Zenoss Event Management

Version 3
September 2009
Updated January 2010
Jane Curry
Skills 1st Ltd

www.sKkills-1st.co.uk

Jane Curry
Skills 1st Ltd
2 Cedar Chase
Taplow
Maidenhead
SL6 OEU
01628 782565

jane.curry@skills-1st.co.uk

© Skills 1st Ltd 13 December 2010

http://www.skills-1st.co.uk/
mailto:jane.curry@skills-1st.co.uk

Synopsis

This paper is intended as an intermediate-level discussion of the Zenoss event system.
It assumes that the reader is already familiar with the Zenoss Event Console and with
basic navigation around the Zenoss Graphical User Interface (GUI). It looks in some
detail at the architecture behind the Zenoss event system — the daemons and how they
are interrelated — and it looks at the structure of a Zenoss event and the event life cycle.

Zenoss can receive events from many sources in addition to Zenoss itself. Events from
Windows, Unix syslogs and Simple Networks Management Protocol (SNMP) TRAPs are
all examined in detail.

The process by which an incoming event is transformed into a particular Zenoss event is
known as event mapping and has a number of different possible techniques for
performing that conversion. These will all be explored along with the creation of new
event classes.

Once an event has been received and classified by Zenoss, automation may be required.
Alerting by email and pager are discussed as is the ability to run any script as an Event
Command.

This paper was written using Zenoss 2.4.1.

The paper is a companion text to the Zenoss Event Management Workshop.

Notations

Throughout this paper, text to by typed, file names and menu options to be selected, are
highlighted by italics; important points to take note of are shown in bold.

2 © Skills 1st Ltd 13 December 2010

Table of Contents

B 017 0o LD Tt o) o WP 5
2 Zenoss event archit@Cture...........cccviiiii i 5
2.1 EVENT CONSOIE.... .. e e e e e e aaa e e e e eeannnanans 5
2.2 Event database tables and the Event Manager...............ccccccoooeeiieiiiiiiiiiieeeeeeeenn. 9
2.3 Event life cycle.......coooooiioiii e 13
2.3.1 Event Generation............ccceeeiiiiiiiiiiiiiiiiee e e eeeeeeetteeee e e e e e e eeeaaa e e e e e e e e rta e e eaaa e eaaas 15
2.3.2 Application of device CONTEXt.....ccoueeiiiieeiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 16
2.3.3 Event class Mapping.....cccccueeieeiiiiiiiiiiiiiiiieeeee ettt e e e e e e e s e 17
2.3.4 Application of event context.........cccccvvvviiiiiiiiiiiiiieeeeeeeeeeeeeeeeee e 18
2.3.5 Event transforms...............c e 18
2.3.6 Database INSErtiONS........ccccuviiiiiiiiieiiiiiiieeeee e e e e e e e e e e e e ee e e e e e e e eeeas 19
2.3.7 ReSOIULION.....ccciiiiiiiiiieeeeeeeeeeeeeeeeeeeee e e e e e e e e e e eaaaaaaeaaees 20
2.3.8 AZeiNg 0UL @VENTS...cccceiieieiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 21

3 Events generated DY ZenoSs.......ccc.uuiiiiiiiiiieciiieeee e 21
BT =3 11 01§ 0¥ =SSO SPTPR 22
3.2 ZENSTATUS ceiiiiiiie e et e e e e et b e e et e e et e aeanaes 23

B TR T =3 1 114 T DO O P PR PRPR P 23

B IR 1) 0 o) 0 T F OO 24
SRR 13 0Y 1<) =301 001 o JEUUUUURU TP PUPUURR 24
3.6 Availability monitoring daemons and device status pages........ccceeeeeeeeeeiiiiiiinnnnnnns 24

4 SYSLOZ @VEIES. . .uuuuiiiiiiii e et et et e aaaaaa—a—a—a—————————————————————————atrrrnnns 25
4.1 Configuring syslog.conf and syslog-ng.conf..............ccoooeiiiiiiiiiiiiiii e 26
4.2 Zenoss processing of SySlog mMeSSAZES.......coovvviiiiviiiiiiiiiieeeeeeeeeeeeeeeeeeee e 27

5 Zenoss processing of Windows event 10gS.........cccooooiiiiii e, 34
O DA) o LY =1 o) 03 1 4 Y= SRR 35
6.1 Working with event classes and event mappings.........cccccvvvvvvveieeeeerrrvriieeeeeeeernnnnns. 36
6.2 Rules in event mappings........ccccceeeiiiiiiiiiiii e, 39
6.3 Regex in eVent MaPPINGS.....ccvuuiuiieiieeieieiiiiiiiieeeeeeeeerttrieeeeeeeeeererarenneesssnneesrsneesssnnns 40
6.4 Other elements of event MaPPINGScoeeeieiiiiiiiieee e 41

T Event transformis.........oiiiiiiiiiiiiieec e e e e e e e e e eas 42
7.1 Using zendmd to run Python commands.............ccccouviiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeee, 44
7.1.1 Referencing an existing Zenoss event for use in zendmd.............cceeeurvvnnnnnnn. 44
7.1.2 Using zendmd to understand event attributes.........cccoeeeeeeeeeiiiiiiiiienniiniiiinnn... 45
7.1.3 Using zendmd to understand event methods............ccoooeviiiiiiiiiiiniiine. 47

7.2 Transform eXamPLes.....ccoooieiieiieeeeeeieeeeceeecece e e e e eesesnnes 48
7.2.1 Combining user defined fields from Regex with transform............................. 48
7.2.2 Applying event and device context in relation to transforms.......................... 49

8 Zenoss and SINIMIP.........oooiiiiiieeee aeaaaans 51
ST ST\ \Y o 0 R 0 Yo R0 e (o) o WO 51
8.2 Zenoss SNMP archit@Cture..........ccoeeeeiuiiiiiiiiiiiceccciieeee e e e e e e e e e e eeeeenns 52
8.2.1 The zentrap daemoOmn.............ccovviiiiiiiiiiiiiiiiiiiiiiieieeeeereeeeeeerrerereeereerrrrrerarar———————————. 52

3 © Skills 1st Ltd 13 December 2010

8.3 Interpreting MIBS..........ooooiiiiiiiiiiee e et e e et e e e et e e e raa e e eaanns 55

8.3.1 zenmib eXamPle...........uuuuiiiiiiiiiiiiiiiiii e ———————————————————————————aees 55
8.3.2 A few comments on importing MIBs with Zenoss.........cccccceeevevveeveeveeeeeeeeeeeeees 58

8.4 The MIB browser ZenPack.............ccoooee i, 62
8.5 Mapping SINIMP @VENTS........coovviiiiiiiiiiiiiiiiieceeeeeeeeeeeeeeeeee e e e e e e e e saraeeeeaasrnaannns 62
8.5.1 SNMP event mapping eXample..........cccceeeieeeeiiiiiiiiieeee e 63

9 Event Commands..........ccooeeiiiiiiiiiiii e 68
9.1 Creating event cCOmMmANdS.............ccceevviiiiiiiiieiiiiiieeeeeeeeeeeeeeeeeeeeeee e e e 68
9.2 Debugging event commands............cccooeviiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeee e 70
10 Events, Alerts & Production Status.........ccouuvuiiiiiiiiiiiiiieeccc e 74
10.1 Alerting rules for email and paging..........ccccccuueeuueiuueiuiieiiiee e e e eeearieeeeeens 74
10.2 Other alerting possibilities.......cccccciiiieiiiiiiiiiiieec e 76
10.3 The effect of device Production Status..........ccccuvviiiiiiiiiiiiieee e, 78
11 COMCIUSIONS. ..uuiieiiiieeiiiieeee e e ettt e e e e e e et et reeeeeeeeeeeesasaaaaeeeeeessssssssaaaeeeesesssrssannnaeeees 79
12 Appendix A zendmd commands useful with events............ccccvvvvvvvviiviiiiiieneeiiiiiceeeees 81

4 © Skills 1st Ltd 13 December 2010

1 Introduction

Zenoss is an Open Source, multi-function systems and network management tool. There
is a free, Core offering (which does seem to have most things you need), and a
chargeable offering, Enterprise, which has extra add-on goodies such as high availability
configurations, distributed management servers, role-based access and various support
contracts which include some education and consultancy. For a comparison of the “fee”
alternatives, try http:/www.zenoss.com/product/pricing .

Zenoss offers configuration discovery, including layer 3 topology maps, availability
monitoring, problem management and performance management. It is designed around
the ITIL concept of a Configuration Management Database (CMDB), “the Zenoss
Standard Model”. Zenoss is built using the Python-based Zope web application server
and uses the object-oriented Zope Object Database (ZODB) as the CMDB, used to store
Python objects and their states. Zenoss uses ZEQO, as a layer between Zope and the
ZODB.

The relational MySQL database is used to hold current and historical events.
Performance data is held in Round Robin Database (RRD) files.

The default protocols for monitoring are typically “agentless” - the Simple Network
Management protocol (SNMP), Windows Management Instrumentation (WMI) and
collecting events from syslogs. It is also possible to monitor devices using telnet, ssh and
to use Nagios plugins.

Zenoss provides a good “Getting Started with Zenoss” document along with a “Zenoss
Administration Guide” and a “Zenoss Developer's Guide”; you can get these from http:/
www.zenoss.com/community/docs . There is also a wealth of information on the Zenoss
website but it is rather diffused between FAQs, HowTos, a Wiki and contributions to the
various forums. A useful book is available from PACKT Publishing, “Zenoss Core
Network and System Monitoring” by Michael Badger, which provides much of the same
information as the Zenoss Administration Guide but in a much clearer format with
plenty of screenshots.

This paper is an attempt to expand on the event information in the Administration
Guide by drawing on my own experience and the collected wisdom of the community
contributions.

2 Zenoss event architecture

2.1 Event Console

When an event arrives at Zenoss, it is parsed, associated with an event classification
and then typically (but not always), it is inserted into the status table of the events

5 © Skills 1st Ltd 13 December 2010

http://www.zenoss.com/community/docs
http://www.zenoss.com/community/docs
http://www.zenoss.com/product/pricing

database. Events can then be viewed by users using the Event Console of the Zenoss
Graphical User Interface (GUI).

There are three ways to access the Event Console. The main Event Console is reached
from the Event Console menu on the left. The default is to show all status events with a
severity of Info or higher, sorted first by severity and then by time (most recent first).
Events are assigned different severities:

e Critical Red

e Error Orange
e Warning Yellow
e Info Blue

e Debug Grey

o Clear Green

The events system has the concept of active status events and historical events (two
different database tables in the MySQL events database).

Events in the console can be filtered by Severity (Info and above by default) and by State
- New, Acknowledged and Suppressed - where New and Acknowledged are shown by
default. Any event which has been Acknowledged changes to a wishy-washy version of
the same colour. A Suppressed event also has the wishy-washy version of the colour.
There is a Search box at the top right for filtering events based on the presence of any
string within any field of an event.

6 © Skills 1st Ltd 13 December 2010

©) Zenoss: Events - Mozilla Firefox

File Edit View History Bookmarks Tools Help

@ - 5 @ ﬁ_l‘ |© hitp:#izenoss:8080/zport/dmd/EventsiviewEvents ?notabs=1

levice/IP Search

admin Prefer 3 Logout

Last updated 2008-07-04 16:37:13. “iew Event History...

] St D] < sor 21 G

Select: Al Nore Acknowledged Unacknowledged 1-14 of 28

' |component |eventClass summary i lastTime

[~ | group-100-r1 class.ex couSmin fPerfiSnmp Ermor reading value for ‘cousmin® on 2008/07/03 2008/07/04
group-100-r1.class.example.org (oid 14:33:46.000 00:37:00.000

Figure 1: Zenoss Event Console

From the Event Console, one or more events can be selected by checking the box
alongside the event and the table menu dropdown can be used for various functions
including “Acknowledge Events”, “Move to History” and “Map Events to Class”.

The column headers of the Event Console can be used to change the sorting criteria and
the icon at the far right of the event can be used to display the detailed data of the
event.

The detailed data shows the default event fields under the Fields tab, any user-defined
fields under the Details tab and the Log tab records actions such as acknowledge and
clearing, along with date, time and the user that performed these actions. It is also
possible to add your own user messages to en event's Log but only while it is in the
status table of the events database, not once it has been moved to the history table (Ack
/ UnAck status makes no difference).

7 © Skills 1st Ltd 13 December 2010

@ http:lizenoss:8080 - Event: 0a00008337aba’e7e368ce5 - Mozilla Firefc |_ |0/ | x|

Fields Details Log

Field Walue

dedupid zenoss skills-1st.co.uk|sshd|[|5|PAM audit_log_acct_message(] failed: Operation
not permitted

evid 0a00008337abale7e368ceS

device zenoss.skills-1st.co.uk

component sshd

eventClass funknown

eventkKey

summary PAM audit_log_acct_message() failed: Operation not permitted

message FAM audit_log_acct_message() failed: Operation not permitted

sewverity =

eventState 1

eventClassKey sshd

eventGroup syslog

stateChange 2009/01/14 16:05:04.000

firstTime 2009/01/07 11:30:47.000

lastTime 2009/01/14 09:06:01.000

count 2

prodState 1000

suppid

manager localhost

agent zensyslog

DeviceClass JfServerfLinux

Location J/Cedar_Chase

Systems |

DeviceGroups |

ipAddress 10.0.0.131

facility authpriv

priority 2

ntewvid 0

ownerid admin

clearid

DevicePriority 3

eventClassMapping

monitor localhost

_-

Done @ Adblock

Figure 2: Detailed data for an event - default Fields tab

The fields under the Details tab may include text messages for the Explanation and
Resolution event fields.

8 © Skills 1st Ltd 13 December 2010

Note that if you wish to Undelete an event from the history tables of the database, this
is possible with the dropdown table menu; however it does not change any previous
Acknowledged status.

By default, the Event Console is refreshed every 60 seconds. If you wish to freeze the
console, click the “Stop” link at the top of the console (beside the box with 60 in it); the
link changes to say “Start”. To return to automatic refresh, click the “Start” link.

An Event Console can also be accessed which automatically filters events for a
particular device. Navigate to the main page for a device and use the Events tab to show
all events for that device.

The third method of displaying an Event Console applies an automatic filter of event
class or subclass. Start from the Events menu on the left. The Events tab will show an
Event Console filtered by the chosen class or subclass. Note that the top-level dropdown
menu has an option to Add Event. This is useful for generating test events.

Each of these three methods of accessing an Event Console shows active events. To see
events that have been sent to the history table of the events database, click the blue
View Event History link at the top right of the Event Console.

2.2 Event database tables and the Event Manager

Zenoss events are held in a MySQL database called events which is created when
Zenoss is installed. By default, the zenoss user can access this database with a password
of zenoss.

9 © Skills 1st Ltd 13 December 2010

= jane@bino:~ - Shell - Konsole <2> o] [x

Session Edit View Bookmarks Settings Help

zenossBzenoss susr-localszenoss> mysql —u zenoss -pzenoss =
Welcome to the MySQL monitor. Commands end with I or Ng.

Your MySQL commection id is 9

Server version: 5.0.45 MyS{L Community Server (GPL)

Type 'help:’ or "sh’ for help. Type '~c’ to clear the buffer.

mysql> use events
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -fA

Databaze changed
mysql> status

#usr-local zenosssmysql- binsmysgl.bin Uer 14.12 Distrib 5.0.45, for pc-linux-gou (ib86) using readline 5.0

Commection id: 9

Current database: events

Current user: zenoss@localhost
SSL: Not in use
Current pager: less

Using outfile:
Uzing delimiter: :
Server version: 5.0.45 MysSQL Community 3erver (GFL)

Protocol version: 10

Conmection: Localhost via UNIX socket

Server characterset: latinl

Db characterset: latinl

Client characterset: latinl

Conn. characterset: latinl

UNIX socket: susrslocal/zenoss/nysql-tmpsnysql . sock
Uptime: 1 day 5 hours 30 min 37 sec

Threads: 5 (uestions: 64218 Slow gueries: @ Opens: Z2 Flush tables: 1 Open tables: 16 Queries per second avug
: 0.604

mysql> show tables
=> :

| Tables_in_events |

| alert_state |
| detail |
| heartbeat |
I history |
| log |
| status |

b rows in set (0.00 sec)

mysgl>

mysg 1> =
nysql> [] =
= | = shel |

Figure 3: Using MySQL to examine the events database

The main tables within the events database are status and history. The active events
are kept in the status table and the historical events (typically resolved, cleared events)
are held in the history table. The format of each of these tables and the valid fields for a
Zenoss event can be seen be examining the database setup file in

/usr/local | zenoss [zenoss | Products | ZenEvents | db | zenevents.sql .

10 © Skills 1st Ltd 13 December 2010

= jane@bino:~ - Shell - Konsole <2> l=lo] (x|
Session Edit View Bookmarks Settings Help
gﬂEﬁTE TABLE IF NOT EXISTS status -~
(
dedupid varchar(255) not null,
evid char (25) not null,
device varchar(128) not null,
component varchar(128) default ",
eventClass varchar(128) default " Unknoun",
eventKey varchar(128) default ",
summary varchar(128) not null,
nessage varchar(4096) default ",
severity snallint default -1,
eventState smallint default O,
eventClassKey wvarchar(128) default ",
eventGroup varchar(64) default ",
stateChange timestamp,
firstTine double,
lastTime double,
count int default 1,
prod3tate snallint default 0,
suppid char(36) not null,
manager varchar(128) not null,
agent varchar(64) not null,
DeviceClass varchar(128) default ",
Location varchar(128) default ",
Systens varchar(255) default ",
DeviceGroups varchar(255) default ",
ipAddress char(15) default ",
facility varchar(8) default “unknown”,
priority gmallint default -1,
ntevid smallint unzigned default O,
ounerid varchar(32) default "",
clearid char (253,
DevicePriority =smallint(b6) default 3,
eventClassMapping varchar(128) default ",
monitor varchar(128) default ",
PRIMARY KEY (dedupid),
Index evididx (evid),
Index clearidx (clearidl,
Index =severityidx (severity),
Index deviceidx (devicel
) ENGINE=INNODB;
"zenevents.sql" [readonlyl 163 lines —0x— 1,1 Top :
- | = shel [

Figure 4: Definition of status event fields in zenevents.sql

zenevents.sql also defines the history table in a similar fashion.

A further four tables are defined for heartbeat, alert_state, log and detail . The detail
table can be used to extend the default event fields to include any information that the
Zenoss administrator requires for an event, including Explanation and Resolution text.

11 © Skills 1st Ltd 13 December 2010

@ jane@bino:~ - Shell - Konsole <2> =) x]
Session Edit View Bookmarks Settings Help
I 7

CREATE TABLE IF NOT EXISTS heartbeat
(

device varchar(128) not null,
component varchar(128) default ",
timeout int default 0,

lastTime timestamp,

PRIMARY KEY (device,component)
) ENGINE=INNODDB;

CREATE TABLE IF NOT EXISTS alert_state
(

euid char(25) not null,
userid varchar(64),

rule varchar (255),

lastSent tinestanp default now(d,

PRIMARY KEY (evid, userid, rule)
) ENGINE=INNODB;

CREATE TABLE IF NOT EXISTS log
(

euid char(25) not null,
userNamne varchar (64),
ctine timestanp,

text text,

Index evididx (ewvid)
) ENGINE=INNODE:

CREATE TABLE IF NOT EXISTS detail
(

euid char(25) not null,
SEGUENCE int,

name varchar (2553,
value varchar (255),

PRIMARY KEY (evid, name),
Index evididx (ewvid)
) ENGINE=INNODB;
"zenevents.sql" [readonlyl 163 lines —75«— 123,0-1 Bot

(= | @ Shell

Figure 5: zenevents.sql showing heartbeat, alert_state, log and detail tables

Some of these event fields are particularly pertinent depending on how the event was
generated:

e Syslog events populate the facility and priority fields
e Windows events populate the ntevid field

e SNMP TRAPs populate at least a community field in the detail table. They also
use the detail table to provide any variables passed by an SNMP TRAP.

e The agent field denotes which Zenoss daemon generated or processed the
incoming event; for example, zentrap, zeneventlog, zenping .

Connection information for the events database along with caching and maintenance
parameters, can be accessed from Event Manager in the menu on the left of the Zenoss
console.

12 © Skills 1st Ltd 13 December 2010

ZenNnsSS core v——

Zenioss server fime: 14:527

Fields History Fields Commands Modifications

Connection Information
Backend Type mysgl

IZE noss

Password r
Database IW
Hostname IW

Port 307

User Name

Frodu

Cache Timeout h

ELEIERE Cache Clear Count F
History Cache Timeout V
History Cache Clear Court F
Event Aging Threshold (hours) ld—
Dont Age This Severity and Above Error ;l
Delete Historical Evertts Older Than (days) h
Defautt Availabilty Report (days) |7—
Default Syslog Priority h
Save Changes Save |

Figure 6: Event Manager options for MySQL events database

By default, status events of severity below Error, are aged out to the events history
table after 4 hours. Historical events are never deleted.

2.3 Event life cycle
The life cycle of an event has eight phases:
e Event generation
e Device context — additional information about the device that generated the event
e Event class mapping — to distinguish one type (class) of event from another
e Event context - additional information pertinent to a class of event
e Event transform — manipulation of event fields
e Database insertion
e Resolution
e Ageout

Processing of an event depends on the event class that an event is assigned to — the
value of its eventClass field. A description of each of these phases will be given here:
subsequent sections of the paper provide more details of some areas.

13 © Skills 1st Ltd 13 December 2010

Event Life Cycle — generation to initial database insertion
Event Generation Device Mabbin Event Database
(internal) context context Transform insertion
eventClass $ZENHOME/ProductsiZenEvents
‘] o ponent =71 EventClass.py
R Device | £| EventClassinst.py
- | Context 1 S| MySalSendEvent.py
zendisc » I a evid
| | prodState zEventAction L I il stateChange
Loc:atlon | zEventClearClasses ~ dedupid
Zenstatus | gev!ceCIass zEvents everity i I s
] 5ew..!:ceGroups I w N count
stems ra . n
zenprocess >_ nAddress e O™ | firstTime
Rule Event lastTime
Context I eventClassMapping
l P
tatus
zenperfshmp . I s
Regex S | ! -
zencommand| / eventClass E .
.< detail
voun
.
zensyslog | history
o g TN
zeneventlog eventClassKey o £ .. events
S8 pan e g_"E database
zentrap J Summary o c
g message E E
Event Generation facility =
(extemal) priority
ntevid

Figure 7: Event life cycle, generation to database insertion

In Figure 7, the first six phases of the event life cycle are shown. The blue, dashed path
shows the progress of an internally generated Zenoss event, which does not pass through
an event mapping phase. An eventClass field is produced by the daemon that
generated the event. Its only way to apply a transform is as a class transform.

The purple path shows the progress of an event that is generated externally to Zenoss.
The initial parsing daemon must provide an eventClassKey field which is then used,
along with other fields, in an event class mapping Rule and/or Regex, which in turn
provides an eventClass field. After mapping, the event may pass through both an
event class transform and an event mapping transform.

14 © Skills 1st Ltd 13 December 2010

Event Life Cycle — resolution and age out

eventAction Resolution Age out

Check for extra
events denoted

eventClass by clearClasses
zEventClearClasses S S Manual
device “Move to History”
component action

eventClass in

& status events with
clearClasses

severity less than
Error aged to history

| Event "\ Acknowledge 2fter 4 hours
Context I (eventState=1)

zEventAction

\ | status
> Class evt. action _clearClasses
transform| | = status| No entry e
history | in events
y» drop database Historify
'—h— Mapping
transform Timeout

y ' for events Check for extra
with same events denoted
by _clearClasses

vice with same
mpone \ device
evt. clearClasses=['/Skills] component

eventClass in Manual database
clearClasses m aintenance

EventManager delete
old historical events

Figure 8: Event life cycle, resolution to age out

Figure 8 shows the latter phases of the event life cycle. Blue paths show the effect of the
zProperty zEventAction on the insertion of the event into the various tables of the event
database. Green paths show the effect when the zProperty zEventSeverity is equal to
Cleared. Purple paths show the additional clearing effect of the zProperty
zEventClearClasses.

The movement of events between tables of the events database are colour-coded with
green for clearing based on severity=Cleared, purple for clearing based on
zEventClearClasses, red for manual actions (including Acknowledge which does not
move the event between tables), and black for movements based on timeouts.

2.3.1 Event generation

Fundamentally, events will either be generated by Zenoss itself in the process of
discovery, availability and performance checking, or events will be generated outside
Zenoss and captured by specialised Zenoss daemons.

15 © Skills 1st Ltd 13 December 2010

Zenoss daemon Example of when event generated

zenping ping failure on interface

zendisc new device discovered

zenstatus TCP / UDP service unavailable
zenprocess process unavailable

zenwin Windows service failed

zenperfsnmp SNMP performance data collection failure

Table 2.1.: Events generated by Zenoss itself

Zenoss daemon Example of when event generated
zensyslog processes syslog events received on UDP/514 (default)
zeneventlog processes Windows events received using WMI
zentrap processes SNMP TRAPs received on UDP/162

Table 2.2.: External events captured by specialised Zenoss daemons

Events generated internally by Zenoss need no further processing to interpret the event.
The daemon that generates the event parses the native information and assigns a value
to the eventClass field and any other relevant fields such as component, summary,
message and agent. Typically the eventClassKey field will be blank. Some Zenoss
daemons populate the eventKey field (for example an Interface discovery event will
populate the eventKey field with the IP address of the discovered interface).

Events that are initially generated outside Zenoss are captured by zensyslog,
zeneventlog or zentrap. These daemons each have a parsing mechanism to interpret
the native event into the Zenoss event format. The Python code for this parsing is in
$ZENHOME | Products | ZenEvents. (By default, $ZENHOME will be

/usr/local | zenoss [zenoss). SyslogProcessing.py decodes syslog events; zentrap.py
decodes SNMP TRAPs.

Typically, these parsing mechanisms do not deliver a value for eventClass; rather they
deliver a value for the eventClassKey field, along with values for some other fields
such as component, summary, message and agent. It is then the job of the event
mapping phase to distinguish the event class.

2.3.2 Application of device context

Early in the event processing life cycle, device context is applied to the event. This
means that six fields of the event are populated by determining the device that

16 © Skills 1st Ltd 13 December 2010

generated the event and then looking up the following values for the device in the ZODB
database:

e prodState

e Location

e DeviceClass

e DeviceGroups
e Systems

e ipAddress (may have already been assigned)

2.3.3 Event class mapping

Event class mapping tends only to be applicable to events that originate outside the
Zenoss system. It is the process by which an event is assigned a value for its
eventClass field and, potentially, other fields.

Typically, the event generation phase will deliver an event with a few fields populated;
generally this does not include the eventClass field but does include the eventClassKey
field. Often the Zenoss parsing daemon (such as zensyslog), will use the same
eventClassKey for several different native events. For example, an eventClassKey of
dropbear is used for several login security events. The component, summary, message
and agent fields may also be populated.

The event class mapping phase examines the event (such as it is, so far) and then uses a
number of tests to determine the eventClass to assign to this event:

1. An eventClassKey field must exist for mapping to be successful.

2. A Python Rule can be written to test any available field of the event or any
available attribute of the device from which the event came. Such rules can be
complex Python expressions, including logical ANDs and ORs. If the rule is
satisfied, the incoming event's eventClass field is given the class associated with
that mapping. If the rule is not satisfied, this mapping is discarded, the class is
not associated, and the next mapping will be tested for a match. A Rule does not
have to exist in a mapping instance.

3. Ifthe Rule is satisfied (or does not exist), the mapping can then use a Regex
Python regular expression to parse the event's summary field, checking for
particular strings. The Regex can also assign parts of the summary field to new,
user-defined detail fields of the event. If a Rule exists and is satisfied, the class
mapping will apply, even if the Regex is not satisfied; any user-defined fields in
the Regex will not be created if the Regex does not match. If a Rule does not
exist then the Regex must be satisfied for the mapping (and any transform) to

apply.

17 © Skills 1st Ltd 13 December 2010

4. The GUI dialogue that defines the mapping specifies the eventClassKey, the Rule,
the Regex and any Transform. A sequence number is also available so that if
multiple incoming events have the same eventClassKey then the sequence
number defines the order in which the various mappings will be applied, lowest
number first. The first Rule / Regex mapping combination that matches will be
applied.

2.3.4 Application of event context

Event context is defined by the zProperties of an event. Event context can be defined at
the event class level, for an event subclass, or at the event mapping level. As with all
object-oriented attributes, the values are inherited by child objects so applying event
context to a class automatically sets it for any subclasses and subclass mappings. The
three event context attributes are:

e zEventAction status | history | drop default is status
e zEventClearClasses by default this is an empty Python list of strings
e zEventSeverity Original by default

Event context is applied in the event life cycle, after Rule and Regex processing but
before any event transforms. Thus, the zEventAction zProperty can specify the history
database but an event transform could override that action by setting the evt._action
value to status.

2.3.5 Event transforms

Event transforms can be specified for an event class mapping or for an event class (or
subclass). A transform is written in Python and can be used to modify any available
fields of either the event or the device that generated the event. It can also create user-
defined fields.

From Zenoss 2.4, cascading event transforms mean that class transforms are applied
from every level in the appropriate class hierarchy, followed by any transform for an
applied event mapping. Prior to Zenoss 2.4, either a mapping transform was applied,
or a class transform, but not both. Class transforms were only applied to the exact
class, not from the event class hierarchy.

A transform in an event mapping will only be executed once the eventClassKey has been
matched, and the Rule has been satisfied (if it exists). If a Rule does not exist, any
Regex has to be satisfied for the transform to be executed.

18 © Skills 1st Ltd 13 December 2010

2.3.6 Database insertions

Zenoss events are stored in a MySQL database called events (by default). The events
databases has a number of tables defined — see

/usr/local | zenoss [zenoss | Products | ZenEvents | db | zenevents.sql for the configuration
of tables and triggers for the events database.

The main tables for the event life cycle are the status table for active events, the
history table for resolved events and the detail table for user-defined fields of events.

Some fields of the event are only assigned at database insertion time — they are not
available at event mapping or event transform time. These include:

e count

e evid

e stateChange

e dedupid

e suppid

e eventClassMapping

e firstTime is the same as lastTime until database insertion

The Python code that drives database insertion can be found in $ZENHOME | Products |
ZenEvents; FEventClass.py, EventClassInst.py and MySqlSendEvent.py are the main
files. Some of the event fields can only be determined by reference to other events
already in the database — such as count, dedupid, stateChange and firstTime.

Zenoss automatically applies a duplication detection rule so that if a “duplicate” event
arrives, then the repeat count of an existing event will simply be incremented.
“duplicate” is defined as having the following fields the same:

e device

e component
o eventClass
e eventKey
e severity

If the event does not populate the eventKey field, then the summary field must also
match. At database insertion time, the dedupid field is created by concatenating the
above fields together, separated by the pipe (vertical bar) symbol. Thus an example
dedupid might be:

zenoss.skills-1st.co.uk|su|/Security/Sul| |5|FAILED SU (to root)jane on /dev/pts/1

where the device is zenoss.skills-1st.co.uk, component is Security, eventClass is
/Security /| Su , the eventKey is unset, severity is 5 (Critical), and the summary is
FAILED SU (to root) jane on /dev/pts/1 .

19 © Skills 1st Ltd 13 December 2010

2.3.7 Resolution

Resolution is generally the process by which an event is moved from the status table of
the events database to the history table.

A second possible definition of “resolution” is that the event is dropped entirely, never
reaching the status table — this can be achieved either from the event context by setting
zEventAction to drop, or in a transform with evt._action=drop . These same mechanisms
can also be used during initial event processing, to set the event action to history, thus
preventing the event from ever appearing in the status table.

A third possibility is to set the event's eventState field to Suppressed which means the
event does not display, by default, in the Event Console status display. The suppressed
eventState mechanism only appears to be used by the zenping daemon.

An event can be “resolved” by human intervention. The Event Console dropdown table
menu provides an option to Move to history; the Zenoss Administration Guide describes
this as “historifying”. It also provides the option to Acknowledge an event.
Acknowledging changes the eventState field to Acknowledged (as opposed to New); it
changes the colour of the event to a wishy-washy version of the same colour. It does not
move the event into the history table.

The more interesting forms of event resolution involve correlation of events; there are
two different mechanisms. The basic principle is that “good news” clears “bad news”.

The first clearing mechanism is that any event with a severity of Cleared will search
the status table of the events database and move any similar events to the history table.
“Similar” is defined as having the same eventClass, device and component fields. All
“similar” events are cleared, not just the most recent.

When correlation takes place a number of the existing “bad news” event fields are
updated. stateChange, deletedTime and clearid are all modified with clearid becoming
the value of the evid field of the clearing, “good news” event. The “good news” event,
with its Cleared severity, is automatically moved to the history table.

The second correlation mechanism is to specify in the event context, one or more event
classes in the zEventClearClasses zProperty. This attribute will only be used on
clearing events. The effect is that any similar events of the listed classes will also be
cleared, in addition to events of the same class as the clearing event. “Similar” in this
case means the same device and component fields, plus the class specified in
zEventClearClasses. Note that the same effect can be achieved in a transform by
assigning a list of class names to evt._clearClasses .

20 © Skills 1st Ltd 13 December 2010

2.3.8 Ageing out events

Maintenance is required on the tables of the events database or the disk will simply fill
up eventually. Two mechanisms are provided by the Event Manager:

e By default, events with severity less than Error will be aged from the status table
to the history table after 4 hours. These parameters can be modified.

e Historical events can be deleted once they are older than a given number of days.
The default is 0 — that is, no events are deleted from the history table
automatically.

Manual maintenance on the MySQL database may also be required. Zenoss provides a
utility in $ZENHOME/Products/ZenUtils:

ZenDeleteHistory.py --numDays=10 to clear history events older than 10 days
The script should be run as the zenoss user.

Alternatively, the MySQL database can be manipulated directly by those with SQL
knowledge. Here are a few examples; again, work as the zenoss user (note you need the
trailing semicolon on SQL statements):

mysqgl -uzenoss -pzenoss -Devents Access mysql as zenoss user, to events db
select * from heartbeat; Show all heartbeat events

delete from heartbeat where device='localhost'; Delete local heartbeat events
select * from status where device='mybox'; Show all status events for mybox

select * from detail where evid NOT IN (select evid from status UNION select evid
from history); Show detail records for events deleted from status and history

delete from detail where evid NOT IN (select evid from status UNION select evid from
history) ; Delete detail records for events deleted from status and history

3 Events generated by Zenoss

In the course of discovery, availability monitoring and performance monitoring, Zenoss
may generate events to represent a change in the current status. Although many events
are “bad news” it should be recognised that events can also be “good news” - Interface
Up, Threshold no longer breached, etc.

Events generated by Zenoss are dependent on the various polling intervals configured.
To examine the default parameters, use the Collectors option from the Zenoss left-hand
menu. Click on localhost (the collector on the Zenoss system). Note that earlier versions
of Zenoss used the term and menu-option Monitors rather than Collectors.

21 © Skills 1st Ltd 13 December 2010

@ Zenoss: localhost - Mozilla Firefox E]@ E]
File Edit View History Bookmarks Tools Help

@ - - @ {3} | © nttp //zenoss:8080/zport/dmd/Monitors/Performance/localnost/viewPerformance ConfOverview [~[#] [C] &)
4 HowToAddTicket — Zeno. ..

G Forums :: Memberlist G Zenoss: localhost a -
ZenOss ¢ T o
L Ll
admin_Preferences Logout Help

& /Monitors /localhost Zenoss server time: 16:07:30

2 #4060 (Class transforms. 4 TRAC-Defect-Template ...

Main Overview i ificati
Views Performance Collector Configuration
DLl e s:d | [Event Log Cycle Interval (secs) 60
Event SNMP Performance Cycle Interval (secs) 300
Console Process Cycle Interval (secs) 180
Device List Process Parallel Jobs 10
K Status Cycle Interval (secs) 60
metwor Windows Service Cycle Interval (secs) 60
Bl Windows Modeler Cycle Interval (secs) 60
Classes Config Cycle Interval (mins) 360
Ping Time Out (secs) iS5
Ever.1t5 Ping Tries 2
DEVIFES Maximum Ping Packets in Flight 75
Services Ping Cycle Time (secs) 60
(G T-EH -l | |\ Maximum Ping Fallures 1440
Products Maodeler Cycle Interval (mins) 720
Default Discovery Networks MNone
Browse Render URL /zport/RenderServer
By Render User
Systems
Groups
Locations
Networks
Reports [~ adsl2 skills-1st.co.uk -
[~ bino.skills-1st.co.uk -
Managemq | blue-atlas.skills-1st.co.uk o
Done <P Adblock
Figure 9: Default parameters for localhost Collectors
Parameters to note particularly are:
e SNMP polling cycle 300 secs (5 mins)
e Polling for processes 180 secs (3 mins)
e Status polling for TCP/UDP services 60 secs (1 min)
e Polling for Windows services 60 secs (1 min)
e Windows WMI poll 60 secs (1 min)
e Ping polling 60 secs (1 min)

3.1 zenping

The most basic level of availability checking is to ping-poll. The zenping daemon will,
by default, ping-poll each interface, every minute. An interface down event is generated
when the ping fails to get a response. This event is automatically cleared when a
similar ping is successful; meantime, while an interface remains down, the count field of
the event is increased.

The zenping daemon can detect when the network path to a device is broken, for
example if a single-point-of-failure router is down. In this case, an event is generated

22 © Skills 1st Ltd 13 December 2010

with an eventState field of Suppressed and the summary field reports not only the
interface for which the ping failed, but also the causal device; for example:

ip 10.191.101.1 is down, failed at bino.skills-1st.co.uk

All other device availability monitoring is dependent on ping access. Once a ping has
failed, SNMP, process, TCP/UDP service and windows service monitoring will all be
suspended until ping access is restored. The count field of the higher level monitoring
events will not increase until ping access is resumed.

Also note that if there is no ping access, no performance information will be collected. If
a device really does not support ping, perhaps because of firewall restrictions, then
ensure that the zProperty zPingMonitorlgnore is set to True; this will permit SNMP and
ssh availability monitoring and performance data collection.

The logfile for zenping is zenping.log in $ZENHOME /log.

3.2 zenstatus

The zenstatus daemon can be configured to check for access to various TCP and/or UDP
ports on both Windows and Unix architectures. By default, it checks every minute.
Zenoss comes with a huge number of services pre-configured; these can be examined
from the Services -> IpService left hand menu. By default, none of these service
monitors are active. Service monitoring for a device can be configured from the device's
main page — use the OS tab and the table dropdown menu beside IP Services to add a
service to be monitored for this device.

As with ping polling, a “good news” service event for a device automatically clears a
similar “bad news” event and the count field of the event increases whilst the service
remains down.

The logfile for zenstatus is zenstatus.log in $ZENHOME | log.

3.3 zenwin

The zenwin daemon monitors Windows services (not TCP / UDP services). These can
be examined from the Services -> WinService left hand menu. By default, none of these
monitors are active. Windows service monitoring for a device can be configured from the
device's main page — use the OS tab and the table dropdown menu beside Win Services
to add a service to be monitored for this device.

zenwin uses the Windows Management Instrumentation (WMI) interface to access
services on the remote system every minute, by default. The zProperties for a device (or
device class) must be configured to allow access to WMI before windows service polling
can be successful.

As with ping polling, a “good news” windows service event for a device automatically
clears a similar “bad news” event and the count field increases on subsequent failed
polls.

The logfile for zenwin is zenwin.log in $ZENHOME /log.

23 © Skills 1st Ltd 13 December 2010

3.4 zenprocess

zenprocess monitors Windows and Unix systems for the presence of processes. In a
Unix context, this would be whether the process appears in a ps -ef listing; in a Windows
context, the process must appear in the Windows Task Manager (and note that this
check is case sensitive on both architectures). Monitoring is every 3 minutes, by default.

Configuration of process monitoring for a device is similar as for services — use the
device's main page -> OS tab and the table dropdown menu beside OS Processes to add a
process to be monitored.

Process monitoring is actually achieved using the Host Resources Management
Information Base (MIB) of SNMP, by retrieving the hrSWRun table. This means that
if SNMP access to a device is broken, there will be no process information.

As with the other availability daemons, “good news” events clear “bad news” events and
the count field increases on subsequent failed polls.

The logfile for zenprocess is zenprocess.log in $ZENHOME /log.

3.5 zenperfsnmp

zenperfsnmp polls each device every 5 minutes, by default. It can collect both SNMP
performance information and status information for processes. Process monitoring is
achieved using the SNMP Host Resources MIB so that if an SNMP agent fails, then
process monitoring is also affected. This is not the case for Windows service monitoring.
TCP / UDP service monitoring also does not rely on SNMP on any platform.

Within 5 minutes of an SNMP poll failure, an “snmp agent down” event should be
generated. Within a further 3 minutes there should be an “Unable to read processes on
device ..” event, if process monitoring is configured. Note also that the count field for
individual missing process events should stop increasing. Counts for missing service
events will be unaffected by the loss of SNMP. While SNMP access to the device
remains broken, the count field for the “Unable to read processes on device ..” event will
increase every 3 minutes.

3.6 Availability monitoring daemons and device status pages

Each device has its own Device Status page. There is an overall status icon button at
the top of the page that fundamentally reports ping access (if ping access is enabled) —
green for good status; red for bad. Note that if a device's zProperties are customised not
to ping-monitor, then this overall status button will always remain green!

The top right-hand panel of the Device Status page reports component status for other
monitored elements such as interfaces, services and processes. The Other category
includes status for events reported via syslog or Windows event logs, where the colour of

24 © Skills 1st Ltd 13 December 2010

the button represents the severity of the event. Note that Acknowledging such events
has no effect on the Device Status page.

4 Syslog events

The Unix syslog mechanism is pervasive throughout all versions of Unix / Linux
although slightly different versions and formats exist. There are also open source
implementations of syslog for Windows systems and many networking devices also
support the syslog concept.

Typically system messages are output to one or more log files such as
/var/log/messages. The syslog subsystem can also be configured to send syslog
messages to a central syslog rather than holding files on each system. The well-known
default port for forwarding syslog messages is UDP/514.

A standard syslog system is configured by the syslog.conf file, typically in /etc . A newer
version of syslog is implemented on some systems, syslog-ng, which has greater
filtering capabilities. The syslog-ng configuration file is typically/etc/syslog-ng/syslog-
ng.conf.

A syslog message includes a priority and a facility. The priorities are:
0 emerg

alert

crit

err

warning

notice

S Ok~ W N

info
7 debug

Facilities include:
auth (4) authpriv (10)
cron (9) daemon (3)
ftp (11) kern (0)
lpr (6) mail (2)
news (7) syslog (5)
user (1) uucp (8)

These definitions can be found in syslog.h (typically in /usr/include/sys). Both priority
and facility are encoded in a single 32-bit integer where the bottom 3 bits represent
priority and the remaining 28 bits are used to represent facilities.

25 © Skills 1st Ltd 13 December 2010

For example, if the facility/priority tag is <22>, this would be 00010110 in binary, where
the bottom 110 represents a priority of 6 (info) and the top 00010 represents a facility of
2 = mail.

4.1 Configuring syslog.conf and syslog-ng.conf

Any device that is going to report syslog events to Zenoss must have its syslog.conf file
configured with the destination address of the Zenoss system. The original syslog.conf
permits filtering based on priority and facility so, a catch-all statement to send all
events to the Zenoss system, would be:

* .debug @<IP address of your Zenoss system>
syslog-ng.conf requires at least a source, a destination and a log statement. syslog-ng

offers superior filtering over the original syslog so one or more filter statements may
also be present.

@ jane@bino:~ - Shell - Konsole <2> (_[o| [x]

Session Edit View Bookmarks Seftings Help

I 5
source src {
include internal syslog-—ng messages
internal():
#t the default log socket for local logging:
unix—dgran(” dev-log"J;
#
uncomment to process log messages from network:
You DON'T want to do this on a Zenoss system?
#
#udp(ip("0.0.0.0") port(514));

¥

it Filter definitions

i

filter f_iptables { facility(kern) and match("IN=") and match("OUT="): }:

filter f_console { level(uwarn) and facility(kerm) and not filter(f_iptables)
or level(err) and not facilityCauthprivl: ¥;

filter f mailinfo { level(info) and facility(maill; I:
filter f mailwarn { level(uarn) and facility(maill: I:
filter f_mailerr { level(err, crit) and facilityi(maill): *:
filter f mail { facility(mail): %:
filter f cron { facility(crom): *:
filter f_local { facility(local®, locall, localZ, local3,

local4, local5, local6, local?): *:
level (warn, err, crit) and not filter(f_iptables): }:
level(alert): ¥:

filter f_uarn
filter f_alert

- -

#t Logs to zenoss on 10.0.0.131

destination zenoss { udp("10.0.0.131" port(514)): }:

#tlog { source(src): filter(f _warn): destination(zenoss): ¥:
log { sourcel(src): destination(zenoss); ¥;

(5| mshell |

Figure 10: syslog-ng.conf to send all events to Zenoss system at 10.0.0.131 (no filtering active)

44,1 25 |~

26 © Skills 1st Ltd 13 December 2010

4.2 Zenoss processing of syslog messages

To collect syslog messages with Zenoss, the zensyslog process automatically starts on

port UDP/514 and collects any syslog messages directed from other systems. zensyslog
then parses these messages into Zenoss events. You must ensure that the syslog.conf
file on the Zenoss system does not enable collecting remote syslogs or the syslogd and
zensyslog processes will clash over who gets UDP/514 (it is possible to reconfigure either
daemon, if required).

To examine the incoming syslog messages and the parsing that zensyslog performs, the
level of zensyslog logging can be increased.

27

1.

9.

Use the Settings menu on the Zenoss left-hand menu and choose the Daemons
tab.

Click the edit config link for the zensyslog daemon.
Change the following parameters and click Save:
logorig select this
logseverity Debug
Inspect the underlying configuration file in $ZENHOME | etc | zensyslog.conf.

The logorig line says to log the original incoming syslog message; it will be in
S$ZENHOME /log | origsyslog.log. Note that this parameter is unique to zensyslog
and is useful for debugging.

The logseverity line is a generic Zenoss daemon parameter; a value of 10 is the
maximum Debug level.

Don't forget to Save this change

Use the Restart link to recycle zensyslog. Alternatively, as the zenoss user, issue
the command:

zensyslog restart

Examine the zensyslog log file in $ZENHOME /log | zensyslog.log

10.A new incoming event starts with a line showing hostname and ip address, eg.

host=zen241.class.example.org, ip=172.16.222.241

11.The next 2 lines show the raw message and the decoding for facility and priority.

12.Lines starting with tag show the zensyslog parsing process as it tests the

incoming line against various Python regular expressions, hopefully ending with
a tag match line.

13.If a match is successful, an eventClassKey may be determined

14.The last line for a parsed event should be a Queueing event .

© Skills 1st Ltd 13 December 2010

Whenever different native event log systems are integrated there is almost inevitably a
mismatch of severities. The following table demonstrates this.

Zenoss syslog priority Windows
Critical (red) (5) emerg (0) Error (1)
Error (orange) (4) alert (1) Warning (2)
Warning (yellow) (3) crit (2) Informational (4)
Info (blue) (2) err (3) Security audit success (8)
Debug (grey) (1) warning (4) Security audit failure (16)
Clear (green) (0) notice (5)
info (6)
debug (7)

Table 4.1.: Event severities for Zenoss, syslog and Windows

Note that the numeric value of Zenoss event severity decreases as events get less
critical but that the priority of syslog events increases as events get less critical.

Default mapping from syslog priority to Zenoss event severity, is performed by
/usr/local | zenoss [zenoss | Products | ZenEvents | SyslogProcessing.py — search for
defaultSeverityMap around line 163. The result is that:

syslog priority < 3 (emerg, alert, crit) map to Zenoss severity 5 (Critical)

syslog priority 3 (err) maps to Zenoss severity 4 (Error)

syslog priority 4 (warning) maps to Zenoss severity 3 (Warning)

syslog priority 5 or 6 (notice , info) map to Zenoss severity 2 (Info)

Out-of-the-box, all syslog events map to the Zenoss event class of /Unknown .
SyslogProcessing.py in $ZENHOME |/ Products [ZenEvents is the code that parses any
incoming syslog message and generates a Zenoss event.

The first section has a series of Python regular expressions to match against the
incoming syslog line. Each expression is checked in turn until a match is found. If no
match is found then an entry goes to $ZENHOME /log | zensyslog.log with parseTag
failed .

28 © Skills 1st Ltd 13 December 2010

@ jane@bino:~ - Shell - Konsole <2> lol

Session Edit View Bookmarks Seftings Help

#t Regular expressions that parse syslog tags from different sources
parsers = (

it ntsyslog windows msg
""" (TP<component?. + N[(?P<ntseverity>\D+I\]1 (7P<mtevid>sd+) (TP<summary>.=)",

#t cizco msg with card inicator
r"#CARD-5+: (SLOT~d+) #(?P<eventClassKey>\S+3: (TP<summary>.=)",

#t cisco standard msg
r'"» (TP <eventClassKey> (7P {component>\5+1-d-28+): (7P {summary>.=)",

#t Cisco AC3
r'' " (7P<ipAddress»\S+)ss+ (TP<sunmary> (7P {eventClassKey>CisACS_sdsd_sS+I8s+(TP<{eventKey>sS+)
Ne =),

#t netscreen device msg
r''device_id=\S+\s+\[NS+\1(TP<eventClassKey> S+nd+) :ns+ (TP <(summary> . =)\s+\((?P<originalTine
Fdndsdsd—sdsd—sdsd sdsd sdsd ssdsdiso®,

#t unix syslog with pid
r" (TP <component >3+ 5NL(7P<pid>nd+)] :\sx (TP <{summary>.»)",

#t unix syslog without pid
r' (7P <{component>\S+): (TP<{summary>.=)",

it adtran devices

r'" (7P<deviceModel>["\[1+)5 (7P <deviceManufacturer>ADTRANIS 1 : (7P<component> [N 1 1+n Ind+s Ind
+I5 1 (TP<summary> .=)"

)

i compile regex parsers on load
57,1 167 |«

Figure 11: SyslogProcessing.py regular expressions to match syslog tags

The main body of SyslogProcessing.py starts by assigning values from the incoming
event to Zenoss event class fields, as follows:
def process(self, msg, ipaddr, host, rtime):
evt = dict(device=host,

ipAddress=ipaddr,
firstTime=rtime,
lastTime=rtime,
eventGroup="'syslog')

At this stage, no account of duplicates is taken so the firstTime and lastTime fields are

both set to the timestamp on the incoming event. Note that the Zenoss eventGroup field
is hardcoded at this stage to syslog .

29 © Skills 1st Ltd 13 December 2010

-

& jane@bino:~ - Shell - Konsole <2>

Session Edit View Bookmarks Settings Help

def process(self, msg, ipaddr, host, rtime):

eut = dict(device=host,
ipAddress=ipaddr,
firstTime-rtime,
lastTime=rtime,
eventGroup="syslog’)

slog.debug ("host=xs, ip=xs", host, ipaddr)

slog .debug (nsg)

eut, msg = self.parsePRI(euvt, m=sg)
if evt[’priority’] > self minpriority: return

eut, msg = self.parseHEADER(eut, m=g)
euvt = self.parseTaglevt, msg)

#irest of msg now in summary of event
evt = self.buildEuentClassKey(eut)
eut[’monitor’1 = self.monitor
=self.sendEvent (eut)

Figure 12: SyslogProcessing.py process main routine

parsePRI is the Python function called to parse out the syslog priority and facility.

The defaultSeverityMap function is called from within the parsePRI function to set the

severity field of the Zenoss event.

30 © Skills 1st Ltd

13 December 2010

@ jane@bino:~ - Shell - Konsole <2> =g X

Session Edit View Bookmarks Seftings Help

0 2

def parsePRI(=elf, eut, msg):

Parse RFC-3164 PRI part of =yslog message to get facility and priority.
pri = self.defaultPriority
fac = None
if megl:11 == "'
pos = nsg.find(’>")
fac, pri = LOG_UNPACKC(int(msgll:po=]))
nsg = msglpos+1:1
elif msg and msgl0] <
fac, pri = LOG_KERN, ord(msgl01)
nsg = magll:
eutl’ facility’1
eut[’priority”1 = pri
eutl’severity’]l = self.defaultSeverityMap(pri)
slog.debug("fac=+s pri=xs", fac, pri)
slog.debug("facility=»s severity=»xs", eutl’'facility’1, eutl’severity’ 1)
return evt, msg

LI

d

fac_names.get(fac, "unknoun)

def defaultSeverityMap(self, pril:
"""Default mapping from syslog priority to severity.
sev = 1
if pri < 3: sev =5
elif pri == 3: sev = 4
elif pri == 4: gsev = 3
elif pri == 5 or pri == 6: seu = 2
return sew

9,1 97 |-

Figure 13: SyslogProcessing.py parsing of priority, facility and severity

Next, the parseHEADER function is called to extract the timestamp and host name from
the incoming event. If the hostname does not exist then an attempt is made to lookup
the name from the IP address using a gethostbyname call. The device field of the Zenoss
event is set at the end of this function.

31 © Skills 1st Ltd 13 December 2010

Q jane@zen241:~ - Shell - Konsole -E

Session Edit View Bookmarks Settings Help

def HarseHEADER(self, eut, msg):
Parse RFC-3164 HEADER part of syslog message. TIMESTAMP format is:
MMM HH:MM:3SS and host is next token without the characters ‘[’ or *:'.

@param evt: dictionary of event properties
etype evt: dictionary
Pparam msg: message from host
Ptype msg: string
@return: tuple of dictionary of event properties and the message
etype: (dictionary, string)
slog .debug (nsg)
m = re.sub("Kiwi_Syslog_Daemon “d+: Nd+:
"S{3Y [Nd 1423 [N 123 :08d 1230711+ U, ", msg)
m = zelf.timeParse(nsg)
if m:
slog .debug ("parseHEADER timestamp=+s", m.group(1))
evt[’originalTine’]l = m.group(1)
nsg = m.group(Z2).strip()
msglist = msg.split()
if self.parsehost and not self.notHostSearchimsglist[0]1):
device = msglist[o]
if device.findC'@’) >= 0:
device = device.split(’e’, 1)I[11
slog .debug ("parseHEADER hostname=#s", evtl[’'deuvice’ 1)
msy = " V. join(msglist[1:1)
evtl’device’]l = device
return eut, msg

"SyslogProcessing.py"” [readonlyl 266 lines —68x——

Figure 14: SyslogProcessing.py processing the header information

The parseTag function is called to parse out the syslog tag, using the regex expressions
at the beginning of the file. If no match exists then a parseTag failed message is logged.
The end of the function returns the remainder of the incoming message in the Zenoss
event summary field.

32 © Skills 1st Ltd 13 December 2010

= jane@bino:~ - Shell - Konsole <2>

Session Edit View Bookmarks Seftings Help

=ls) [x]

IO

def parseTag(self, euvt, msg):

"""Parse the RFC-3164 tag of the syslog message using the regex defined

at the top of this module.

slog .debug(msg)

for parser in compiledParsers:
slog.debug("tag regex: xs", parser.pattern)
m = parser.searchinsg)
if not m: continue
slog.debug("tag match: #s", m.groupdict())
evt.update(m.groupdict())
break

else:
slog .warn("parseTag failed:’xs’", msg)
eutl’ summary’ 1 = msg

return euvt

Figure 15: SyslogProcessing.py parsing the syslog tag

The crux of event processing in Zenoss is to derive an eventClassKey — this is done
with the buildEventClassKey function.

= jane@bino:~ - Shell - Konsole <2>

Session Edit View Bookmarks Seftings Help

(=JB) x|

def buildEventClassKey(self, euvt):
"""Build the key used to find an events dictionary record. If eventClass
iz defined it is used. For NT events "Source Euvid" is used. For other
syslog events we use the summary of the event to perform a full text
or'ed search.
if euvt.has_key(’eventClassKey') or eut.has_key(’'eventClass’):
return euvt
elif eut.has_key(’ntevid’):
evt[’eventClassKey’ 1 = “«zs_#s" » (eut[’component’ 1,eutl’ ntevid’ 1)
elif eut.has_key(’component”):
euvt[’eventClassKey'1 = evt[’ component’ 1
if eut.has_key('eventClassKey'):
slog .debug ("eventClassKey=»s", eutl’eventClassKey’ 1)
try:
evt[’eventClassKey’' 1 = evt[’eventClassKey' 1.decode(’ latin-1"1
except:
evt[’eventClassKey' 1 = eut[’eventClassKey']1.decode(’ utf-8')
else:
zlog .debug("no eventClassKey assigned")
Heturn eut
191,93

Bot

=] A Shel [

Figure 16: SyslogProcessing.py determining the EventClassKey

33

© Skills 1st Ltd 13 December 2010

Note that if the event has the component field populated then that is used as the
eventClassKey after checking for a pre-existing eventClassKey and for an ntevid field.

5 Zenoss processing of Windows event logs

The zeneventlog daemon is responsible for processing events from Windows event
logs . It uses the WMI mechanism so, like the zenwin daemon for monitoring Windows
services, the Windows zProperties for a device (or device class) must be configured
correctly. From the dropdown table menu of a device's status page, choose More ->
zProperties. Scroll down to the zWin... properties and check you have the following
settings. Don't forget to Save if necessary.

e zWinEventlog True

e zWinEventlogMinSeverity 16 (this will gather ALL events)

e zWinPassword < the correct password for Administrator>
e zWinUser Administrator

e zWmiMonitorIgnore False

Note especially the zZWinEventLog property to turn on/off event log collection and
zWinEventLogMinSeverity that provides a crude filtering mechanism (see the earlier
Table 4.1 on page 28 for the different severities for Windows Event logs).

It is the zeneventlog daemon in Zenoss that receives incoming Windows events and
parses them into Zenoss events. Typically, the Source field on the Windows event maps
to the component field in the Zenoss event; the Zenoss eventClassKey is composed of the
Windows <Source>_<Event ID> (eg. Perflib_2003); the Zenoss eventGroup becomes the
Windows log file name (Application, Security, etc) and the Windows Event ID is mapped
to the Zenoss ntevid field.

Many Windows event log events are automatically mapped to event classes but they
may have a low severity (such as Debug) and they may have their zEventAction event
zProperty set to history so that they do not appear in the status table of the events
database.

Watch out for events of class /Status/Wmi/Conn, typically after a Windows system
reboot. Until this event is moved to history, no other events will be received from the
WMI interface on the Windows system as the zenwin daemon will not reconnect and
zeneventlog will receive no events.

There is also a syslog utility available for Windows systems from Datagram Consulting
at http:/syslogserver.com . The client utility is SyslogAgent and is made available
under the GNU license. Syslog server utilities for Windows are also available as

34 © Skills 1st Ltd 13 December 2010

http://syslogserver.com/

chargeable products. This means that Windows event logs can also be collected with
the zensyslog daemon.

Note that the Syslog agent is capable of being configured to monitor Windows
application log files, in addition to the standard Windows event logs. When monitoring
the standard event logs, there are better filtering capabilities than when using
zeneventlog.

6 Event Mapping

Zenoss events are categorised into a hierarchy of event Classes, many of which are
defined out-of-the-box but which can easily be modified or augmented. The process of
Event Class Mapping is about associating an incoming event with a particular Zenoss
Event Class (setting its eventClass field) and, potentially, modifying other fields of that
event by using an event transform.

Event classes and subclasses are treated identically from the point-of-view of event class
mapping. The class hierarchy can be useful in that event context, as implemented by
event zProperties (such as zEventSeverity, zEventAction), follows the normal rules for
object inheritance — if zEventAction is set to drop on the event class /Ignore , then any
subclasses of /Ignore will also inherit that property.

Notable out-of-the-box event zProperties are that /Ignore classes and subclasses drop
incoming events (ie. they do not appear in either the status or the history databases);
/Archive classes and subclasses automatically move events to the history database.

Most event classes have one or more mappings associated with them — these are known
as instances . Note that an event does not have to have any mappings associated, in
which case an event of that class will only appear in an Event Console if the daemon
that generates the event, assigns the event class at that time (/Perf events may well
come into this category, for example). Out-of-the-box event class mappings are defined in
S$ZENHOME | Products | ZenModel | data [events.xml . They can be inspected from the
Zenoss GUI by selecting Events in the left hand menu and drilling down the subclass
hierarchy under the Classes tab. Alternatively, the Mappings tab shows a more
mapping-centric list, rather than a class-centric list.

Most out-of-the-box event class mappings simply match on the eventClassKey field
which is populated by the native event parsing mechanism (such as zensyslog,
zeneventlog, zentrap). These mechanisms may generate several different events with
the same eventClassKey field; thus other techniques are needed to distinguish between
such events and potentially to separate them into different event classes.

The sequence number in an event mapping gives the order in which mappings are tested
against the incoming event. Depending on which mapping actually matches (if any) will
determine the resulting eventClass of the event.

35 © Skills 1st Ltd 13 December 2010

6.1 Working with event classes and event mappings

Events are organised in an object-oriented hierarchy; thus attributes assigned to a
“parent” event class are inherited by a “child” event subclass.

New event classes can be defined by selecting the left-hand Events menu, drilling down
to a relevant subclass, if required, and then using the dropdown table menu alongside
SubClasses to Add New Organizer. The name supplied is the name of the new event
class. For example, drill down to the /Security event class and create a new subclass
called Su.

The simplest way to map an event to a new or different class is to start from an existing
event in the Event Console. The following scenario explains this, creating a new event
class mapping called su which maps an incoming event to the event class /Security/Su.

1. Generate a syslog FAILED SU event at the Zenoss system.

2. Open an Event Console that shows the event and inspect its details, including the
Details tab.

3. Select the event and using the table menu, select Map Events to Class . Select
your new /Security/Su class from the dropdown list. You should be shown the
event class mapping panel. Click the Edit tab.

4. You should find that the name of the new event class mapping is set to su and
the Event Class Key is set to su (note lower case s in both cases). The
eventClassKey field is actually derived from the component field of the incoming
event in SyslogProcessing.py (around line 256). The summary field of the event
should have been copied into the mapping Example box.

4

5. Add a text string to the Explanation box such as “Auto added by event mapping”.
6. Add a text string to the Resolution box such as “This is a dummy resolution”.

7. Open a Zenoss GUI window that shows all Su events (you may find it useful to
have several browser tabs open to focus on different aspects of the Zenoss GUI).
Select all the Su events and Move to History.

8. Generate a new Su event.

9. Check the details of the new event in the Event Console. The event should have
mapped to eventClass /Security /Su . The severity should be Info (blue). The
details of the event should show the eventClassMapping field set to
/Security/Su/su .

Any existing event mapping can be modified starting from the Events left-hand menu
and use the Mappings tab. The Show All button at the bottom of the first page, will
display all mappings in alphabetical order. Once the mapping is selected, changes can
be made from the Edit tab.

36 © Skills 1st Ltd 13 December 2010

@ Zenoss: su - Mozilla Firefox mr=h [E
File Edit View History Bookmarks Tools Help

@ - - @ (2} [© nttp //zenoss:8080/zport/dmd/Events/Security/Su/instances/su/eventClassInstEdit =[] & [&]

Ze N @SS Core

/Events /Security /Su /su

= = v Status Sequence zProperties Events Modifications
Main Views

State at time: 2009/01/13 17:30:30
Name su

Event Class Key Isu

Sequence 2

Rule
Classes

Browse By

Example
FAILED SU (to root) jane on /dev/pts/2

Transform

Management

d D

Explanation

Auto added by event mapping

Resolution

Done @ Adblock

Figure 17: Edit dialogue for event class mapping

Whenever you change an event mapping, it is advisable to clear (Move to History) any
existing events of that category before testing the new configuration. This is achieved
by selecting one or more events and using the dropdown table menu.

When you are working with event mappings, don't forget the Event tab which filters an
Event Console by Event Class; also, any Event Console has a filter available at the top
right of the screen.

It is useful to refer to event classes using the breadcrumb path seen at the top of a
page, such as /Events/Security/Su .

Test events can be created from the Event Console dropdown table menu, Add Event
Note that this is only available from an Event Console reached by starting from the left-
hand Events menu, not from a generic console or the events for a specific device (this
changed between Zenoss 2.3 and 2.4).

37 © Skills 1st Ltd 13 December 2010

Add an Event:

This is test
line 1

Device

Component linetest

Saverity Critical

Event Class Key [gl==k13

Event Class

Figure 18: Dialogue to create a test event

Alternatively, the command line zensendevent can be used (you should ensure you are
the zenoss user). This takes parameters:
o d device

e -p component

o -k eventClassKey

® -S severity

e -C eventClass

e --port=PORT default is 8081

e --server=SERVER default is localhost

e --auth=AUTH default is admin:zenoss

e The remainder of the line after these options is used for the summary field

(strictly the Message field in the GUI dialogue populates the event summary field)

38 © Skills 1st Ltd 13 December 2010

6.2 Rules in event mappings

The Rule element of an event class mapping uses Python expressions to test any
instantiated field of the incoming event against a value. Expressions can be complex
including Python method calls and logical ANDs and ORs. The default event fields that
are defined, are given in Appendix D3 of the Zenoss Administration Guide. Note that
some of these fields are not actually available at event mapping time — notably evid,
stateChange, count, dedupid, suppid and eventClassMapping .

@ Zenoss: linetest - Mozilla Firefox g@ @
File Edit View History Bookmarks Tools Help

@-»-& 4% [© htip //zenoss:8080/zporydmd/Events/Skills/instances/linetest/eventClassInstStatus =] G [&]

Zen OSS Core

admin P
Status Sequence zProperties Events Modifications

Total Event Count

EventClassInst

Classes Event Class Key linetest

Sequence a

Rule

evt.component=="linetest” and device snmpContact == "Jane Curry"”
Regex

test line (?P<line_num=\d+)

Example

This is test line 1

Transform

evt. mylastTime=evt lastTime

evt myFirstTime=evt.firstTime
evt.mytimeSpan=evt lastTime - evt.firstTime
evt myseverity=evt severity

evt myeventClass=evt.eventClass
evt.myeventKey=evt eventKey

evt myDevld=device id
evt.mySnmpSysLoc=device.snmpLocation

evt mySnmpSysContact=device.snmpContact
Management evt. myDewDescr=device.snmpDescr

= evt mySnmpStatus=device.getSnmpStatusString()
evt myLocatioName=device.getlLocationName()
evt summary="Problem is %s on device %s . Please call %s" %(evt.summary, evt.myDevId, evt.mySnmpSysContact)

Explanation

Rule executed first. Component must be linetest to match to /Skills. If regex doesn't match then class mapping to /Skills still worl:s. If regex matches then variable
substitution works, If regex doesn't match then no var substitution Owner is evt.mySnmpSysCaontact

Resolution

Done @D Adblock

Figure 19: Event mapping linetest, showing complex Rule testing event and device attributes

The Rule element can also use Python expressions to test for values of attributes of the
device that generated the event. Some of the methods and attributes that are
available for devices are documented in Appendix D2 of the Zenoss Administration
Guide, under the section on TALES expressions (Template Attribute Language
Expression Syntax is part of Zope. Zope is the application server that Zenoss is built
on).

39 © Skills 1st Ltd 13 December 2010

The Rule element will only be used if the eventClassKey field in the mapping has
achieved a match with the incoming event. After that, if a Rule exists, it must be
satisfied before this mapping (and hence class) is applied.

6.3 Regex in event mappings

The Regex element of an event class mapping can be used to parse the summary field of
the incoming event, which is presented by the parsing daemon (zensyslog, zeneventlog,
zentrap). The Regex element uses the Python format for regular expressions and can
use the Python named group syntax to not only check for literal strings but also to
define regular expressions for variable parts of a string, and associate that variable part
with a name. Variable parts of the string are captured into Python named groups —
this means that:

e You can have one expression match lots of similar but different incoming events

e The variable part (typically between the (?P and \S+)) can be passed to the rest
of the event processing mechanism as a named field of the event.
e Thus, in the Regex
® exit before auth \(user '(?P<eventKey>\S+)', (?P<failures>\S+) fails \): Max auth tries reached
o (?P<eventKey>\S+) will parse the characters after user " upto the next
single quote and place that string into the eventKey field of the event.

Similarly (?P<failures>\S+) will hold the string that follows a comma and
space and is ended by space and fails.

e Matching the literal string representing a bracket requires the backslash
escape or the bracket will be interpreted as a metacharacter.

e The rest of the event summary must match the literal text in the Regex;
however, other text can appear beyond the end after tries reached .

e The Example box usually shows a sample event summary that is matched
by the regular expression in the Regex box.

40 © Skills 1st Ltd 13 December 2010

ZenQss Core

/Events /Security /Su /su_root

Edit Sequence zProperties Events Modifications

Total Event Count

| . 2
EventClassInst

Classes Event Class Key su
Sequence 0
Rule

Regex

FAILED SU \(to (?P<tousers\S+)\) (?P<fromuser>\S+) on (?P<dev>\5+)
Example

FAILED SU (to root) jane on /dev/pts/2

Transform

Browse By if evt.touser == 'root' and evt DevicePriority » 2 :

or evt.DevicePriori <

Explanation
If su destination is root and device priority > 2 (Low) then raise severity to 5 (Critical)
Resolution

Management

Evel ager

Figure 20: Event mapping dialogue with Regex for su failure

Hence, the event summary field can be parsed to generate new, user-defined fields for
the event which will be shown in the Details tab of an event's details and can be used in
any subsequent event transforms.

The Regex element is only used if both the eventClassKey and the Rule (if any) are
satisfied. If the Rule fails, the Regex will not be tested, nor will any named group, user-
defined fields be generated. If a Rule does not exist and the Regex does not match, the
user-defined fields will not be generated and the event class mapping to this event class
will fail. No event transforms will take place. If a Rule does exist and is satisfied but
the Regex fails then any user-defined fields will not be generated but the event class
mapping will be successful and any mapping transform will take place.

6.4 Other elements of event mappings

The Example element of an event class mapping is a sample string that is useful when
constructing a Regex. The Regex will turn red if the Regex does not match the Example
string when the Save button is used.

The Explanation and Resolution elements of an event class mapping are strings that
can be configured to provide further information to Zenoss users. They appear in the
Details tab of an event's detail. Note that these elements can only be literal strings;
they cannot use either standard or user-defined fields from the event.

The combination of eventClassKey, Rule and Regex determine the event class that will
be associated with the incoming event and what transforms (if any) will take place.
There may still be multiple combinations of these that satisfy any given incoming event.

41 © Skills 1st Ltd 13 December 2010

If so, the Sequence tab is used to decide the precedence of evaluation of matching event
mappings. The mappings will be tested from the lowest to the highest sequence
number. Once a match is found, any subsequent mappings (with higher sequence
numbers) will be ignored. Generally, a mapping with more specific matching criteria
will have a lower sequence number.

A particular example of event mappings that use sequence numbers, is the event class
mapping called defaultmapping which must have an eventClassKey of
defaultmapping . There are at least 6 mappings, all called defaultmapping , out-of-the-
box. Each maps to a different class. A default mapping is a special case that is used by
the event mapping process if no match can be found for the eventClassKey field (note
that if the eventClassKey field does not exist then no mapping at all will be applied). In
the case where an eventClassKey match is not found, the mapping process re-evaluates
looking for a match with the special eventClassKey of defaultmapping . It is possible to
create new mappings, either with the name of defaultmapping or, indeed, with a
different name, provided the eventClassKey is defaultmapping . The sequence numbers
of all such default mappings should be adjusted to prioritise these default mappings.

7 Event transforms

Transforms can be used to do a number of clever things! Some default event fields can
be modified; new, user-defined fields can be created; fields can be retrieved from events
already in the MySQL database. You can have simple assignments of field values or set
them based on complex Python programs. The transform mechanism can be applied in
two ways:

e event class transforms
e event class mapping transforms

Prior to Zenoss 2.4, an event class transform was only used for events inserted directly
to that exact event class by the parsing mechanism (zensyslog, zentrap, zensendevent,
AddEvent with Event Class specified, etc). If a transform existed in an event class
mapping that was used, the event class transform was not used.

Zenoss 2.4 introduced cascading event transforms. This changes things in two ways.
Given an event class /Toptest with a subclass of /T, if an event arrives that already
has class /Toptest/T1, then the Toptest transform will be applied, followed by the T1
transform. If an event arrives that does not have a pre-allocated class but whose event
class is determined to be /Toptest/T1, by the Rule / Regex of the event class mapping,
t1, then transforms will be applied in the order:

e Toptest class -> T1 class -> t1 event class mapping

It is perfectly possible for a transform to use user-defined event fields instantiated by
earlier transforms; however, be very aware that if any statement in a transform fails
(perhaps because a field doesn't exist), then the processing of that transform will stop at

42 © Skills 1st Ltd 13 December 2010

that point and no further statements will be executed. Any further transforms will be
executed (at least until an error is reached).

All transforms are executed once the Rule and Regex elements of a mapping have been
successfully tested and after device and event context have been applied. Thus, at
transform time, most of the standard event fields are available, except those populated
at database insertions time (evid, stateChange, dedupid, count, eventClassMapping —
and the firstTime and lastTime fields will be the same). Any user-defined fields created
by the Regex are also available.

Event class transforms can be useful on the /Unknown class to selectively change the
class for events that would otherwise be /Unknown .

Other than that, the two applications of transforms are very similar — it is basically
Python code to modify event fields.

Note that if a transform tries to reference a field of an event that does not yet exist
(like count) then that line of the transform and any subsequent lines will be ignored.
Such an error will not trigger any error messages in the transform dialogue. Inspect the
end of $ZENHOME /log | zenhub.log and $ZENHOME /log /event.log to see the error
message reporting the absence of the attribute.

A class transform is configured starting from the Events left-hand menu, by drilling
down to the class in question (not the class mapping) and then use the top dropdown
table menu to bring up the More -> Transform menu.

A mapping transform is specified as part of the same event mapping dialogue that
defines the Rule and Regex fields. In each case, if the Python syntax is incorrect, when
you use the Save button, then the transform is all displayed in red text, indicating an
error.

Figure 19 on page 39 showed an event mapping called linetest which includes a
transform to create several user-defined event fields, some based on values from the
event and some with values from the device that generated the event. The event
summary field is set to a string constructed from literal text, standard event fields and
user-defined fields.

Transform

evt.myLastTime=evt,lastTime
evt.myFirstTime=evt. firstTime
evt.mytimeSpan=evt.lastTime - evt.firstTime
evt.myseverity=evt.severity
evt.myeventClass=evt. eventClass
evt.myeventkey=evt, eventkey
evt.myDevid=device.id
evt.mySnmpSysLoc=device.snmpLocation
evt.mySnmpSysContact=device.snmpContact
evt.myDevDlescr=device.snmpDescr
evt.mySnmpStatus=device.getSnmpStatusString()
evt.mylLocatioName=device.getlLocationName()
evt.summary="Froblem is %s on device %s . Please call %s" %i{evt.summary, evt.myDevId, evit.mySnmpSysContact)

Figure 21: Transform for the linetest event mapping

43 © Skills 1st Ltd 13 December 2010

The linetest mapping transform also demonstrates that, at transform time, the
firstTime and lastTime fields are the same; the value of evt.mytimeSpan is always 0.

Most of the user-defined fields are assigned to simple attributes of either the event or
the device; for example, evt.firstTime , device.snmpContact. The evt.mytimeSpan line
demonstrates using simple arithmetic on two event attributes. The two lines before the
end demonstrate using a Python method to get values; for example
device.getSnmpStatusString() (note the () at the end — this is the clue that it is a method
rather than an attribute).

7.1 Using zendmd to run Python commands

So — how does one work out what attributes and methods are available? The Zenoss
Administration Guide documents the Event Database Dictionary in Appendix D3. A
dictionary in Python is a built-in object type for mappings; in other words, it is a way
of holding a collection of <key> , <value> pairs. The way you access data typically, is to
specify the key for which you require the current value — evt.evid , for example, asks for
the value associated with the evid key for the evt event object. Appendix D3 provides
some of the dictionary keys available for the event object — but not all of them!

Similarly, Appendix D2 of the Zenoss Administration Guide documents attributes and
methods available in TALES expressions but this information is incomplete and rather
misleading (in that it says those items with parentheses after them are methods — but
none of the items actually show parentheses, even though some are methods!)

Fortunately, Zenoss provides a Python command line interface, zendmd, where code for
transforms can be tested out and the attributes and methods available can be explored.
You should run zendmd as the zenoss user. This section is not supposed to be a Python
tutorial, so some useful zendmd commands are provided in Appendix A of this paper.
That said, here are a couple of tricks with zendmd.

7.1.1 Referencing an existing Zenoss event for use in zendmd

If you want to explore the attributes and methods available for an event or the device
that generated the event, using zendmd, you need a way to reference an event. When
executing a transform, these objects are made available to you automatically as the evt
variable and the device variable — but in a zendmd test environment you need to supply
these. The following figure shows a way to access an existing event in either the status
or history tables of the events database. You need to supply the evid value by finding an
appropriate event in the Event Console, bringing up the detailed data, and cutting and
pasting the evid value into the statement in zendmd.

44 © Skills 1st Ltd 13 December 2010

LUINIECLIUI LD ZENUsES C1Uused.
jane@bino:"> ssh zenoss
Passuord: Y
Last login: Tue Jan 13 1Z2:53:06 2009 from bino.skills-1st.co.uk
Have a lot of fun...

jane@zenoss: "> cd ~usr-local-szenoss/
Jjane@zenoss : /usr-slocal zenoss> .szenconsole

Welcome to Zenoss console.

bash-3.25 su
Password:
zenoss L usrslocal~
ZENOSSEZENOSS ! >
zenoss@zenoss:” >
ZENOSSEZENOSS D >

zenoss@zenoss:” > zendmd

Welcome to zenoss dmd command shell!t

use zhelp() to list commands

»>> eut=dmd .ZenEuentManager . getEventDetailFromStatusOrHistory("0ad0008337acddI2fff2ced™)
>»> print eut

{Products.ZenEuents.EventDetail .EventDetail object at OxB8c3aaBc>

>»> print evt.summary

This is a device context event

>»> print evt.device

server .class.exanple.oryg

»»>]

‘zenoss # su - zenoss

Figure 22: Using zendmd to set the evt variable to an existing Zenoss event

7.1.2 Using zendmd to understand event attributes

A Zenoss event is a Python object — it is a dictionary data type — a data structure of

<key> , <value> pairs. To see what keys (attributes) are available, use the method
shown in the following figure:

45 © Skills 1st Ltd 13 December 2010

r—_ jane@bino:~ - Shell - Konsole <2> o] [x

Session Edit View Bookmarks Settings Help

23> - |
33>
>>> for key,value in eut._ dict__ .items():

print key,value

prodState 1000

firstTime 2009.,01-08 15:45:22.000

facility unknoun

eventClassKey device_context

agent

dedupid server.class.example.orgl |l 8kills-Device_context 1131This iz a device context event
manager

_bazeurl -szport-sdmd-ZenEuventHistory

Location -sRaddle-100 - changed by transform

ounerid

stateChange 2009-01-08 15:45:22.000

eventClass +Skills-Device_context

meszage Thiz i=s a device context event

_logs [("admin’, "Z009,01,08 16:04:20.000", ’Deleted by user’)]
DevicePriority 3

severity 3

monitor

deletedTine Z2009,01,08 16:04:20.000

priority -1

_clearClasses [1]

DeviceClass ~3Server-Linux

eventState 0

evid 0a00008337acddIZfffZced

eventClassMapping ~Skills/Device_context sdevice_context

component

clearid Hone

DeviceGroups |

eventGroup

ntevid ©

_details (("myAction’, ’status’), ("myClearClasses’, ’,SkillssBadneus,Skills/Goodneus’), ("myDeviceClass’, '/Serve
r/Linux’), ("myDeviceGroups®, *1°), ("myProdState’, ’1000°), ('mySystems’, ’1°))

device server.class.exanple.org

_fields [’dedupid’, ’'evid’, ’device’, "component’, 'eventClass’, 'eventKey’, 'summary’, ’'message’, ’severity’, ’eu
entState’, 'eventClassKey’', 'eventGroup’, ’stateChange’, ’firstTime’, *lastTime’, 'count’, "prodState’, ’'suppid’,
‘manager’, 'agent’, ‘DeviceClass’, ‘Location’, "Systems’, ’'DeuviceGroups’, ’ipAddress’, ’facility’, ’priority’, “nt
evid’, ‘ownerid’, ’deletedTime’, 'clearid’, ’DevicePriority”’, ’eventClassMapping”, ‘monitor’]

suppid

count 1

_zenm ZenEuentHistory

_action status

summary This iz a device context event

eventKey

eventPermission True

lastTime 2009,01,08 15:45:22.000

ipAddress 10.191.101.1

Systems | [«]
»»>] [+]

?[= Shell |

Figure 23: Using zendmd to print event attribute <key> <value> pairs

There are more attributes here than those documented in the Appendices of the Zenoss
Administration Guide but they all seem to be available to event transforms. In
particular, the event zProperties are available as _action and _clearClasses. You can
also see the user-defined fields in the details value.

Note carefully the indentation of the second zendmd statement. Python is very
particular about indentation to interpret structure such as for loops. It doesn't matter
how many spaces you indent the body of the for loop but it must be indented from the
for line and each line in the main body of that for loop must have the same indentation.
The body of a for loop, inside a for loop, would indent further — and so on.

46 © Skills 1st Ltd 13 December 2010

7.1.3 Using zendmd to understand event methods

In the previous section, evt._ dict__.items() was used to understand the simple attributes
available for the event evt. If you also want to understand the methods that are
available, the dir function is useful:

:ril_l jane@bino:~ - Shell - Konsole <2> (o [x _

| Session Edit View Bookmarks Settings Help

>>> py] |
>>»> for attr in dirCeut):
print attr,getattr(evt,attr)

DeviceClass ~Server-Linux

DeviceGroups |

DevicePriority 3

Location sRaddle-100 - changed by transform

Systems |

__ac_pernissions__ ()

__allow_access_to_unprotected_subobject=s__ 1

__call__ <bound method EventDetail._ call__ of <Products.ZenEuents.EventDetail.EuentDetail object at Ox8c3aaBc>>
__class__ <class ’"Products.ZenEvents.EventDetail.EventDetail’ >

__delattr__ <method-urapper object at OxBc3a?8c>

__dict__ {’prodState’: 1000, ’firstTime’: '2009.01-08 15:45:22.000°, "facility’: 'unknown’, ’eventClassKey’': ’devi
ce_context’, ‘agent’: ', "dedupid’: ’server.class.example.orgl!/Skills Device_context 1131This is a device contex
t event’, ’manager’: ’ _baseurl’: ’szport/dnd-ZenEventHistory’, ‘Location’: *~Raddle-100 - changed by transformn
’, "oumerid’: ’’, ’stateChange’: ’2009-01-08 15:45:22.000°, ’eventClass’: ’/Skills/Device_context ’, “message’: "T
hiz is a device context event’, ’_logs”: [("admin’, ’2009-01-08 16:04:20.000°, ’Deleted by user’)], ’DevicePriorit
y': 3, '‘severity’: 3, 'monitor’': '’', "deletedTime’: ’2009.01-08 16:04:20.000', ’priority’: -1, '_clearClasses’: [1]
, 'DeviceClass’ : ’~Server/Linux’, ’eventState’: 0, 'evid’: ’0a00008337acdd92fff2ced’, ’'eventClassMapping’: '~Skill

1

s/Device_context ~sdevice_context’, ’component’: "', ’clearid’: Mone, "DeviceGroups’: ’1’, "eventGroup”: '’, ’ntevi
d’: 0, ' _details’: ((’myAction’, ‘status’), ("myClearClasses’, ’,Skills-/Badneus~Skills/Goodnews’), ("myDeuviceClass
’, "s3erverrsLinux’), ("myDeviceGroups’, 1’1, ("myProdState”, ’1000°), (’mySystems’, '1’)), ’device’: ’seruver.clas
s.example.org’, '_fields': ['dedupid’, ’'evid’, "device’, ’component’, 'eventClass’, 'eventKey', 'summary’, ’'messag
e’, ’'severity’, ’eventState’, 'eventClassKey’, ’eventGroup’, ’stateChange’, ’firstTime’, 'lastTime’, 'count’, ’pro
dState’, 'suppid’, ‘manager’, 'agent’, 'DeviceClass’, ’'Location’, 'Systems’, ’'DeviceGroups’, 'ipAddress’, ’'facilit
y’, “priority’, "ntevid’, ’ownerid’, ’deletedTime’, ’clearid’, ’DevicePriority’, ’eventClassMapping’, ’monitor’],
suppid’: *’, ‘count’: 1, '_zem’: 'ZenEventHistory’, '_action’: ’status’, ‘summary’: ’This is a device context eve
nt', ‘eventRey’: ', 'eventPernission’: True, ’lastTime’: '2009,01,08 15:45:22.000', 'ipAddress’': '10.191.101.1°,
'Systems’: "1’}

_ doc__

Event that lives in the zope context has zope security mechanisms and
url back to euvent manager

__getattribute_ <method-wrapper object at Ox8c3la?Bc>

__getnewargs__ <built-in method __getnewargs__ of EventDetail object at 0x8c3aaBc

__getstate_ <built-in method _ getstate__ of EventDetail object at OxBc3aa8c>

__hash__ <bound method EventDetail._ hash__ of <Products.ZenEuents.EventDetail.EuentDetail object at Ox8c3aaBc>>
__implemented__ <implementedBy twisted.spread.flavors.Serializable>

__init__ <bound method EventDetail._ init__ of <Products.ZenBvents.EventDetail .EventDetail object at OxBcaac>>
__module__ Products.ZenEvents.EventDetail

_ new_ <{built-in method _ new_ of ExtenzionClass.ExtensionClass object at Oxb?7e45520>

__of__ <bound method EventDetail._of_ of {Products.ZenEvents.EuventDetail.EventDetail object at Ox8c3aaBc>>
__providedBy__ <implementedBy Products.ZenEvents.EuventDetail .EventDetail>

__provides_ <{implementedBy Products.ZenEvents.EventDetail .EventDetail>

__reduce_ <{built-in method _ reduce_ of EventDetail object at 0xBc3aaBc>

_ reduce_ex_ <built-in method _ reduce_ex_ of EventDetail object at OxBc3aalc:

__repr__ <method-wrapper object at OxBc3db8c>

__setattr__ <method-urapper object at Ox8c3dbic>

__setstate_ <built-in method _ setstate__ of EventDetail object at OxBc3aalc> -
|_str__ <method-urapper object at OxBc3db8c> -l
o | ™ Shell |

Figure 24: Using zendmd to show attributes and methods for an event

Note that this is only a partial listing!

47 © Skills 1st Ltd 13 December 2010

7.2 Transform examples

7.2.1 Combining user defined fields from Regex with transform

In this example, we will return to the /Security /Su subclass of events and combine
regular expressions and transforms. The objective is, for “important devices”, to escalate
the event severity if a user tries to su to root but to decrease the severity if the su event
comes either from an “unimportant” device or if the su is to a particular userid (mysql
in this case). “Important” devices are determined by the event field DevicePriority (note
two capital letters in this field name). The device priority for a device can be changed
from the Edit tab of a device's details page.

This example is the same as shown in Figure 20 but here we focus on the transform
rather than the Regex.

zProperties Events Modifications

Total Event Count

|
EventClassInst

Classes Event Class Key su
Sequence)
Rule

Rege:x
FAILED SU \(to (?P<tousers\S+)\) (?P<fromusers\S+) on (?P<dev>\5+)
Example

FAILED SU (to root) jane on /dev/pts/2
Transform

if evt.touser == 'root' and evt DevicePriority » 2 :
evt severity = 5
elif evt.touser == 'mysql’ or Priority < 3.
evt severity =
t._acti = i

Explanation
If su destination is root and device priority > 2 (Low) then raise severity to 5 (Critical)
Resolution

Figure 25: su_root event mapping with transform

The user-defined field to_user, created by the Regex, is tested against the literal string
‘root’. The result is logically ANDed with a test of the standard event field
DevicePriority for > 2. If the result is True then the standard event field severity is set
to 5 (Critical).

Again note the mandatory Python indentation for the clause following the if statement.

The second test in the elif statement is a similar test but the body of the elif
demonstrates the ability to override the event zProperty zEventAction by assigning a
value to evt._action. In this case, rather than the event being inserted into the status
table of the events database, it will go directly to the history table.

48 © Skills 1st Ltd 13 December 2010

7.2.2 Applying event and device context in relation to transforms

Event context is applied through the zProperties tab of an event class or event class
mapping. Device context comprises the event fields prodState, Location,
DeviceClass, DeviceGroups and Systems. Values for these fields are looked-up in
the Zenoss database for the device that generated the event. This event mapping
example demonstrates the order in which device context, event context and the mapping
transform are applied.

Using the zProperties tab, set the zEventSeverity event context value to Error (4),
zEventAction to history and zEventClearClasses to /Skills.

Test the mapping with a test event (using the Add Event dropdown table menu)
ensuring that the severity is Critical (5) and the summary field is This is a device
context event (in order to satisfy the Regex shown). The test event set the device field to
server.class.example.org which is included in the Location called /Raddle-100 . The
eventClassKey should be set to device_context and the eventClass should be blank.

Ze N 6 SS Core

/Events /Skills /Device_context /device_context Zenoss server time: 20:18:0

Status Edit Sequence zProperties Events Modifications

Events [o) o @ o - Total Event Count 0
EventClassInst

Event Class Key device_contaxt

Sequence o

Rule

getattrievt, 'Location’,") =="/Raddle-100"and getattr(evt, '_action',") =="status" and '/Skills' not in evt._clearClasses and getattr{evt,'severity',") > 4
Regex

This is a device context event

Example

This is a device context event

Transform

evt.Location=evt.Location + " - changed by transform"
evt.severity=3

evt.myProdState=evt.prodState
evt.myDeviceClass=evt.DeviceClass
evt.myDeviceGroups=evt.DeviceGroups
evt.mySystems=evt.Systems

evt.myAction=evt._actieon
evt.myClearClasses='"'.join(evt._clearClasses)

Explanation
Demonstrates that event context has not been applied at rule time but has been applied by transform time
Resolution

Figure 26: Combining a Rule, context and a transform for the device_context event mapping

The Rule demonstrates the Python getattr function to test:

e The evt.Location field set by device context, which should evaluate TRUE at Rule
time ie. device context has been applied

e The evt._action field that is set by event context to history. The test shown above
actually evaluates TRUE showing that event context has not been applied at
Rule time.

49 © Skills 1st Ltd 13 December 2010

Similarly, the evt._clearClasses field test evaluates TRUE showing that event
context has not been applied. The Python syntax for checking evt._clearClasses is
a little different as this attribute is defined as a Python list rather than a string.

The evt.security starts at 5 in the generated event and event context sets it to 4.
This test evaluates TRUE confirming that event context has not been applied.

Note that the syntax for the last field of the getattr is 2 single quotes

In summary, the Rule and Regex should evaluate successfully the transform will be
applied.

The transform demonstrates:

50

Changing a standard event field, evt.Location, to concatenate the original field

“ ., »

value with literal text, using the “+” operator.

Changing the evt.severity field again — it would have been modified from the
original value (5) down to (4) when the event context was applied after Rule and
Regex processing. The transform changes it to 3.

Several user-defined variables are created. The evt.myClearClasses line
demonstrates that all user-defined fields appear to be of type string but
evt._clearClasses is defined as a Python list (check back with the zendmd output
shown for the event directory in Figure 23. _clearClasses is followed by square
brackets [] - this denotes a list. Strictly, referring to the same figure, the _details
field is of Python type Tuple - which is an immutable sequence rather like a
string. The round brackets () denote the tuple). The bottom line is that you
cannot assign evt.myClearClasses to something of type list unless you use the
join function to stick together the list elements back into a string type.

The user-defined fields demonstrate that both device context and event context
have been applied by transform time

© Skills 1st Ltd 13 December 2010

8 Zenoss and SNMP

8.1 SNMP introduction

The Simple Network Management Protocol (SNMP) defines Management Information
Base (MIB) variables that can be polled to provide performance and configuration
information. The SNMP standard also provides for agents to send “events” to a manager.
Version 1 of SNMP defines these as TRAPs; version 2 of the standard calls them
NOTIFICATIONS (Zenoss supports both). Both MIB variables and TRAPs /
NOTIFICATIONSs use Object Identifiers (OIDs) to denote different variables and events.

SNMP TRAPs are distinguished by their Enterprise Object Id (OID), the generic TRAP
number and the specific TRAP number.

Natively, OIDs are defined as strings of dotted decimals that represent a path through a
tree-based hierarchy, where the root of the tree is 1 and represents the iso organisation;
it has a sub-branch, 3, which represents organisations (org); it has a sub-branch, 6,
which represents the US Department of Defense (dod); it has a sub-branch, 1, which
represents internet, and so on. Thus, all OIDs start with 1.3.6.1 .

There is a standard, MIB-2, which defines a number of variables that every SNMP-
capable device must support; these are largely simple, network-related variables, such
as interfaceInOctets. In addition to MIB-2, there are a large number of standardised
MIBs defined in Request For Comment (RFC) documents; an example would be RFC
1493 defining the bridge MIB. The third category of MIBs are known as Enterprise
Specific, which are specific to a particular vendor's particular agent — for example , the

Cisco Firewall MIB. Enterprise specific MIBs often include definitions of Enterprise
Specific TRAPs , in addition to MIB variables.

MIB source files translate dotted-decimal OIDs into more meaningful text. MIB files
are available for many standards (like the HOST-RESOURCES MIB) and, typically, any
supplier who generates their own enterprise specific MIB variables and TRAPs, should
make available a source MIB file to aid this translation.

SNMP agents typically come as part of the base Operating System (Windows, Unix,
Linux, Cisco I0S); however they may not be activated automatically and will require
some configuration. Some agents support little more than MIB-2; others support a wide
range of standard MIBs and enterprise specific MIBs.

The SNMP communication protocol varies depending on the version of SNMP. Version 1
uses a community name string as an authentication mechanism between SNMP
manager and agent. Managers must be configured with the correct community names to
use for an agent; SNMP agents must be configured for which manager(s) are allowed
access to them, and which SNMP manager(s) to send TRAPs to.

51 © Skills 1st Ltd 13 December 2010

In addition to requesting MIB-2 variables, Zenoss will try to access the standard Host
Resources MIB to get process information for server machines. It will also attempt to
access the Windows Informant MIB for all Windows server systems, in order to get CPU
and file system information. The Informant MIB is a free extension subagent and MIB
available from Informant at http:/www.wtcs.org/informant/index.htm . Note that the
base Windows SNMP agent should be installed and configured before installing the
Informant extension.

Once SNMP agents are configured with community name and TRAP destination, a
simple way to test them is simply to recycle the SNMP agent (indeed they will need
recycling after any configuration changes). On a Windows system, use the Services
utility to stop and start SNMP; on a Linux system, /etc/init.d/snmpd restart will
usually suffice. In either case you should either see a cold start TRAP (generic TRAP
0) or a warm start TRAP (generic TRAP 1) in the Zenoss Event Console. The Details
tab should show the community name from the TRAP packet.

Another good way of generating TRAPs is to force an authentication TRAP (generic

TRAP 4). An easy way to do this is to use the snmpwalk command with a bad

community name. If the community is public, for a host system called zenoss, try:
snmpwalk -v 1 -c public zenoss system test with good community

snmpwalk -v 1 -c fred zenoss system to generate several TRAP 4's

8.2 Zenoss SNMP architecture

8.2.1 The zentrap daemon

zentrap is the Zenoss daemon that processes incoming SNMP TRAPs. By default,
zentrap will sit on the well-know SNMP TRAP port of UDP/162 — this can be
reconfigured, if required. Both SNMP version 1 TRAPs and SNMP version 2
NOTIFICATIONS are supported.

zentrap processing is implemented by the Python program
$ZENHOME | Products | ZenEvents/zentrap.py.

52 © Skills 1st Ltd 13 December 2010

http://www.wtcs.org/informant/index.htm

] jane@zen241:~ - Shell - Konsole <2

Session Edt View Bookmarks Settings Help

elif pdufjuersion ==

SNMP vl
variables = self.getResult(pdu)
adde[0] = " .. join(map(str, [pdu.agent_addr[il for i in range(4)1))

enterprise = self.getEnterpriseString(pdu)
eventType = driver.next()

generic = pdu.trap_type

specific = pdu.specific_type

Try an exact match with a .0. inzerted between enterprise and
#t specific OID. It seems that MIBs frequently expect this .0.

to exist, but the device’s don’t send it in the trap.

oid = "»s.0.xd4" » (enterprise, specific)

yield self.oidZname(oid, exactMatch=True, strip=False)

namne = driver.next()

If we didn't get a match with the .0. inserted we will try
resolving withing the .0. inserted and allow partial matches.
if mame == oid:
oid = "#s.#d" # (enterprise, specific)
yield self.oidZname(oid, exactMatch=False, strip=False)
name = driver.next()

Look for the standard trap types and decode them without
relying on any MIBs being loaded.
eventType = {

: "snmp_coldStart’,
"snmp_warmStart’ ,
"snmp_linkDouwn’ ,
*snmp_linkUp’ ,
*snmp_authenticationFailure’,
" snmp_egpHeighorLoss’,

name ,

.getl{generic, name)

Ll =l T L N I)

Decode all variable bindings. Allow partial matches and strip
"zentrap.py" [readonlyl 581 lines ——77»—

of . Shell

Figure 27: zentrap.py part 1 - checking for extra 0 and processing of generic TRAPs

zentrap.py parses the incoming SNMP Protocol Data Unit (PDU) to retrieve the
enterprise OID, the generic TRAP number and the specific TRAP number.

The algorithm for interpreting incoming TRAP Enterprise fields has changed several
times between Zenoss 2.2.x and 2.4.x because some agents have an extra 0 defined in
their MIB which they do not send on an actual TRAP (see the comments in the code in
Figure 27). In Zenoss 2.4.1 zentrap.py, the algorithm first tries to find a MIB in the
Z0ODB database that corresponds with the incoming TRAP, with the extra 0; if this
fails, then a match is searched for without the extra 0.

The generic TRAPs (0 through 5) are translated to strings such as snmp_coldStart.
using the eventType dictionary. For specific TRAPs (generic TRAP 6), eventType delivers
the concatenation of the enterprise OID and the specific TRAP number; for example,
1.3.6.1.4.1.123 is the enterprise, the specific trap number is 1234, so eventType delivers
1.3.6.1.4.1.123.1234. Any variables of the TRAP (varbinds) are also parsed out into OID
/ value pairs.

The oid2name function looks up in the ZODB database to see if translations are
available for the enterprise OID, the specific TRAP number and the varbind identifiers,
to translate from dotted-decimal notation to textual strings.

53 © Skills 1st Ltd 13 December 2010

L] jane@zen241:~ - Shell - Konsole <2> -£

Session Edit Wiew Bookmarks Settings Help

#t Decode all variable bindings. Allow partial matches and strip
off any index values.
for oid, value in variables:
oid = 7.’ . join(map(str, o0id))
#t Add a detail for the variable binding.
yield self.oidZname(oid, exactMatch=False, strip=False)
resultldriver.next()] = value
Add a detail for the index—-stripped variable binding.
yield self.oidZnane(oid, exactMatch=False, strip=True)
resultldriver.next()] = value
else:
self.log.error("Unable to handle trap version »d", pdu.versiom)
return

summary = ‘snmp trap »s’ » eventType
self . log.debug (summary)
community = self.getCommunity(pdu)
resultl’oid’1 = oid
resultl’device’1 = addrl0]
result . setdefault(’ component’, **)
result _setdefault(’eventClassKey’, eventType)
result . setdefault (' eventGroup’, 'trap’)
result.setdefault (' severity’, 3)
result . setdefault(’ summary’, summary)
result. setdefault(’ community’, community)
result._setdefault(’ firstTime', ts)
result _setdefault(’ lastTine', ts)
result .setdefault("monitor’, self.options.monitor)
=elf .sendEvent (result)

"zentrap.py" [readonlyl 581 lines ——8Zx——

|| [shel

Figure 28: zentrap.py part 2 - event field settings

The following event fields are then set:

54

summary snmp trap followed by eventType
device set to the device name
component left blank

eventClassKey set to eventType

eventGroup trap

severity 3

firstTime set to timestamp

lastTime set to timestamp

community set to community name string (this is a user-defined field)

© Skills 1st Ltd 13 December 2010

8.3 Interpreting MIBs

To help decode SNMP TRAP enterprise OIDs from dotted decimal (such as .
1.3.6.1.4.1.8072.4.0.2) into slightly more meaningful text (like nsNotifyShutdown) the
zenmib command can be used to import both standard MIB source files (such as
SNMPv2-SMI which defines standard OIDs) and vendor-specific MIBs. The base
directory for MIBs in later versions of Zenoss is $ZENHOME / share | mibs.

Since many MIBs reference definitions in other MIB files via the IMPORT section at the
top of the MIB file, the zenmib command needs to know where to look for prerequisite /
corequisite MIBs. The environment variable SMIPATH should be defined to include all
the standard subdirectories under $ZENHOME |/ share /| mibs.

The zenmib command without parameters will try to import all MIB files that are in
$ZENHOME |/ share/ mibs/site . A specific MIB file can be provided as a parameter; the
command should either be run from the $ZENHOME / share / mibs directory (in which
case a full pathname is not required and the file is expected to be in that directory) or a
fully qualified pathname can be specified.

8.3.1 zenmib example

To help understand the zenmib command, here is a worked example. It uses the agent
for net-snmp which is the agent typically shipped with a Linux system. The enterprise
OID for net-snmp is .1.3.6.1.4.1.8072.

1. Recycle a net-snmp agent with /etc/init.d/snmpd restart . In addition to the
generic cold start TRAP, you should also see TRAP .1.3.6.1.4.1.8072.4.2 . This
comes from the net-snmp enterprise (.1.3.6.1.4.1.8072).

2. The actual TRAP is defined in the file NET-SNMP-AGENT-MIB.txt which should
be shipped as part of the Operating System net-snmp package. Typically this
MIB file can be found under /usr/share/snmp/mibs . Find and examine NET-
SNMP-AGENT-MIB.txt. Strictly, the MIB file is defining SNMP V2
NOTIFICATIONS , rather than SNMP V1 TRAPs — search in the file for the
string NOTIFI to find the relevant lines. Also note the IMPORTS section at the
top of the MIB file, especially the import from NET-SNMP-MIB. This indicates
that NET-SNMP-AGENT-MIB is dependent on also loading NET-SNMP-MIB.

55 © Skills 1st Ltd 13 December 2010

= jane@bino:~ - Shell - Konsole <3> — O] (%
Session Edit View Bookmarks Settings Help
463 — MNotifications relating to the basic operation of the agent -
164 ——
465
466 nsMotifyStart NOTIFICATION-TYPE
467 STATUS current
4168 DESCRIPTION
469 "fAn indication that the agent has started ruming."
470 :i= { netSnmpNotifications 1 ¥
471
472 nsMot ifyShutdown MOTIFICATION-TYPE
473 STATUS current
474 DESCRIPTION
475 "An indication that the agent is in the process of being shut down."
476 ti= { netSompNotifications 2 ¥
477
478 nsMotifyRestart NOTIFICATION-TYPE
479 STATUS current
480 DESCRIPTION
481 "fn indication that the agent has been restarted.
482 This does not imply anything about whether the configuration has
483 changed or not (unlike the standard coldStart or warmStart traps)"
484 ti= { netSompNotifications 3 ¥
485 0
485,4 g2~

Figure 30: MIB file for NET-SNMP-AGENT-MIB showing notifications

3. Inspect the NET-SNMP-MIB.txt file and search for the string Notifications. You
should see that the netSnmpNotificationPrefix is defined as branch 4 beneath
netSnmp and that netSnmpNotifications is branch 0 under
netSnmpNotificationPrefix .

@ jane@bino:~ - Shell - Konsole <3> [_ ._EI | [x]

‘Session Edit View Bookmarks Settings Help

—— A subtree specifically designed for private testing purposes.
-— No "public” management objects should ever be defined within this tree.

—— It is provided for private experimentation, prior to transferring a MIB
—— structure to another part of the overall OID tree

net3nmpF laypen OBJECT IDENTIFIER ::= {net3nmpExperimental 9999}

—— Motifications

metSnmpNotificationPrefix OBJECT IDENTIFIER ::= {netSunmp 4}
metSnmpMotifications OBJECT IDENTIFIER ::= {net3nmpNotificationPrefix 0}
netSnmpMotificationOb jects OBJECT IDENTIFIER ::= {netSnmpNotificationPrefix 1}

—— Conformance
—— (No laughing at the back?)

"HET-SHMP-MIB.txt" [readonlyl 67 lines ——74x— 50,5 B6

?\ = Shell |

Figure 31: MIB file for NET-SNMP-MIB showing OIDs for notification hierarchy

4. At the top of the file you should find the lines that define the enterprise OID for
netSnmp .

© Skills 1st Ltd 13 December 2010

NET-SNMP-MIB DEFINITIONS ::= BEGIN

—— Top-level infrastructure of the Net-SHMP project enterprise MIB tree

IMPORTS
MODULE-IDENTITY, enterpriszes FROM SHMPuZ-SMI:

netSnmp MODULE-IDENTITY
LAST-UPDATED "200201300000Z2"
ORGANIZATION "wwuw.net—snmp.org"
CONTACT-INFO

"postal: UWes Hardaker
P.0. Box 382
Davis CA 95617
email: net-snmp—coders@lists.sourceforge .net"
DESCRIPTION
"Top-level infrastructure of the Net-SNMP project enterprise MIB tree"
REVISION V2002013000002 "
DESCRIPTION

“First draft"
1= { enterprises QO7Z}

Figure 32: MIB file for NET-SNMP-MIB showing OID for netSnmp

5. Between them, these files give us (almost) the OID for the unknown TRAP we
received -1.3.6.1.4.1.8072.4.0.2 .

e 1.3.6.1.4.11is the standard iso.org.dod.internet.private.enterprises OID
which is defined in the IMPORT from SNMPv2-SMI

e netSnmp is {enterprises 8072 }

e netSnmpNotificationPrefix is branch 4 under netSnmp

e netSnmpNotifications is branch 0 under netSnmpNotificationPrefix
e nsNotifyShutdown is NOTIFICATION 2 under netSnmpNotifications

6. Note that some SNMP agents (including the net-snmp agent) are known to omit
the 0 from the TRAP that they actually generate, which is why the oid field in the
Details tab of the event does not quite match the OID specified in the MIB file.

7. To import MIBs into Zenoss, the MIB source file needs copying to
$ZENHOME /share / mibs /site. Copy NET-SNMP-AGENT-MIB.txt to this

directory. At this point do not copy NET-SNMP-MIB.txt; we will demonstrate
the error message when corequisite MIBs are not available.

8. To import into Zenoss use:

zenmib run -v10

9. You should see that the NET-SNMP-AGENT-MIB.txt file is imported but there
there should be an INFO tagged message saying the NET-SNMP-MIB could not
be found.

© Skills 1st Ltd 13 December 2010

10.From the Zenoss GUI, use the left-hand menu to view Mibs. You will probably
find that the NET-SNMP-AGENT-MIB is not listed; alternatively, it may be there
but if you click on it, it shows no OID Mappings and no TRAPs.

11.Copy NET-SNMP-MIB.txt to $ZENHOME |/ share /| mibs / site and rerun the zenmib
command. Return to the Zenoss GUI and refresh the Mibs menu. Clicking on the
NET-SNMP-AGENT-MIB should now display a long list of OID Mappings and
three TRAPS, including nsNotifyShutdown.

12.Restart the snmp agent on the Zenoss system with /etc/init.d/snmpd restart. You
should see an event in the Event Console that now contains snmp trap
nsNotifyShutdown in the summary field, rather than snmp trap
1.3.6.1.4.1.8072.4.2 . If this does not work, you may need to recycle the zentrap
daemon. You can do this with the GUI from the Settings menu and choose the
Daemons tab; or, as the zenoss user from a command line, use zentrap restart.

13.Zenoss has implemented a number of changes in the way MIBs are interpreted
between versions 2.2.x and 2.4.x. Remember from Figure 31 that
netSnmpNotifications is branch 0 under netSnmpNotificationPrefix; however,
some agents omit this 0 when they actually generate TRAPs. Zenoss 2.4 now has
processing in $ZENHOME / Products | ZenEvent | zentrap.py to try and interpret
actual TRAPs both with and without the extra 0. The event console showed an
event with OID 1.3.6.1.4.1.8072.4.2 for the original event; compare the Details
tab of the original event with the new one that contains nsNotifyShutdown in the
summary field. You should find that the new event has an oid field of
1.3.6.1.4.1.8072.4.0.2.

14.Examine $ZENHOME |/ Products | ZenEvent | zentrap.py (around line 457 for
Zenoss 2.4.1) to see the code that handles this extra 0 digit processing.

8.3.2 A few comments on importing MIBs with Zenoss

There are a few quirks to do with importing MIBs into Zenoss and the quirks have
changed subtly over several versions between Zenoss 2.2.x and 2.4.x.

Note that MIBs imported into Zenoss are only used for interpreting SNMP V1 TRAPs
and SNMP V2 NOTIFICATIONS for use in the Event subsystem. Although the OIDs
are imported from MIBs, they cannot be used for MIB browsing or when working with
OIDs for performance sampling, thresholding and graphing.

e Always ensure you do MIB work as the zenoss user .

e The directories containing MIBs changed in 2007. They used to be under
$ZENHOME /.. /common [share; with more recent versions of Zenoss they are
assumed to be under $ZENHOME / share. To ensure MIB importing works run
the following commands to establish symbolic links:

58 © Skills 1st Ltd 13 December 2010

59

cd SZENHOME
ln -s /usr/local/zenoss/common/share

1ln -s /usr/local/zenoss/common/libexec

e MIB importing often requires pre-requisite MIBs to also be imported. Zenoss
provides many of the standard MIBs in the ietf, iana and irtf subdirectories of
$ZENHOME /share / mibs. To automatically find these pre-requisite MIBs, an
environment variable, SMIPATH is required which includes each of the
directories under $ZENHOME / share / mibs. The best way to ensure this is to
modify the .bashrc file for the zenoss user and include the variable there (all on
one line):

export SMIPATH=$ZENHOME/share/mibs/iana:S$ZENHOME/share/mibs/ietf: S$ZENHOME/
share/mibs/irtf:$ZENHOME/share/mibs/site: $ZENHOME/share/mibs/tubs/

e By default. zenmib run -v10 will try and import everything under
SZENHOME / share / mibs /site. The -v10 simply adds more verbose output.
zenmib should check in the other directories (in $SMIPATH) for prerequisites.
Sometimes this just doesn't seem to work!

e Whenever you have imported a MIB, check at the GUI on the Mibs page. You
should see the name of the MIB and you should usually see non-zero counts
under the Nodes and/or Notifications columns.

@ Zenoss: Mibs - Mozilla Firefox E] E]
File Edit View History Bookmarks Tools Help
E-o-@& {24 |© http-//zenoss:8080/zport/dmd/Mibs [=[®] [E-] &)
S ~ admin__Pre =H 0go elp
:
Main Views Overview Modifications
o Sub-Folders

Select: All Hone

Name Description Nodes Notifications

™ & crpcomme 1436 18

r ‘l@& CISCO-CONFIG-MAN-MIB Configuration management MIB, The MIB represents a model of con 49 3

r ‘lQL CISCO-SMI The Structure of Management Information for the Cisco enterprise 35 (]

r ‘Ei CISCO-TC This module defines textual conventions used throughout cisco en 1 a

™ & cscotrap-MB 0 2

r ‘a IANAIfType-MIB This MIB module defines the IANAIfType Textual Convention, and t 1 (1]

r ‘Ei INET-ADDRESS-MIE This MIB module defines textual conventions for representing Int 1 (1]

™ & NET-SNMP-AGENT-MIE Defines control and monitoring structures for the Net-SNMP agent 45 3

W TSR, Top-level infrastructure of the Net-SNMP project enterprise MIB 14 0

I~ "Q oLp-cisco-ITERFACES-MIB 128 0

™ "Q oLp-cisco-sysTEM-MIB 23 0

™ "Q oLp-cisco-Tcp-mis 8 0

™ "Q oLp-cisco-Ts-m 42]

I Qgrc-1o15 0 o

I & prciiss-smr 0 o

@ erciisa-me 3 0

I Q reciziz-mm 199 0

™ & suMP-FRAMEWORK-MIB The SNMP Management Architecture MIB Copyright (C) The Internet 13 0

™ & snmpua-cone 0 o

™ "Q snmpya-smr 15 0

™ & sumpya-smi-v1 0 0

I & sumpva-Tc 0 o

I & sumpua-TC-v1 0 o

1of23 CHIPCOMMIB + ol Page Size [40

Done P

Figure 33: | Mibs page showing successfully imported MIBs

© Skills 1st Ltd 13 December 2010

60

e There are some MIBs that will result in zero counts, for example if the MIB
source file only defines SNMP structure and does not include the definition for
any OIDs (that get translated under the Nodes column) or any TRAPs or
NOTIFICATIONS (that get translated under the Notifications column). If you
import a MIB and get zeros in both columns, check the source file of the MIB to
see whether there should be entities.

e Check the output of the zenmib command carefully for error messages.

e Ifyou get an error message or you get zero counts in the GUI, you should see in
the verbose output of the zenmib command that the smidump command is being
run with error output sent to /dev/null. As a debugging tool, copy and paste the
smidump line but omit the ending 2>/dev/null . This should show more
information on what is going wrong with the mib definitions and pre-requisite
chains of IMPORTSs. Note that the smidump command is only checking MIB
viability; it is not doing anything to actually import the MIB into Zenoss.
smidump must specify all its prerequisites in the correct order.

& jane@bino:~ - Shell - Konsole <3> — ol [x

Session Edit View Bookmarks Settings Help

-ru-r——r-- 1 zenoss zenossz 37500 2008-11-17 Z20:46 CISCO-CONFIG-MAN-MIB.my.orig -
—-ru-r—r—— 1 zenoss root 4186 2008-11-17 12:07 CISCO-GENERAL-TRAPS.my
—-ru-r——r-— 1 zenoss root 9195 2008-11-17 12:07 CISCO-SMI.my

-ru-r—--r-- 1 zenoss zenoss 65369 2008-11-17 19:00 CISCO-TC.my

—ru-r——r—— 1 zenoss root 25042 2008-11-17 12:07 IANAifType-MIB.my
-ru-r——r-—- 1 zenoss zenoss 17177 2008-11-17 19:00 INET-ADDRESS-MIB.my
—ru-r——r-- 1 zenoss zenoss 15732 2008-11-18 12:44 NET-SNMP-AGENT-MIB.txt
-ru-r—--r-- 1 zenoss zenoss 2036 2008-11-18 12:44 NET-3NMP-MIB.txt

-ru-r—r—— 1 zenoss root 50604 2008-11-17 12:07 OLD-CISCO-INTERFACES-MIB.my
-ru-r——r-— 1 zenoss root 8311 2008-11-17 12:07 OLD-CISCO-SYSTEM-MIB.my
—-ru-r——r-— 1 zenoss root 4129 2008-11-17 12:07 OLD-CISCO-TCP-MIB.my
-ru-r--r-- 1 zenoss root 18982 2008-11-17 12:07 OLD-CISCO-TS-MIB.my
—-ru-r——r-— 1 zenoss zenoss 22354 Z008-11-17 19:00 3SNMP-FRAMEWORK-MIB.my
-ru-r——r-— 1 zenoss root 1349 2008-11-17 12:07 SNMPuZ-SMI.my

—ru-r——r-— 1 zenoss zenoss 1004 2008-11-17 19:40 3NMPuZ-SMI-U1SMI.my
-ru-r——r-— 1 zenoss zenoss 1004 2008-11-17 19:56 SHMPuZ-SHI-U1SMI.my.orig
—ru-r—r—— 1 zenoss root 35181 2008-11-17 1Z2:07 SNMPuZ-TC.my

-ru-r——r-— 1 zenoss zenoss 29741 2008-11-17 Z20:37 SNMPuZ-TC-ul.txt

-ru-r—r—— 1 zenoss zenoss 29744 2008-11-17 20:35 SHNMPuZ-TC-ul.txt.orig

zenoss@zenoss ! susr/local zenossszenoss-sharesnibs-ssite> cd ..

Zeno=sPzenoss | usrs local szenossszenossssharesnibsssiter zenmib run —wl10 CISCO-CONFIG-MAN-MIE.my
INFO:zen.zenmib:Skipping file susr/local/zenoss/zenosss/sharesnibs/ietf/.index

INFO:zen.zenmib:Skipping file rusrr/local/zenoss-zenossssharersnibs/ianar . index

INFO:zen.zenmib:3kipping file ~usr.~local-zenoss-zenoss-sharesmibs~irtf-IRTF-NMRG-3MING
INFO:zen.zenmib:Skipping file ~usr-local-zenoszs-zenoss~sharesnibs.irtf.IRTF-NMRG-SMING-TYPES
INFO:zen.zenmib:Skipping file susrrslocalszenoss/zenoss/sharesnibssirtf/IRTF-NMRG-SMING-EXTENS IONS
INFO:zen.zenmib:Skipping file ~rusr/local/zenoss-zenossssharesnibs/irtf,.index

INFO:zen.zenmib:3kipping file ~usr.~local-zenosz-zenoss-sharesmibs-tubs-.index

DEBUG :zen . zenmib : CISCO-CONF IG-MAN-MIB .my

INFO:zen.zenmib:Unable to find a file providing the MIB CISCO-TC

INFO:zen.zenmib:Unable to find a file providing the MIB CISCO-SHI

DEBUG :zen.zenmib :running smidump -fpython -p ",susr-local-szenoss-zenoss-sharesmibs/ietf -8NMPuZ-SHI" —p "'~
usr/local- zenoss/zenoss-share/mibs/ietf-SNMPuZ-CONF” —p “~usr.local-zenoss-/zenoss-sshare/nibs-ietf SNMPuZ—
TC" -p "susr-localrszenoss/zenosss/sharesnibssietf/INET-ADDRESS-MIB" —p “rusr.local-zenoss-zenoss-sharesnib
s~ ietf SHNMP-FRAMEWORK-MIB" "CISCO-CONFIG-MAN-MIB.my" Z>-dev,mull

INFD:zen.zenmib:Loaded mib CISCO-CONFIG-MAN-MIB 2
ZenossPzenoss : /usr. local/zenossszenosssshare nibs/site> [] -

Figure 34: zenmib run command with missing IMPORT chain

© Skills 1st Ltd 13 December 2010

61

e Note the messages about missing CISCO-TC and CISCO-SMI even though they
have been imported previously

e Also note the smidump command that can be cut and paste, omitting
2> /dev [/ null for extra debugging. If the smidump ends in listing the MIB, rather
than error messages, then the problem is not really with the MIB itself or it's
IMPORT chain.

e Also note the smidump checks the MIB to be compiled for IMPORTSs and has
automatically found the prerequisites (-p parameters).

= jane@bino:~ - Shell - Konsole <3> -0 |x

Session Edit View Bookmarks Settings Help

zenoss@zenoss l/usr/local szenoss/zenoss/share/nibs/site> -
zenoss@zenoss L usrs local zenoss/zenoss/share/nibsssiter

zenoss@zenoss : susrslocal szenossszenossssharesnibsssite>

zenossPzenoss :/usr/local /zenoss/zenoss/share/nibs/site>

zenoss@zenoss L usrslocal /zenoss/zenoss/share/nibsssiter

zenoss@zenoss : susrslocal szenossszenossssharesnibsssite>

zenoss@zenoss /usr/local zenoss/zenoss/share/nibs/site>

zenoss@zenoss L usrslocal /zenoss/zenoss/share/nibsssiter

zenoss@zenoss l/usr/local szenoss/zenoss/sharesnibs/site>

zenoss@zenoss /usr/local zenoss/zenoss/share/nibs/site>

zenoss@zenoss - usrs local zenoss/zenosssshare/nibsssiter

zenoss@zenoss l/usr/local szenoss/zenoss/sharesnibsssite> zenmib run -uv1@ . CISCO-SMI.my ./CISCO-TC.my CISCO-CONFIG-MAN-MIB.my
INFO:zen.zenmib:Skipping file -usrslocal- zenoss-zenoss-/share/nibssietf-.index

INFO:zen.zenmib:Skipping file rusrslocal-zenoss-zenoss-/sharesnibssiana~.index

INFO:zen.zenmib:Skipping file ~usr~local~ zenoss-zenoss~/share/nibs/irtf-IRTF-NHRG-SMING

INFO:zen.zenmib:Skipping file -usrslocal- zenoss-zenosss/share/nibs/irtfIRTF-NMRG-SMING-TYPES

INFO:zen.zenmib:Skipping file -usrrlocal-zenoss-zenossssharesnibssirtf-IRTF-NHRG-SMING-EXTENSIONS

INFO:zen.zenmib:Skipping file ~usr~local~ zenoss-zenoss~/share/nibs/irtf-.index

INFO:zen.zenmib:Skipping file -usrslocal- zenoss-zenoss-/share/nibs/tubs..index

DEBUG : zen .zenmib : CISCO-SMI .my

DEBUG :zen .zenmib :running smidump —fpython -p "~susr~local-zenoss-zenoss/sharesnibs~ietf SNMPuZ-SMI" “.-/CISCO-SMI.my" 2>~dev.nu
11

DEBUG :zen.Relations:obj ~zportsdmd -Mibs/mibs-CISCO-SMI already exits on szport-/dmd-Mibs-/mibs

INFO :zen.zenmib :Loaded mib CISCO-SMI

DEBUG : zen .zenmib : CISCO-TC.my

DEBUG :zen .zenmib :running smidump —fpython -p "~susrslocalszenoss-/zenoss/sharesnibssietf/SNMPu2-SHI" -p “susrrlocal-zenoss/zeno
ss/sharesmibs-ietf SNMPu2-TC" -p ".-CISCO-SMI.my" ".-CISCO-TC.my" 2>-dev.null

DEBUG :zen.Relations:obj ~zport-dmd-Mibs/mibs-CISCO-TC already exits on ~zportsdmd-Mibs/mibs

INFO:zen.zenmib:Loaded mib CISCO-TC

DEBUG :zen .zenmib : CISCO-CONF IG-MAN-MIB .my

DEBUG :zen.zenmib:running smidump —fpython -p "~usrslocal-zenoss-zenoss/sharesnibssietf-SHMPu2-SHI" -p "“~rusr-local-zenoss-/zeno
ss-sharesmibs~ietf SNMPuZ-CONF" —p “,usr-local~zenoss/zenoss-/share/nibs/ietf/SNMPuZ-TC"” —p “,usr-/local-zenoss/zenoss/share/nib
s-ietf~INET-ADDRESS-MIB" —p "~usr-local-/zenoss-zenoss-sharesmibs/ietf-SNMP-FRAMEWORK-MIB” —p ".-CISCO-TC.my" —p ".~CISCO-SMI.m
y" “'CISCO-CONFIG-MAN-MIB.my" 2>,deurnull

DEBUG :zen.Relations:obj ~zportsdmd/Mibs/mibs-CISCO-CONFIG-MAN-MIB already exits on ~zportsdmd-/Mibs/mibs

INFO:zen.zenmib :Loaded mib CISCO-CONFIG-MAN-MIB -
zenoss@zenoss :susrslocal szenoss-zenossssharesnibsssite> D -

Figure 35: zenmib run command specifically including prerequisite files

e Even if you have already imported a prerequisite MIB successfully, the Zenoss
database does not know about the IMPORT chains; it only has OIDs and TRAPs /
NOTIFICATIONSs. For this reason you will sometimes need to run the zenmib
command with any missing prerequisites on the zenmib line, ahead of the mib
that you actually want to import.

e Note that the prerequisite files that have already been loaded get a DEBUG
comment that says it “already exits” - I suspect this should say “already exists

77'

e It is always possible to specify a full path name to a MIB file. However, if you
make an error in typing filename or path then you will get a “Failed to locate
mib...” message from the smidump command.

e Before attempting to reimport a MIB, select the MIB and use the table menu from

the Mibs panel of /Mibs and select DeleteMibs.

© Skills 1st Ltd 13 December 2010

e Beware that some MIBs have a rather different MIB name (on the first line of the
MIB source) than the filename that contains them. This provides ample
opportunity for confusion!

e Beware that some MIBs are wrong! For example, the CISCO-CONFIG-MAN MIB
uses a type of Unsigned64 which is not legal in its context. You can make this
MIB import by editing the source file to change both occurrences of Unsigned64 to
Unsigned32.

e Good sites to look for Cisco MIBs and their prerequisites are:
o http://tools.cisco.com/Support/SNMP/
o ftp:/ftp-sj.cisco.com/pub/mibs/ including V1 versions of V2 SNMP MIBs

e Other tricks to try, found from the Zenoss fora:

o Ifyou cannot see imported MIBs or those MIBs can be seen, have non-zero
counts but don't translate incoming events, try the following commands from
within zendmd :

dmd.Mibs.reIndex ()
commit ()

o To check from within zendmd what MIBs are loaded (note that the second line
must be indented):

for mib in dmd.Mibs.mibs () :
print mib
commit ()

o Try recycling the zentrap command from the Daemons tab of the Settings
menu or, as the zenoss user, run zentrap restart.

8.4 The MIB browser ZenPack

There is an excellent community ZenPack available to perform MIB Browsing. This is
not directly relevant to TRAP / NOTIFICATION processing, but it is useful for
investigating MIBs with a view to building SNMP performance templates. It can be
downloaded from http:/www.zenoss.com/community/projects/zenpacks/mib-browser .

It provides a MIB browser to explore any OID that has been loaded into Zenoss, along
with a test facility to snmpwalk a configurable device to retrieve values for any selected
part of the MIB tree.

8.5 Mapping SNMP events

Zenoss provides some event mappings for SNMP TRAPs out-of-the-box. As discussed in
an earlier section, the file $ZENHOME | Products | ZenModel | data [events.xml
configures all the standard mappings so searching this file for SNMP provides insight
for default customisation.

62 © Skills 1st Ltd 13 December 2010

http://www.zenoss.com/community/projects/zenpacks/mib-browser
ftp://ftp-sj.cisco.com/pub/mibs/
http://tools.cisco.com/Support/SNMP/

Most SNMP TRAPs map to the Zenoss /Unknown event class. There are one-or-two
exceptions for some generic TRAPs such as Link Up (3), Link Down (2) and the
Authentication TRAP (4). Event fields that are automatically populated by the zentrap
processing include summary, eventClassKey and agent. The Details tab of the event
detail shows the community and oid Field / Value pairs (the oid field is a recent
addition to the Details tab).

This means that, typically, the event only maps on the Event Class Key, which is
interpreted by zentrap.py as enterprises.<enterprise number>.<specific trap> if the
SNMPv2-SMI has been imported or 1.3.6.1.4.1.<enterprise number>.<specific trap>
otherwise. The summary field will be snmp trap <enterprise OID><specific trap> and
the agent field will be set to zentrap .

TRAPs and NOTIFICATIONs may have one or more TRAP variables (varbinds). These
varbinds appear in the Details tab of an event detail where the field name is the varbind
OID and the corresponding field value is the value of that varbind. Event class
mappings can be devised with various Rule, Regex and Transform elements, to parse out
the intelligence from SNMP TRAPs and either create new user-defined event fields or
modify existing fields (such as evt.summary).

Note that event mappings that parse out SNMP OIDs and varbinds must be aware of
whether the relevant MIBs have been imported, or not. If a MIB is imported, OID
mapping based on matching dotted-decimal notation will fail as the MIB OID
translations happen before event mapping.

8.5.1 SNMP event mapping example

In order to interpret enterprise specific TRAPs, mappings are usually required. Often
an action or modification is required, effectively based on what enterprise the TRAP
came from (Cisco, net-snmp, ...), so a subclass of events are required that inherit some
common characteristics but some event details vary depending on the exact enterprise
specific TRAP number.

Many enterprise TRAPs also include several varbinds that need to be interpreted and
processed.

In the mapping example shown here, three small scripts are used to generate TRAPs
from the 1.3.6.1.4.1.123 enterprise — one for each of specific TRAPs 1234, 1235 and 1236.
The first two have a single varbind whose string-type value is “Hello world 4”, where the
end number is 4 or 5; the third script generates a TRAP with 2 varbinds. Note that each
of the varbinds exhibit the “extra 0” behaviour, ie. the varbind field will be
1.3.6.1.4.1.123.0.1234.

1. Without any mapping, when gen_mytrap_1234.sh is run, it will map to the
/Unknown event class.

2. Create a new event subclass Snmp under the class /Skills .

63 © Skills 1st Ltd 13 December 2010

3. Map the “1234” event by selecting its tick-box and using the table menu to Map
Events to Class . Choose /Skills/Snmp from the dropdown selection box. Leave
the rest of the Event Class Mapping parameters as defaults for now. This means
that the event only maps on the eventClassKey, which translates to <enterprise
OID>.<specific trap> . The mapping name is automatically assigned the name of
the eventClassKey (1.3.6.1.4.1.123.1234 if SNMPv2-SMI is not imported,;
enterprises.123.1234 if it is). Refer back to the snippet of the zentrap code in
Figure 33 for more information on the parsing of the TRAP into event fields.
Check that your event class mapping works.

The next step is to interpret the varbind. Each of the TRAPs generated by the test
scripts come from the Enterprise 1.3.6.1.4.1.123 and hence each of the varbind fields in
the Details tab will start with 1.3.6.1.4.1.123. A transform will extract that part of the
OID after 1.3.6.1.4.1.123 . It will also substitute the value of the varbind into the event
summary.

1. Return to your Event Class Mapping called 1.3.6.1.4.1.123 under / Events/Skills/
Snmp .

2. Edit the Transform box:
for attr in dir (evt):
if attr.startswith('1.3.6.1.4.1.123."):
evt.myRestOfOID=attr.replace('1.3.6.1.4.1.123."','")
evt.myFieldValue=getattr (evt,attr)

evt.summary=(evt.summary + “ “ + evt.myFieldValue)

3. The dir(evt) syntax provides a list of the methods and attributes available for the
current event, evt .

4. The “startswith” line ensures that transforms only take place with attributes that
start with 1.3.6.1.4.1.123 — ie. varbind attribute fields.

5. Note that the “replace” line is replacing the OID specified, with the null string —
the syntax after the comma is single-quote single-quote . The rest of the attribute
(ie. the 0.1234 bit) is kept and becomes the value of the user-field myRestOfOID .

6. The “getattr” line gets the value of the given attribute of the event.

7. Running the script to generate a “1234” TRAP should now generate an event
with:

e The event mapped to the /Skills/Snmp class

e The summary field should say “snmp trap 1.3.6.1.4.1.123.1234 Hello world
4,

e The Details tab of the detailed data should show values for community, oid,

myFieldValue and myRestOfOID, in addition to the default varbind
field/value pair of 1.3.6.1.4.1.123.0.1234 | Hello world 4

64 © Skills 1st Ltd 13 December 2010

8. Running the script to generate a “1235” TRAP will still generate an event with
the /Unknown class as the event class mapping is based on the eventClassKey of
1.3.6.1.4.1.123.1234 .

So far, we are only matching a single SNMP TRAP with the eventClassKey field. The
objective is to map all events from the enterprise 1.3.6.1.4.1.123 . With SNMP, you
often want to apply a transform to several similar events which are often distinguished
by the later parts of the OID field. The test scripts all generate events whose
eventClassKey start with 1.3.6.1.4.1.123. but they differ in the last number.

A Rule will be used to match all appropriate events. However, a Rule is only inspected
if the eventClassKey has already matched successfully and we have no control over the
eventClassKey — that is set by zentrap.py . Thus, the defaultmapping concept will be
used.

1. Clear all SNMP events for your Zenoss system.
2. Edit the 1.3.6.1.4.1.123.1234 mapping.
o Inthe Rule box put evt.eventClassKey.startswith('1.3.6.1.4.1.123.")
o Change the Name of the mapping to 1.3.6.1.4.1.123
o Save the mapping away
3. Run the gen_mytrap_1234.sh script and the gen_mytrap_1235.sh script.
4. Check the events in the Event Console

5. You should find that the 1234 TRAP maps successfully but the 1235 TRAP
doesn't. This is because the initial test for event class mapping checks the
eventClassKey — that is still set to 1.3.6.1.4.1.123.1234 so the processing never
even gets as far as checking our Rule! Note that we have no control over how the
eventClassKey field is populated by the event processing mechanism — it is parsed
out for us by zentrap.py (see Figure 33 again).

6. This is where the “magic string” of defaultmapping can be used in the Event Class
Key field. Set the Event Class Key to defaultmapping (Note it must be all lower
case). If the process of mapping an event cannot find a match for the Event Class
Key then it will re-run the mapping process with an Event Class Key of
defaultmapping.

7. Save the mapping.

8. Open the Sequence tab. There are several mappings that all map on an Event
Class Key of defaultmapping. Choose a suitable sequence number for the new
defaultmapping. Save the mapping.

9. Clear existing events. Rerun both scripts. Check that both events now map
correctly.

65 © Skills 1st Ltd 13 December 2010

@ Zenoss: 1.36.1.4.1.123 - Mozilla Firefox (=lg] (x]
File Edit View History Bookmarks Tools Help

E-o-@& {3} |© nitp //zenoss:8080/zport/dmd/Events/Skills/Snmp/instances/1.3.6.1.4.1.123 [=[®] [E] &)

| © Forums :: Memberlist 2 #4060 (Class transforms. .. | 4 TRAC-Defect-Template ... 4 HowToAddTicket — Zeno... | & Zenoss: 1

ZenNQOsSS Core
ad refe 5 t Help
- /Events /Skills /Snmp /1.3.6.1.4.1.123 Zenoss server time: 11:18:04

Sequence zProperties Events Modifications

Total Event Count

EventClassInst

Event Class Key defaultmapping
Sequence 4

Rule

evt eventClassKey.startswith('1.3.6.1.4.1.123.0.")
Regex

Example
snmp trap 1.3.6.1.4.1,123.0.1234
Transform

Products Tor attr in dir(evt):
if attr.startswith('1.3.6.1.4,1.123."'):

evt.myRest0fO0ID=attr.replace('1.3.6.1.4,1.123.',"'")

evt.myFieldValue=getattr(evt,attr)

evt.summary=(evt.summary+" ‘“+evt.myFieldValue+' ")
Check for summary starting with "snmp trap” AND having a varbind with "Hello" in it
it evt.summary. startswith('snmp trap') and evt.summary.find('Hello')>=8:
evt.mysummarySplit=evt, summary. split() / Don't do this - result 15 a 1ist and these event Tields must be strings
evt mySummaryNoFirstThreeList=evt, summary . split()[3:] /Check $ZENHOME/log/zenhub.log for help
Chop off first 3 tokens, separated by whitespace, returning a string

evt.mySummaryNoFirstThreeString=' ', join(evt.summary.split()[3:])

evt.summary=evt.mySummaryNoFirstThreeString

Browse By

Explanation

Resolution

<P Adblock

Figure 36: Mapping for SNMP TRAP with rule, transform and eventClassKey of defaultmapping

The test events used so far, only have one varbind. What if your TRAP has several
varbinds and you want to use information from each of them? The script
gen_mytrap_1236.sh generates a specific TRAP 1236, with two varbinds:

e varbind1l 1.3.6.1.4.1.123.0.12361 Hello world varbindl 61”
e varbind2 1.3.6.1.4.1.123.0.12362 Hello world varbindl 62”

Running the script gen_mytrap_1236.sh should result in an event that maps to the
/Skills /| Snmp class, with the myFieldValue and myRestOfOID fields matching the data
in the last varbind and the summary also reflecting only the data in the last varbind.
To make the mapping take account of both varbinds:

1. Edit the 1.3.6.1.4.1.123 mapping and examine the Transform box. Note that it
starts with for attr in dir(evt): . This construct will loop around all event fields.
The second line will select just the field names that start with .1.3.6.1.4.1.123. .

2. To construct an event summary that contains information from each varbind
event field, change the evt.summary field to:

evt.summary=(evt.summary+” “+evt.myFieldvValue+”)

3. Clear old SNMP events and run gen_mytrap_1236.sh . Your summary field
should now reflect the data in all of the TRAP varbinds.

66 © Skills 1st Ltd 13 December 2010

Suppose you now wanted to modify the summary field so that, if it started with the
standard “snmp trap” followed by the OID, and the summary field now has had
appended a number of varbinds, at least one of which contains the string “Hello”, then
chop the snmp trap OID bit off the front of the summary.

Here is a transform that uses the Python split and join methods to do that.

Transform

for attr in dirievt):
if attr . startswith('1.3.6.1.4.1.123. ")
evt myRestOfOID=attr.replace('l.3.6.1.4.1.123."',"'")
evt myFieldvalue=getattrievt, attr)
evt summary=(evt.summary+" “+evt.myFieldValue+" ")
Check for summary starting with "snmp trap" AND having a varbind with "Helle" in it
if evt.summary startswith{'snmp trap') and evt.summary.find('Hello')>=8:

evt mySummarySplit=evt summary.split() / Don't do this - result is 3 list and these event fields must be strings
evt.mySummaryNoFirstThreelList=evt. summary.split()[3:] /Check $ZENHOME/log/zenhub.log for help
Chop off first 3 tokens, separated by whitespace, returning a string

evt mySummaryNoFirstThreeString=' '.join(evt,summary.split()[3:])

evi, summary=evt. mySummaryNoFirstThreeString

Figure 37: Event transform for SNMP TRAP with split and join

The second if clause demonstrates the Python find function to search for the string
“Hello” (it returns the offset in the string of the substring you specified (the first
character has position 0) - if the substring doesn't exist then find returns -1).

evt.summary.split()[3:] splits the evt.summary field into a list of strings and the /3:/ on
the end selects everything after the third element in the list. The result is that the
substrings “snmp” , “trap” and the OID are chopped off the beginning of evt.summary.
The problem is that the resulting data structure is still a list of strings and
evt.summary is defined as a string, not a list. To rectify this, the Python join function is
used to convert our summary back into a string.

Check the end of $ZENHOME /log | zenhub.log and $ZENHOME /log | event.log for
debugging help.

67 © Skills 1st Ltd 13 December 2010

9 Event Commands

When an event occurs, it is possible to run a command on the Zenoss server. The fields
of the event and the attributes of the device that generated the event, are made
available to use in the event command. Event commands are shellscripts (though they
can call other programs such as Python scripts). It is possible to further customise such
commands to build in a delay before execution and to run the script at repeated
intervals.

Event Commands have access to the event fields and device attributes, using TALES
expressions (Template Attribute Language Expression Syntax, from Zope) to reference
fields of the event, evt and attributes of the device, dev. See Appendix D of the Zenoss
Administration Guide for more details. Note that you must use TALES — the
evt.<event field> syntax used in mapping rules and transforms does not work in event
commands. TALES syntax takes the form:

S{evt/<event field>}

S{dev/<device attribute>}

9.1 Creating event commands

Event commands are created using the left-hand Event Manager menu, and then select
the Commands tab.

ZenQss Core

/ZenEventManager Zenoss server t

admin__Pr

Edit Fields History Fields Commands Modifications

Select: All None

Commands triggered by events:

Repeat

Enabled Delay i Command Event Filter

Does not /home/jane/gen_alert_trap.sh ${evt/device} ${evt/component}
repeat "${evt/message}"

]| False o Does not echo "TEST Prod status Bad news ${evt/lastTime} ${evt/evid} ${dev/id} (prodState = 400) and (component not like
writeFil Test prod state repeat ${dev/managelp} ${evt/message}" >> /tmp/cmdoutput '9%5snmpd%') and (eventClass like '/Skills%")
st echo " DOWN Last time §{evt/lastTime} First time ${evt/firstTime} Count (prodState = 1000) and (component not
[~ writeFile True 1] e ${evt/count} ${evt/evid} ${evt/clearid} ${dev/id} ${evt/message} " >> lilke '96snmpd%e') and (eventClass like
P /tmp/cmdoutput '/Skills%")

™ gen alert trap True 1] (eventClass like '/Skills%")

Does not
repeat

(component not like '%snmpd') and

Fal
™ writeFile r1 e (device like 'S%group-100-r1%')

echo " rl test DOWN ${evt/evid} on ${dev/id} " >> /tmp/cmdoutput

I Add | Delete |

Figure 38: Creating new event commands

Type the new command file name in the box at the bottom of the panel and click Add.
Click on the new name that you have just created to define the command.

68 © Skills 1st Ltd 13 December 2010

ZenNnQSss’ Core

/ZenEventManager /Event Commands /writeFile

State at time: 2009/01/16 13:05:42

Enabled m
Default Command Timeout (secs) 60
Delay (secs) 0

Repeat Time (secs) 0

Command

echo " DOWN Last time ${evt/lastTime} First time ${evt/firstTime} Count

${evt/count} ${evt/evid} ${evt/dearid} ${dev/id} ${evt/message} " >>
tmp/cmdoutput

Clear Command

echo " UP Last time ${evt/lastTime} First time ${evt/firstTime} Count ${evt/count}
${evt/evid} ${evt/dearid} ${dev/id} ${evt/message} " >> /tmp/cmdoutput

Where
Event Class I begins with j IfSklIIs j ;I
Production State lj Production j ;I
Component I does not contain j Isnmpd ;I
add ficer[o]
Save |

Figure 39: Defining a simple Event Command called writeFile
The dialogue to configure an event command includes:

e An enabled flag
e A timeout field for the command

e A delay field such that a delay can be built-in between the event occurring and
the command running. For “glitch” scenarios, an event may be cleared rapidly so
an automation script should be delayed pending that possibility.

e A repeat field that denotes how frequently to repeat the command

e Different commands can be run depending on whether the event is reporting a

problem or whether the event is being cleared (moved to the history table of the
events database).

e Through the use of one or more filters, it is possible to be very specific about what
events should result in commands being run. Filters should be used judiciously or

performance degradation is likely to take place if event commands run on most
events.

69 © Skills 1st Ltd 13 December 2010

Zen 6 SS Core Dey JR—

admin__Pr Logout Help
J/ZenEventManager /Event Commands fwriteFil_Test_prod_state Zenoss server time: 12:32:55

State at time: 2009/01/16 12:30:50
Enabled False j

Default Command Timeout (secs)

Delay (secs)

Repeat Time (secs)
Command

- I - |
echo "TE, v news ${evt/lastlime’ ${svt/evid} ${dev/id}
${dev/IT component Essage}’ >> /tmp/cmdauiput
Count
Device
Device Class
Device Groups
Device Priority

Clear Comi

echo "TE Event Class Lotd news ${evt/lastTime} ${evt/evid} ${dev/id}
${dev/m Event Class Key [Flkssage}” >> /tmp/cmdoutput
Event State
Facility
IP Address
Location
Where Manager
Message = s
Ever G] J I /skills
Productior Owner Id Test
Priont
Com Produ:tmn State | [tain j ISﬁde

addfiterf

Save |

Figure 40: Event command dialogue with filter options dropdown

Filters for an Event Command are logically ANDed. To implement a logical OR of
criteria, create one or more enabled event commands. Each and every command that
satisfies its filtering criteria, will be executed. If multiple commands are valid, they will
all be run.

Event commands are executed asynchronously by the zenactions daemon which, by
default, runs every minute. Commands will be run once for all open events in the
status table of the events database, provided the command has not yet been run. The
alert-state table of the events database records whether a command has been run or
not for a particular command, for a particular event.

zenactions also runs any alerting rules (discussed in the next section). It's logfile is
S$ZENHOME /log | zenactions.log.

9.2 Debugging event commands

You will find that duplicate events do not run event commands. Iflogging for
zenactions is increased, it is possible to understand what is going on. To increase the
debugging level of zenactions to Debug (10), use the left-hand Settings menu and the
Daemons tab. Refer back to Page 27 where this procedure was discussed for increasing
logging for the zensyslog daemon. You will need to recycle the zenactions daemon for
this to take effect.

In the example below, the event command is called writeFile . It logs the event fields
firstTime , lastTime and count to an output file, for both commands and clear commands,

70 © Skills 1st Ltd 13 December 2010

for both “goodnews” and “badnews” events. Initially, a “badnews” event is generated,
followed by a duplicate “badnews” event, followed by a different “badnews” event.

=

Session Edit View Bookmarks Seftings Help

Jane@bino:~ - Shell - Konsole <3>

2008-11-26 12:15:14 DEBUG zen.DbConnectionPool: Retrieved a comnection: Pool size: 0O =
2008-11-26 12:15:14 DEBUG zen.DbConnectionPool: Returned a commection: Pool size: 1

2008-11-26 12:15:14 INFO zen.Zenfictions: processed 1 rules in 0.28 secs

2008-11-26 12:15:14 DEBUG zen.DbComnectionPool: Retrieved a commection: Pool size: 0

2008-11-26 12:15:14 DEBUG zen.DbConnectionPool: Returned a commection: Pool size: 1

2008-11-26 12:16:14 DEBUG zen.Schedule: Waiting 38024.985389 seconds

ND

Z008-11-26 1Z:16:14 DEBUG zen.DbConnectionPool: Retrieved a commection: Pool size: ©

2008-11-26 12:16:14 DEBUG zen.DbConnectionPool: Returned a commection: Pool size: 1

2008-11-26 1Z2:16:14 INFO zen.ZenActions: Processed 1 commands in 0.247563

Z008-11-26 1Z2:16:14 DEBUG zen.Zenfictions: SELECT device,component,message,firstTime,summary,severity,summary, evid FROM status
WHERE (prodState = 1000) and (eventState = 0) and (severity >= 4) and (ipAddress not like '#172.3»’) AMD evid HOT IN (SELECT
euid FROM alert_state WHERE userid="admin’ AND rule=’ jc_email’)

2008-11-26 12:16:14 DEBUG zen.DbComnectionPool: Retrieved a comnection: Pool size: 0

2008-11-26 12:16:14 DEBUG zen.DbConnectionPool: Returned a commection: Pool size: 1

2008-11-26 12:16:15 INFO zen.ZenActions: sent email:[zenoss] zenoss.skills-1st.co.uk This is bad news 4 to:[’ jane.currylskills
—1st.co.uk’]

2008-11-26 12:16:15 DEBUG zen.ZenActions: INSERT INTO alert_state VALUES (' 0a0000833781acScffbfccd’, ’admin’, ’ jc_email’, NULL
J ON DUPLICATE KEY UPDATE lastSent = now()

2008-11-26 12:16:15 DEBUG zen.DbConnectionPool: Retrieved a commection: Pool size: 0O

2008-11-26 12:16:15 DEBUG zen.DbConnectionPool: Returned a commection: Pool size: 1

Z008-11-26 1Z2:16:15 DEBUG zen.Zenfictions: SELECT h.device,h.component,h.message,h.firstTine,h.sunmary,h.severity,h.sunmnary, h.
evid FROM history h, alert_state a WHERE h.evid=a.evid AND a.userid="adnin’ AND a.rule=’ jc_email’

2008-11-26 1Z2:16:15 DEBUG zen.DbConnectionPool: Retrieved a commection: Pool size: @

Z008-11-26 1Z2:16:15 DEBUG zen.DbConnectionPool: Returned a comnection: Pool size: 1

2008-11-26 12:16:15 DEBUG zen.Zewfictions: call age events(4, 4):

2008-11-26 1Z2:16:15 DEBUG zen.DbConnectionPool: Retrieved a commection: Pool size: @

2008-11-26 12:16:15 DEBUG zen.DbConnectionPool: Returned a commection: Pool size: 1

2008-11-26 12:16:15 DEBUG zen.Zenfictions: SELECT device, component FROM status WHERE eventClass = '/Status/Heartbeat’
2008-11-26 1Z2:16:15 DEBUG zen.DbConnectionPool: Retrieved a commection: Pool size: @

2008-11-26 12:16:15 DEBUG zen.DbConnectionPool: Returned a commection: Pool size: 1

2008-11-26 12:16:15 DEBUG zen.Zenfictions: SELECT device, component FROM heartbeat WHERE DATE_ADD(lastTime, INTERVAL timeout SE
COND) <= NOWC():

2008-11-26 12:16:15 DEBUG zen.DbComnectionPool: Retrieved a comnection: Pool size: 0

2008-11-26 12:16:15 DEBUG zen.DbConnectionPool: Returned a commection: Pool size: 1

Z008-11-26 1Z:16:15 DEBUG zen.DbConnectionPool: Retrieved a commection: Pool size: ©

2008-11-26 12:16:15 DEBUG zen.DbConnectionPool: Returned a commection: Pool size: 1 [a
2008-11-26 12:16:15 INFO zen.ZenActions: processed 1 rules in 0.77 secs - |

|| e Shell |

B-11-26 12:16:14 DEBUG zen.Zenfictions: action: jc_email for:admin loaded

—11-26 12:16:14 DEBUG zen.Zenfictions: 3SELECT dedupid,evid,device,component,eventClass,eventRey,sunmary,nessage,severity,ev
State,eventClassKey,eventGroup,stateChange, firstTine, lastTine,count,prodState,suppid,manager,agent,DeviceClass,Location, Sys
s,DeviceGroups, ipAddress, facility,priority,ntevid,ounerid,clearid,DevicePriority,eventClassMapping,monitor, evid FROM statu
ERE (prodState = 1000) and (component not like ’xsnmpd+’) and (eventClass like ’Skillsx’) AND evid NOT IN (SELECT evid F
alert_state WHERE userid=""' AND rule="uriteFile’)
B-11-26 12:16:14 DEBUG zen.DbConnectionPool: Retrieved a commection: Pool size: 0O
B-11-26 12:16:14 DEBUG zen.DbConnectionPool: Returned a commection: Pool size: 1
8-11-26 12:16:14 INFO zen.ZenActions: Running echo " DOWN Last time 2008-11.26 12:15:23.000 First time 2008-11-26 12:15:23
0 Count 1 0a0000833781acScffbfccd Hone zenoss.skills-1st.co.uk This is bad news 4 " >> ~tmprcndoutput

—11-26 12:16:14 DEBUG zen.ZenActions: INSERT INTO alert_state VALUES (’0a000083378lacScffbfccd’, ', ’writeFile’, NULL) ON
LICATE KEY UPDATE lastSent = now()

—11-26 12:16:14 DEBUG zen.DbConnectionPool: Retrieved a commection: Pool size: 0

—11-26 12:16:14 DEBUG zen.DbConnectionPool: Returned a comnection: Pool size: 1

—11-26 12:16:14 DEBUG zen.Zenfictions: SELECT h.dedupid,h.evid,h.device,h.conponent,h.eventClass,h.eventKey,h.summary,h.nes
sh.severity,h.event3tate,h.eventClassKey,h.eventGroup,h.stateChange,h.firstTime,h.lastTime,h.count,h.prodState,h.suppid,h.
ger,h.agent,h.DeviceClass,h.Location,h.Systems,h.DeviceGroups,h. ipAddress,h.facility,h.priority,h.ntevid,h.ounerid,h.clear
.DevicePriority,h.eventClassMapping,h.monitor, h.evid FROM history h, alert_state a WHERE h.evid=a.evid AND a.userid="' A
a.rule="uwriteFile’

Figure 41: zenactions.log showing actions for writeFile

On examination of zenactions.log:

71

You should see zenactions waking up every minute to process commands
You should see a SELECT on the status database relevant to writeFile
You should see the echo command being executed

You should also see a line similar to:

o INSERT INTO alert_state VALUES ('0a0000833781acb5cffbfccd’, ", 'writeFile',
NULL) ON DUPLICATE KEY UPDATE lastSent = now()

© Skills 1st Ltd 13 December 2010

o Refer back to Figure 5 on page 12 for the definition of the alert_state table
the events database

o This line is effectively preventing any further command actions by this
command on this event

e There is also a SELECT on the history database

in

If a “goodnews” is then generated, it should clear all of the badnews events and run the
script for the Clear Command.

| & jane@bino:~ - Shell - Konsole <3> i |

|| Session Edit View Bookmarks Setftings Help

A@0B-11-26 12:29:15 DEBUG zen.ZenActions: action: jc_email for:admin loaded
08-11-26 12:29:15 DEBUG zen.Zenfictions: SELECT dedupid,evid,device,component,eventClass,eventKey,summary,nessage,severity,ev
State,eventClassKey,eventGroup,stateChange, firstTine, lastTine,count,prodState,suppid,manager,agent,DeviceClass,Location, Sys
s, DeviceGroups, ipAddress, facility,priority,ntevid,ounerid,clearid,DevicePriority,eventClassMapping,monitor, evid FROM statu
HERE (prodState = 1000) and (component not like ’#snmpdx’) and (eventClass like *~Skillsx’) AND evid NOT IN (SELECT evid F
alert_state WHERE userid=""' AND rule="uriteFile’)
8-11-26 12:29:15 DEBUG zen.DbConnectionPool: Retrieved a commection: Pool size: 0
98-11-26 12:29:15 DEBUG zen.DbConnectionPool: Returned a comnection: Pool size: 1
B-11-26 1Z2:29:15 DEBUG zen.Zenfictions: SELECT h.dedupid.,h.evid.,h.device,h.conponent.h.eventClass,h.eventkey,h.summary,h.nes
e,h.severity,h.eventState, h.eventClassKey, h.eventGroup, h.stateChange,h. firstTine,h. lastTine,h.count,h.prodState,h.suppid,h.
nager,h.agent ,h.DeviceClass,h.Location,h.Systems,h.DeviceGroups,h. ipAddress,h.facility,h.priority,h.ntevid,h.ounerid,h.clear
h.DevicePriority,h.eventClassMapping,h.monitor, h.evid FROM history h, alert_state a WHERE h.evid=a.evid AND a.userid="" A
a.rule="writeFile’
B-11-26 12:29:15 DEBUG zen.DbConnectionPool: Retrieuved a commection: Pool size: 0
p8-11-26 12:29:15 DEBUG zen.DbCommectionPool: Returned a comnection: Pool size: 1
DB-11-26 12:29:15 DEBUG zen.Zenfictions: SELECT clear.dedupid.clear.evid,clear.device,clear.conponent,clear.eventClass,clear.
entKey,clear .summary,clear .message,clear.severity,clear.eventState,clear.eventClassKey,clear .eventGroup,clear.stateChange.cl
.firstTine,clear.lastTime,clear.count,clear.prodState,clear.suppid,clear.manager,clear.agent,clear.DeviceClass,clear.Locati
clear.3ystems,clear.DeviceGroups,clear. ipAddress,clear.facility,clear.priority,clear.ntevid,clear.ownerid,clear.clearid,cle
DevicePriority,clear.eventClassMapping,clear.monitor FROH history clear, history event WHERE clear.evid = event.clearid
AND event.evid = ’0a0000833781a?efffciccd’
DB-11-26 12:29:15 DEBUG zen.DbConmectionPool: Retrieuved a commection: Pool size: 0
08-11-26 12:29:15 DEBUG zen.DbConmectionPool: Returned a conmection: Pool size: 1
08-11-26 12:29:15 INFO zen.ZenActions: Ruming echo " UP Last time 2008-11,26 11:56:31.000 First +time 2008-11,26 11:56:31.0
Count 1 0ad000333781a7efffcdccd 0adOOOB833781af?8f fbeccd zenoss.skills-1st.co.uk This is bad neus 1 “ >> ~tmprendoutput
DB8-11-26 12:29:15 DEBUG zen.ZenActioms: DELETE FROM alert_state WHERE evid='0a0000833781a7efffcdccd’ AND userid="" AN
rule="writeFile’
A0B-11-26 12:29:15 DEBUG zen.DbConnectionPool: Retrieuved a commection: Pool size: 0
~8-11-26 12:29:15 DEBUG zen.DbCommectionPool: Returned a comnection: Pool size: 1
2008-11-26 12:29:15 DEBUG zen.ZenAictions: SELECT clear .dedupid,clear.evid,clear.device,clear.conponent,clear.eventClass,clear.
eventKey,clear .summary,clear.message,clear .severity,clear.eventState,clear.eventClassKey,clear.eventGroup,clear.stateChange.cl
ear.firstTime,clear.lastTime,clear.count,clear.prodState,clear.suppid,clear.manager,clear.agent,clear.DeviceClass,clear.Locati
on,clear.3ystems,clear.DeviceGroups,clear. ipAddress,clear.facility,clear.priority,clear.ntevid,clear.ouwnerid,clear.clearid,cle
ar.DevicePriority,clear.eventClassMapping,clear.monitor FROM history clear, history event WHERE clear.evid = event.clearid
AND event.evid = ’0a0000833781a8f2ffc3cce’
2008-11-26 12:29:15 DEBUG zen.DbConnectionPool: Retrieved a commection: Pool size: @
Z008-11-26 1Z2:29:15 DEBUG zen.DbConnectionPool: Returned a comnection: Pool size: 1
2008-11-26 12:29:15 INFO zen.Zenfictions: Running echo " UP Last time 2008,11.26 12:03:38.000 First time 2008,11,26 12:00:50.0
00 Count 3 0a0000833781a8f2ffc3ccd Pa00OOB33781af?8f fbeccd zenoss.skills-1st.co.uk This is bad news 2 “ >> stmpsemdoutput
2008-11-26 12:29:15 DEBUG zen.ZenActions: DELETE FROM alert_state WHERE evid='0a0000833781aBf2ffc3ccd’ AND userid="" AN
D rule="writeFile’
2008-11-26 12:29:15 DEBUG zen.DbConnectionPool: Retrieved a commection: Pool size: @
2008-11-26 12:29:15 DEBUG zen.DbConnectionPool: Returned a commection: Pool size: 1
2008-11-26 12:29:15 DEBUG zen.ZenAictions: SELECT clear .dedupid,clear.evid,clear.device,clear.conponent,clear.eventClass,clear.
eventKey,clear .sunmary,clear.message,clear .severity,clear.eventState,clear.eventClassKey,clear .eventGroup,clear.stateChange.cl
ear.firstTime,clear.lastTime,clear.count,clear.prodState,clear.suppid,clear.manager,clear.agent,clear.DeviceClass,clear.Locati
on,clear.3ystems,clear.DeviceGroups,clear. ipAddress,clear.facility,clear.priority,clear.ntevid,clear.ouwnerid,clear.clearid,cle
ar.DevicePriority,clear.eventClassMapping,clear.monitor FROM history clear, history event WHERE clear.evid = event.clearid
AND event.evid = ’0a0000833781aba9ffcOccd’
2008-11-26 12:29:15 DEBUG zen.DbConnectionPool: Retrieved a comnection: Pool size: ©
Z008-11-26 1Z2:29:15 DEBUG zen.DbConnectionPool: Returned a comnection: Pool size: 1
2008-11-26 12:29:16 INFO zen.Zenfictions: Running echo " UP Last time 2008,11.26 12:12:25.000 First time 2008-11,26 12:12:25.0
00 Count 1 0a0e00833781aba9ffcOccd Pa00OOB33781af?8ffbeccd zenoss.skills-1st.co.uk This is bad news 3 “ >> stmpsemdoutput
2008-11-26 12:29:16 DEBUG zen.ZenActions: DELETE FROM alert_state WHERE evid='0a0000833781aba9f fcOccd’ AND userid="" AN
D rule="writeFile’
||2008-11-26 1Z2:29:16 DEBUG zen.DhConnectionPool: Retrieved a comnection: Pool size: @

[EIEEE)

-

-

Figure 42: zenactions.log showing clearing event commands

zenactions.log should show:

72

e SELECT statements retrieving data from status and history databases

© Skills 1st Ltd 13 December 2010

e An echo command for each cleared event

e A “DELETE FROM alert-state” statement for each cleared event ,which is
effectively clearing the duplicates flag for the writeFile command for each
event

Interestingly, inspecting the output file generated by the event command, shows that
the event firstTime, lastTime and count fields are available to event commands (unlike
during the event mapping process), since the “goodnews” lines that are output include
the correct values for the duplicated event. This is perfectly reasonable as
zenactions.log is showing that the information is actually queried from the MySQL
status and history database tables.

73 © Skills 1st Ltd 13 December 2010

10 Events, Alerts & Production Status

10.1 Alerting rules for email and paging

Zenoss provides two standard mechanisms for reporting events to users — email and
paging. These are setup on a per-user basis. The mailserver / pageserver host
parameters need to be defined once for a Zenoss system. Use the left-hand Settings
menu to configure parameters for a mail server.

admin__ Prefere

Zen0ss Core

Settings Commands Users ZenPacks Menus Portlets Daemons Versions Backups

Main Views

rd State at time: 2008/11/26 17:55:23
Event SMTP Host smtp.ourshack.com
y SMTP Port (usually 25) |25
ce List
SMTF Username (blank for none) Islbjc
SMTP Password (blank for none) I*”‘***”‘*

From Address for Emails I
Classes

= Use TLS? I
Page Command I$ZENHOME/bir1fzensnpp lo
Dashboard Production State Threshold IIOOO

Processes Dashboard Priority Threshold |2

Figure 43: Setting up a mailserver destination for the Zenoss system

Note that this configuration is generic for the whole Zenoss system,for sending emails;
individual users also need configuration to receive emails or page alerts. User
parameters can either be configured from the left-hand Settings menu, and select the
Users tab; or, use the Preferences link at the top-right of the Zenoss GUI.

Zen @ SS Core

A

Administered Objects Event Views Alerting Rules

ard State at time: 2008/11/26 17:59:55

t Password
IREL Manager 1~
t Roles ZenManager |
ZenUser =1
|
Groups =
|#
Classes Email ane, curry@skills- 1st.co.uk test
(=i Pager
Default Page Size 40
Default Admin Role ZenUser j
Pre 5 Default Admin Level i
Netwark Map Start Object group-100-r1
Browse By
Event Console Refresh On True =/
= Save |
L

F ire 44: Configuring email destination address for each user

Note that there is a handy Test button alongside the email address.

74 © Skills 1st Ltd 13 December 2010

Alerting rules are also configured on a per-user basis to determine what events to
alert on, how to alert and when to alert. The alerting rules use the same filtering
mechanism as Event Commands to decide which events should generate alerts.

To setup alerting rules, navigate to a user's Preferences page and select the Alerting
Rules tab. Use the dropdown table menu to Add Alerting Rules and provide a name.

ZenNnQsS Core

/ZenUsers /admin /Alerting Rules /jc_email

Main Views

Delay (secs) Enabled True j

Action il = Address (optional)

Plain Text alse Repeat Time (secs)

Send clear messages
Where

P Addressldoes not contain ¥| |1723

Production State m Production
Severity | >= j m
Event State m New
sdd fiter [<]

Save |

Browse By

Systems

igure 45: Defining method and filters for Alerting Rules

Note that if the email address field is left blank, the address configured in the user's
Preferences page will be used.

Emails can be delayed for a period after an event has occurred and the alert can be
repeated, if required.

The bottom half of the Alerting Rules Edit panel defines what events generate alerts; it
is very similar to the filters seen in Event Commands. A combination of filters can be

applied to determine whether an Alert is sent, or not. As with Event Commands, filters
are logically ANDed.

The Message tab defines the content of the email to be sent. The message format is a
Python format string with useful advice at the bottom of the panel as to what fields are
available for substitution. The screenshot below is the default.

75 © Skills 1st Ltd 13 December 2010

ZenOSssS Core .

C Help
/ZenUsers /admin /Alerting Rules /jc_email Snoss server time: 18:33;14

Main Views Schedule

oard State at time: 2008/11/26 18:26:30

Event Message (or Subject)

= I[zenoss] %(device)s Y%(summary)s
List Body
i Time: %(firstTime)s

M Message:

%o(message)s

= Acknowledge

Delete

Device Events

Clear Message (or Subject)

I[zemoss] CLEAR: %(device)s %(clearOrEventSummary)s
Clear Body

Event: '%(summary)s'

Cleared by: '%(clearSummary)s'
\At: %(clearFirstTime)s

Device: %(device)s
Compenent: %(component)s

Messaae:

Save |

Message Format is a python format string. Fields are specified as %(fieldname)s. The list of fields available in the event database is: dedupid, evid, device,
component, eventClass, eventkey, summary, message, severity, eventState, eventClassKey, eventGroup, stateChange, firstTime, lastTime, count,
prodState, suppid, manager, agent, DeviceClass, Location, Systems, DeviceGroups, ipAddress, facility, priority, ntevid, ownerid, clearid, DevicePriority,
eventClassMapping, monitor.,

]

igu 46: The message configuration of an email alert

Note that in the above screenshot, the Body message has further lines above that detail
the Device, Component and Severity, similar to those lines seen in the Clear Body panel.

The Schedule tab can be used to restrict when alerts should be active. By default, they
are always active.

Ze N k;_) SS Core

J/ZenUsers /admin /jc_email /manage /prime

Modifications

State at time: 2009/01/19 10:48:27

Name prime

Enabled Im
Start [1172872008 select |[08 ~[[45 -]
Duration IU— Days IQ— Hours IUU— Minutes
Repeat |Every Weekday ~|

Save |

Figure 47: Alerting rule schedule example

Alerts are generated by the same zenactions daemon that runs Event Commands.

10.2 Other alerting possibilities

Although Zenoss only provides for email and paging out-of-the-box, it is perfectly
possible to craft other alerting mechanisms using Event Commands. For example, an
Event Command could be used to drive an SNMP TRAP script, passing parameters from

76 © Skills 1st Ltd 13 December 2010

the Zenoss event in TRAP varbinds, to a higher-level SNMP manager. Here is a simple
TRAP generation example:

) jane@bino:~ - Shell - Konsole <3> = e e

Session Edit View Bookmarks Settings Help

#t-binsbash -

Generate a sample trap

Send trap using the snmptrap supplied with net-snmp

Trap here is Enterprise 1.3.6.1.4.1.124, trap 1000

Ensure you change the line for MANAGER to be your Zenoss Server

This script is intended for use with Zenoss Event Commands to
forward an event to an SHNMP TRAP management system

It expects 3 parameters from the Zenoss Event Command script:
Device

Component

Meszage

The device will be used in the host field of the TRAP

The component and message will be varbinds 1 and 2 respectively

Uncomment next line for extra debugging

Teet —x

MANAGER=zenoss .skills-1st.co.uk
HOST=""51"
ENTERPRISE=.1.3.6.1.4.1.124
GENTRAP=6
SPECTRAP=1000
TRAPVAR1=.1.3.6.1.4.1.124.0.1000.1
TRAPVARZ=.1.3.6.1.4.1.124.0.1000.2
UARBIND1="Component is $2"
UARBINDZ="Message is 53"
TIMESTAMP=1
1
susr-sbinssnmptrap —uv 1 -c public SMANAGER SENTERPRISE SHOST SGENTRAP SSPECTRAFP STIMESTAMP
)
STRAPVARL s “SUARBIND1™
STRAPVUARZ = “SUARBINDZ"
1

“gen_alert_trap.sh" 35L, 981C written 18,1 a1l |~

(o] | = Shell

==}

Figure 48: gen_alert_trap script to generate SNMP TRAP with event parameters

The script is then driven by a Zenoss Event Command:

77 © Skills 1st Ltd 13 December 2010

ZenosSsS’ Core
a /ZenEventManager /Event Commands /gen_alert_trap er time: 10:31:05

Main Views

vard State at time: 2008/11/27 10:30:46
rue v

Enabled
Default Comman d Timeou t (secs) 0

Delay (secs)

nnnnn

home/jane/gen_alert_trap.sh ${evt/device} ${evt/component} "${evt/message}"

Browse By

Systems

\Where

Event Class I begins with j I_/Ski\ls

Add filter -

VERERTINEGL | | Save |

Add Device

Fiure 49: Zenoss Event Command to drive SNMP TRAP script

10.3 The effect of device Production Status

The Production Status of a device can be used to control different management
aspects of a system. Production Status for a device is configured in the Edit tab of a
device's home page.

Chapter 8 of the Version 2.4 Zenoss Administration Guide describes the different
Production States and the effect that these have. Three different types of “management”
are defined:

e Monitoring ping polling and event generation
e Alerting generating alerts (emails, pagers, event commands)
e Dashboard whether to include in the Device Issues portlet

In practise, anything to do with alerting, including event commands, is controlled by the
filters in the alerting rule or the event command. If no Production State filter is
configured in the alerting rule or event command, then the alert / command will run, by
default.

A device Production Status of Production will result in events contributing to the Device
Issues portlet of the Zenoss Dashboard and in IP monitoring taking place. Alerts will be
generated and event commands will be executed if their filters permit.

A production Status of Decommissioned should result in IP monitoring ceasing; hence,
all events will cease and no alerts will be generated. The device will not be recorded in
the Dashboard Device Issues portlet. Note that the overall Status icon on a device's
Status page will turn green ! If the device is already down when the status is set to
Decommissioned then you should see existing “Interface down” messages cleared to
History by a clearing event whose message is “No longer testing device ...”.

78 © Skills 1st Ltd 13 December 2010

Any Production Status other than Production will result in the device not being
included on the Dashboard Device Issues portlet.

The Production State of a device can be changed automatically to allow for maintenance
windows. This is achieved from a device's status page — select More from the table

dropdown menu and Administration. Maintenance windows are displayed; they can be
modified, added and deleted.

The example below shows the maintenance window for a backup system that only runs
for about 3 hours at night, between 23:45 and 3:00. From 3:00, for 20 hours and 50
minutes, it is moved to a Production Status of Original , which for this machine is
defined as Decommissioned . Thus monitoring, events and alerts are only generated
during the few hours that this backup system is up.

ZenQss’ Core

./ | [Devices /Server /Linux /blue-atlas.skills-1st.co.uk /manage /blue-atlas_maint Zenoss server time: 11:11:58

Status Modifications

Name blue-atlas_maint
Enabled lm
Start psr13r2008 select |03 |00 -
Duration IU—Days 20 Hours |50 Minutes
Repeat | Daily |
Start Production State Maintenance j
Stop Production State Original j
Save |

Figure 50: Maintenance schedule for machine that only runs from 23:45 until 3:00

Note that maintenance schedules can also be applied to device class hierarchies; they do
not have to be applied to specific devices.

11 Conclusions

Zenoss has an extensive event system capable of receiving events from Windows, syslogs
and SNMP TRAPs, in addition to receiving the events generated internally by Zenoss's
own discovery, availability and performance monitoring.

A large number of event classes are defined and configured when Zenoss is installed.
These can be modified, removed or added to.

An event follows a fairly complex event life cycle process whereby it is mapped to an
event class and then, optionally, it is transformed such that default fields of the event
can be changed and user-defined fields can be created.

Event mapping for events from Windows, syslogs or SNMP, depends on the initial
Zenoss parsing daemon delivering an eventClassKey field which must correspond to a
defined mapping. Subsequently, a Python Rule and/or a Python Regex can be used to
further distinguish between incoming events and map to different event classes.

79 © Skills 1st Ltd 13 December 2010

An event class includes event context — zEventAction, zEventSeverity and
zEventClearClasses — which can be applied to individual subclasses of events or to class
hierarchies. This means transforms can be affected by event type.

Device context is also applied to an incoming event; device context includes the
prodState, Location, DeviceClass, DeviceGroups and Systems field values. Device
context provides the ability for transforms to take account of the device or device class
hierarchy.

Event transforms can be simple assignment of event fields or can include complex
Python programs. A good environment for testing Python is the zendmd command line
utility. Transforms and/or the event context can be used to help clear events that have
been resolved. Any event with a severity of Cleared will automatically clear other
similar events; zEventClearClasses can be used to list extra classes that are cleared in
addition.

Events are saved in the MySQL events database. By default, events go to the status
table; when they are cleared, they are moved to the history table.

When events occur, alerts can be generated using email or a paging system;
alternatively, any script can be run on the Zenoss system, as an event command.

As with any enterprise management system, Zenoss has the tools to configure almost
any response to any event.

80 © Skills 1st Ltd 13 December 2010

12 Appendix A zendmd commands useful with events

zendmd is a utility supplied by Zenoss which provides a Python shell environment with

access to the Zenoss object database (ZEO). This can be useful, especially for testing
event mapping transforms.

zendmd should be run as the Zenoss user. Command recall (up-arrow key) is available
and extremely useful.

Note that Python is very particular about line indentation; some syntax requires extra
indentation (for example the body of a for loop). It does not matter how many spaces are
used but the number must be consistent for the whole of that body.

e Print all event class mapping instances for an event class, Skills :

print dmd.Events.Skills.instances.objectIds()

e Print all events with their event id:

print dmd.ZenEventManager.getEventList ()

e Print all event classes:
for ec in dmd.Events.getSubOrganizers() :

print ec.getOrganizerName ()

e Print all event classes (not event class mappings) that have transforms:
for ec in dmd.Events.getSubOrganizers() :
if ec.transform:

print ec.getOrganizerName ()

e Setup the variable evt to point to an existing event. This is an extremely useful
testing technique!

o From an Event Console, bring up details for an event. Copy the event id.
evt=dmd.ZenEventManager.getEventDetailFromStatusOrHistory (“<paste id>")
print evt.summary

print evt. details

e Print all attribute / value pairs for an event. This includes user-defined event
fields in the _details field and also the fields for event zProperties (again with
attribute names prefaced with an underscore (eg. _action). Note that this
command does not show methods for evt, only attributes. Note the syntax around
“dict” below, is 2 underscores before and after. Also note the line has 2 dots in it
and a colon on the end!

for key,value in evt. dict .items():

print key,value

e Print attributes and methods for an event. Note that the “x=" line could be
omitted and the print line have “x” substituted by getattr(evt,attr)

81 © Skills 1st Ltd 13 December 2010

82

for attr in dir (evt):
x=getattr (evt,attr)
print attr,x
Print a list of the data for an event, the details for an event and the fields of an
event:
print evt.getEventData()
print evt.getEventDetails ()
print evt.getEventFields ()
Two different ways to get attributes from an event. The latter will return a null
string if the attribute is missing:
evt.<attribute>

getattr (evt, <attribute>, '') Note - 2 single quotes before
)

If things get horribly messed up, try:
dmd.Events.reIndex ()

commit ()

© Skills 1st Ltd 13 December 2010

References

. Zenoss network, systems and application monitoring - http:/www.zenoss.com/

. Zenoss Administration Guide http://www.zenoss.com/community/docs

1
2
3. Zenoss Developer's Guide http:/www.zenoss.com/community/docs
4

. Zenoss Frequently Asked questions (FAQs) -
http:/www.zenoss.com/community/docs/fags/fag-english/

ot

Zenoss HowTos - http://www.zenoss.com/community/docs/howtos

6. Zenoss wiki - http:/www.zenoss.com/community/wiki

7. For documentation on Zenoss functionality, the ZEO object database and Zope. try
http://www.zenoss.com/community/docs/zenoss-api-docs/2.1/

8. “Zenoss Core Network and System Monitoring” by Michael Badger, published by
PACKT Publishing, June 2008, ISBN 978-1-847194-28-2 .

9. SNMP Requests For Comment (RFCs) - http:/www.ietf.org/rfc.html

10. V1 - RFCs 1155, 1157, 1212, 1213, 1215
11. V2 - RFCs 2578, 2579, 2580, 3416, 3417, 3418
12. V3 — RFCs 2578-2580, 3416-18, 3411, 3412, 3413, 3414, 3415

13.As a general Python reference, try “Learning Python” by Mark Lutz, published by
O'Reilly

14. SNMP Host Resources MIB, RFC s 1514 and 2790 - http:/www.ietf.org/rfc.html

15.For information on TALES expressions, see
http://www.zope.org/Documentation/Books/ZopeBook/2 6Edition/AppendixC.stx

16.For information on Python regular expressions, see http://www.python.org/doc/2.5.2/lib/re-
syntax.html and http:/docs.python.org/dev/howto/regex.html

17.For the extension SNMP MIB from Informant, go to
http://www.wtcs.org/informant/index.htm

18. Good sites to look for Cisco MIBs and their prerequisites are:
o http:/tools.cisco.com/Support/SNMP/
o ftp:/ftp-sj.cisco.com/pub/mibs/ including V1 versions of V2 SNMP MIBs

19.Zenoss ZenPack site for the MIB Browser ZenPack -
http://www.zenoss.com/community/projects/zenpacks/mib-browser

20.Datagram Syslog Client http:/syslogserver.com for syslog Windows systems.

21.Raddle network emulation open source package - http://raddle.sourceforge.net/

22.“Zenoss Event Management Workshop” available from Skills 1st Ltd,
http:/www.skills-1st.co.uk/products/courses/

83 © Skills 1st Ltd 13 December 2010

http://www.skills-1st.co.uk/products/courses/
http://raddle.sourceforge.net/
http://syslogserver.com/
http://www.zenoss.com/community/projects/zenpacks/mib-browser
ftp://ftp-sj.cisco.com/pub/mibs/
http://tools.cisco.com/Support/SNMP/
http://www.wtcs.org/informant/index.htm
http://docs.python.org/dev/howto/regex.html
http://www.python.org/doc/2.5.2/lib/re-syntax.html
http://www.python.org/doc/2.5.2/lib/re-syntax.html
http://www.zope.org/Documentation/Books/ZopeBook/2_6Edition/AppendixC.stx
http://www.ietf.org/rfc.html
http://www.ietf.org/rfc.html
http://www.zenoss.com/community/docs/zenoss-api-docs/2.1/
http://www.zenoss.com/community/wiki
http://www.zenoss.com/community/docs/howtos
http://www.zenoss.com/community/docs/faqs/faq-english/
http://www.zenoss.com/community/docs
http://www.zenoss.com/community/docs
http://www.zenoss.com/

About the author

Jane Curry has been a network and systems management technical consultant and
trainer for 25 years. During her 11 years working for IBM she fulfilled both pre-sales
and consultancy roles spanning the full range of IBM's SystemView products prior to
1996 and then, when IBM bought Tivoli, she specialised in the systems management
products of Distributed Monitoring & IBM Tivoli Monitoring (ITM), the network
management product, Tivoli NetView and the problem management product Tivoli
Enterprise Console (TEC). All are based around the Tivoli Framework architecture.

Since 1997 Jane has been an independent businesswoman working with many
companies, both large and small, commercial and public sector, delivering Tivoli
consultancy and training. Over the last 5 years her work has been more involved with
Open Source offerings.

84 © Skills 1st Ltd 13 December 2010

	1 Introduction
	2 Zenoss event architecture
	2.1 Event Console
	2.2 Event database tables and the Event Manager
	2.3 Event life cycle
	2.3.1 Event generation
	2.3.2 Application of device context
	2.3.3 Event class mapping
	2.3.4 Application of event context
	2.3.5 Event transforms
	2.3.6 Database insertions
	2.3.7 Resolution
	2.3.8 Ageing out events

	3 Events generated by Zenoss
	3.1 zenping
	3.2 zenstatus
	3.3 zenwin
	3.4 zenprocess
	3.5 zenperfsnmp
	3.6 Availability monitoring daemons and device status pages

	4 Syslog events
	4.1 Configuring syslog.conf and syslog-ng.conf
	4.2 Zenoss processing of syslog messages

	5 Zenoss processing of Windows event logs
	6 Event Mapping
	6.1 Working with event classes and event mappings
	6.2 Rules in event mappings
	6.3 Regex in event mappings
	6.4 Other elements of event mappings

	7 Event transforms
	7.1 Using zendmd to run Python commands
	7.1.1 Referencing an existing Zenoss event for use in zendmd
	7.1.2 Using zendmd to understand event attributes
	7.1.3 Using zendmd to understand event methods

	7.2 Transform examples
	7.2.1 Combining user defined fields from Regex with transform
	7.2.2 Applying event and device context in relation to transforms

	8 Zenoss and SNMP
	8.1 SNMP introduction
	8.2 Zenoss SNMP architecture
	8.2.1 The zentrap daemon

	8.3 Interpreting MIBs
	8.3.1 zenmib example
	8.3.2 A few comments on importing MIBs with Zenoss

	8.4 The MIB browser ZenPack
	8.5 Mapping SNMP events
	8.5.1 SNMP event mapping example

	9 Event Commands
	9.1 Creating event commands
	9.2 Debugging event commands

	10 Events, Alerts & Production Status
	10.1 Alerting rules for email and paging
	10.2 Other alerting possibilities
	10.3 The effect of device Production Status

	11 Conclusions
	12 Appendix A zendmd commands useful with events

