENOSS_PASSWORD = 'zenoss'

ROUTERS = { 'MessagingRouter': 'messaging',
'EventsRouter': 'evconsole',
'ProcessRouter': 'process',
'ServiceRouter': 'service',
'DeviceRouter': 'device',
'NetworkRouter': 'network',
'TemplateRouter': 'template',
'DetailNavRouter': 'detailnav',
'ReportRouter': 'report',
'MibRouter': 'mib’',
'ZenPackRouter': 'zenpack' }

class getEventsWithJSON() :

def __init__ (s

Initialize the API connection,

cookie

elf, debug=False):

log in,

and store authentication

Use the HTTPCookieProcessor as urllib2 does not save cookies by

default

self.urlOpener =
urllib2.build_opener (urllib2.HTTPCookieProcessor())

if debug:

self.urlOpener.add_handler (urllib2.HTTPHandler (debuglevel=1))
self.regCount = 1

Construct POST params and submit login.
loginParams = urllib.urlencode (dict (

1 February 2013

ac_name =

ZENOSS_USERNAME,

__ac_password = ZENOSS_PASSWORD,

Event Management for Zenoss Core 4 © Skills 1st Ltd

143

144

submitted = 'true',
came_from ZENOSS_INSTANCE + '/zport/dmd'))
self.urlOpener.open (ZENOSS_INSTANCE +
' /zport/acl_users/cookieAuthHelper/login',
loginParams)

def _router_ request(self, router, method, data=[]):
if router not in ROUTERS:
raise Exception('Router "' + router + '" not available.')

Construct a standard URL request for API calls
req = urllib2.Request (ZENOSS_INSTANCE + '/zport/dmd/' +
ROUTERS [router] + '_router')

NOTE: Content-type MUST be set to 'application/json' for these
requests
req.add_header ('Content-type', ‘'application/json; charset=utf-8')

Convert the request parameters into JSON
regData = json.dumps ([dict(
action=router,
method=method,
data=data,
type='rpc',
tid=self.regCount)])

Increment the request count ('tid'). More important if sending
multiple

calls in a single request

self.reqgCount += 1

Submit the request and convert the returned JSON to objects
return json.loads (self.urlOpener.open(req, regData) .read())

def get_events(self, filter={}, sort='severity', dir='DESC'):
nnn UJse EventsRouter action (Class) and query method found
in JSON API docs on Zenoss website:

query (self, 1limit=0, start=0, sort='lastTime', dir='desc',
params=None,
archive=False, uid=None, detailFormat=False)

Parameters:

limit (integer) - (optional) Max index of events to retrieve
(default: 0)

start (integer) - (optional) Min index of events to retrieve
(default: 0)

sort (string) - (optional) Key on which to sort the return results
(default: 'lastTime')

dir (string) - (optional) Sort order; can be either 'ASC' or 'DESC'
(default: 'DESC'")

params (dictionary) - (optional) Key-value pair of filters for this

search. (default: None)
params are the filters to the query method and can be found in the
_buildFilter method.
severity = params.get('severity'),
status = [i for 1 in params.get('eventState', [1)1,
event_class = filter (None, [params.get('eventClass')]),

Event Management for Zenoss Core 4 © Skills 1st Ltd 1 February 2013

1 February 2013

Note that the time values can be ranges where a valid range

would be
'2012-09-07 07:57:33/2012-11-22 17:57:33"

first_seen = params.get('firstTime') and
self._timeRange (params.get ('firstTime')),

last_seen = params.get('lastTime') and
self._timeRange (params.get ('lastTime')),

status_change = params.get('stateChange') and
self._timeRange (params.get ('stateChange')),

uuid = filterEventUuids,

count_range = params.get('count'),

element_title = params.get('device'),

element_sub_title = params.get ('component'),

event_summary = params.get ('summary'),

current_user_name = params.get ('ownerid'),

agent = params.get('agent'),

monitor = params.get ('monitor'),

fingerprint = params.get ('dedupid'),

tags = params.get ('tags'),

details = details,

archive (boolean) - (optional) True to search the event history

table instead of active events (default: False)

uid (string) - (optional) Context for the query (default: None)

Returns: dictionary

Properties:
events: ([dictionary]) List of objects representing events
totalCount: (integer) Total count of events returned
asof: (float) Current time

data = dict(start=0, 1imit=1000)

if sort: datal['sort'] = sort
if dir: datal['dir'] = dir
data['params'] = filter

#print 'datal[params] is %s \n' % (data['params'])
#print 'data is %s \n' % (data)

return self._router_ request ('EventsRouter', 'query',
['result']

if name == "_main__ ":

[datal)

usage = 'python %prog --severity=severity --eventState=eventState
- -agent=agent
- -monitor=monitor --count=count --lastTime=lastTime --firstTime=firstTime

--device=device --eventClass=eventClass --component=component
- -stateChange=stateChange --sort=lastTime --dir=DESC’

parser = OptionParser (usage)
parser.add_option("--severity", dest='severity',

help='severity comma-separated numeric values eg.

severity=5,4 for Critical and Error')

parser.add_option("--eventState", dest='eventState', default='0,1"',

help='eventState comma-separated numeric values

eg. eventState=0,1 for New and Ack')

parser.add_option("--device", dest='device',
help='eg. --device=\'zen42.class.example.org\'")
parser.add_option("--eventClass", dest='eventClass',

Event Management for Zenoss Core 4 © Skills 1st Ltd

145

help='eg. --eventClass=\"'/Skills\'"')

parser.add_option("--component", dest='component',

help='eg. --component=\'Test Component\'")
parser.add_option("--agent", dest='agent',

help='eg. --agent=\'zensyslog\'")
parser.add_option("--monitor", dest='monitor',

help='eg. --monitor=\'localhost\'")
parser.add_option("--count", dest='count',

help='numeric value eg. --count=3 or range --count

3,30")

parser.add_option("--lastTime", dest='lastTime',

help='eg. for a range separate start & end with /
--lastTime=\'2012-09-07 07:57:33/2012-11-22 17:57:33\"'")
parser.add_option("--firstTime", dest='firstTime',
help='eg. --firstTime=\'2012-11-22 17:57:33\'")
parser.add_option("--stateChange", dest='stateChange',
help='eg. --stateChange=\'2012-11-22 17:57:33\'")
parser.add_option("--sort", dest='sort', default='lastTime',
help='the key to sort on eg. --sort=\'lastTime\'"')
parser.add_option("--dir", dest='dir', default='DESC',
help='the direction to sort eg. --dir=\'ASC\' or
--dir=\'DESC\'")

(options, args) = parser.parse_args()

options is an object - we want the dictionary value of it
Some of the options need a little munging...

option_dict = vars (options)
if option_dict['severity']:

option_dict['severity'] = option dict['severity'].split(',")
if option _dict['eventState']:
option_dict['eventState']l] = option_dict['eventState'].split(',")

count can either be a number or a range (in either list or tuple
format)

(see $ZENHOME/Products/Zuul/facades/zepfacade.py -
createEventFilter method)

but if this method gets a list it assumes there are 2 elements to
the list.

We may get a list with a single value so convert it to a number
and the

createEventFilter method can cope

if option_dict['count']:

option_dict['count'] = option_dict['count'].split(',")
if len(option_dict['count']) ==
option_dict['count'] = int(option_dict['count'] [0])

option_dict includes the sort and dir keys (as we have defaulted them
in optparse)

These are not part of the filter string so we need to pop them out of
the dictionary

to use separately.
= option_dict.pop('sort')
= option_dict.pop('dir")
Need to check these keys for sanity

and provide sensible defaults otherwise

dirlist=['ASC', 'DESC']
if not d in dirlist:

d='DESC'

HH OO0

Event Management for Zenoss Core 4 © Skills 1st Ltd 1 February 2013

sortlist = ['severity', 'eventState', 'eventClass', 'firstTime',
'lastTime',
'stateChange', 'count', 'device', 'component', 'agent',
'monitor']
if not s in sortlist:
s='lastTime'

#print 'options is %s \n' % (options)
#print 'option_dict is %s \n' % (option_dict)

events = getEventsWithJSON ()
#filter['evid'] = '000c29d9-£87b-8389-11e2-347cddf7a720"

pp = pprint.PrettyPrinter (indent=4)

fields = ['eventState', 'DeviceClass', 'count', 'device', 'Location’',
'Systems', 'severity', 'firstTime', 'lastTime', 'summary']

#fields = ['eventState', 'DeviceClass', 'count', 'device', 'Location',
'severity', 'firstTime', 'lastTime', 'summary’']

print 'eventState, DeviceClass, count, device, Location, Systems,
severity, firstTime, lastTime, summary'
#print 'eventState, DeviceClass, count, device, Location, severity,
firstTime, lastTime, summary'
out = events.get_events (filter=option_dict, sort=s, dir=d)
for e in out['events']:
#pp.pprint (e)
outState=e['eventState']
if e['DeviceClass']:
outDeviceClass=e['DeviceClass'] [0] ['name"']
else: outDeviceClass=[]
outcount=e['count']
outdevice=e['device'] ['text"']
if e['Location']:
outLocation=e['Location'] [0] ['name"]
else: outLocation=/[]
outSystems=[]
for pos,val in enumerate(e['Systems']) :
sy=str(e['Systems'] [pos] ['name'])
outSystems.append (sy)
outseverity=e['severity']
outfirstTime=e['firstTime"]
outlastTime=e['lastTime"']
outsummary=e ['summary"']
print '%s,%s,%s,%s,%s,%s,%s,%s,%s,%s' % (outState,
outDeviceClass, outcount, outdevice, outLocation, outSystems, outseverity,
outfirstTime, outlastTime, outsummary)
#print '%s,%s,%s,%s,%s,%s,%s,%s,%s' % (outState,
outDeviceClass, outcount, outdevice, outLocation, outseverity,
outfirstTime, outlastTime, outsummary)

#print '\n totalCount is %d and asof is %s' % (out['totalCount'],
out['asof'])

1 February 2013 Event Management for Zenoss Core 4 © Skills 1st Ltd 147

13.2 zensendevent

Modified zensendevent to automatically retrieve local authentication parameters.

Zenoss Core 4.2.3 changed some security policies at installation time which results in
zensendevent failing unless --auth parameters are determined and supplied explicitly.

#!/opt/zenoss/bin/python

doc = "mrzensendevent

Send events on a command line via XML-RPC or from a XML file.
This command can be put on any machine with Python installed, and

does not need Zope or Zenoss.

import socket
from xmlrpclib import ServerProxy
from optparse import OptionParser

from xml.sax import make_parser, saxutils
from xml.sax.handler import ContentHandler

XML_RPC_PORT = 8081

sevconvert = {
"critical" : 5,
"error" : 4,
"warn" : 3,
"info" : 2,
"debug" : 1,
"clear" 0

class ImportEventXML (ContentHandler) :

ignoredElements = set ([
'ZenossEvents', 'url', 'SourceComponent',
'ReporterComponent', 'EventId',
'clearid', 'eventClassMapping',
'eventState', 'lastTime', 'firstTime',
'EventSpecific', 'stateChange',
1)

evt = {}

property = '!

value = "!

def __init__ (self, serv):
ContentHandler. init (self)
self.sent = 0

self.total = 0
self.serv = serv

def startElement (self, name, attrs):

self.value = "!

if name == 'ZenossEvent':
self.evt = {}
elif name == 'property':

148 Event Management for Zenoss Core 4 © Skills 1st Ltd

'prodState!

1 February 2013

self .property = attrs['name']

def characters(self, content):
self.value += content

def endElement (self, name) :

name = str (name)
value = str(self.value)
if name in self.ignoredElements:
return
elif name == 'property' and value and value != '|':
self.evt[self.property] = value
elif name in ['Systems', 'DeviceGroups']:
if value and value != '|':
self.evt[name] = value
elif name in ['eventClassKey', 'eventKey']:
if value:
self.evt[name] = value
elif name == 'sgeverity':
self.evt[name] = int(value)
elif name == 'ZenossEvent':
self.total += 1
try:

self.serv.sendEvent (self.evt)
self.sent += 1
except Exception, ex:
print str(ex)
print evt

elif value:
self.evt[name] = value

def sendXMLEvents (serv, xmlfile):
infile = open(xmlfile)
parser = make_parser ()
CH = ImportEventXML (serv)
parser.setContentHandler (CH)
try:
parser.parse(infile)
finally:
infile.close()
print "Sent %s of %s events" % (CH.sent, CH.total)

device = socket.getfgdn ()
if device.endswith('.'): device = devicel[:-1]

parser = OptionParser (usage="usage: %prog [options] summary")
parser.add_option("-d", "--device", dest="device", default=device,
help="device from which this event is sent, default: %default")

parser.add_option("-i", "--ipAddress", dest="ipAddress", default="",

help="Ip from which this event was sent, default: %default")
parser.add_option("-y", "--eventkey", dest="eventkey", default="",
help="eventKey to be used, default: %default")

parser.add_option("-p", "--component", dest="component", default="",

help="component from which this event is sent, default: ''")

1 February 2013 Event Management for Zenoss Core 4 © Skills 1st Ltd

149

parser.add_option("-k", "--eventclasskey", dest="eventClassKey",

default="",
help="eventClassKey for this event, default: ''")
parser.add_option("-s", "--severity", dest="severity", default="Warn",
help="severity of this event: Critical, Error, Warn, Info, Debug,
Clear")
parser.add_option("-c", "--eventclass", dest="eventClass", default=None,
help="event class for this event, default: ''")
parser.add_option("--monitor", dest="monitor", default="localhost",
help="monitor from which this event came")
parser.add_option("--port", dest="port", default=XML_RPC_PORT,
help="xmlrpc server port, default: %default")
parser.add_option("--server", dest="server", default="localhost",
help="xmlrpc server, default: %default")
parser.add_option("--auth", dest="auth", default="admin:zenoss",
help="xmlrpc server auth, default: %default")
parser.add_option("-o", "--other", dest="other", default=[],

action="'append',
help="Specify other event_ field=value arguments. Can be specified"
" more than once.")

parser.add_option('-f', "--file", dest="input_file", default="",
help="TImport events from XML file.")

parser.add_option('-v', dest="show event", default=False,
action='store_ true',
help="Show the event data sent to Zenoss.")

opts, args = parser.parse_args ()

Hack by JC to get hubpasswd authentication into auth option
Password 1s held in $ZENHOME/etc/hubpasswd in (almost) correct format
<user>:<password> \n

import os
if auth is the default
if opts.auth == 'admin:zenoss':
zenhome=0s.environ |['ZENHOME ']
Try to access $ZENHOME/etc/hubpasswd and strip trailing newline
try:
pwfile=open (os.path.join (zenhome, 'etc', 'hubpasswd'), 'r')
opts.auth=pwfile.read() .rstrip()
pwfile.close()
print 'Extracting necessary user:password automatically \n'
If this fails then fall back to default and print message
except:
print 'Attempt to detect hubpasswd failed \n'

End of JC hack

url = "http://%s@%s:%s" % (opts.auth, opts.server, opts.port)
serv = ServerProxy (url)

if opts.input_file:
sendXMLEvents (serv, opts.input_file)
import sys
sys.exit (0)

evt = {}
if opts.severity.lower() in sevconvert:

evt['severity'] = sevconvert [opts.severity.lower ()]
else:

150 Event Management for Zenoss Core 4 © Skills 1st Ltd 1 February 2013

parser.error ('Unknown severity')
evt ['summary'] = " ".Jjoin(args)
if not evt['summary']:
parser.error ('no summary supplied')
evt['device'] = opts.device
evt ['component'] = opts.component
evt ['ipAddress'] = opts.ipAddress
if opts.eventkey:

evt['eventKey'] = opts.eventkey
if opts.eventClassKey:

evt['eventClassKey'] = opts.eventClassKey
if opts.eventClass:

evt['eventClass'] = opts.eventClass
evt['monitor'] = opts.monitor

for line in opts.other:

try:
field, value = line.split('=',1)
evt[field] = value

except:
pass

if opts.show_event:
from pprint import pprint
pprint (evt)

serv.sendEvent (evt)

1 February 2013 Event Management for Zenoss Core 4 © Skills 1st Ltd 151

14 References

1. Zenoss Community site http:/community.zenoss.org

2. Zenoss network, systems and application monitoring - commercial site -
http://www.zenoss.com/

3. Zenoss documentation main page -
http:/community.zenoss.org/community/documentation

4. Zenoss Core 4 Administration Guide -
http:/community.zenoss.org/community/documentation/official documentation/ze
noss-guide

5. Zenoss Developer's Guide -

http:/community.zenoss.org/community/documentation/official documentation/ze
noss-dev-guide

6. Zenoss 4.2 JSON API documentation -
http://community.zenoss.org/community/documentation/official documentation/api

7. Samples of using the JSON API with bash and curl can be found at
https:/gist.github.com/1901884 .

8. Information on RelStorage and memecached - http:/wiki.zenoss.org/RelStorage

9. Information on RabbitMQ - http:/wiki.zenoss.org/Working with Queues
10. Script to reset RabbitMQ - https:/gist.github.com/4192854

11.Information on AMQP - http:/www.amaqp.org/

12.Information on Lucene indexing - http:/lucene.apache.org/core/

13.Information on JSON - http:/www.json.org/

14. Discussion on modifying zensendevent utility on Zenoss wiki -
http://wiki.zenoss.org/Zensendevent in Zenoss 4.2.3

15.Reference for Win32_NTLogEvent class event log severities -
http:/msdn.microsoft.com/en-
gb/library/windows/desktop/aa394226%28v=vs.85%29.aspx

16.Information on Python regular expressions -
http://docs.python.org/2/library/re.html , http://www.python.org/doc/2.5.2/lib/re-syntax.html
and http://docs.python.org/dev/howto/regex.html

17.Information on protobufs - http:/code.google.com/p/protobuf/

18.Information on the Python debugger (pdb) -
http://docs.python.org/2/library/pdb.html

19. As a general Python reference, try “Learning Python” by Mark Lutz, published by
OReilly

152 Event Management for Zenoss Core 4 © Skills 1st Ltd 1 February 2013

http://docs.python.org/2/library/pdb.html
http://code.google.com/p/protobuf/
http://docs.python.org/dev/howto/regex.html
http://www.python.org/doc/2.5.2/lib/re-syntax.html
http://docs.python.org/2/library/re.html
http://msdn.microsoft.com/en-gb/library/windows/desktop/aa394226(v=vs.85).aspx
http://msdn.microsoft.com/en-gb/library/windows/desktop/aa394226(v=vs.85).aspx
http://wiki.zenoss.org/Zensendevent_in_Zenoss_4.2.3
http://www.json.org/
http://lucene.apache.org/core/
http://www.amqp.org/
https://gist.github.com/4192854
http://wiki.zenoss.org/Working_with_Queues
http://wiki.zenoss.org/RelStorage
https://gist.github.com/1901884
http://community.zenoss.org/community/documentation/official_documentation/api
http://community.zenoss.org/community/documentation/official_documentation/zenoss-dev-guide
http://community.zenoss.org/community/documentation/official_documentation/zenoss-dev-guide
http://community.zenoss.org/community/documentation/official_documentation/zenoss-guide
http://community.zenoss.org/community/documentation/official_documentation/zenoss-guide
http://community.zenoss.org/community/documentation
http://www.zenoss.com/
http://community.zenoss.org/index.jspa

20.The MIB Browser ZenPack. Documentation and comments at

http:/community.zenoss.org/docs/DOC-10321 ; code from
http:/wiki.zenoss.org/ZenPack:MIB Browser .

21.SNMP Requests For Comment (RFCs) - http:/www.ietf.org/rfc.html
V1 - RFCs 1155, 1157, 1212, 1213, 1215
V2 - RFCs 2578, 2579, 2580, 3416, 3417, 3418
V3 — RFCs 2578-2580, 3416-18, 3411, 3412, 3413, 3414, 3415
22. SNMP Host Resources MIB, RFC s 1514 and 2790 - http:/www.ietf.org/rfc.html

23.For the extension SNMP MIB from Informant, go to
http:/www.wtcs.org/informant/index.htm

24.For information on Zope TALES expressions, see
http://docs.zope.org/zope2/zope2book/AppendixC.html

25.Datagram Syslog Client http:/syslogserver.com for syslog Windows systems.

26.Raddle network emulation open source package - http://raddle.sourceforge.net/

27.“Zenoss 4 Event Management Workshop” available from Skills 1st Ltd,
http:/www.skills-1st.co.uk/products/courses/

1 February 2013 Event Management for Zenoss Core 4 © Skills 1st Ltd 153

http://www.skills-1st.co.uk/products/courses/
http://raddle.sourceforge.net/
http://syslogserver.com/
http://docs.zope.org/zope2/zope2book/AppendixC.html
http://www.wtcs.org/informant/index.htm
http://www.ietf.org/rfc.html
http://www.ietf.org/rfc.html
http://wiki.zenoss.org/ZenPack:MIB_Browser
http://community.zenoss.org/docs/DOC-10321

Acknowledgements

A number of people have contributed information and advice to this project and I would
like to thank them.

Georges Reichs for the original “amazing architecture design” diagram

Chet Luther for his awesome knowledge of Zenoss and his willingness to share
that knowledge

Andrew Kirch for initial proof-reading and some useful comments

Andrew Findlay of Skills 1st for help with typesetting

About the author

Jane Curry has been a network and systems management technical consultant and
trainer for 25 years. During her 11 years working for IBM she fulfilled both pre-sales
and consultancy roles spanning the full range of IBM's SystemView products prior to
1996 and then, when IBM bought Tivoli, she specialised in the systems management
products of Distributed Monitoring & IBM Tivoli Monitoring (ITM), the network
management product, Tivoli NetView and the problem management product Tivoli
Enterprise Console (TEC). All are based around the Tivoli Framework architecture.

Since 1997 Jane has been an independent businesswoman working with many
companies, both large and small, commercial and public sector, delivering Tivoli
consultancy and training. Over the last 5 years her work has been more involved with
Open Source offerings, especially Zenoss.

She has developed a number of ZenPack add-ons to Zenoss Core and has a large number
of local and remote consultancy clients for Zenoss customisation and development. She
has also created several workshop offerings to augment Zenoss's own educational
offerings. She is a frequent contributor to the Zenoss forums and IRC chat
conversations and was made a Zenoss Master by Zenoss in February 2009

154 Event Management for Zenoss Core 4 © Skills 1st Ltd 1 February 2013

	1 Introduction
	2 Zenoss event architecture
	2.1 Event Console
	2.2 Event Manager settings
	2.3 Event database tables
	2.3.1 Zenoss 2.x and 3.x
	2.3.2 Zenoss 4

	2.4 New event daemons
	2.4.1 RabbitMQ
	2.4.2 zeneventserver
	2.4.3 zeneventd
	2.4.4 zenactiond
	2.4.5 memcached

	2.5 Other database-related changes in Zenoss 4
	2.6 Event life cycle
	2.6.1 Event generation
	2.6.2 Application of device context
	2.6.3 Event class mapping
	2.6.4 Application of event context
	2.6.5 Event transforms
	2.6.6 Database insertions and de-duplication
	2.6.7 Resolution
	2.6.8 Ageing and archiving

	3 Events generated by Zenoss
	3.1 zenping
	3.2 zenstatus
	3.3 zenprocess
	3.4 zenwin
	3.5 zenwinperf
	3.6 zenperfsnmp
	3.7 zencommand

	4 Syslog events
	4.1 Configuring syslog.conf
	4.2 Zenoss processing of syslog messages

	5 Zenoss processing of Windows event logs
	5.1 Management using the WMI protocol
	5.2 Management of Windows systems using syslog

	6 Event Mapping
	6.1 Working with event classes and event mappings
	6.1.1 Generating test events

	6.2 Regex in event mappings
	6.3 Rules in event mappings
	6.4 Other elements of event mappings

	7 Event transforms
	7.1 Different ways to apply transforms
	7.2 Understanding fields available for event processing
	7.2.1 Event Proxies
	7.2.2 Event Details

	7.3 Transform examples
	7.3.1 Combining user defined fields from Regex with transform
	7.3.2 Applying event and device context in relation to transforms

	8 Testing and debugging aids
	8.1 Log files
	8.1.1 zeneventd.log
	8.1.2 zeneventserver.log
	8.1.3 Other log files

	8.2 Using zendmd to run Python commands
	8.2.1 Referencing an existing Zenoss event for use in zendmd
	8.2.2 Using zendmd to understand attributes for an EventSummaryProxy

	8.3 Using the Python debugger in transforms

	9 Zenoss and SNMP
	9.1 SNMP introduction
	9.2 SNMP on Linux systems
	9.3 Zenoss SNMP architecture
	9.3.1 The zentrap daemon

	9.4 Interpreting MIBs
	9.4.1 zenmib example
	9.4.2 A few comments on importing MIBs with Zenoss

	9.5 The MIB Browser ZenPack
	9.5.1 Modifying Zenoss Core 4.2 to make the MIB Browser ZenPack work

	9.6 Mapping SNMP events
	9.6.1 SNMP event mapping example

	10 Event Triggers and Notifications
	10.1 Zenoss prior to V4
	10.2 Zenoss 4 architecture
	10.3 Triggers
	10.4 Notifications
	10.4.1 email Notifications
	10.4.2 Page Notifications
	10.4.3 Command Notifications
	10.4.4 TRAP Notifications

	10.5 Notification Schedules
	10.6 Using zenactiond.log
	10.7 The effect of device Production State

	11 Accessing events with the JSON API
	11.1 Definitions
	11.2 Understanding the JSON API
	11.3 Using the JSON API
	11.3.1 Bash examples
	11.3.2 Python examples

	12 Conclusions
	13 Appendix A
	13.1 getevents.py
	13.2 zensendevent

	14 References

