Integration between Zenoss and

IBM Tivoli Enterprise Console (TEC)
Draft

January 2010
Jane Curry
Skills 1st Ltd

www.sKills-1st.co.uk

Jane Curry
Skills 1st Ltd
2 Cedar Chase
Taplow
Maidenhead
SL6 OEU
01628 782565

jane.curry@skills-1st.co.uk

http://www.skills-1st.co.uk/
mailto:jane.curry@skills-1st.co.uk

Synopsis

This paper discusses the integration of events from Zenoss to IBM's Tivoli
Enterprise Console (TEC).

Zenoss is an open source systems and network management offering that first
became available in 2006. It provides discovery, availability monitoring,
performance management, reporting and events, for networking devices such
as routers and switches, and for Unix / Linux / Windows servers.

IBM's Tivoli Enterprise Console is a mature product that dates from the early
1990s; IBM is encouraging customers to replace TEC with their more recent
Netcool/OMNIbus but there are a great number of organisations still using
TEC and any integration technique into TEC can also be accommodated by
Netcool/OMNTIbus.

The paper is not intended as a full exposition of either Zenoss or TEC but it
does include sufficient discussion of their respective architectures to allow a
reasonable understanding of the integration techniques.

The paper focuses on forwarding events from Zenoss to TEC. It would be
possible to create a solution to send events from TEC to Zenoss, using SNMP
TRAPs, but event flow in this direction seems less likely for most
organisations.

This paper was written using Zenoss Core 2.5.1 and TEC 3.9 Fixpack 4.

Notations

Throughout this exercise guide, text to be typed or menu options to be selected
will be highlighted by italics. Important points to take note of will be shown in
bold.

2 Zenoss / TEC Integration 29 Jan 2010

Table of Contents

1 INErodUCtION. ...t e e e e et e e e e e e e e 4
2 Zenoss event architecture.............ccccoeiiiiiiiciiiiieee e 6
2.1 Event reCeption.........ccieiiiiiiiiiiiieee e e e e e e e eeas 6
2.2 Event classes iN ZENO0SS.........cceeeivuiiiiieeeeeeeeiiiiiteeeeeeeeeesssvrraeeseseessssnssnnnnns 6
2.3 Processing evVents iN ZENOSS.........uuuuuuuuuuuuunuureuinnineeieiiaeeeeerrsnnaeeeesessnaaaessens 7
2.4 Automation associated with events...........cccccveiiiiiiiiiiiiiiiiiiie 9
2.5 Detecting duplicate events.........ccooeeeeeeeeeeeeiieiieeeeeecceeee e 10
2.6 Clearing @VENTS........uuiiiiiiiiiieiiiiiiiiieeee e e e eeecirrree e e e e e e essearrreeeeeeeesesssnnranaanes 10
2.7 Events database..........ccueeiiiiiiiiiiiiiiiiieee et 11
2.8 Zenoss Event Console...........ooovviiiiiiiiiiiiiiiiieeeeieeeeeeeeeeeeeeeeeeeeeeeee e 11
2.9 Generating test events with Zenoss........ccoeeeeeeeeeeeeieiiiiiiiieeeeeeeeeeeeeeeeeeeee, 12

3 TEC archit@Cture..........uuuueuiiiiiiiiiiiee e e e e eeaaneeeeeeeennnns 14
B 000 B D73 o L8 =T 01 (0 o WO PP 14
3.2 TEC CLASSES. .. uuetiiieieeeeeiiieieeee e e eeeettee e e e e e e e e e eaareeeeeeeeeessnsasaseeeesssesesnnes 15
3.3 Processing TEC events.........cccccoeeiiiiiiiiiiieeeeeeeeeeeeeeee, 17
3.4 Detecting duplicate events with TEC..............cccooviiiiiiieee e, 17
3.5 Clearing @VENtS.......cccccoiiieeiceccce s 18
3.6 TEC 1ulebases.......cccoiiiiiiiiiiiiiiiieee ettt e e e e e e e e e e e e eeeaees 19
3.7 The TEC events database...........ccccuveeeeiiiiiiiiiiiiiiieeeee e 21
3.8 The TEC Event Console...........coooviiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeee e eeaa s 21

4 Forwarding events from Zenoss to TEC.............cccccciiiiiiiiiiiee, 23
4.1 Elements of the SOIUtion.............euviiiiiiiiiiiiiiiiiiiee e e e e eeees 23
4.2 Generic TEC configuration..............cccccoiiiiiiiiiiiiiieeeeeee e, 23
4.3 Zenoss / TEC configuration using an event command...............cccceenn.ee. 23
4.3.1 TEC configuration..............cccccciiiiiiiiiiiiiieeeeeee, 24
4.3.2 7Zenoss configuration.........ccccceevvvviiiviiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeee e eeens 25
4.3.3 Testing the event command solution.............................. 27
4.3.4 Debugging hints...........coovvvviiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeee e 28

4.4 Zenoss / TEC configuration using a page alert............ccccovveiiiiiiiiieennnn. 29
4.4.1 TEC configuration..............ccccceiiiiiiiiiiiiiiieeeeeeeeeeeeeee, 30
4.4.2 Zenoss configuration...........ccccoeeeeeiiiiiiiiicec e, 35
4.4.3 Testing the page SolUution........ccceevviiiiiiiiiiiiiiiiee e 38

B CONCIUSIONS. ...ccciiiiiiiieeee ettt e e e e et e e e e e e e e e aarare e e e eesaaaennaaaeaeeeaeas 43

29 Jan 2010 © Skills 1st Ltd 3

1 Introduction

» <«

There are many different solutions to “monitor” and “manage”, “systems” and
“networks”. The quotation marks are deliberate. Different organisation may
have very different definitions for each. For the purposes of this paper,
“networks” are defined as devices such as:

routers
switches
firewalls
UPS devices

Anything that can be ping'ed is a potential candidate for some level of
management and the availability of a Simple Network Management Protocol
(SNMP) agent greatly enhances the manageability of a device.

“Systems” span an even wider domain but would certainly include:
Unix
Linux
Windows

Again, anything ping'able can be managed to a certain extent. The presence of
an SNMP agent, Secure Shell (ssh), the Windows Management
Instrumentation (WMI) interface for Windows systems, or other open or
proprietary agents on the target, will greatly increase its manageability.

The extent of “management” depends on an organisation's requirements. It
may include:

Discovery, perhaps with a network topology diagram
Inventory, perhaps in a Configuration Management Database (CMDB)

Availability monitoring — ping, SNMP, port-sniffing, process
checking, ...

Problem management — receiving, processing and reacting to events
Performance monitoring, thresholding, graphing and reporting
Configuration management

Zenoss provides a single package that delivers all these features, other than
configuration management. IBM offers a more modular solution such as:

IBM Tivoli Monitoring (ITM) for systems management

NetView (old product) or IBM Tivoli Network Management (ITNM)
(new product) for network management

4 Zenoss / TEC Integration 29 Jan 2010

Tivoli Enterprise Console (TEC) (old product) or Netcool/OMNIbus (new
product) for problem management

Tivoli Common Reporting (TCR) for reporting and graphing

Tivoli Configuration Manager (TCM) (old product) or Tivoli Provisioning
Manager (TPM) (new product) for configuration management

One major difference between the two suppliers is that the IBM solution relies
on deploying proprietary agents for most of their products, whereas Zenoss
assumes the presence of “native” agents as part of the target Operating
System; for example, an SNMP agent, WMI on a Windows system, syslog on
Unix / Linux machines. There are advantages and disadvantages to both
approaches. The proprietary agent potentially offers more control but suffers
from the management overhead of distributing and maintaining the IBM
agents and ensuring that they “play nicely together”.

This paper is only going to examine problem management; strictly, the
forwarding of events from Zenoss to TEC. Fundamentally, both solutions
offer:

Native event generation

Capture and transformation from the native format to TEC / Zenoss
format

Processing of the event which may include changing the incoming event
or relating it to other events

Detecting “duplicate” events

Automatic action in response to an event

Storage of the event in a database (relational in both cases)
Closing events

An event console

29 Jan 2010 © Skills 1st Ltd 5

2 Zenoss event architecture

The Zenoss event architecture has elements to receive events, process events
and display events.

2.1 Event reception

Zenoss has a number of ways of collecting events. Some are generated
internally by Zenoss itself when an availability monitoring daemon detects a
problem, as shown in Table 2.1.

Zenoss daemon Example of when event generated
zenping ping failure on interface
zendisc new device discovered
zenstatus TCP service unavailable
zZenprocess process unavailable
zenwin Windows service failed
zenperfsnmp SNMP performance data collection threshold / failure
zencommand ssh command detected a problem

Table 2.1.: Events generated by Zenoss itself

Zenoss also has three daemons specifically for collecting and interpreting
events from external devices. The Zenoss daemons accept native events using
well-known ports and then reformats the event to the Zenoss event format.

Zenoss daemon Example of when event generated
zensyslog processes syslog events received on UDP/514 (default)
zeneventlog processes Windows events received using WMI

(TCP/135, 139 & 445 and others)
zentrap processes SNMP TRAPSs received on UDP/162

Table 2.2.: External events captured by specialised Zenoss daemons

2.2 Event classes in Zenoss

An event received from an external source is processed through several
different mechanisms to assign it to an event class, which is the primary
event field that determines what transforms will be applied to the event and
what automations may take place.

The types of events that Zenoss can process are organised in an object-oriented
hierarchy where subclasses of an event class inherit the characteristics of their
parent. For example, the Zenoss event class /Archive has the zEventAction

6 Zenoss / TEC Integration 29 Jan 2010

zProperty set to history; this means that all events of this class and any
subclasses will automatically be sent to the history table of the events
database. Similarly, there is an event class of /Ignore whose zEventAction is
set to drop; all events matching this class and its subclasses will be dropped
on reception and not stored in the events database.

Zenoss ships with a large number of predefined classes which can be easily
modified or augmented. The class definitions are held in Zenoss's Zope Object
Database (ZODB) which is the configuration management database (CMDB)
used for all Zenoss configuration information (Zenoss is built on the python-
based Zope web application server).

2.3 Processing events in Zenoss

Event processing can range from simple substitution of an event field such as
the summary, through to complex programs, written in Python. Such
transforms can be applied to a specific type of external event as a Mapping
Transform, and to all events of a particular class and its subclasses (Class
Transform).

The default fields of a Zenoss event are shown in Figure 1 below.

29 Jan 2010 © Skills 1st Ltd

@ http:lizenoss:8080 - Event: 0a00008337aba’e7e368ce5 - Mozilla Firefc |_ O | x|

Fields Details Log

Field Value

dedupid zenoss.skills-1st.co.uk|sshd|[|5]PAM audit_log_acct_message() failed: Operation
not permitted

ewvid 0a00008337abale7e368ceS

device zenoss.skills-1st.co.uk

component sshd

eventClass funknown

eventkey

summary PAM audit_log_acct_message() failed: Operation not permitted

message FAM audit_log_acct message() failed: Operation not permitted

severity 5

eventState 1

eventClasskey sshd

eventGroup syslog

stateChange 2009/01/14 16:05:04.000

firstTime 2009/01/07 11:30:47.000

lastTime 2009/01/14 09:06:01.000

count 2

prodState 1000

suppid

manager localhost

agent zensyslog

DeviceClass [fServer/Linux

Location [Cedar_Chase

Systems |

DeviceGroups |

ipAddress 10.0.0.131

facility authpriv

priority 2

ntewvid 0

ownerid admin

clearid

DevicePriarity 3

eventClassMapping

monitar localhost

_————————————————————————————————

Done P Adblock

Figure 1: Default Zenoss event fields

Figure 2 shows the Zenoss event architecture upto the point where a new
event is inserted into the events database,

8 Zenoss / TEC Integration 29 Jan 2010

Zenoss Event Architecture

Event Generation Device Mapping Event Database
(internal) context context Iransform insertion
eventClass $ZENHOME/ProductsiZenEvents
- \ component " EventClass.py
Zenping | Device [_ £| EventClassinst.py
r Context | i) MySqlSendEvent.py
prodState ZEventAction [© I stateChange
(| focaton | prevemcicssed TLET 1 i
| DeviceGroups ZEventSeverity | g | eventState
| < count
Zenprocess o ol > I I firstTime
P Event |, lastTime
Context l eventClassMapping
zenwin
: A ——
zenperfsnmp ~ ! Slls
/ Regex Drﬂfw I)
event [—
eventClass -
N .< > detall
zensyslog Se—
a history
| zeneventlog I y >
eventClassKey = ~—
com ponent 25 . events
message ol
_ facility g
Event Generation priority =
(external) ntevid
[m] o]

Figure 2: Zenoss event architecture

Since Zenoss builds its own network topology of the devices it discovers, it is
able to automatically suppress events from devices behind a single point of
failure. It will also suppress higher-level monitoring events from a specific
device if lower-level monitoring has failed. For example, if the SNMP agent is
down then process monitoring events (which rely on SNMP) will be
suppressed. If a device does not respond to ping (that is configured to respond
to ping), then all higher-level events will be suppressed.

2.4 Automation associated with events

Automatic actions associated with an incoming event are executed
asynchronously by Zenoss's zenactions daemon, which runs every minute by
default. There are two different types of action:

« Alerts email or paging, executed per user or group

- Event commands any shellscript (which could run perl,

python, ...)

Both mechanisms have the same extensive filtering capability to determine
what events will actually generate alerts or run event commands, and whether

29 Jan 2010 © Skills 1st Ltd

a corresponding alert / command should be executed when an event clears.
Fields from the event can be passed to the alert / command.

The alert_state table of the events database ensures that a configured action
only runs on the first occurrence of an event and not when duplicate events are
received.

2.5 Detecting duplicate events

Zenoss will automatically detect duplicate events, based on the following fields
being the same:

device

component

eventClass

eventKey

severity

summary (only if eventKey is blank)

Duplicate events are automatically dropped and the initial event has its count
field incremented and its lastTime field updated.

2.6 Clearing events

Events can be cleared (moved to the history table of the events database) by
several different mechanisms:

The event context of an event class, configured by the zEventAction
zProperty, can be defaulted to history (as described in the above
example for events of class /Archive).

An event transform, executed when the event is first processed, can
override the default event context by setting evt._action = history

There is a built-in clearing mechanism in Zenoss whereby any incoming
event with a severity of Clear will clear any other event in the status
table of the events database, which has the following fields the same:

o eventClass
o device
o component

This automatic clearing mechanism can be extended so that a clear
severity event also clears events with other specified eventClass fields
(provided the device and component fields are also the same).
Implementation is through the zEventClearClasses event context
zProperty, or in a transform by setting evt._clearClasses .

10 Zenoss / TEC Integration 29 Jan 2010

- Events can be manually cleared by a user through the Event Console

« The Zenoss Event Manager can be configured to automatically clear
events of a certain severity after a given length of time. By default,
events that are not of severity Critical or Error are automatically
cleared after 4 hours.

2.7 Events database

Events are held in a MySQL database, called events, the main tables of which

are:
- status for active events
« history for closed events
« detail for user-defined event fields
- alert_state for detecting whether an alert has
already been generated for a duplicate
event

2.8 Zenoss Event Console

The AJAX-based Zenoss Graphical User Interface offers an Event Console
which provides several different views of the status and history event database
tables. Users can view all events, events specific to a device, or all instances of
a particular event class. By default, active events are shown; a link at the
bottom left will switch to viewing cleared events in the history table.

Zer‘@SS Core

JEvents | Event Console

Views —L— 22

SNMP agent down 2010-01-2113:35:14 2010-01 -ES 123317

threshold of high cul ue 11520 2010-01-2517:38:08 2010-01-2517:43:05
threshold of high ue 12531 2010-01-2512:43:02 2010-01-2517:43:04 21 group-1 .clas
threshold of high utilization ed: cul ue 11526 2010-01-2517:38:03 2010-01-25 17:43:04 FastFthernet1/0 group-100-r3.clas:

threshold of high utiliz: ed: cu ue 11526 2010-01-2517:38:03 2010-01-25 17:43:04 1 100-r3.clas

threshold of high utiliz: eded: cu ue 12470 2010-01-2512:43:02 2010-01-25 17:38:08 roup-100-s.clas
threshold of high utilization exceeded: current value 12436 2010-01-2512:53:03 2010-01-25 17:38:08 roup-100-s1.clas

F igre 3: Zenoss Event Console

Double-clicking on an event results in a separate window displaying all fields
of the event.

29 Jan 2010 © Skills 1st Ltd 11

2.9 Generating test events with Zenoss

When configuring events within Zenoss it is necessary to be able to generate
test events to exercise any new configuration. The Event Console GUI
provides a simple dialogue using the + icon seen at the top of Figure 3. You
are prompted for the following fields for an event:

« Summary

« Device

- Component

« Severity

- Event Class Key
- Event Class

For repetitive testing, the command line interface, zensendevent is more
appropriate:

Q Jane@zenoss....de/zenoss/zenpacks - Shell - Konsole <2

Session Edit View Bookmarks Settings Help

zenossBlzenoss /usrslocal/zenoss/zenossslocal> zensendevent -help
usage: zensendevent [options] summary

options:
~h, —help show this help message and exit
—d DEVICE, —-device=DEVICE
device from which this event is sent, default:
zenoss.class.exanple.ory
—i IPADDRESS, —-ipAddress=IPADDRESS
Ip from which this event was sent, default:
-y EVENTKEY, ——eventkey=EVENTKEY
eventKey to be used, default:
—p COMPONENT, ——component=COMPONENT
component from which this event is sent, default:
-k EVENTICLASSKEY, ——eventclasskey=EVENTCLASSKEY
eventClassKey for this event, default:
-s SEVERITY, —-—severity=SEVERITY
severity of this event: Critical, Error, Warn, Info,
Debug, Clear
—-c EVENTCLASS, ——eventclass=EVENTCLAS3S
event class for this event, default:

)

)

rr

——nonitor=MONITOR nonitor from which this event came
——port=PORT xmlrpc server port, default: 8081
——server=3SERVER xmlrpc server, default: localhost
——auth=AUTH xmlrpc server auth, default: admin:zenoss

-o OTHER, ——other=0THER
Specify other event_filed=value arguments. Can be
specified more than once.
-f INPUT_FILE, —file=INPUT_FILE
Import euvents from XML file.
-u Show the event data sent to Zenoss.
zenossBzenoss D usrslocal-zenoss- zenoss/local>

Figure_4: Usage for zensendevent

Note that any command line Zenoss work should always be performed as the
zenoss user. This user is created when Zenoss is installed but logins are
disabled so the usual procedure is to su to root and then su to zenoss:

12 Zenoss / TEC Integration 29 Jan 2010

su and provide the root password

SuU — Zenoss

zensendevent -d zenoss.class.exanple.org -s Critical -k badnews -p TestConp This is bad
news 1

For much greater detail on Zenoss event architecture, get the paper “Zenoss
Event Management” from http:/www.skills-

1st.co.uk/papers/jane/zenoss event management paper.pdf.

29 Jan 2010 © Skills 1st Ltd

13

http://www.skills-1st.co.uk/papers/jane/zenoss_event_management_paper.pdf
http://www.skills-1st.co.uk/papers/jane/zenoss_event_management_paper.pdf

3 TEC architecture

There are many similarities between the Zenoss event architecture and TEC.
Both have event reception, event processing, automatic actions and an event
console, and both keep their events in a relational database. Both use an
object-oriented hierarchy of event classes to define event types.

TEC Architecture
TEC Server

TEC Adapters / Master | Task
/ uiserver 1o TEC
ava
C |

Lodfile / ‘17 onsole

/ , / Dispatch
SNMP Reception

Engine Rules Rulebase
wpostemsg - Engine | ltec_cLASSES

_ TEC_RULES
, r TEC_TEMPLATES

Reception Rules .rbtargets
IBM Tivoli Buffer Cache EventServer
Monitoring

Framework RDBMS Interface Module (RIM) J

RDBMS
(DB2, Oracle, Event |
Sybase) repository
e —-—

Figure 5: TEC architecture

3.1 Event reception

Event reception is handled by TEC Adapters. These are proprietary agents
that are installed on target devices, typically one per application type. A TEC
adapter must:

Detect a native event
Format that event into a TEC format event
Forward the event to the TEC Server (also known as the Event Server)

IBM provides a large number of TEC adapters to interface with most of their
products, plus some generic adapters to collect events from Windows, Unix

14 Zenoss / TEC Integration 29 Jan 2010

syslogs (and indeed any textual file) and SNMP. Although these TEC adapters
need to be installed and maintained the IBM Tivoli Framework provides a
very simple, scalable method for deployment.

Some adapters forward events over the network using Tivoli Framework
communication protocols (TME or secure adapters); other adapters are built
as non-TME or non-secure — they simply use a TCP socket pairing of <IP
address> plus <port>. Strictly, TME events are received at the Event Server
by the master, tec_server process which forwards them to the reception
engine; non-TME events are received directly by the reception engine. In
order to use TME adapters, a device must have the Tivoli Framework endpoint
code installed.

IBM provides two “one-line TEC adapters” - a command line to generate either
a TME or non-TME event. These are wpostemsg (or wpostzmsg) for TME
events and postemsg (or postzmsg) for non-TME events. The format for each
is very similar, the difference being that the non-TME variant requires a -f
<configuration file> parameter which specifies at least the IP address and
receiving port of the Event Server. This configuration file can also contain any
other legal parameter for a TEC adapter configuration file — see the TEC
Adapters Guide for a full list. The syntax for postemsg is:

postensg —f config file [—m message] [—r severity] [attribute =value...]
cl ass source

Any event can be constructed using multiple attribute=value elements. The
postemsg command must have the event class as the next-to-last parameter
and the event source as the final parameter. The source field specifies the

type of adapter that the event emanated from; examples would include
LOGFILE, NV6K and SNMP.

postemsg is a standalone binary that is shipped with TEC for various different
architectures (such as Windows, Linux, AIX, ...). It has no other requirements
other than TCP/IP communications.

The (w)postemsg commands are often used to generate test events when
verifying Event Server configurations.

3.2 TEC classes

All TEC events inherit from the base event (called EVENT) which is defined
in root.baroc. The base event is shown below:

29 Jan 2010 © Skills 1st Ltd 15

TEC_CLASS
EVENT

DEFI NES {

END

server _handl e:

date_reception:

event handl e:
sour ce:
sub_sour ce:
origin:
sub_origin:
host nane:
adapt er _host:
dat e:

st at us:

adm ni strator:
acl :

credibility:
severity:
nsg:
nsg_cat al og:
nmsg_i ndex:
durati on:

num acti ons:
repeat _count:

cause_date_reception:
cause_event handl e:

server _pat h:

}s

Figure 6: The TEC Base Event, called EVENT

| NTEGER, parse = no;

I NT32, parse = no;

| NTEGER, parse = no;

STRI NG,

STRI NG,

STRI NG,

STRI NG,

STRI NG,

STRI NG,

STRI NG,

STATUS, def aul t =OPEN,

STRING parse = no;

LI ST_OF STRI NG
default = [admi n],
parse = no;

| NTEGER, default = 1, parse = no;

SEVERI TY, default = WARNI NG
STRI NG,

STRI NG,

| NTEGER;

| NTEGER, parse = no;

| NTEGER, parse = no;

| NTEGER;

I NT32, parse = no;

| NTEGER, parse = no;
LI ST_OF STRI NG

As with Zenoss, a hierarchy of event classes is constructed where event
subclasses inherit the characteristics of their parent class. Classes must be
defined before they can be used; they are written in the TEC BAROC (BAsic

Recorder of Objects In C) language and must be in a file with a .baroc suffix.

Typically, there is a baroc file for each TEC adapter type, plus some local class

configuration files.

16

Zenoss / TEC Integration

29 Jan 2010

3.3 Processing TEC events

The central TEC Server is generally implemented on a dedicated machine and
consists of a number of separate processes. Typically the TEC relational
database will also be installed on the same system.

It is the function of the TEC reception engine to receive events and ensure that
they match a defined TEC class. The wtdumprl command can be used to
display all events that arrive at the reception engine, even if they are
discarded at this stage. This is a very useful debugging command.

Once an event is accepted, it moves to the rules engine. The rules engine is
configured by one or more rules files (that must have a .rls extension).
Typically each TEC adapter will come with a rules file; an organisation may
well also write their own rules files. These files may contain rules either in
the TEC rules meta-language or in Prolog (the native language of TEC). An
event under analysis will be compared against all rules in the rulebase and
any event transformations or actions will be executed. Simple primitive
actions (such as modifying the msg attribute) will be executed by the TEC
dispatch engine; long-running actions such as scripts or Tivoli Tasks will be
run asynchronously by the TEC task engine.

Thus there is a fairly close analogy between Zenoss transforms and TEC rules
processed by the dispatch engine, which make “simple” modifications to an
event, and between Zenoss's zenactions daemon and the TEC rules processed
by the task engine which implement script-based automation.

3.4 Detecting duplicate events with TEC

TEC uses a combination of information held in the class .baroc files and TEC
rules to detect duplicate events. This makes TEC more flexible but more effort
to configure. A duplicate event is defined as an event with the same event
class, plus all event attributes with the dup_detect facet set in a .baroc file,
must also be the same. For example, here is an entry in a file called
zenoss.baroc:

TEC _CLASS :
Zenoss_Base | SA EVENT
DEFI NES {
source: defaul t= "ZENCSS";
sub_source: dup_detect=yes;
sub_origin: dup_detect=yes;
adapter _host: default= "N A",
nmsg_cat al og: default= "none";
nmsg_i ndex: default= 0;
repeat _count: defaul t= 0;
severity: default = WARNI NG dup_det ect =yes;
host nane: dup_det ect =yes;

29 Jan 2010 © Skills 1st Ltd 17

END

The class Zenoss_Base inherits all the characteristics of the base event,
EVENT. The sub_source, sub_origin, hostname and severity attributes (that
all exist in the base event) have an overriding definition here that sets the
dup_detect facet.

These class definitions alone, do nothing. There must also be a rules file that
looks for duplicate events and acts on them. Typically, such a rule would add
to the repeat_count attribute of the original event and drop the duplicate
event.

rule: filter_duplicate_zenoss: (
description: 'Filter duplicates for Zenoss events',
event: event of class 'Zenoss_ Base',
action: filter: (
first _duplicate(_event, event: _dup_ev
where [
status: outside ['CLOSED]

]1
_event - 600 - 600),

add _to_repeat _count(_dup_ev, 1),
drop_recei ved_event

)
).
This rule checks the event under analysis for a class of Zenoss_Base. If the
event is of this class, the events database is searched for a duplicate event,
that does not have a status of CLOSED, within the last 600 seconds. If an
event is found in the database, it's repeat_count attribute is incremented and
the event under analysis is dropped.

3.5 Clearing events

Closed or cleared events have a totally different architecture in TEC and
Zenoss.

TEC has a status attribute in the base event; it can take values of OPEN,
ACK, RESPONSE and CLOSED. Zenoss events do have a status field but
this takes the values of New (0), Acknowledged (1) and Suppressed (2) —
there is no Closed (Suppressed is typically used to hide events from devices
behind a single-point-of-failure) .

Zenoss has a separate history table in the RDBMS database for closed events.
TEC has a single table, the event repository, for all events that have been
received and processed; closed events are simply denoted by their status
attribute.

18 Zenoss / TEC Integration 29 Jan 2010

TEC has no automatic, built-in clearing rules as Zenoss does; however there
are a number of different methods for closing events.

It is possible, though unusual, for a TEC adapter to send an event to the
Event Server, with a status of CLOSED.

A simple TEC rule could set the status attribute of any specified event
to CLOSED.

TEC has a rule primitive that allows the TEC database to be searched
for “associated” events. The primitive will then create a link between a
causal event and an effect event. A subsequent rule may then be
activated by a “good news” event which closes the earlier causal event
and searches the database for associated effect events, and closes those
too. This is rather analogous to the Zenoss zEventClearClasses event
context zProperty but the TEC mechanism is potentially more flexible
(although it requires more effort to code).

Events can be manually cleared by a user through the TEC Event
Console

The TEC Server product includes a number of ruleset files including
cleanup.rls which, by default, automatically closes events of severity
HARMLESS or UNKNOWN after 48 hours.

3.6 TEC rulebases

All acceptable events and the rules to process those events, are defined on the

Event Server in a directory hierarchy of files, known as a rulebase. An Event
Server may have several different rulebases defined but only one will be active
at any given time. A rulebase has the following directory structure:

TEC_CLASSES files that define event classes and subclasses.

Subscript is .baroc .
TEC_RULES files containing event processing rules. Subscript is
xls.

TEC-TEMPLATES compiled Prolog files containing primitives

rbtargets/EventServer Note the dot at the beginning! This directory
contains a copy of the TEC_CLASSES, TEC_RULES and
TEC_TEMPLATES directories and is what the Event Server is actually
loaded from (there used to be the possibility of other types of Event
Server but this is now deprecated).

A strict process must be adhered to when manipulating a rulebase. Source
files for a rulebase should be held in a working directory outside the base
rulebase directory. Baroc files and rulebase files are then imported in to a

29 Jan 2010 © Skills 1st Ltd 19

rulebase and compiled. Once compilation is successful, the rules are
imported on to the EventServer rulebase target. The rulebase is then loaded
and, if the baroc files have changed at all, or a new rules file has been added,
then the Event Server must be stopped and restarted.

As an example, assume a rulebase called myrulebase already exists with a
home directory of /usr/local / Tivoli /| TEC _rb/myrulebase. A new baroc file,
zenoss.baroc, and a rules file, zenoss.rls, are to be added to the existing
rulebase. These source files are in /usr/local / Tivoli | TEC_rb / sources.

cd /usr/local/Tivoli/TEC rb/sources

W srb -d shows existing rulebases & directories

w scurrb shows the rulebase currently loaded

wrb -inprbclass zenoss. baroc nyrul ebase imports baroc file into
myrulebase

wb -inmprbrule zenoss.rls nyrul ebase imports rules file into
myrulebase

wb -inmptgtrul e zenoss Event Server nyrul ebase imports a rules file to
the EventServer
target. Note no .rls suffix
here.

wrb -conprul es nyrul ebase compile the rulebase

wb -loadrb nyrul ebase load the rulebase

wst opesvr stop the Event Server

wst art esvr start the Event Server

Sometimes it is helpful to run extra wrb — comprules commands to check that
no errors have yet been introduced. Note that baroc files must be imported
before any rules files which make use of classes defined in those baroc files.

If something goes wrong, again a strict procedure should be followed to remove
offending files and reimport them. If class baroc files need to be edited, then
any dependent rules files must also be removed first. Thus, the procedure
would be:

wb -deltgtrul e zenoss Event Server nyrul ebase Remove the rules file

from the EventServer
target. Note no

.rls suffix.
wb -delrbrule zenoss myrul ebase Remove the rules file from the
rulebase. Note no .rls suffix.

wrb -delrbcl ass zenoss. baroc nyrul ebase Remove the baroc file from the
rulebase. Note presence
of .baroc suffix.

20 Zenoss / TEC Integration 29 Jan 2010

3.7 The TEC events database

TEC uses a relational database to store events; the RDBMS can be DB/2,
Oracle or Sybase. Strictly, TEC accesses the underlying database through the
RDBMS Interface Module (RIM) of the Tivoli Framework (which is a pre-
requisite before installing a TEC Server).

TEC uses the database to store many configuration aspects of TEC, in addition
to the actual events. The database is usually called tec and the main tables
for holding events are:

Reception log records all events reaching the reception
engine
Event repository holds all processed events

3.8 The TEC Event Console

The TEC Event Console is a Java application that can present event
information at three levels of detail:

Summary of event groups
Detailed events, one line per event, for a particular event group
Detailed information including all event attributes, for a specific event

Event groups is the technique for assigning an event to one or more
categories for the purpose of the TEC Console graphical user interface; event
groups have no effect on event processing; simply their display to users.

From the Summary, click on the bar representing events in an event group, to
get to the details of that group. Note that the detailed window is divided into
two halves. The top half (the Working Queue) is where operators should focus.
Events selected here can then be manipulated using the buttons in the middle
of the display — Close, Acknowledge and Details (to get to the fine detail of
a selected event), are the common choices.

29 Jan 2010 © Skills 1st Ltd 21

Edit Windows Help

Click on 2 bar to display its Event Viewer

elected Automated Tasks Help
Working Queue
InO_netview- A
[Blanl [J= FELT
.'.)|A + Time Retew...' Event Type | Class | Hostname | Severity S(alusl Message Repeat c..
Zenoss: 26/0171021:42 Other Zenoss_Base zenoss.class. example.org Open This is bad news 200 1
26/01/1021:03 Other 0Oserv_Graceful_Exit ting [Harmiess Open oserv exited gracefully 0
26/01/10 21:03 Other TEC_ITM_OM_Situation_s. Warning “Communication with the Tivoli Enterpris... 0
Bunknown|| 56j01/1021:03 Other TEC_ITM_OM _Situation_S. Warning Open *Communication with the Tivoli Enterpris... O
None DOHarmiess| 26/01/10 21:02 Other TEC_ITM_OM_Shuation 5. Warning Open "Communication with the Tivoli Enterpris... ©
Clwarning 26/01/1021:03 Other EC_ITM_OM_Situation_s. Warhing Open *Communication with the Tivoli Enterpris... O
CMinor 26/01/10 21:02 Other TEC Stant tino |Harfiless | Open TEC Event Senver initialized 4
Mcritical
LOGFILE Braa
[t
Al
0 1 2 3 4 H [7
dy. Q

| @ | ‘ UnixPing ‘ UnixReOpen | | WinPing | Adknowledge Close ‘ ‘ Details Information
4 D
All Events
Time Received | Eve.. | Class | Hostname | severity [star.| Message [Repeatc.. |
6/0L/10 21,02 Other TEC.Start tino Open TEC Evemt Sanver mialized o -
26/01/10 21:03 Other TEC_ITM_ Warning Open "Communication with the Trvoll EVterprise Mo... 0
26/01/10 21.03 _ Other TECITM_ Warning __ Open _*Communication with the Tivoli Enterprise Mo... & =

Figure 7: TEC Console showing summary of Event Groups and details for a specific Event Group

The TEC Console is populated by retrieving data from the event repository
table in the database. The UI Server process, which is normally installed with
the Event Server, provides authorized access between the TEC Console and
the events.

22 Zenoss / TEC Integration 29 Jan 2010

4 Forwarding events from Zenoss to TEC

4.1 Elements of the solution

Zenoss has two possible mechanisms for forwarding events to TEC:
Event command, run by zenactions
Alert, run by zenactions
Either way, TEC's standalone postemsg utility will drive the communication.

On TEC, a baroc file will be required to interpret event classes from Zenoss
and a rules file would be useful to help detect duplicate events and to correlate
“good news” events with “bad news” events.

4.2 Generic TEC configuration

Zenoss will use TEC's postemsg command to forward an event to TEC. This
requires a TEC class parameter and a TEC source parameter. The source
specifies the type of TEC Adapter that generated the event. By convention,
TEC sources use uppercase. To use TEC command-line commands, a user will
need to be configured as a Tivoli Administrator with the Senior role for
TEC related areas.

To create the ZENOSS source, with a label of Zenoss, use:
wertsrc -1 Zenoss ZENGOSS

To facilitate categorizing events for the TEC Console GUI, Event Groups can
be created and assigned to a user's Console configuration. To create a new
event group called Zenoss, add a filter to it called ZENFILTER to include all
events where source=ZENOSS, and then list all event groups:

wconsol e -crteg -n Zenoss -D “Description of Zenoss event group”

wconsol e -addegflt -E Zenoss -n ZENFILTER -D “Desc” -S “source =
ZENCSS”

weconsol e -1 seg
Assume that a TEC Console definition already exists for Tivoli user Jane. To
assign the new event group Zenoss to this user, with senior, admin and user
roles:

weconsol e -assigneg -C Jane -E Zenoss -r senior: adm n: user

Any TEC Console that is open during this configuration, must be restarted
before the changes are seen.

4.3 Zenoss /| TEC configuration using an event command

The example developed in this section uses a simple command called directly
from the event command interface. It demonstrates substituting some fields

from the Zenoss event into the postemsg command, using TALES expressions
(Template Attribute Language Expression Syntax). The alerting solution

29 Jan 2010 © Skills 1st Ltd 23

presented in the next section uses a more complex intermediate script to
perform extra processing; it would be perfectly possible to do something
similar for an event command.

4.3.1 TEC configuration

This example incurs minimal configuration on the TEC Server. A single new
event class, Zenoss_Base, will be created which has no new attributes. Existing
attributes of the base event will be used to pass relevant Zenoss event fields.

Zenoss Event Field TEC Event Attribute
evid sub_origin
device hostname
ipAddress origin
summary msg
component sub_source

Table 4.1: Mapping of Zenoss event fields to TEC class attributes

In addition to these field / attribute mappings, the severity TEC attribute will
be coded as the literal “WARNING” and the adapter_host attribute will be
the literal “zenoss.class.example.org” (the Zenoss server). The source in the
postemsg command will be the new ZENOSS source and the TEC class will be
Zenoss_Base, which needs defining in a TEC baroc file on the TEC Server.

TEC_CLASS :
Zenoss_Base | SA EVENT
DEFI NES {
source: defaul t= "ZENOSS";
sub_source: dup_detect =yes;
sub_origin: dup_detect=yes;
adapter _host: default= "N A";
nmsg_catal og: default= "none";
nmsg_i ndex: default= 0;
repeat _count: default= O0;
severity: default = WARNI NG dup_detect =yes;
host name: dup_det ect =yes;
s
END
Figure 8: zenoss.baroc containing the Zenoss_Base class

Note in Figure 8 that the sub_source, sub_origin, hostname and severity
attributes have had the dup_detect facet set for Zenoss_Base, in addition to
some default values being set for other attributes. This potentially allows TEC

24 Zenoss / TEC Integration 29 Jan 2010

to detect duplicate events based on events whose class is Zenoss_Base and
whose original evid, component, device and severity fields are the same.

4.3.2 Zenoss configuration

Event commands are configured in the Zenoss GUI from the left-hand Event
Manager menu, by opening the Commands tab. To create a new command,
type a unique name (t0o7ec) in the box at the bottom of the screen and click
Add. Once the command shows in the list, click on its name to edit it.

Zen @SS @e]as , R

Main Views
State at time: 2010/01/29 10:52:03

Enabled [True ~|
[Default Command Timeout (secs) IGO—
Delay (secs) 0
Repeat Time (secs) 0

[Command

IZenEventManager /[Event Commands itoTec Zenoss server time: 12:52:26

lusrflocalizenoss/zenossiocalpostemsa -f /usrocalizenoss/zenoss/localtecint. conf -+ WARNING -m "${evsummary} hostname=3${evi/device} origin=${devmanagelp}
sub_source=${evt‘component} sub_origin=${ew/evid} adapter_host="zenoss.class.example.org" Zenoss_Base ZENOSS

Clear Command [

Browse By

[Where

Event Class | begins with j| /Skills/Badnews j E]

Add Ti\terl ~
Agent

Component s I

Device

Count [

Device Class
Device Groups
Device Priority
Event Class
Event Class Key
Event Key
Event State
Facility

IP Address
Location
Manager
Message
ntevid

Owner Id
Priority

Figure 9: Editing the toTec Event Command

Do take note of the Enabled field at the top of the configuration screen! The
dialogue allows you to type any shell command. There is also an area for
running a command when an event is cleared to the history table of the Zenoss
events database.

The bottom area of the dialogue allows for filters which can very closely define
what events will trigger a command. Multiple filters are logically AND'ed. If
a logical OR is required then a separate event command should be created
with the same command and the alternative filter(s). Any standard field of a
Zenoss event can be employed in a filter. The filter used here checks for the
eventClass field beginning with /Skills/Badnews.

The postemsg binaries should be available on the TEC EIF disk or image,
under EIFSDK/bin/<architecture>. Copy the appropriate architecture binary

29 Jan 2010 © Skills 1st Ltd 25

to the Zenoss system. The $ZENHOME environment variable is setup as part
of the zenoss user's environment; for SuSE, this is /usr/local /zenoss/zenoss.
A convenient practice is to create a subdirectory, local, under $ZENHOME for
locally-created Zenoss utilities.

The configuration file required by postemsg only mandates entries for the
resolvable name or IP address of the TEC Server (ServerLocation) and the port
that the reception engine listens on (ServerPort). A TEC Server implemented
on a Unix platform usually uses portmapper to allocate the port so ServerPort
takes a zero value; the default port for a Windows-based TEC is 5529.

ServerLocation=tino.skills-1st.co. uk

Server Port =0

Buf f er Event s=YES

Buf Evt Pat h=/ usr/ | ocal / zenoss/ zenoss/ | ocal / t eci nt. cache

Figure 10: /usr/local | zenoss [zenoss [local | tecint.conf configuration file for postemsg

In addition to the mandatory parameters, the example above ensures that
events are cached if the TEC Server cannot be contacted, in
/usr/local | zenoss [zenoss [local [tecint.cache.

Remember that the syntax for the TEC postemsg command is:

postenmsg —f config file [—mmessage] [—-r severity] [attribute =value...] class
source

In the event command shown in Figure 9, a fixed class of Zenoss_Base is used
and the final source parameter is ZENOSS.

Event fields from the Zenoss event are substituted into the postemsg command
using space-separated <tec_attribute_name> = <value> pairs.

Many attributes of both the event and the device that caused the event are
available for substitution using TALES expressions. These are documented in
the Zenoss Administration Guide, Appendix E. The syntax for substitution is:
${evt/<field>} for exanple ${evt/eventd ass}
or
${dev/<attribute>} for exanple ${dev/snnpContact}
Literal strings can also be used as attribute values — ensure that any strings
with spaces are enclosed in double quotes.

The complete postemsg command to be used in the event command (all on one
line) will be:

/usr/local /zenoss/ zenoss/ | ocal / postensg -f
/usr/local/zenoss/ zenoss/local /tecint.conf -r WARNING -m " $
{evt/summary}" hostnane=%${evt/devi ce} origi n=${dev/ managel p}
sub_sour ce=${evt/conponent} sub_origi n=${evt/evi d}

adapt er _host ="zenoss. cl ass. exanpl e. org" Zenoss_Base ZENOSS

26 Zenoss / TEC Integration 29 Jan 2010

Once an event command has been saved, nothing else is required to activate it.
zenactions runs every 60 seconds by default and will compare all New status
events in the status table of the events database, against all enabled write
commands. This means that when new event commands are created they will
be activated against all existing, old, open events (which can be a bit of a
surprise!). It can also be a large load on the Zenoss system. Judicious use of
filters in the event command should prevent debilitating action storms.

zenactions logs in the alert_state table of the events database when an action
has been run for an event. It uses this table to ensure that actions are not run
for duplicate events and also to help the clearing logic when a “good news”
event clears a previous “bad news” event.

4.3.3 Testing the event command solution

To drive the event command, the following zensendevent command was used
on the Zenoss system, as the zenoss user:

zensendevent -d zenoss.class.exanple.org -s Critical -k badnews -p TestConp This is bad
news 301

The event appears in the Zenoss Event Console as shown in Figure 11.

Zenoss Core R —

Figure 11: Bad news event in the Zenoss Event Console with detailed event displayed

IDevices /Server /Linux /zenoss.class.example.org / Event Console Zenoss server time: 11520

Status | 05 | Hardware | Software Events

Yol e oo

Status Severity = Event Class i iﬁﬂﬂld First Seen nn Seen mnm
LI]

LAST UPDATED AT 11:58:56AM

0 | This is bad news 301 W <)

[SkillsBadnews Thisis bi 2010-01-2911:49:10 2010-01-2911:49:10 1 priority -1 1

DeviceGlass /Server/Linux

Unknowin

snmptrz 2010-01-2911:49:39 2010-01-2911:49:39 1 eventstate 0

evid 61c9d05e-1950-48db-b4a6-3d603fd 174

Kills/B:

component TestComp
clearid
Deﬁ:aﬁmups |
eventGroup
device zenoss class. example.org
severity 5
count 1

ntevid 0

Event History... DISPLAYING 1- 3 OF 3 EVENTS summary This is bad news 301

The Zenoss event is forwarded to TEC by the toTECZenoss event command.

29 Jan 2010 © Skills 1st Ltd 27

Edit Windows Help

tino_netwiew

Zennss:

MNone:

LOGFILE:

Al

File Edit Options Selected Automated Tasks Help

= S

Working Queue

Total: 1 Selected: 0

.Oln + Time Reteiv...l Event Type |

Class

Hostname | Severity |Slalus|

Message

| Repeat C.. |

28j01j10 11:48 Other

Zenoss_Base

zenoss. class.example.org Warning Open This is bad news 301

Open Warning Zenoss_Base event received on 29/01/10 11:49.

Attribute List

+ Autribute Name

Attribute Value

acl [admin]

adapter_host 2enoss.class.example.org

atioh

ladministrator

JE]

o 4 B 12 16 20 24 2

4 cause_date_receptn o
cause_event_handle 0

= - class Zenoss_Base
Time Received | Eve.. | Class | Hosthame credibility o

28f01f10 15:55 Other
26/01/10 16:00 Other
28/01f10 16:00 Other
28/01j10 16:05 Qther

Zennss_Ba.
Zennss_Ba.
Zenoss_Ba...
enoss_Ba... zenoss.cla:

zenoss. class. example. org
zenhoss.class. example. org
zehogs.class. example. org

aexample.org

Jan 29 11:43:05 2010

clate_event EL :
dlate_reception 1264765745
curation [t}

event_hndl 1

-

zenoss.class.example.org

[v] Show Base Attributes

[Display Formatted Names and Val...

Flgure 12: Bad news event in the Zenoss event group in the TEC Console

1264765746
[y This is bad news 301
fnone
o
o
127.0.0.2
repeat_count o
senver_hindl 1
severity [WARNING
source ZENCSS
status OFEN 7
sub_arigin 61c90058-1950-48dh-h4a6-3 060370 |
sub_source

[v] Show Extended Attributes

Each of the Zenoss event fields has been passed to the relevant TEC
attributes. Note that the default setting in the TEC detailed event window is
to tick the Display Formatted Names and Values box. This results in “user-
friendly” event attribute names which sometimes do not match the actual
attribute names in a TEC baroc file. It is recommended that this box be
unchecked so that the baroc-defined names are displayed.

4.3.4 Debugging hints

The Zenoss event command is run by the zenactions daemon. An excellent
debugging aid is to monitor ZENHOME /log / zenactions.log. The default,
Info, level of debugging is usually adequate but it can be turned up to Debug
level, if required — use the left-hand Settings menu and the Daemons tab to
view and edit daemon options and to restart them.

WARNING -m

2010-01-29
2010-01-29
2010-01-29
2010-01-29
2010-01-29
2010-01-29
2010-01-29
2010-01-29

2010-01-29 11 49 36,789 INFO zen.ZenfActions: Running ~usr/localszenoss-zenoss/local/postemsy -f ~usr/locals/zenoss/zenoss/local/tecint.conf —r
"This is bad news 301" hostname=zenoss.class.example.org origin=127.0.0.2 sub_source=TestComp sub_origin=61c9d05e-1950-48db-b4ab—-3d
F03fd17f94 adapter_host="zenoss.class.example.org” Zenoss_Base ZENOSS
ZenfActions: Running echo "DOUN 2010-01-29 11:49:10.000 Z2010-01-29 11:49:10.000 1 zenoss.class.example.org 127

11:
11:
11:
11:
11:
11:
11:
11:

137,
137,
137,
137,
137,
137,
138,
138,

£010-01-29 11:49:37,091
.0.0.2 This is bad news 301 " >>
zen.
zen.
zen.

489
525
580
587
872
861
174
175

INFO

INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO

ZEen.

zen

Zen.
Zen.
ZEen.
Zen.

stnpscndoutput

ZenActions:
ZenfAictions:
ZenActions:
.Zenfictions:
ZenActions:
ZenActions:
ZenfAictions:
ZenActions:

Processed 4
processed 0
Processed 4
processed 0
Processed 4
processed 0
Processed 4
processed 0

comnands in 4.

rules in
comnands
rules in
comnands
rules in
commands
rules in

749600

4.79 secs
in ©.0625907
0.04 secs
in 0.020370
0.03 secs
in 0.168341
0.17 secs

Figure 13: zenactions.log showing 2 actions for an event — the postemsg command & an echo command

28

Zenoss / TEC Integration

29 Jan 2010

Sometimes zenactions seems to “hiccup” when running actions (this is not
particular to postemsg actions). The result is that an action is sometimes run
twice in consecutive zenaction processing intervals. This can mean that a
duplicate event is sent to TEC. Normally this would not be possible — if
zensendevent is used to generate a duplicate event (by Zenoss definitions), it
simply adds to the repeat count of the existing duplicate Zenoss event. Event
commands are not executed for event duplicates so no duplicate should
normally be sent to TEC.

The following figure demonstrates the entry in zenactions.log when a “hiccup”
has occurred when processing the tecSend action (described in the next
section). An error is generated at 16:17:55 but the tecSend runs successfully
at 16:18:55. In practise, the event command is actually run in both intervals,
resulting in the duplicate event at TEC.

Q Jane@zenoss:~ - Shell - Konsole <3>

Session Edit View Bookmarks Settings Help

2010-01-28 16:16:54,634 INFO zen.ZewActions: processed 1 rules in 0.04 secs -
2010-01-28 16:17:54,782 INFO zen.Zenfictions: Rumming ~usr-local-zenoss-zenossrslocalsgen_alert_trap.sh zenoss.class.e
xanple.org TestComp “This is bad news 220"
2010-01-28 16:17:55,008 INFO zen.Zenfictions: Runming echo "DOWH 2010-01.28 16:17:49.000 20100128 16:17:49.000 1 ze
noss.class.example.ory 127.0.0.2 This is bad news 220 " >»> stnp/cndoutput
2010-01-28 16:17:55,054 INFO zen.ZewActions: Processed 3 commands in ©.338521
2010-01-28 16:17:55,169 WARNING zen.Zenfictions: SELECT firstTime,severity,evid,component,summary,device,nessage, ipAd
dress,severity,summary,ownerid,stateChange, evid FROM status WHERE (prodState = 1000) and (eventState = 0) and (even
tClass like '~Skills/Badneusx') AND evid MOT IN (SELECT evid FROM alert_state WHERE userid="tec’ AND rule='tecSen
[
2010-01-28 16:17:55,172 ERROR zen.ZenActions: action:tecSend
Traceback (most recent call last):
File “susr/locals/zenoss/zenoss/Products/ZenEuentsszenactions.py"”, line 244, in processRules
self.processEvent(zem, ar, actfunc)
File “rusrslocal-zenoss/zenoss/Products/ZenEuents-/zenactions.py”, line 293, in processEvent
if action(context, data, False):
File “rusrslocalszenoss/zenoss/Products/ZenEuents/zenactions.py"”, line 662, in sendPage
self.dmd . pageCommand)
File “rusr-locals/zenoss/zenoss/Products/ZenlUtils/Utils.py"”, line 693, in sendPage
response = p.stdout.read()
I0Error: [Errno 41 Interrupted system call
2010-01-28 16:17:55,175 INFO zen.ZenActions: processed 1 rules in 0.47 secs
2010-01-28 16:18:55,204 INFO zen.ZewActions: Processed 3 commands in 0.019657
2010-01-28 16:18:55,335 INFO zen.ZewActions: sent page to 12345: severity=4 sub_source=121f65e6-2bZa—4866-bla?-b0OBES
Pelcc3b msg="This is bad news 220" hostname=zenoss.class.example.org origin= sub_origin=TestComp
Z010-01-28 16:18:55,364 INFO zen.Zenfictions: processed 1 rules in 0.19 secs

||] Shell

Figure 14: zenactions.log showing "hiccup” when running the tecSend action

§3040,1 98 |«

-

4.4 Zenoss /| TEC configuration using a page alert

This sample solution extends some of the ideas in the event command scenario
to perform more complex event mapping between Zenoss and TEC. It uses the
Zenoss Page alert mechanism to generate postemsg commands. Clearing
events will be forwarded to TEC as well as “bad news” events.

On TEC, a ruleset is developed to detect duplicate events and to ensure “good
news” events close “bad news” events.

29 Jan 2010 © Skills 1st Ltd 29

4.4.1 TEC configuration

The following table shows the proposed mapping between Zenoss event fields
and TEC event attributes. The fields marked with an asterisk denote new
attributes that do not exist in the TEC base event.

Zenoss Event TEC Event
eventClass zEventClass *
evid zEvid *
component zComponent *
device hostname
ipAddress origin
summary msg
severity severity

Table 4.2: Mapping Zenoss event fields to TEC event attributes

In addition to mapping fields, severity definitions are different between Zenoss
and TEC so the following conversion will be used:

Zenoss severity TEC severity
Critical (5) (red) FATAL (black)
Error (4) (orange) CRITICAL (red)
Warn (3) (yellow) WARNING (yellow)
Info (2) (blue) UNKNOWN (blue)
Debug (1) (grey) UNKNOWN (blue)
Clear (0) (green) HARMLESS (green)

Table 4.3: Mapping Zenoss severities to TEC severities (TEC Minor severity not used)

Note that Zenoss severities are actually held in the database as numeric
values. Also note that although the Zenoss Event Console lists Warning as a
status, the Zenoss zensendevent command needs such a severity specified as
Warn. TEC severities are defined as an enumerated type; that is, literal
strings such as WARNING.

On the TEC Server, a new TEC class, Zenoss_sendTec, will be defined in
zenoss.baroc (see Figure 15). This class defaults the adapter_host attribute
to zenoss.class.example.org which means that if the TEC adapter does not
populate this attribute, then the default will be applied by the reception
engine of the Event Server. Three new STRING event attributes are defined:

zEventClass for the original Zenoss class

zEvid for the unique Zenoss event id

30 Zenoss / TEC Integration 29 Jan 2010

zComponent for the Zenoss component field

The only event attributes with the dup_detect facet are zEvid and severity.
This should be adequate since every Zenoss event should have a unique event
id.

Zenoss_sendTec inherits from the base event, as did the earlier Zenoss_Base
event. It is common to build hierarchies of TEC classes for a particular
application, with each subclass inheriting attributes from its parent. To keep
things simpler for this paper, TEC class hierarchies have not been introduced.

See the “TEC Rule Developer's Guide” for more information on class
hierarchies.

29 Jan 2010 © Skills 1st Ltd 31

Base TEC cl ass for Zenoss events

TEC _CLASS :

Zenoss_Base | SA EVENT

DEFI NES {
source: defaul t= "ZENCSS";
sub_source: dup_detect =yes;
sub_origin: dup_detect=yes;
adapter _host: default= "N A";
nsg_catal og: default= "none";
nsg_i ndex: default= 0O;
repeat _count: default= 0;
severity: default = WARNING dup_det ect =yes;
host nanme: dup_det ect =yes;

END

TEC_CLASS :
Zenoss_sendTec | SA EVENT
DEFI NES {
source: defaul t= "ZENCSS';
adapt er _host: default= "zenoss. cl ass. exanpl e. org";
nmsg_cat al og: default= "none";
nmsg_i ndex: default= 0O;
repeat _count: defaul t= 0;
severity: dup_detect=yes;
zEvent d ass: STRI NG,
zEvi d: STRI NG dup_det ect =yes;
zConponent : STRI NG,
b
END

Figure 15: zenoss.baroc class file with Zenoss_sendTec definition

Although strictly, Zenoss should not execute duplicate actions, the “hiccup”
described at the end of section 4.3.4 means that sometimes it does! This
results in duplicate event forwarding to TEC.

The dup_detect facets on the Zenoss_sendTec class definition defines what
attributes have to match, along with the TEC class, in order for TEC to
consider the event a duplicate. An addition, a rule is needed to process such
duplicates — see Figure 16.

The filter_duplicate_zenoss rule checks the event under analysis for a class
of Zenoss_sendTec. If the class matches, the event repository database is
searched for the most recent duplicate event, that is not already CLOSED,
searching back for upto 10 minutes (600 seconds). If a duplicate is found, the

32 Zenoss / TEC Integration 29 Jan 2010

/* zenoss. baroc has dup_detect on Zenoss_sendTec for
zEvid and severity **/

rule: filter_duplicate_zenoss: (
description: 'Filter duplicates for Zenoss events'
event: event of class 'Zenoss_sendTec'
action: filter: (
first _duplicate(_event, event: _dup_ev
where [
status: outside ['CLOSED]
1,

_event - 600 - 600),
add_to_repeat _count (_dup_ev, 1),
drop_recei ved_event

)
).

Figure 16: filter_duplicate_zenoss rule in zenoss.rls

original event has its repeat_count field incremented and the new event is
dropped.

Zenoss has an automatic clearing action whereby an event with a severity of
Clear will automatically clear other events with the same Zenoss eventClass,
device and component fields. TEC doesn't have the same built-in ability but it
is easy enough to code a rule that does this, with the extra flexibility of having
more control of exactly what “good news” event clears which “bad news”
events. See the auto_close_zenoss_bad_with_zenoss_clear rule in Figure 17.

The incoming, event under analysis is checked for a class of Zenoss_sendTec
and a severity of HARMLESS; if these conditions are met, the zEvid field is
collected from the incoming event and a search is made through the event
repository for the most recent event of class Zenoss_sendTec, with status not
equal to CLOSED, with severity not equal to HARMLESS, with the same
zEvid value as the incoming event, searching back through the event
repository for upto 10 minutes.

29 Jan 2010 © Skills 1st Ltd 33

rul e: auto_cl ose_zenoss_bad with zenoss clear: (

description: 'Automatically close Zenoss bad news with Zenoss cl ear
event \

and drop the incom ng good news event \
provi ded bad news event is within 10 nmins (600 secs) of good news \
mat chi ng perforned on zEvid',

event: _event of _class 'Zenoss_sendTec'
where [
zEvid: _zEvid,
severity: equals 'HARMLESS
1,
action:close: (
first_instance(event: _down_ev of class 'Zenoss_sendTec'
where [
status: outside ['CLOSED],
severity: outside ['HARMLESS'],
zEvid: equals _zEvid
1,
_event - 600 - 600),
% Use |ink_effect_to_cause to be able to see closing event
% Not necessary to make | ogi ¢ work
link effect to _cause(_down_ev, _event),

set _event status(_down_ev, 'CLOSED),
set _event status(_event, 'CLOSED)

)

[*** To drop incom ng HARMLESS cl eari ng event, uncoment next l|ines ***/
[*** and add comma at end of previous line after closing round bracket

***/

% action:drop: (
% drop_recei ved_event
%)

).

Figure 17: auto_close_zenoss_bad_with_zenoss_clear rule in zenoss.rls

If such an event is found, it is linked to the incoming event. This is not
necessary to make the closing logic work but does provide extra information.
The historical event (pointed at by the variable _down_ev) is CLOSED and the
incoming event (pointed at by the variable _event) is also CLOSED.

Check back to section 3.6 ,”"TEC rulebases” for details on incorporating
zenoss.baroc and zenoss.rls into an existing rulebase and activating it.z

34 Zenoss / TEC Integration 29 Jan 2010

4.4.2 Zenoss configuration

Event commands can certainly be more complex than the example in the

previous section; however, powerful though the filters are, it would be hard to
establish different rules for forwarding to TEC (or different TECs) at different

times of day.

Zenoss's alerting facility can send email or page a user. There is a single
Zenoss-wide command to send an email or page and then user-specific

Alerting Rules which can include filtering rules (exactly similar to those in

event commands) and a Scheduling option to run different alerting rules at

different times. By default, all alerting rules are run at all times.

Although the default paging command is configured as
$ZENHOVE/ bi n/ zensnpp | ocal host 444 $RECI Pl ENT

this could be changed to almost anything, including a command to drive
postemsg. Use the Settings left-hand menu to configure the global Page

Command (note that in the screenshot below, the command does not quite fit

into the displayable part of the window — the actual command is
$ZENHOME /local | sendTec.sh).

ZenOSss Core

s s s s ‘ersions
State at time: 2010/01/28 20:12:17
SMTP Host mailhub.ourshack.com

ST Part sty o
Network Map [25)

[FZENHOME localisendTec
e 1000

Gi Production 1000
Pre-Production 501
Test400

[t state Conversions [Maintenance 300 I
" Decommissioned-1

Highests
High:4
Normal 3
Priority Conversions Low:2
Lowest 1
Trivial O

[Administrator

Analyst
Engineer

|Adminisirative Roles [Tester

F £:gfure 18: Configuring the global Page Command

Next, configure a Zenoss user called tec, using the Users tab.

29 Jan 2010 © Skills 1st Ltd

35

Device/IP Search

Zen@ss’" Core

iZenUsers ftec Zenoss senver time: 21:13:

Main Views Administered Objects Event Views Alerting Rules
State at time: 2010/01/28 21:13:29
New Password Reset Password
Confirm New Password
Manager ||
Roles ZenManager | |
ZenUser
Groups ops
Emall |
Pager 12345 test
Default Page Size 40
: Default Admin Role Zenuser T S
| Defautt Admin Level 1
[l Browse By
Network Map Start Object
[Enter your password to confirm changes Save

Fzgure 19: Basic parameters for the tec Zenoss user

Note in Figure 19 that a Pager value is given. Although this value is not used
to send postemsg commands, leaving the field blank will result in a
subsequent error. This parameter is passed to the default Page Command as
the SRECIPIENT variable.

The Alerting Rules tab provides extra flexibility, beyond what is available with
event commands. To create a new Alerting Rule, use the table dropdown
menu to Add Alerting Rule and specify a name. Once created, click on the rule
name to edit it.

Device/IP Search

ZenOss Core

IZenUsers ltec JAlerting Rules ftecSend Zenoss server time: 21:17:

Main Views Message Schedule
State at time: 2010/01/28 21:17:17
Delay (secs) Enabled
/Action Address (optional) |
Plain Text Repeat Time (secs) 0
Send clear messages
Where
Event State = H N k| B
Production State |= | Production | E]
- Event Class | begins with || rskins/Badnews | E]
oducts Add fiiter | [
Save

Browse By

Figure 20: Basic parameters for the tec user’s tecSend Alerting Rule

Note that the Action parameter is set to Page in Figure 20. This links to the
global Page Command. Also make sure that the Enabled flag is set correctly.
The bottom part of the dialogue is available for filters in exactly the same way
as event commands. The alert will only be generated if all the following
conditions are true

- This is a New event (not Acknowledged or Suppressed)

- The device that generated the event is in the Production state

36 Zenoss / TEC Integration 29 Jan 2010

« The eventClass begins with /Skills/Badnews

The detail of the Page Command is specified in the Message tab, which is
delivered as stdin to the Page Command subshell.

ZenCsSsS Core

IZenUsers ltec jAlerting Rules itecSend Zenoss server time 21 25

Message
Main Views g Schedule

State at time: 2010/01/28 21:25:02

Message (or Subject)

el severity=%i(severity)s zEventClass=%(eventClass)s zEvid=%(evid)s msg="%(summary)s" hastnam
Clear Message (or Subject)

severity="HARMLESS" zEventClass=%(eventClass)s zEvid=%(evid)s msg="%(summary)s" hostnz

[o{EEETH] Save

Message Format is a python format string. Fields are specified as %(fieldname)s. The list of fields available in the event database is: dedupid, evid, device, component,
eventClass, eventkey, summary, message, severity, eventState, eventClasskey, eventGroup, stateChange, firstTime, lastTime, count, prodState, suppid, manager, agent,
DeviceClass, Location, Systems, DeviceGroups, ipAddress, facility, priority, ntevid, ownerid, clearid, DevicePriority, eventClassMapping, monitor.

Figure 21: Message parameters sent as stdin to the page command

The complete entries are shown below (the screen truncates them in Figure
21). Each entry should all be on one line.

« Message

severity=%severity)s zEvent O ass=% eventC ass)s zEvid=%evid)s
msg="9% sumary)s" host name=% devi ce)s ori gi n=% i pAddress) s
zConponent =% conponent) s

« Clear Message

severity="HARMLESS" zEvent Cl ass=% event C ass)s zEvid=%evid)s
nmeg="9% sumary)s" host name=% devi ce)s ori gi n=% i pAddress) s
zConponent =% conponent) s

Note the useful help at the bottom explaining what fields from the event are
available for substitution.

This dialogue does not use TALES substitution parameters like the event
command; it uses Python string format. Unlike event commands, attributes of
the device that generated the event are not available (unless they also exist as

fields of the event).

This "page” alerting solution relies on using a local script,
$ZENHOME /local | sendTec.sh, which integrates the Message fields into a
postemsg command, as shown in Figure 22.

29 Jan 2010 © Skills 1st Ltd 37

#!/bin/bash
Note tec user must have Pager command filled in with something

It needn't be used but must exist for sendPage method in
#$SZENHOME/Products/ZenUtils/Utils.py

POSTEMSG=/usr/local/zenoss/zenoss/local/postemsg
POSTEMSG_CFG=/usr/local/zenoss/zenoss/local/tecint.conf
TEC_CLASS="Zenoss_sendTec"
TEC_SOURCE=ZENOSS
get alert message parameters from stdin
and convert Zenoss severities to TEC severities, ignoring case
TEC_PARAMS="sed \

-e 's/severity=5/severity="FATAL"/i' \

-e 's/severity=4/severity="CRITICAL"/i' \

-e 's/severity=3/severity="WARNING"/i' \

-e 's/severity=2/severity="UNKNOWN"/i' \

-e 's/severity=1/severity="UNKNOWN"/i' \

-e 's/severity=0/severity="HARMLESS"/i'"

Need output from this script - expected by sendPage method in
#SZENHOME/Products/ZenUtils/Utils.py

echo OK

Need eval on next line or quoting gets messed up and postemsg doesn't run
eval $POSTEMSG -f $POSTEMSG CFG "STEC PARAMS" $TEC_CLASS $TEC SOURCE

Uncomment next lines for debugging

$echo SPOSTEMSG -f $POSTEMSG_CFG "$TEC_PARAMS" $TEC_CLASS $TEC_SOURCE \
> /usr/local/zenoss/zenoss/local/sendTec.out

Figure 22: $Z ENHOME /local | sendTec.sh to drive Zenoss Page Command

4.4.3 Testing the page solution

Before testing the Zenoss page solution, ensure that the event command
solution is disabled and the page action is enabled.

Use a similar zensendevent command as in the previous section to generate
test events:

zensendevent -d w n2003.cl ass.exanple.org -s Critical -k badnews -p TestConp This is bad
news 310

Although this command does not explicitly specify eventClass, a Zenoss event
class mapping populates the eventClass field with /Skills/Badnews, based on
a regular expression (Regex) that matches the summary field with:

This is bad news

38 Zenoss / TEC Integration 29 Jan 2010

Seq

uence zProperties Events

Zenoss senver time:

Modifications

Total Event Count

Event Class Key
Sequence

badnews
1

Rule

Regex

[This is bad news (?P<bad_numa\c+)

Example

This is bad news 1

[Transform

levt.myMappingSummary = "Event class mapping summary "
Explanation

Resolution

+ evt.mySummary

Browse By

Figure 23: Zenoss event class mapping to map to eventClass /Skills/ Badnews

For a much more detailed discussion on Zenoss mapping and transforms, see
“Zenoss Event Management” from

http:/www.skills-1st.co.uk/papers/jane/zenoss event management paper.pdf.

The event should appear in the Zenoss Event Console and in the TEC Console.
Check that the field / attribute mapping has worked correctly.

File Edit Windows Help
= = = = It Options Selected Tasks Help
Click on a bar t| Working Queue
[Oool [[S[TEETS
.0|x + Time Rmiv...| Event Type | Class | Hostname | Severity smus| Message | Repeat E...l
tino_netview: 29/01710 1455 Other Zenoss_sendTec WinZ003 class exar g Open This is bad news 310 o
29/01f10 12:33 Other Zenoss_Base Win2003 claga E arn, Ll = b nees S04
29/01/10 12:39 Other Zenoss_Base zenoss.clasg i S
29/01/10 12:33 Other Zenoss_Base zenass.clas _
Zenoss 39901/10 1148 Other Zenoss_Base enoes clasd Open Fatal Zenoss_sendTec eventreceived on 29/01/10 14:55.
Autribute List |
None + Attribute Name H Attribute Value ‘
acl [l admin]
lIl UnixPing Unl [aciapter_host |zenoss. class. example. org
G | |adminisirator
qf cause_date_receptn o
= rause_event_handle o
class zenoss_sendTec
- Time Received | Eve.. | Class | Hostname credibiiity 5
28/01/10 15:35 Other Zenoss_Ba.. zenoss.class.example.org date_event Jan 23 14:55:36 2010
28/01/10 16:00 Other Zenoss_Ba... zenoss. class.example.arg date_reception 1264776936
28/01/10 16:00 Other Zenoss_Ba... zenoss. class.example.arg duration o
All 28/01/10 16:05 Other Zennss_Ba . zenoss.class example arg event_hndl 1
I 7 [win2003 class.example.org
last_modifieci_time 1264776937
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 This is bad news 310
none
]
num_actions N o
origin kg
repeat_count o
server_hndl 1
severity FATAL
source ZENCSS
status OPEN
sub_origin
sub_source
zCornponent TestComp
zEventClass J5kills/Badnews
[v] Show Base Autributes [v] Show Extended Atributes
[C|Display Formatted Names and Values

F igure 24: Zenoss_sendTec event forwarded to TEC Console with event detail showing attribute mapping

If an exact duplicate is sent, the repeat count of the initial event should be
incremented in the Zenoss Console; nothing should change at TEC as

29 Jan 2010 © Skills 1st Ltd 39

http://www.skills-1st.co.uk/papers/jane/zenoss_event_management_paper.pdf

zenactions will detect that
commands or alerts.

this is a duplicate event and not execute any event

To try and provoke the “hiccup” in zenactions processing that generates
duplicate actions, try sending three zensendevent commands in quick
succession, which only differ in the final number (I sent 311, 312 and 313).

Check $ZENHOME /log/z

enactions.log to see whether a problem has occurred

(refer back to Figure 14). If the “hiccup” happens (it doesn't always), you will

probably see at least one o
than 0.

f the events in TEC with a repeat_count of 1, rather

R e

\—H—‘I!

File Edit Options Selected Automated Tasks Help

Working Queue

- Honl--J= /=

2
:

158

Total: 8§ Selected: 1

_Ql 1 + Time Receiv...l Event Type | Class | Hosthame | Severity Stalusl Message Repeat c..
2901410 15:032 Other Zenoss_sendTec win2 003 class example.org Qpen This is bad news 312 o]
29401410 1503 Other Zenoss_sendTec win2002 class.example.ors [EEMMM@Cren This is bad news 213 o
29f01410 15:02 Other Zenoss_sendTec win2003 class example.ory EEMMCRen This is bad news 211 1
29/01/10 1455 Other Zenoss_sendTec win2002. class.example.ors [FRCUMMECren This is bad news 210 o
29/01/10 12:39 Other Zenoss_Base win2003. class.example.org Warning Open This is bad news 204 0
29701010 12:249 Other Zenoss_Base zenoss.class. example.org ‘Warning Qpen This is bad news 202 Q
29/01/10 12:39 Other Zenoss_Base zenoss.class. example.org Warning ~ Open This is bad news 3032 0
29/01/10 11:45 Other Zenoss_Base Zenoss.class.example.org ‘Warning Qpen This is bad news 301 Q
@ ‘ UnixPing | UnixReOpen ‘ WinPing | Acknowledge Close ‘ ‘ Details | Infarmation
1] [+
i
All Events
Time Received | Eve.. | Class | Hostname | severity | stav. | Message | Repear c.. |
28/01f10 1555 Other Zenoss_Ba... zenoss.class.example.org Closed This is bad news 2032 0 -
28/01/10 16:00 Other Zenoss_Ea... zenoss.class.example.org = - \osec This is bad news 204 0
28/01/10 16:00 Other Zenoss_Ba... zenoss.class.example.org (SR Closed This is bad news 205 0 L
28/01/10 1605 Other Zenoss_Ba... 2enoss.class.example.org Warning Closed This is bad news 20& 1 >

Figure 25: TEC Console showing 3 further Zenoss_sendTec events; "bad news 311" has a duplicate

To clear the events, use th

zensendevent
news 313

It doesn't matter what the

e following zensendevent command:

-d wi n2003. cl ass. exanple.org -s Cear -k badnews -p TestConp This is bad

final number is as Zenoss will automatically close

all events with the same class, device and component. If you need greater
control over the clearing mechanism then you need to configure Zenoss to more
specifically define the event class and/or component.

All the “bad news” events should disappear from the Zenoss Events Console;
they should be viewed in the Event History, along with the clearing “good

news” event.

40

Zenoss / TEC Integration 29 Jan 2010

ZehOSS Core

IDevices fServer Windows /win2003.class.example.org / Event History

Status 0s Hardware Software Events Perf Edit

Main Views

Classes

Browse By

EveniLog The system uptime is 11957 seconds. 2010-01-27 12:01:35 2010-01-2712:01:35 1

W32Time Unknown The time service has not synchronized the system time for 86400 seconds because none of the tii 2010-01-27 09:50:42 2010-01-27 09:50:42 1

threshold of CPU Utilization over 90 exceeded: current value 99.00 2010-01-27 09:49:32 2010-01-27 09:49:32 1

Management

Figure 26: Zenoss Event History console showing clearing event and the cleared "bad news” events

At TEC, similarly the “bad news” events should be closed.

File Edit Options Selected Automated Tasks Help

BECEDE EESEE =

';)l: + Time Receiv... | Event Type |

Working Queue

Total 35 Selected: 3

Class Hostname Repeat c...l |

| Severity Status Message
Clased This is bad news 213

29/01/10 15:08 Other Zenoss_sendTec Wln2003 class. exarnple.org 0 -
2901710 1508 Other Zenoss_sendTec win2 003.class example.org Harmless Qpen This is bad news 210 Q
29/01/10 15:08 Other Zenoss_sendTec winZ003.class. example.org |Harmless Open This is bad news 204 0
29/01/10 15:08 Other Zenoss_sendTec win2003.class. exarmple.org Closed This is bad news 311 0
29/0110 15:08 Other Zenoss_sendTec win2003.class.example.org Harmlgss | Closed This is bad news 312 o
29/0110 15:03 Effect Zenoss_sendTec win2003.class.example.org (G C'osed This is bad news 212 o
2901710 15:03 Effect Zenoss_sendTec win2003.class example.ors [C'o5ed This is bad news 312 0
29/01/10 1503 Effect Zennss_sendTer win2 003 class example.ors e C'osed This is bad news 311 1
29/01/10 1455 Other Zenoss_sendTec win2 003.class example.org Fatal Qpen This is bad news 210 Q
23/01f10 12:29 QOther Zenoss_Base win2 0032 . class. example.org Warning Open This is bad news 204 Q
29/01/10 12:39 Other Zenoss_Base zenoss.class.example.org Warning Open This is bad news 202 0
29701710 12:39 Other Zenoss_Base zenoss.class.example.org Warning Open This is bad news 203 Q
25/01/10 11:45 Qther Zenoss_Base Zenoss.class.example.org Warning Qpen This is bad news 201 4] >

@ | e

‘ WinPing | ‘ Close | ‘ Details |

‘ UnixReOpen Acknowledge Information

hi!

Time Received | Eve.. | Class | Hosthame | severity | sta. | Message [Repear c.. |
28/01/10 15:55 Other Zenoss_Ba... zenoss.class example.org Closed This is bad news 202 Q |A
28/01/10 16:00 Other Zenoss_Ba.. zenoss.class. example.org EE - o:cc This is bad news 204 o -

Figure 27: TEC Console showing Closed "good news” event and Closed "bad news” events

Note that there are three events that are still Open. Why has “bad news 310”
not closed? Remember that the closing TEC rule only checked for previous
events upto 10 minutes old. The closing event for “310” arrived 13 minutes
after the bad news so the rule was not applied so neither the “good news” nor
the “bad news” events are closed.

Inspect $ZENHOME | log | zenactions.log to see that a page action did actually
take place for each closing event.

29 Jan 2010 © Skills 1st Ltd 41

enpacks - Shell - Konsole

Session Edit View Bookmarks Seftings Help

2010-01-29 15:04:58,862 INFO zen.ZewActions: processed 1
2010-01-29 15:05:58,889 INFO zen.Zenfictions: Processed 3 commands in ©.0180629
2010-01-29 15:05:58,902 INFO zen.ZewActions: processed 1 rules in 0.04 secs
2010-01-29 15:06:58,924 INFO zen.Zenfictions: Processed 3 commands in ©.014943

1

3

1

rules in 0.35 secs -

2010-01-29 15:06:58,937 INFO zen.ZewActions: processed 1 rules in 0.03 secs

2010-01-29 15:07:59,026 INFO zen.Zenfictions: Processed 3 commands in ©.019227

2010-01-29 15:07:59,039 INFO zen.ZewActions: processed 1 rules in 0.04 secs

Z010-01-29 15:08:59,192 INFO zen.ZenActions: Rumning

2010-01-29 15:08:59,255 INFO zen.ZewActions: Rumning

Z010-01-29 15:08:59,321 INFO zen.ZenActions: Rumning

2010-01-29 15:08:59,367 INFO zen.ZewActions: Ruming

Z010-01-29 15:08:59,431 INFO zen.ZenActions: Rumning

2010-01-29 15:08:59,468 INFO zen.ZewActions: Processed 3 commands in 0.401898

2010-01-29 15:08:59,508 INFO zen.ZenActions: sent page to 12345: severity="HARMLESS" =zFuentClass=rSkills/Badnews zEuid=5320eccc—
71e5-4409-ad86-bf?3bb221873 mnsg="This is bad news 312" hostname=-win2003.class.exanple.org origin= zComponent=TestComp

2010-01-29 15:08:59,548 INFO zen.ZenActions: sent page to 12345: severity="HARMLESS" =zFuentClass=rSkills/Badnews zEuid=694f35c8-
8d59-4d66-9ceB-0801422e792f mnsg="This is bad news 313" hostname=-win2003.class.exanple.ory origin= zComponent=TestComp

2010-01-29 15:08:59,589 INFO zen.ZenfActions: sent page to 12345: severity="HARMLESS" =zEuentClass=rSkills/Badnews zEuid=87c065f7-
befe-47b5-b4e2-e?ef543208ca mnsg="This is bad news 310" hostname=win2003.class.exanple.ory origin= zComponent=TestComp

2010-01-29 15:08:59,639 INFO zen.ZenActions: sent page to 12345: severity="HARMLESS" =zEuentClass=rSkills-/Badnews zEuid=ch518025-
ed15-4f51-8002-368605f91f6e nsg="This is bad news 304" hostname=win2003.class.exanple.ory origin= zComponent=TestComp

2010-01-29 15:08:59,678 INFO zen.ZenfActions: sent page to 12345: severity="HARMLESS" =zEuentClass=rSkills-/Badnews zEuid=ddSbbad3-
1c77-421e-9f98-7558051 6658 nsg="This is bad news 311" hostname=win2003.class.exanple.org origin= zComponent=TestComp

2010-01-29 15:08:59,682 INFO zen.ZewActions: processed 1 rules in 0.62 secs

2010-01-29 15:09:59,705 INFO zen.Zenfictions: Processed 3 commands in ©.015856

2010-01-29 15:09:59,716 INFO zen.ZewActions: processed 1 rules in 0.03 secs

Figure 28: zenactions.log showing alert actions for closing events

42 Zenoss / TEC Integration 29 Jan 2010

5 Conclusions

The Zenoss events subsystem and the IBM Tivoli Enterprise Console (TEC)
have many similarities although the skills required to configure each are very
different. TEC is fundamentally a Prolog engine; Zenoss is fundamentally a
Python engine.

Ultimately, TEC may scale better than the open source Zenoss Core although
the chargeable Zenoss Enterprise offering has extra distributed architecture so
should scale better than Core. Zenoss Core is known to effectively manage
enterprises with well over a thousand devices. The assumption in this paper is
that TEC will be the higher-level manager with Zenoss feeding in to it.

Two integration techniques are examined for Zenoss:
Event Commands
Page Alerts

They are summarised in the table below. They both use the TEC postemsg
command driven by Zenoss's zenactions daemon. Setup effort for either
solution is similar.

Event Commands Page Alerts
Shellscript run by zenactions Shellscript run by zenactions
Parameters passed as TALES Parameters passed in Python string
expressions format

Parameters include event fields and Parameters only include event fields
device attributes

No time criteria for running Schedule tab for Alerting Rules to
commands control what runs when

Alerting Rules are per user — separate
users could be defined if there are
several upstream TEC Servers

Extensive filtering capability to Extensive filtering capability to
control what events generate control what events generate
commands commands

Table 5.1: Similarities and differences between event commands and page alerts

Some TEC configuration will be required although this can be kept fairly
minimal if only simple event forwarding is required. The more complete the
integration solution, then the more work will be required, especially on TEC
baroc class files and TEC rules files.

Although this paper only discusses integrating Zenoss with TEC, IBM's newer
problem management offering, Netcool/OMNIbus, can also accept events in

29 Jan 2010 © Skills 1st Ltd 43

TEC format through its EIF probe; hence the solutions shown here could also
be used to integrate between Zenoss and Netcool/OMNIbus.

Indeed, these general Zenoss techniques could be used to integrate Zenoss into
any other problem management system, provided it is possible to format
events for the upstream manager within a shellscript.

If organisations require two-way integration between Zenoss and TEC, for
example where events are closed in TEC and this change should be reflected
back to Zenoss, this might be achieved by using a TEC rule to run a script that
generates a specific SNMP TRAP to the Zenoss server. A Zenoss event
mapping could interpret that TRAP and run an action that generates a
clearing zensendevent, with appropriate substituted parameters.

To conclude, both Zenoss and TEC are powerful event management systems in
their own right; together they can deliver even greater returns.

44 Zenoss / TEC Integration 29 Jan 2010

References

1.

Zenoss network, systems and application monitoring -
http://www.zenoss.com/

. Zenoss community website - http:/community.zenoss.org/

. Zenoss Administration Guide -

http:/community.zenoss.org/community/documentation

Zenoss Developer's Guide -_
http://community.zenoss.org/community/documentation

“Zenoss Core Network and System Monitoring” by Michael Badger,
published by PACKT Publishing, June 2008, ISBN 978-1-847194-28-2 .

For information on TALES expressions, see
http:/www.zope.org/Documentation/Books/ZopeBook/2 6Edition/AppendixC.stx

For documentation on Zenoss functionality, the ZEO object database
and Zope. Try:
http://www.zenoss.com/community/docs/zenoss-api-docs/2.1/

As a general Python reference, try “Learning Python” by Mark Lutz,
published by O'Reilly

For detailed information on Zenoss's event architecture, get “Zenoss
Event Management” from

http:.//www.skills-1st.co.uk/papers/jane/zenoss event management paper.pdf .

10.Consult

http://publib.boulder.ibm.com/infocenter/tivihelp/v3rl/index.jsp?
toc=/com.ibm.itec.doc_3.9/toc.xml for TEC online manuals.

29 Jan 2010 © Skills 1st Ltd 45

http://publib.boulder.ibm.com/infocenter/tivihelp/v3r1/index.jsp?toc=/com.ibm.itec.doc_3.9/toc.xml
http://publib.boulder.ibm.com/infocenter/tivihelp/v3r1/index.jsp?toc=/com.ibm.itec.doc_3.9/toc.xml
http://www.skills-1st.co.uk/papers/jane/zenoss_event_management_paper.pdf
http://www.zenoss.com/community/docs/zenoss-api-docs/2.1/
http://www.zope.org/Documentation/Books/ZopeBook/2_6Edition/AppendixC.stx
http://community.zenoss.org/community/documentation
http://www.zenoss.com/community/docs
http://www.zenoss.com/community/docs
http://community.zenoss.org/community/documentation
http://www.zenoss.com/community/docs
http://community.zenoss.org/
http://www.zenoss.com/

About the author

Jane Curry has been a network and systems management technical consultant
and trainer for 25 years. During her 11 years working for IBM she fulfilled
both pre-sales and consultancy roles spanning the full range of IBM's
SystemView products prior to 1996 and then, when IBM bought Tivoli, she
specialised in the systems management products of Distributed Monitoring &
IBM Tivoli Monitoring (ITM), the network management product, Tivoli
NetView and the problem management product Tivoli Enterprise Console
(TEC). All are based around the Tivoli Framework architecture.

Since 1997 Jane has been an independent businesswoman working with many
companies, both large and small, commercial and public sector, delivering
Tivoli consultancy and training. Over the last 5 years her work has been more
involved with Open Source offerings. She was made a Zenoss Master by
Zenoss in February 2009.

46 Zenoss / TEC Integration 29 Jan 2010

	1 Introduction
	2 Zenoss event architecture
	2.1 Event reception
	2.2 Event classes in Zenoss
	2.3 Processing events in Zenoss
	2.4 Automation associated with events
	2.5 Detecting duplicate events
	2.6 Clearing events
	2.7 Events database
	2.8 Zenoss Event Console
	2.9 Generating test events with Zenoss

	3 TEC architecture
	3.1 Event reception
	3.2 TEC classes
	3.3 Processing TEC events
	3.4 Detecting duplicate events with TEC
	3.5 Clearing events
	3.6 TEC rulebases
	3.7 The TEC events database
	3.8 The TEC Event Console

	4 Forwarding events from Zenoss to TEC
	4.1 Elements of the solution
	4.2 Generic TEC configuration
	4.3 Zenoss / TEC configuration using an event command
	4.3.1 TEC configuration
	4.3.2 Zenoss configuration
	4.3.3 Testing the event command solution
	4.3.4 Debugging hints

	4.4 Zenoss / TEC configuration using a page alert
	4.4.1 TEC configuration
	4.4.2 Zenoss configuration
	4.4.3 Testing the page solution

	5 Conclusions

