

Zenoss Core 4 Event Architecture

Jane Curry

jane.curry@skills-1st.co.uk

based on the paper at

http://community.zenoss.org/docs/DOC-13746 or

http://www.skills-1st.co.uk/papers/jane/zenoss4-events/

mailto:jane.curry@skills-1st.co.uk
http://community.zenoss.org/docs/DOC-13746

Agenda
● Quick look at Zenoss 3 architecture
● Zenoss 4 architecture

– subsystems

– daemons

– databases

● 10 minute comfort break (that's 600 seconds!)

● Event life cycle
– Event generation

– Device context

– Event class mapping / event context / event transforms

– Database insertion & duplicates

– Resolution & Ageing

In the beginning...
● Events received by various daemons
● Events processed by zenhub daemon
● Event life cycle

– Event generation -- Device context

– Event class mapping -- Event context

– Event transforms -- Database insertion & deduplication

– Resolution -- Ageing

● MySQL events database
– summary table for active events -- history table for closed events

● Database fields = Event console fields
= Event mapping / transform fields

● Table definitions in
$ZENHOME/Products/ZenEvents/db/zenevents.sql

In the beginning...
● Events subsystem was a severe bottleneck
● zenhub had lots of other responsibilities
● Single pipeline for processing events
● Almost no indexing on MySQL database
● Event Console updates slow
● Event deletions very slow
● Responsiveness of emails / pages / automation

commands slow
● Debugging hard (zenhub.log & event.log)
●
● Fairly easy to understand

Zenoss 3 MySQL
 status table fields
 in events database

Zenoss Core 4 Event Architecture

Zenoss Core 4 Event Architecture

Event Console

Event Console

● Severity

– Critical

– Error

– Warning

– Info

– Debug

– Clear

● Resource / Component
● Event Class
● Summary

● Status

– New (0)

– Acknowledged (1)

– Suppressed (2)

– Closed (3)

– Cleared (4) †

– Dropped (5) †

– Aged (6) †
● First Seen / Last Seen

● Agent
 † new in Zenoss 4

MySQL zenoss_zep database
● zenoss_zep new with Zenoss 4
● event_summary table

– may contain Closed, Cleared and Aged events

● event_archive table
– only has Closed, Cleared and Aged events

● attributes in tables do not match event console
– Console Database

– device element_identifier

– component element_sub_identifier

– eventState status_id

– firstSeen first_seen

Tables in zenoss_zep

* Lots more tables than Zenoss 3

- agent
- event_class
- event_class_key
- event_group
- evet_key
- event_trigger
- monitor

Fields in event_summary

* Most of the field names changed

- many refer to other tables eg
 agent_id, event_class_id, ...

- evid -> uuid
- dedupid -> fingerprint
- eventState -> status_id
- firstSeen -> first_seen
- count -> event_count
- agent -> agent_id
- facility -> syslog_facility

- device -> element_
- component -> element_sub_

- _json fields
details
notes

* However...
- summary is still summary
- message is still message

MySQL database.....

● Don't go there!

Here be dragons....

Event Proxy

● Writing rules and transforms for events operate
on an Event Proxy data structure

– manipulate same field names as in Zenoss 3.x

– translation between database field names,
message queue field names and Event Console
field names

● See files under
$ZENHOME/Products/ZenEvents/events2

● User-created event fields, including SNMP
TRAP varbinds, are handled rather differently

– event transforms may need changing

Zenoss Core 4 Event Architecture

New daemons

● zeneventserver
– written in Java

● zeneventd
– written in Python

● rabbitmq
– open source Advanced Message Queueing

Protocol (AMQP) package

zeneventserver daemon

● Also known as zep
● Consumes data from zenevents queue
● Stores processed events in MySQL database
● Presents data to GUI via Zope web application

– uses JSON to present data to users

● Produces data for the signal queue for
notification actions

● Manages ageing of data from event_summary
to event_archive table in database

● May produce data for other queues

zeneventd daemon

● Responsible for most of the event processing
– event classification

● eventClassKey
● Rule
● Regex

– device context

– event context

– transforms

– deduplication fingerprint

● Consumes the rawevents queue
● Produces data for the zenevents queue

rabbitmq
● Crucial to Zenoss working - many daemons

depend on it
● Configured when Zenoss installed

– VHOST = “/zenoss”

– USER = “zenoss”

– PASSWORD = check $ZENHOME/etc/global.conf

● Started with service zenoss start
● If Zenoss server has name changed then

rabbitmq needs reconfiguring
● rabbitmq commands need root privilege
● rabbitmqctl report - good to dump lots of data

rabbitmq queues

Zenoss Core 4 Event Architecture

zenactiond
● Responds to Triggers evaluated by

zeneventserver
● Provides Notifications

– email / page to users

– command scripts / SNMP TRAPs for background
automation

● Existed prior to Zenoss 4 with 60 sec cycle
● Completely rewritten for Zenoss 4
● Consumer of the signal queue

– much more responsive

Zenoss Core 4 Event Architecture

Other Zenoss 4 changes
● memcached subsystem

– shared L2 memory cache for daemons

– configured in /etc/sysconfig/memcached and
$ZENHOME/etc/zope.conf but not preallocated

● Zope database (zodb) now in MySQL database
rather than $ZENHOME/var/Data.fs

● zodb_session database holds transient data
● RelStorage subsystem provides high-

performance backend to ZODB into database
● Lucene subsystem for indexing of zodb and

zenoss_zep
● Open source packages

Performance enhancements

Zenoss 2.x /
Zenoss 3.x

Zenoss 4.x

Intermission....

Back in 10 minutes.....

.... that's still 600 seconds

Event life cycle

● Event generation
● Device context
● Event class mapping
● Event context
● Event transform
● Database insertion and deduplication
● Resolution
● Ageing

Zenoss Core 4 Event Architecture

zenping

zendisc

zenstatus

zenprocess

zenwin

zensyslog

zeneventlog

zentrap

Event Generation
(internal)

Mapping

eventClassKey

component
summary
message
facility
priority
ntevid
oid
 . . .

Rule

Regex

M
ap

pi
ng

T

ra
ns

fo
rm

eventClass

eventClass

C
la

ss
 T

ra
ns

fo
rm

Event
Context

Device
Context

zEventAction
zEventClearClasses
zEventSeverity

prodState
DevicePriority
Location
DeviceClass
DeviceGroups
Systems
ipAddress

event_
summary

zenoss_zep
 database

zenwinperf

Event Life Cycle – generation to initial database insertion

Event Generation
(external)

Device
context Transform

Database
insertion

Event
context

dedupid / fingerprint

evid / uuid
eventState / status
count
stateChange
firstTime
lastTime
eventClassMapping

Drop
event

component
 . . .

zencommand

zenperfsnmp

zenping

zendisc

zenstatus

zenprocess

zenwin

zensyslog

zeneventlog

zentrap

Event Generation
(internal)

eventClassKey
component
summary
message
facility
priority
ntevid
 . . .

eventClass

zenperfsnmp

Event Life Cycle – generation

Event Generation
(external)

component
 . . .

zencommand

Event generation

● Internal event daemons

– zenping

– zendisc

– zenstatus

– zenprocess

– zenwin

– zenwinperf

– zencommand

– zenperfsnmp

– other daemons introduced by ZenPacks

● External event daemons

– zensyslog

– zeneventlog

– zentrap

zenping

zendisc

zenstatus

zenprocess

zenwin

zensyslog

zeneventlog

zentrap

Event Generation
(internal)

eventClassKey
component
summary
message
facility
priority
ntevid
 . . .

eventClass

Device
Context

prodState
Location
DeviceClass
DeviceGroups
Systems
ipAddress

zenperfsnmp

Event Life Cycle – generation to device context

Event Generation
(external)

Device
context

component
 . . .

zencommand

Device context

● Event fields pertaining to the device that
generated the event
– prodState

– Location

– DeviceClass

– DeviceGroups

– Systems

– ipAddress

● This configuration data is retrieved from the
Zope Object Database (ZODB)

zenping

zendisc

zenstatus

zenprocess

zenwin

zensyslog

zeneventlog

zentrap

Event Generation
(internal)

Mapping

eventClassKey
component
summary
message
facility
priority
ntevid
 . . .

Rule

Regex

eventClass

eventClass

Device
Context

prodState
Location
DeviceClass
DeviceGroups
Systems
ipAddress

zenperfsnmp

Event Life Cycle – generation to event class mapping

Event Generation
(external)

Device
context

component
 . . .

zencommand

Event class mapping
● Used to map externally generated events to

Zenoss event format
● Incoming event typically has eventClassKey field

– Several source events may have same eventClassKey

● Target is to determine an eventClass field
● Python Rule tests any available field of event

– If Rule exists, it must be satisfied

● Python Regex parses summary field of event
– Regex must be satisfied if Rule doesn't exist

– User-defined fields can be created if Regex matches

– Regex need not be satisfied if Rule does exist

● Event mappings have sequence numbers

Event class mapping

zenping

zendisc

zenstatus

zenprocess

zenwin

zensyslog

zeneventlog

zentrap

Event Generation
(internal)

Mapping

eventClassKey
component
summary
message
facility
priority
ntevid
 . . .

Rule

Regex

eventClass

eventClass

Event
Context

Device
Context

zEventAction
zEventClearClasses
zEventSeverity

prodState
Location
DeviceClass
DeviceGroups
Systems
ipAddress

zenperfsnmp

Event Life Cycle – generation to event context

Event Generation
(external)

Device
context

Event
context

Drop
event

component
 . . .

zencommand

Event context
● Defined by 3 event zProperties:

– zEventAction status | history | drop

– zEventClearClasses

– zEventSeverity

● Event context is applied after event mapping
but before event transforms

● Thus, zEventAction event context may specify
history but an event transform could override by
setting evt._action to the value status

– these values reflect old database schema
● status maps to eventState = New
● history maps to eventState = Closed
● both are stored in the event_summary table

zenping

zendisc

zenstatus

zenprocess

zenwin

zensyslog

zeneventlog

zentrap

Event Generation
(internal)

Mapping

eventClassKey
component
summary
message
facility
priority
ntevid
 . . .

Rule

Regex

M
ap

pi
ng

T

ra
ns

fo
rm

eventClass

eventClass

C
la

ss
 T

ra
ns

fo
rm

s

Event
Context

Device
Context

zEventAction
zEventClearClasses
zEventSeverity

prodState
Location
DeviceClass
DeviceGroups
Systems
ipAddress

zenperfsnmp

Event Life Cycle – generation to transform

Event Generation
(external)

Device
context Transform

Event
context

Drop
event

component
 . . .

zencommand

Event transforms
● Transforms can be applied to an event class

mapping or to an event class
● Python statement(s) to modify:

– Any available fields of the event

– Any available property of the device

● Transform can create user-defined event fields
● Transform only applied if Rule / Regex satisfied
● Since 2.4 cascading event class transforms apply

event class transform(s) then mapping transform

Event class mapping transform

zenping

zendisc

zenstatus

zenprocess

zenwin

zensyslog

zeneventlog

zentrap

Event Generation
(internal)

Mapping

eventClassKey

component
summary
message
facility
priority
ntevid
oid
 . . .

Rule

Regex

M
ap

pi
ng

T

ra
ns

fo
rm

eventClass

eventClass

C
la

ss
 T

ra
ns

fo
rm

Event
Context

Device
Context

zEventAction
zEventClearClasses
zEventSeverity

prodState
DevicePriority
Location
DeviceClass
DeviceGroups
Systems
ipAddress

event_
summary

zenoss_zep
 database

zenwinperf

Event Life Cycle – generation to database insertion

Event Generation
(external)

Device
context Transform

Database
insertion

Event
context

dedupid / fingerprint

evid / uuid
eventState / status
count
stateChange
firstTime
lastTime
eventClassMapping

Drop
event

component
 . . .

zencommand

zenperfsnmp

Database insertions
● All events inserted into event_summary table
● Some fields only assigned at insertion time:

* count * stateChange *dedupid *eventState

* firstTime * lastTime * evid * eventClassMapping

● Automatic duplicate detection based on:

* device * component * eventClass

* severity * eventKey * summary †

● dedupid made by concatenating above fields
● In Zenoss 4, this is known as the fingerprint
● Created by zeneventd; applied by

zeneventserver
● Old event updated with details of new event

Resolution
● User closes event (eventState = Closed)
● Event context zEventAction = history / drop
● Transform sets evt_action to history / drop
● Clearing events will automatically clear all

similar events, based on:

* component UUID * eventClass *eventKey
● if componentUUID exists; otherwise:

* eventClass * device * component * eventKey

● zEventClearClasses zProperty on clearing
events, also clears similar defined events
(based on stated class, plus same conditions)

● eventState will be Cleared

Ageing

● Event Manager provides for:
– Events with severity < Error get eventState = Aged

after 4 hours (configurable)

– Event archive threshold default of 3 days after
which Closed, Cleared and Aged events moved
from event_summary to event_archive table

– Delete Archived Events Older Than (days) really
deletes data

● Deleting data now much faster - daily partitions
● Python script ZenDeleteHistory from Zenoss 3

does not exist or have equivalent function

Conclusions
● Understanding the architecture is vital
● Understanding the fields of an event is crucial
● Understanding the attributes of devices is

important
● Knowledge of Python is required to write

transforms
● Good knowledge of SNMP and syslog helps
● Working knowledge of SQL syntax helps
● 3-day Zenoss Event Management Workshop

http://www.skills-1st.co.uk/products/courses/

http://www.skills-1st.co.uk/products/courses/

Questions

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

