Creating Zenoss ZenPacks

September 2009
Jane Curry
Skills 1st Ltd

www.sKills-1st.co.uk

Jane Curry
Skills 1st Ltd
2 Cedar Chase
Taplow
Maidenhead
SL6 OEU
01628 782565

jane.curry@skills-1st.co.uk

1 © Skills 1st Ltd

15 September 2009

http://www.skills-1st.co.uk/
mailto:jane.curry@skills-1st.co.uk

Synopsis

ZenPacks are the extension mechanism provided by Zenoss to build new functionality
and also to easily port customisation from one Zenoss server to another. Some
documentation is provided in the Zenoss Developer's Guide 2.4; this paper is intended
to enhance and extend that documentation, including a sample ZenPack.

The process of creating, modifying and exporting ZenPacks is discussed, along with
debugging hints. The sample ZenPack explores:

e creating new object classes and relationships

e creating new collector modeler plugins to populate the new classes with data
e creating skins to display web pages for the new types of object

e creating performance data templates for the object classes.

It is assumed that the reader is familiar with basic SNMP concepts and with standard
Zenoss configuration techniques.

This paper was written based on a stack-built Zenoss Core 2.4.1 on SuSE 10.3. The
hostname of the Zenoss server is zen241.class.example.org.

Notations

Throughout this paper, text to by typed, file names and menu options to be selected,
are highlighted by italics; important points to take note of are shown in bold.

2 © Skills 1st Ltd 15 September 2009

Table of Contents

1 What are ZenPacks?.........ooii ittt e e e e e e e et e e e e e e e e e e e e eeaaaae 4
2 The process of building a ZenPacK..............oooovvviiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeee e 5
2.1 ZenPack Creation.............uuuuuiiiiiii e eaaaaaannanaaa e e eeasaraaas 5
2.2 Exporting and installing ZenPacks...........cccooeeeveeieiiiiieiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee, 7

B 18011 o) (S /13 0N o= Tl T 8
4 Designing complex ZenPacks........ccoooeeeeiiiiiiiiiieeieeeeeceeceeeeeeeeeeeeeeeeeeeee e 10
4.1 BasiC PIriNCIPLES.....covviiiiiiiiiiieiiiiiieiieeeeeeeeeeeeeeeeeeeeeeeeeeerereereerrrerreersreeessrrraaeeeesreranns 10
4.1.1 Configuration data and performance data..............ccccccevvvviiiniiiiiieeiennnnnnn. 10
4.1.2 The Zope Object Database (ZODB).......cccooeeeeeeeeieiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee, 14
4.1.3 Coding techniques and terminology............ccccvvvvviiiiiiriiiriiiiiiiiieieeee e eeeeaeennn 15
4.1.4 Databases, Daemons and Directories...........ccccoeeeeiiiiiiiiiiiiiieeeeeeiieeeiieeeeeeeeens 23

4.2 Requirements for the sample ZenPack......................ccco 26
4.3 Creating the sample ZenPack...........cccoooeeiiiiiiiiiiiececccccccccceee e 30
4.3.1 Elements required and their Nnames...........ccccceevvvvvevvevirieeeeeereeereeeeeeeeeeevreen 30
4.3.2 SNMP data required.........ccocoooieeeieiiieiieeeecccceeceeeccce s 32
4.3.3 Creating the ZenPack.................ccccciiii 35
4.3.4 Adding elements to the ZenPack using Development mode......................... 36
4.3.5 Creating the object class files............uuuvueiiiiiiiiiiiiiiiee e 38
4.3.6 Creating the modeler plugin files...........cccceeeiiiiiiiiiiiiiieeee e, 46
4.3.7 Creating the sKins flles......ccccccoeriiiiiiiiiiiiiiiec e 57
4.3.8 Linking development mode elements with source mode elements.............. 68

5 Gathering Performance Data................cccooiii i 70
5.1 Performance templates for devices........ccoouiviiiiiiiiiiiiiiiiiiiiiciccccccceee e eeeaaann 71
5.2 Performance templates for contained devices...........ccceeeeeeeeiieeeiiieeeeeeeeeeeeee e, 74

6 Testing and debugging ZenPacks...........ccooiiiiiiiiiiiiiiiiiieeceeee e 77
200 B =11 7 =TT URUPPRURPPPRt 71
6.1.1 Testing new object class files..........ccccceiii e, 77
6.1.2 Testing modeler PIUZINS...........uuvvveiiiririiiiiiiiireieirireerrrereerrer———————————————————————ann.. 78
6.1.3 Testing sKins files.......ccooviiiiiiiiiiiiieeeeee e 81
6.1.4 Debugging problems with performance data...................................c. 83
6.1.5 General testing and debugging hints and tips........cccccccceeeiiiiiiiiiiiiiiiiiiiiienee. 85

A 0707 s T 10 153 (oY s V=TSP PPPPPPURRPPPPPRt 86
R EIEINCES. ...cceiiiieeeeee e e e e e e e e e e e e e e e et aaa e e e e e e e aaaaaaas 87
ACKNOWIEAZEMENES.... ... e e e e e an s 88

3 © Skills 1st Ltd 15 September 2009

1 What are ZenPacks?

ZenPacks are the method of extending the standard Zenoss functionality. There are
four different sources of ZenPacks:

e Zenoss Core ZenPacks that can be downloaded from
http:/www.zenoss.com/community/projects/zenpacks/ . These are developed
and maintained by Zenoss and are available to both Zenoss Core and Zenoss
Enterprise users. They include monitoring of Apache, Dell, FTP, HTTP, LDAP,
JMX and MySQL, amongst others.

e Zenoss community ZenPacks, also from
http:/www.zenoss.com/community/projects/zenpacks/ . These are ZenPacks
developed by individuals or organisations and made freely available to the
Zenoss community. No support should be implied for them. There are getting
to be a large number of community ZenPacks covering the monitoring of
VMware, wireless devices, Cisco devices, various switches, printers and several
ZenPacks to enhance the reporting of Zenoss devices, events and thresholding.

e Zenoss Enterprise ZenPacks are available at no extra charge to Zenoss
Enterprise (ie. paying) customers. They include enhanced VMware and
Windows monitoring, fine-grained user management, distributed monitoring
and high availability, and a global dashboard, as well as enhanced monitoring
of many third-party devices and software packages.

e Write your own ZenPack — and optionally make it available as a community
ZenPack

Since Zenoss 2.2, ZenPacks are packaged as Python Eggs. Earlier zip format
ZenPacks can be converted to Eggs (see the ZenPacks wiki site at
http://community.zenoss.org/trac-zenpacks/wiki/MigratingZenPacks). This packaging
is performed automatically for you and you don't need to get into the details of Eggs.

Some of the core and community ZenPacks come with their own documentation;
sometimes it is a little sparse. Searching the Zenoss forums is a good way to glean
information (http:/forums.zenoss.com/index.php).

ZenPacks may be used for two main reasons:
e Creating new monitoring of new types of devices

e Porting either standard or ZenPack configuration of Zenoss, from one Zenoss
server to another

Many of the standard Zenoss Graphical User Interface (GUI) menus have an Add to
ZenPack option; thus action rules, event classes, event commands, user commands,
service classes, data sources, graphs, performance templates, reports,model
extensions, and product definitions can be simply added to a ZenPack using the GUI
(a simple ZenPack).

4 © Skills 1st Ltd 15 September 2009

http://forums.zenoss.com/index.php
http://community.zenoss.org/trac-zenpacks/wiki/MigratingZenPacks
http://www.zenoss.com/community/projects/zenpacks/
http://www.zenoss.com/community/projects/zenpacks/

A ZenPack can also add daemons, new device types and user interface features such as
menus but this requires programming effort (a complex ZenPack). Check Chapter
13 of the Zenoss 2.4 Administration Guide for a short introduction to ZenPacks.

2 The process of building a ZenPack

Before diving into the complexities of writing Python code for complex ZenPacks, step
back and examine the process that is required. The first question is whether this
will be a simple ZenPack that can be entirely created from the GUI, or whether code
needs to be written. Either way, the process for creating the ZenPack is exactly the
same.

2.1 ZenPack creation

As a Zenoss user with the Manager role, use the left-hand Settings menu from the GUI
and choose the ZenPacks tab.

ZenOSssS Core

enlnlgar Zenoss server time: 8:41:

Main Views Settings Commands Users ZenPacks Jobs Menus Portlets Daemons Versions

- Loaded Zen Packs

Select: Al None

Backups

Pack Package Author Version Egg

| |zenPacks AndreaConsadori Colubris AndreaConsadori Andrea Consadori 20 Yes
|| ZenPacks community mib_utils community Kells Kearney 1.07 Yes
(| zenPacks. skills1st bridge skills1st Jane Curry 1.0 Yes
i:’ZenPacKs.zerwss.Ht‘tgru‘lurw:or ZEnoss Zenoss 200 “es
|| ZenPacks.zenoss. LinuxMonitor Zenoss Zenoss 1.00 es

Classes

Figure 1: ZenPacks tab from the Settings menu

The dropdown menu options then include:
e Create a ZenPack
e Install ZenPack
o Delete ZenPack

When creating a new ZenPack, the first thing you are asked for is the ZenPack name.
ZenPack names are a sequence of three or more package names separated by periods.
The first part of the name is always ZenPacks. The second part usually identifies the
person or organization responsible for the ZenPack. The last part of the name usually
identifies the function of the ZenPack (see the screenshot above for examples). Once
named, you can then specify other parameters for your ZenPack, like Zenoss version
dependency or other co-requisite ZenPacks. You should also specify an author and a
version for this ZenPack.

5 © Skills 1st Ltd 15 September 2009

Detail

-
Metadata

Main Views

ent Ol& MName ZenPacks skills1sttest
Version 1.0
p lAuthor [sane cumy
Save
Classes

Select: Al Mone
Pre Required? Name Version(s)

Zenoss |>=2 3

ZenPacks. AndreaConsadori.Colubris |

Erowse By ZenPacks.community.mib_utils

ZenPacks.skills1st bridge

ZenPacks.zenoss HitpMonitor

|
|
|
ZenPacks zenoss Linwdonitor |

Save

Management Files in ZenPack

fusrilocalizenoss/zenossi/ZenPacks/ZenPacks skills1sttestiZenPacksiskills1sttest!__init__.py

LDDDDD

Ak Vusrilocalizenoss/zenossiZenPacks/ZenPacks skills1sttestZenPacks/skills1 stitestlibd__init__py
Vusrilocalizenoss/zenossiZenPacks/ZenPacks. skills1 sttestZenPacks/skills1 stitestiskins/ZenPacks. skills1 sttest/placeholder it
Vusrflocalizenoss/zenossiZenPacks/ZenPacks.skills1sttestZenPacks/skills 1 stitestmigratel__init__py

thin fusrlocalizenoss/zenossiZenPacks/ZenPacks skills1 st testZenPacks/skills1sttest/datasources/__init__py

Vusrflocalizenoss/zenossiZenPacks/ZenPacks.skills1 sttestZenPacks/skills1 stitesttests/__init__.py
fusrilocalizenossizenoss/ZenPacks/ZenPacks.skills1sttestZenPacks/skills1stitestmodeler__init__.py
Jusrflocalizenoss/zenossiZenPacks/ZenPacks.skills1 stiestZenPacks/skills1 stitestmodeler/plugins/__init__py

- ZenPack Provides
Mo database objects are included in this ZenPack

Figure 2: Creation details for a ZenPack

When you create the ZenPack, a directory hierarchy is created under
$ZENHOME/ZenPacks as can be seen in Figure 2 above (note that older style
ZenPacks used $ZENHOME/Products as the base directory). Each of the directories
will have a largely-empty __init__.py file that needs to be there but you should not
need to modify it.

The main directory areas that will be discussed in this paper, for the ZenPack called
ZenPacks.skills1st.bridge, are:

e ZenPacks.skills1lst.bridge — the base ZenPack directory. It contains object class
definition files

e ZenPacks.skillslst.bridge/modeler/plugins - modeler plugins for object classes

e ZenPacks.skillslst.bridge/skins/ZenPacks.skills1st.bridge - contains skins files
describing web pages associated with displaying aspects of the new object
classes

Some of these are rather long-winded but they are created automatically and that is
what we have to go with! Once the structure is created, “things” can be added to the
ZenPack either from the GUI using Add to ZenPack menu options (this is known as
development mode), or programmatically by placing files in the appropriate
directories (source mode); indeed, both these methods can be used at any stage.

6 © Skills 1st Ltd 15 September 2009

2.2 Exporting and installing ZenPacks

When you are ready to test the ZenPack on a different system it needs to be exported
to create the Python Egg file. Note that the export process also creates the

objects [objects.xml file - more of this later. From the Detail page of the ZenPack, use
the dropdown menu to select Export ZenPack.

- =

Export ZenPack

O Export to $ZENHOME/exports
@ Cxport to $ZENHOME/exports and download

Figure 3: Export ZenPack dialogue

Typically you leave the top radio button selected to just create the ZenPack Egg file in
$ZENHOME/exports. The file is first created in your ZenPack's dist directory then
copied to the $ZENHOME/export directory.

This file can now be moved to the different Zenoss server (perhaps you have a test and
a production server?) and installed as any other ZenPack, either using the Settings
menu ZenPacks tab and then the dropdown menu Install ZenPack; or you can use the
command line:

zenpack --install ZenPacks.skillslst. bridge-1.0-py2.4.egg
Note the syntax here is 2 hyphens preceding the install.

The formal documentation varies somewhat as to what daemons you need to recycle
after importing a ZenPack. zenoss restart would always be safe but bounces all of the
daemons. I believe that zenhub restart and zopectl restart is sufficient. Note that if
you forget to recycle the daemons, you may well get error messages from the ZenPacks
page and from ZenPack functionality.

When you install an Egg ZenPack, you usually don't have the ability to modify it,
thought is possible to do so — see Chapter3, page 22 of the Zenoss 2.4 Developer's
Guide for instructions.

7 © Skills 1st Ltd 15 September 2009

If you wish to continue to develop the ZenPack on the new system, the other
alternative is to copy the whole ZenPack directory structure and then install the
ZenPack with a --link parameter (2 hyphens again). This is good practise during
initial development as well as in the scenario where you wish to export a ZenPack and
then continue to modify it on a different system, largely because if you accidentally
use the Remove ZenPack menu, it deletes all files relating to that ZenPack under
$ZENHOME/ZenPacks and this will include any development code you have created if
it is stored there.

The sample ZenPack discussed in this paper was created as described above and then
moved out of the $ZENHOME/ZenPacks directory using:

cp -r $ZENHOVE/ ZenPacks/ ZenPacks. ski | | slst. bri dge $ZENHOME/local/jane
zenpack --link --install $ZENHOME/local/jane/ZenPacks. skillslst. bridge

It is perfectly acceptable to reinstall a ZenPack that already exists — it will simply give
a warning message that the ZenPack is already installed, but it will do the install.
Remember to restart zenhub and zopectl.

The result of the --link parameter is to replace the ZenPacks.skills1st.bridge directory
hierarchy in the standard $ZENHOME/ZenPacks directory with a single file,
ZenPacks.skills1st.bridge.egg-link, which simply contains the base directory of where
your ZenPack really is. Now, if anyone removes this ZenPack, the only thing that is
deleted from $ZENHOME/ZenPacks is this link file, not all your ZenPack code.

From this point, you can continue to develop the ZenPack, either in Development
mode, or by writing code in appropriate directories; a mixture of both is perfectly
acceptable and all changes will follow this link to actually update code in your private
directory.

Zenoss requires a Python module called setuptools to create and install eggs. The
setuptools module is installed by the Zenoss installer in the $ZENHOME/lib/python
directory. Zenoss also provides a module named zenpacksupport which extends
setuptools . The zenpacksupport class defines additional metadata that is written to
and read from ZenPack eggs. This metadata is provided through additional options
passed to the setup() call in a ZenPack's setup.py file.

3 “Simple” ZenPacks

Some ZenPacks can simply be created using the Zenoss GUI; this is especially useful
for moving standard configurations from one Zenoss server to another but may also be
appropriate when creating ZenPacks to share with other people.

The ZenPack is created exactly as described in chapter 2 above. To add “things” to the
ZenPack, simply use the Add to ZenPack option that is available on many of the
dropdown menus. The following can be added from menus (ie. in development mode):

8 © Skills 1st Ltd 15 September 2009

e Device Classes

e Event Classes

e Event Mappings

e User Commands

e Event Commands

e MIBs

e Service Classes

e Device Organizers

e Performance Templates

You will be prompted as to which ZenPack you wish to add the item to. Objects can
be removed from the ZenPack by selecting the checkboxes next to them and using the
Delete from ZenPack menu item. Devices themselves are the conspicuous omission
from this list. Any individual device is usually specific to a particular site and
therefore not likely to be useful to other Zenoss users.

To see what a ZenPack contains, simply use the ZenPacks tab from the Settings menu
and choose the appropriate ZenPack.

) Zenoss: ZenPacks.skills1 st.bridge - Mozilla Firefox: p

File Edit View History Bookmats Teals Help

* @ - @ @ % [f)'nnp.'rzenzm.c\assexample.o.g.ausurzpomdmu.'ZenPa:kManageuapacwzenpam.mmnnmdge -

I é Zenoss: switch.skills-1st.co.uk 6 Ié Zenoss: ZenPacks.skills1st.bridge e [Zope on hitp://zen241:8080 Q ‘ é Zenoss: ZenPacks skillslst bridge 0 1 f -
ZenPacks.AndreaConsadori.Colubris

ZenPacks.community.mib_utils

ZenPacks skills1stfest

ZenPacks.zenoss.HitpMonitor

ZenPacks zenoss Linuxvonitor

LDDDDE

Save

Management Files in ZenPack

iustlocalizenossizenossiocalljane/ZenPacks.skills1stbridge/ZenPacks/skills1 stbridge/BridgeDevice. py
iustlocalizenossizenossocalljane/ZenPacks.skills1stbridge/ZenPacks/skills1 stbridge/BridgeDevice. py.good
fusrilocallzenossizenossilocal/jane/ZenPacks skills1st bridge/ZenPacks/skills1st/bridge/Bridgelnterface py.good
fusrilocalizenossizenoss/local/jane/ZenPacks skills1st bridge/ZenPacks/skills1stibridge/Bridgelnterface. py
fusr/local/zenossizenoss/localljane/ZenPacks skills1 stbridge/ZenPacks/skills1stbridge/__init__py

/usr/local/zenossizenoss/localjanefZenPacks skills1 stbridge/ZenPacks/skills1stbridge/lib/__init__py

= fusrlocal/zenossizenossflocalijane/ZenPacks skills1st bridge/ZenPacks/skills1 stibridge/skinsiZenPacks skills1st bridge/BridgeDevice Detail pt nowork
fusrlocal/zenossizenossflocalijane/ZenPacks skills1st bridge/ZenPacks/skills1 stibridge/skinsiZenPacks skills1st bridge/BridgeDevice Detail pt works
fusrilocal/zenossizenossiocaljane/ZenPacks skills1stbridge/ZenPacks/skills1stibridge/skinsiZenPacks skills1st.bridge/BridgeDeviceDetail pt
fusrilocal/zenossizenossiocaljane/ZenPacks skills1stbridge/ZenPacks/skills1stibridge/skinsiZenPacks skills1 st bridgeiiewBridgelnterface pt
fusiilocalizenossizenossilocalljanefZenPacks skills1st bridge/ZenPacks/skills1st/bridge/skins/ZenPacks skills1st bridge/works_BridgeDeviceDetail pt
fusrilocal/zenossizenossilocaljanefZenPacks skills1st bridge/ZenPacks/skills1 stibridge/skins/ZenPacks skills1st.bridge/placeholder td
fusiilocalizenossizenossilocalljane/ZenPacks skills1stbridge/ZenPacks/skills1st/bridge/migrate/__init___py
lusilocalizenossizenossiocaljane/ZenPacks.skills1 stbridge/ZenPacks/skills1 stbridge/migrateMenu.py
iusilocalizenossizenossfocaljane/ZenPacks.skills1 stbridge/ZenPacks/skills1 stbridge/datasources/__init__py
iusilocalizenossizenossiocaljane/ZenPacks.skills1 stbridge/ZenPacks/skills1 stbridge/modelers__init__py
iusilocalizenossizenossfocaljane/ZenPacks.skills1 st bridge/ZenPacks/skills1 stbridge/modelerplugins/BridgeDeviceMib.py
iusilocalizenossizenossfocalfjane/ZenPacks.skills st bridge/ZenPacks/skills1 stbridge/modelerplugins/BridgeMib.py
lusilocalizenossizenossfocaljane/ZenPacks.skills1stbridge/ZenPacks/skills1 stbridge/modelerplugins/__init__py

w ZenPack Provides

Select: Al Nore

[Devices/Netwo rkiSwite h/BridgeMIE
|| Mibsimibs/BRIDGE-MIE

(| Mibs/mibs/RFC1213-MIB

| Mibsimibs/SNMPV2-MIB

| Mibsimibs/SNMPV2-SMI

Figure 4: The contents of the ZenPacks.skills1st.bridge ZenPack

9 © Skills 1st Ltd 15 September 2009

When a ZenPack is exported (using the dropdown menu from the Detail page of the
ZenPack), not only is the Egg file created but it is at this time that all the objects
under the “ZenPack Provides” list in the figure above, are written to the objects.xml
file under the objects directory of the ZenPack. This file can be inspected with an
editor — as the name suggests, it is in xml format.

4 Designing complex ZenPacks

When developing new functionality for Zenoss with ZenPacks, some tasks require
more than the standard customisation tools can capture using development mode. For
example:

e Supporting a different type of device with different attributes eg. a switch that
supports the Bridge MIB

e Polling for SNMP variables from the Bridge MIB to populate these new
attributes, such as Port number and the MAC address of the remote device
connected to that port

e Displaying web pages that show information about the new device types and
their attributes

e C(reating new daemons to gather either configuration polling information
(modeling) or performance data. Data collection methods for SNMP and ssh are
provided as standard but you may need JMX, HTTP or any other method (there
are Core ZenPacks that support JMX and HTTP).

This paper will examine the first three of these in detail.

4.1 Basic principles

Before discussing the sample ZenPack requirements and its implementation, let's get
some basic principles straight first.

4.1.1 Configuration data and performance data

Zenoss documentation is apt to be a little imprecise sometimes in its terminology and
to use different words to mean the same thing. There are two very different concepts
to do with collecting data. Configuration data is typically polled for every 12 hours
and is held in the Zope Object Database (ZODB). Performance data is typically
polled for every 5 minutes and is held in Round Robin Database (RRD) files from
where it can be graphed. The two are very different.

10 © Skills 1st Ltd 15 September 2009

Configuration data is polled for by the zenmodeler daemon, using modeler plugins.
Lots of these are provided as standard with Zenoss under
$ZENHOME/Products/DataCollector/plugins/zenoss with separate subdirectories for:

cmd
nmap
portscan
python

snmp

Don't be fooled by the directory path containing “DataCollector” - these are
configuration modeler plugins used by the zenmodeler daemon and nothing to do with
the collection of performance data that typically is collected by the zenperfsnmp or
zencommand daemons.

Any device or device class can have several modeler plugins assigned to it. This is
configured (rather confusingly) from the dropdown menu and selecting More ->
Collector Plugins. If this menu was renamed to Modeler Plugins then it might be less
confusing!

11

© Skills 1st Ltd 15 September 2009

geMIB /switch.skills-1st.co.uk Zenoss servertime: 12:13:40

- Status oS Hardware Software Events Perf Edit Bridge Interfaces

Sortable Selection

Name: zCollectorPlugins

Fath: /Network/Switch/BridgeM|B/devices/switch. skills-1st.co.uk

» zenoss.snmp.NewDeviceMap
» zenoss.snmp.DeviceMap

» zenoss.snmp.InterfaceMap
» zenoss.snmp.RouteMap

» BridgelnterfaceMib

» BridgeDeviceMib

Browse By

Management

IPlugins (drag to change order)

ColubrisDeviceMap i
zenoss.cmd.darwin.cpu

zenoss.cmd.darwin.ifconfig

Figure 5: The Collector Plugins dialogue from the dropdown More menu

Initially the dialogue shows the modeler plugins that are currently assigned at the
top, and the bottom of the dialogue has “Add Fields”, greyed out (note that prior to
Zenoss 2.4, this “Add Fields” was to the right of assigned plugins, rather than beneath
them). Although the option appears to be greyed out, click it to see the other modeler
plugins that exist. They can be selected simply by dragging them to the assigned
area; the order the plugins are run can be changed by dragging the plugins to the
appropriate order. Don't forget to use the Save button.

Another way to achieve exactly the same effect is to go to the device class or individual
device's zProperties page and click on the Edit button beside zCollectorPlugins, which
takes you to exactly the same dialogue shown in Figure 5.

12 © Skills 1st Ltd 15 September 2009

ZenQss Core R

idgeMIB /switch.skills-1st.co.uk Zenoss serverfime: 17.07;

L Status 05 Hardware Software Events Perf Edit Bridge Interfaces

zProperties Configuration

Main Views

Froperty Walue Type Path
N - " zCollectorClientTimeout ITEU int !
zCollectorDecoding ||atin—'| string /
Classes CallectorLogChanges [Tue] boolean /
= zCollectorPlugins Edit lines /Metwork/Switch/BridgeMIBidevices/switch.skills-1st.co.uk
zCommandCommandTimeout [15.0 float
zCommandCycleTime J60 int

zCommandExistanceTest ftest -t %s string

zCommandLoginTimeout 100 float

Browse By zCommandPassword | string

zCommandPath | string

!
!
!
!
zCommandLoginTries I int !
!
!
zCommandPort |22 int '

!

Lo zCommandPratacol ssh | string

R zCommandSearchPath lines !

Al zCommandUsername | string /

Device
zDeviceTemplates lines f

gure 6: Modify the zCollectorPlugins zProperty to activate modeler plugins

As is usual with Zenoss, modeler plugins should be assigned as high as possible in the
device class hierarchy to prevent unnecessary configuration and all sub device classes
and devices will inherit that property; modeler plugins can always be deconfigured for
a specific device if necessary.

Earlier versions of Zenoss seemed to need the dropdown Manage - > Push Changes
option to be run for new configuration to take effect but with Zenoss 2.4 this appears
to be unnecessary.

To run the modeler plugin on demand for a specific device, use the dropdown menu
and Manage -> Model Device. Alternatively, for a specific device called
switch.skills-1st.co.uk, use the following command line. The -v 10 turns on debugging
to loglevel 10 (the highest level).

zennodel er run -v 10 -d switch.skills-1st.co.uk
You should see each of the modeler plugins listed and some results from each plugin.

Performance data to be collected is specified using Zenoss templates. As with modeler
plugins, templates can be assigned either to a device class hierarchy or to a specific
device but the definition of these templates, the RRD databases that contain the data
and the daemons that collect the data are entirely separate from the configuration
data collection mechanism. If you can access performance data using either SNMP or
ssh then, typically, there is no need to write new code to collect performance data.

Modeler plugins are run by the zenmodeler daemon whereas SNMP performance
template data is collected by zenperfsnmp and ssh-driven performance data is
collected by the zencommand daemon. Another significant difference between modeler
plugins and performance templates is that the configuration data collected by a
modeler plugin will not trigger any “Component Type” status changes on a device's

13 © Skills 1st Ltd 15 September 2009

main Status page, neither will any events be generated; however, if thresholds set in
performance templates are exceeded or if performance data collection fails, then
indications will show on the Status page and events can be seen and customised, as
shown in Figure 7.

e]
ZenNnQsSsS Core biwe P o
A Devices Network /Switch BridgeMIB /switch.skills-1st.co.uk Zenoss server time: 181528

Main Views

Status Hardware Software Events Perf Edit Bridge Interfaces

Device Status

Device: switch.skills-1st.co.uk IP:10.0.0.253 Status' @ Up

\ Availabiity 100 000% Component Type

Uptime:
State

Status

00d:02h:44m:49s
Production

Other

Priority Normal 0/01:00:0C:DD:DD:DD @

Locks None
Last Change 2009/08/24 15:41:24
Last Collection 2009/08/24 15:41:25

2009/07/09 11:58:48

en E_-) SS Core

iDevices /Network /Switch /BridgeMIB /switch.skills-1st.co.uk

13/00:11:25:80:1C:4F O

Bridgelnterface ("]

First Seen

Device/|P Sea

% jane Prefer

Zenoss

Status 05 Hardware Software Bridge Interfaces

Last updated 2009-08-24 18:16:11 Wiew

Select: Al More Acknowledged Unacknowledged
component eventClass summary firstTime lastTime count
[~ |1300:11:25:80:1C [PerfiSnmp threshold of dotl TpPortOutFramesThresh exceeded: currentvalue 1.01 | 2009/08/24 2002/08/24 1
18:11:32.000 18:11:32.000
| 0i01:00:0C:DD:DD | [PefiSnmp Error reading value for "0/01:.00.0C:0DD:DD:DD" an 2009/08/24 2002/08/24 4
switch.skills-1st.co.uk (oid .1.3.6.1.21.17.44.1 3 is bad) 15:33:32.000 18:11:32.000
| 0iD1:00:0C:DD:DD | (PerffSnmp Error reading value for "0/01.00 0C:DD:DD:DD" on 200910824 200910824 4
switch.skills-1st.co.uk (oid .1.3.6.1.2.1.17.44.1 4 is bad) 15:33:31.000 18:11:32.000

Figure 7: Status page for switch with thresholds set in performance template

4.1.2 The Zope Object Database (ZODB)

Zenoss is developed in Python using the open source Zope web application server — see
http://www.zope.org/WhatlsZope for more information.

The Zope Object Database (ZODB) is an object-oriented Configuration Management
Database (CMDB) used by Zope to store Python objects and their states; modeler
plugins maintain information about devices and their configuration in the ZODB.

Zenoss uses ZEO, which is a layer between Zope and the ZODB. ZEO allows for
multiple Zope servers to connect to the same ZODB. The ZODB is started and stopped
by zeoctl . Note that the Zenoss documentation tends to use ZODB and ZEO
interchangeably.

One way to get a feel for what is in the ZODB database and what Zope provides, is to
point your browser at:

http://<zenoss server>: 8080/ zport/dnd/ manage

14 © Skills 1st Ltd 15 September 2009

http://www.zope.org/WhatIsZope

You will need to authenticate yourself as a Zenoss user with Manager privileges if you
have not already done so. The resulting screens allow you to explore the Zenoss
objects (such as devices, event classes and MIBs) and also to display the instances of
those objects (such as switch.skills-1st.class.example.org and BRIDGE-MIB).

£} Zope on http:/izen241:8080 - Mozilla Firefox ’;

Figure 8: Accessing the ZODB database using the Zope interface

The top level of the ZODB database is zport/dmd (where dmd stands for Device
Management Database). Note that the Zenoss Developer's Guide 2.4 has a very
helpful glossary at the back which explains many of Zope's terms. If you omit the
manage from the URL shown above, you will simply get to the standard Zenoss
dashboard; adding manage provides access to the underlying Zope.

4.1.3 Coding techniques and terminology

When developing ZenPack code (in fact when administering Zenoss in any way),
always ensure you are logged on as the zenoss user. When Zenoss is installed, this
user is created but will be setup such that you cannot login directly as zenoss; you

need to su to root and then use:

Su -

Zenoss

to switch to the zenoss user.

15

© Skills 1st Ltd

File Edit Wiew Higtory Bookmaks Tools Help
« * - O ? [@ http://zen241 :BOB0/zpot/dmdimanage| vl [.‘l - @,
5 Zenass: switch.ills 1 st.co.uk (%] [(5 Zeness: ZenPacks sillslst. bridge @ [S zeness: Events €3 | (@] zope on hitp:Hzenz41 2080 Q|+ -
m _ Contents T View T Properties T Security T Undo T Ownership Y Find 1[:
Devices
& Cuonts (R DataRoot at /zport/dmd Help!
(i3]
jba ::;;pgser Accelerated HTTP Gache Manager 3 || Add |
|
#f" Locations Type Name Size Last Modified Position
bl;ﬂanufacrurers 0 1': userCommands 2008-07-29 06:49)
 Moritors O “x packs 2009-07-29 08:49 2
&%Networks [] wi zenMenus 2008-07-29 08:49 3
Prosessis O Devices 2009-06-22 16:32 4
ElReports 0 & Groups 2008-05-28 13:33 5
Services [57 Locations 2009-06-22 14:42 6
% Systems [% Systems 2009-06-22 12:32 7
ZenEventHistory L Services 2009-05-28 13:36 8
ZenEventManagar [] Processes 2009-05-28 13:33 9
[ZenLinkManager [[8] Manufacturers 2009-05-28 13:35 10
ZenPackManager O Mibs 2009-05-28 13:33 11
ZenUsers [« Monitars 2009-05-28 13:35 12
&) maintenanceWindowse | [5 Reperts 2009-05-28 13:34 13
5] searchRRDTemplates | [& Events 2009-06-22 17:00 14 |
&) zenPackPersistence | ||+ DeviceLoader 2009-05-28 13:33 15
© Zope Corporation O ZenEventManager 2009-05-28 15:24 16
Refresh (| ZenEventHistory 2009-07-02 11:30 17
O ZenUsers 2009-05-28 15:06 18
[[] ZenLinkManager 2009-05-28 13:33 19
O JobManager 2009-05-28 13:33 20 e
Dlm LD P [- ,;

15 September 2009

If Python code is to be written, be aware that Python is very white-space sensitive.
Program constructs such as if-then-else, while loops, for loops and many other coding
elements depend on white space indentation (and the same number of spaces for the
same level of the construct). If testing Python with the Zenoss-provided zendmd
utility, the same white-space rules must be obeyed.

If a ZenPack is going to support new types of devices then a new Python object class
needs to be created to describe the unique features of this device type. As with all
object-oriented code, the new class can (and probably should) inherit some
characteristics from its parent object class in a class hierarchy. Thus, the ZenPack
discussed in this paper will create a new device class called BridgeMIB, which inherits
from the standard device class /Devices / Network /[Switch; the unique characteristics
of such a device are coded in a Python file in the base directory of the ZenPack
(/usr/local | zenoss [zenoss [local [jane | ZenPacks.skills1st.bridge | ZenPacks [skills1st /
bridge /| BridgeDevice.py).

A new device class is associated with a Python class through the zPythonClass
zProperty (note that you do not specify the zPythonClass as a normal filesystem path
but as a dotted class path from the ZenPack ie. ZenPacks.skills1st.bridge. BridgeDeuvice
represents the file BridgeDevice.py (but don't include the .py) under the Zenoss
ZenPacks directory ZenPacks.skills1st.bridge | ZenPacks [skills1st/bridge . More
details on this later.

Standard object classes, such as Device, OSComponent and IpInterface can be found
under $ZENHOME |/ Products | ZenModel . Note that each object class definition will
have two files. The .py file is the Python source code; the .pyc file is the compiled
Python code. There is no need to manually compile any Python code for Zenoss as this
will be done automatically, as required.

16 © Skills 1st Ltd 15 September 2009

2) Zenoss: BridgeMIB - Mozilla Firefox -2

File Edit View Hisiory BEockmaks Toals Help

G 2enoss BridgeMIB

« @ - 0 @ % [6 | hitp://zen241 .class.example.org 8080 Devic v] 2 | v| 0{]
(%] |ﬁ Zenoss: ZenPacks.dillsl stbridge @ [6 Zenoss: Events (%) [@ Zape on hitpif/zen241:8080 (%] I L -
ZFileSystemMaplgnoreTypes ﬂza‘mmw lines 1/
removableDisk
zFileSystemSize Offset 1o float f
zHardDiskMapMatch | string /
zlcon |fzportfdmdfimg.’iconsmmcon.png string /
2D escription [Tue ™ =] boolean MNetwark
zinterfaceMaplgnoreNames | string /
zinterfaceMaplgnoreTypes | string /
ZlpSenviceMapMaxPort |‘\024 int !
aKeyPath |~r.sshvid_dsa sting
aLinks | string f
zlocalinterfaceNames [rropwminet string /
slocallpAddresses [M27rov0ME9N 2541224 string /
Max0IDPerRequest J40 int I
NmapPorscanOptions [-p 1-1024:-sT:~open:-0G - string /
#PinglnterfaceDescription | string
zPingInterfaceMame | string f
zPingMonitorlgnore lm boolean /
zProdStateThreshaold |300 int !

Done

zPythonClass
zRouteMapCollectOnlylndirect
zRouteMapCollectonlyLocal
zRouteMapMaxRoutes
ZSnmpAuthPassword
2SnmpAuthType

zSnmpCommunities

zSnmpCommunity

zsnmpMonitarignare

2SnmpPort

IZenPacKs skills1st. bridge. BridgeDevice

stiing /MNetwork/Switch/BridgeIB

False ~| boolean /
False -| boolean
E] int i
| string /
| sting 1
public
private s
|public sting /
False »| boolean
[161 int '

Figure 9: Associating a device class (BridgeMIB) with a Python class

Object classes that represent devices can have relationships with other classes. For
example, ZENHOME | Products | ZenModel | Device.py, which defines the base object
class for devices, specifies a number of relationships as shown in Figure 10.

Q Jane@zen241:~ - Shell - Konsole <

Session

Edit View Bookmarks Settings Help

)

& Shell

_relations = ManagedEntity._relations + (|
("deviceClass", ToOne(ToManyCont, “Products.ZenModel.DeviceClass",
"deuices")),
("perfServer”, ToOne(ToMany, “Products.ZenModel.PerformanceConf”,
"devices")),
("location", ToOne(ToMany, "Products.ZenModel.Location”, “devices")),
("systems"”, ToMany(ToMany, "Products.ZenModel.System"”, “deuvices")),
("groups", ToMany(ToMany, “Products.ZenModel.DeviceGroup™, "devices")),
("maintenancelindows", ToManyCont (ToOne,
"Products.ZenModel .MaintenanceMindow"”, “productionState’)),
("adminRoles™, ToManyCont(ToOne,"Products.Zentodel .AdministrativeRole”,
"managedOb ject")),
(*userCommands’ , ToManyCont (ToOne, ’Products.ZenModel.UserCommand’,
‘commandable’)],
unused :
C’monitors’, ToMany(ToMany, *Products.ZenModel.3tatusMonitorConf’,
'devices’)),
"Device.py” [readonlyl 2113 lines ——12»— 270,0-1 11 :-
.n*-ﬂl

Figure 10: Relationships defined in Device.py

17

© Skills 1st Ltd

15 September 2009

Look at Chapter 9 of the Zenoss Developer's Guide 2.4 for details on the different
types of relationships. Fundamentally, the code shown in Figure 10 is saying:

e A Device has a ToOne relationship with the object class DeviceClass (ie. any
specific device can only belong to one device class)

e A Device has a ToOne relationship with the object class PerformanceConf (ie.
any specific device will have only one performance data collector associated with

it)
e A Device has a ToOne relationship with the object class Location (ie. any
specific device can only be assigned to a single location)

e A Device has a ToMany relationship with the object class System (ie. any
specific device can be assigned to several System groupings)

e A Device has a ToMany relationship with the object class DeviceGroup (ie. any
specific device can be assigned to several Groups)

e A Device has a ToManyCont relationship with the object class
MaintenanceWindow (ie. any specific device can contain several maintenance
windows)

e A Device has a ToManyCont relationship with the object class
AdministrativeRole (ie. any specific device can contain several administrative
roles)

e A Device has a ToManyCont relationship with the object class UserCommand
(ie. any specific device can contain several user commands)

e A Device has a ToMany relationship with the object class StatusMonitorConf
(ie. any specific device can have several status monitors associated with it)

The syntax of the relationship statement seems rather perverse. Taking the first
relationship from Device.py as an example:

("devi ced ass", ToOne(ToManyCont, "Products.ZenModel.Deviced ass", "devices"))

e All relationships in this file are for the object class being defined, ie. Device in
$ZENHOME/Products/ZenModel/Device.py

e The first field, deviceClass is the name of this relationship
e The relationship is a ToOne between Device and DeviceClass

e There is a corresponding relationship between DeviceClass and Device

e The file $ZENHOME/Products/ZenModel/DeviceClass.py must contain
this corresponding relationship (see Figure 11)

e The relationship is a ToManyCont ie. a DeviceClass can contain many
devices

18 © Skills 1st Ltd 15 September 2009

e The name of the relationship defined in
$ZENHOME/Products/ZenModel/DeviceClass.py is the last field, ie.
devices

] jane@zen241:~ - Shell - Konsole <2:

Session Edit View Bookmarks Seftings Help

class DeviceClass(DeviceOrganizer, ZenPackable, TemplateContainer): -
DeviceClass is a device organizer that manages the primary classification
of device objects within the Zenoss system. It manages properties
that are inherited through acquisition that modify the behavior of
many different sub systems within Zenoss.
It also handles the creation of new devices in the system.

Organizer configuration
dmdRootName = "Devices"

manageDeviceSearch = DTHLFile(’ dtml manageDeviceSearch’ ,globals())
manageDeviceSearchResults = DTMLFile(’dtml manageDeviceSearchResults’,
globals())

portal_type = meta_type = event_key = "DeviceClass"
default_catalog = ’deviceSearch’
_properties = DeviceDrganizer._properties + (
{"id’ :"deutypes”’, ‘type’:’'lines’, "mode’ :'w’'},
)
_relations = DeviceOrganizer._relations + ZenPackable._relations + %
TemplateContainer._relations + [{
("devices", ToManyCont(ToOne,"Products.ZenModel .Device”,"deviceClass™)),
"DeviceClass.py"” [readonlyl 928 lines —9v—— 90,9 6x =

= | spe [

Figure 11: $ZENHOME | Products | ZenModel | DeviceClass.py showing corresponding relationship with
Device

Note that there is a specific relationship type when an object contains another object.
Better examples exist in $ZENHOME/Products/ZenModel/OperatingSystem.py where
an Operating System may contain many interfaces, routes, ipservices, winservices,
processes, filesystems and software packages.

El Jane@zen241:~ - Shell - Konsole <2

Session Edit View Bookmarks Settings Help

_relations = Software._relations + (
("interfaces", ToManyCont(ToOne,
"Products.ZenModel . IpInterface”, “os")),
("routes”, ToManyCont(ToOne, "“Products.ZenModel.IpRouteEntry”, “os")J,
("ipseruices", ToManyCont(ToOne, "Products._ZenModel.lIpService"”, "os")),
("winservices", ToManyCont(ToOne,
"Products.Zentodel .WinService"”, “os")),
("processes", ToManyCont(ToOne, "Products.ZenModel.0SProcess", "os'")),
("filesystems”, ToManyCont(ToOne,
"Products.ZenModel .FileSysten”, "os")),
("software"”, ToManyCont(ToOwe, “"Products.ZenModel.Software”, "os™)),
)

]
"OperatingSysten.py"” [readonlyl 636 lines —9%— 62,0-1 T =

ECE [

Figure 12: ToManyCont relationships for the OperatingSystem object class

19 © Skills 1st Ltd 15 September 2009

Where a container relationship exists, this often leads to a requirement to be able to
conveniently display data about those contained components. For example, when
viewing most device types through the GUI, there is an OS tab which shows data for
these contained objects.

ZenoOss Core

IDevices IServer ILinux /server.class.example.org Zenoss server time: 18:48:11

Main Views RS Status Hardware Software Events Perf Edit

Da v Interfaces

Select: All None

ethd 10.191.101.1/24 10.191.101.0 00:0C29.AE.A14F

A
@
Classes 1270018 0
@

sito

Lock

[l
@
@
@

OS Processes Monitored K4

Restarts Fail Severity Status [l Lock

FPage Size |40 ok
Browse By Monitored K

Description Status M Lock
Domain Name Sever 0 0 I;Ia
53 | Page Size [40 ok

File Systems

Total bytes Used bytes Eree bytes
872 4MB 617.7MB 254 7MB

Management

Interface Erotocol

Figure 13: The OS tab for a device showing data for contained relationships such as interfaces,
processes, filesystems, etc

Web pages for displaying data are defined in skins files. The skins files for the
standard Zenoss objects are in the ZENHOME / Products | ZenModel | skins | zenmodel
directory and all have a .pt file extension (for Page Template). See the Zenoss
Developer's Guide 2.4, Chapter 13 for details on writing skins files. You can use a
mixture of:

e HyperText Markup Language (HTML)
e C(Cascading Style Sheets (CSS)

e Zope 2, Zope Page Templates (ZPT) and the Template Attribute Language
(TAL)

e ZPT and Macro Expansion for TAL (METAL)
e JavaScript / Asynchronous JavaScript And XML (AJAX))
e Yahoo User Interface (YUI) Library and Mochikit

20 © Skills 1st Ltd 15 September 2009

The file that defines the page for the OS tab, shown above in Figure 13, is
$ZENHOME | Products | ZenModel | skins | zenmodel | deviceOsDetail.pt. It defines a
form containing a table for each type of component, where the data to populate the
table comes from the ZODB database.

E:| jane@zen241:~ - Shell - Konsole <3> -&)

Session Edit View Boockmarks Settings Help

<form method="post" tal:attributes="action here-os-absolute_url" -
name="f1ileSystemListForn">

<tal:block metal:define-macro="fileSysList"
tal:define="tableName string:fileSyslist:
ob jects hereros-filesystems- objectValuesall:
tabletitle string:File Systems:
batch python:here.ZenTableManager.getBatch(tableName,ob jects,
sortedHeader="mount”) ;
ts python:here.ZenTableManager.getTableState(tableNamel:
menu_id string:FileSystem:
showfilterbox python:True;:">
<input type="hidden" name="context" value="filesystems" >
<tal:block metal:use-macro="here-zenuinacros-macros-zentable">

<tal:block metal:fill-slot="zentablecontents'>
"deviceOsDetail .pt" [readonlyl 648 lines —73x—— 476,0-1 Ten =

E] & shel

Figure 14: deviceOsDetail.pt skin file with definition of form for displaying filesystem information

The key line to note in Figure 14 is:
obj ects here/os/fil esysteniobjectVal uesAll;

where here is the device in question (such as server.class.example.org), os is the
Operating System object on the device, which in turn contains the filesystem object.
objectValuesAll will return a table of data with one row for each filesystem on the
device.

The layout of the table, including header columns and data columns can be very finely
controlled. The first half of Figure 15 defines the table header columns; the middle 5
lines shows a check to ensure that data does actually exist to display; the next 3 lines
(with odd and even in them) ensures that the rows of the table will have alternating
light and dark backgrounds; and the rest of the screenshot is the start of the data
values to populate the filesystem table. The intricacies of skins files will be examined
in more detail later.

21 © Skills 1st Ltd 15 September 2009

£ jane@zen241:~ - Shell - Konsole <3> -2

Session Edit “Wiew Bookmarks Settings Help

{t—— BEGIN TABLE CONTENTS ——> -
<tr tal:condition="ob jects">

<th class="tableheader" width="20"><{ th>

<th tal:replace="structure python:here.ZenTableManager.getTableHeader(
tableName,’ mount’ , " Mount’ 3" >Mount

<sth>

<th tal:replace="structure python:here.ZenTableHanager .getTableHeader(
tableMame,’ totalBytes’,’ Total bytes’)">Total Bytes

<sth>

<th tal:replace="structure python:here.ZenTableHanager.getTableHeader(
tableName, usedBytes’ ,’Used bytes’)":Used Bytes

<sth>

<th tal:replace="structure python:here.ZenTableManager.getTableHeader(
tableName,’ freeBytes’ ,’ Free bytes’)">Free Bytes

<sth>

<th tal:replace="structure python:here.ZenTableManager.getTableHeader(
tableName,’capacity’,’» Util’ "> Util

<sth>

-

<th tal:replace="structure python:here.ZenTableHanager .getTableHeader(
tableName,’ storageDevice’ ,’ Storage Device’)">Device

<th class="tableheader" align=""center" width="30">M< th>
<th class="tableheader" align="center" width="60">Lock< th>
<otry
<tr tal:condition="not:objects">
<th class="tableheader" align="1eft">
No File Systems
<sth>
{otry
<tal:block tal:repeat="fsys batch">
<tr tal:define="odd repeat-fsys-odd"
tal:attributes="class python:test(odd, 'odd’, 'even’)">

<td class="tablevalues" align="center">
<input type="checkbox" name="componentNames:list"
tal:attributes="value fsys-getRelationshipManagerId" >

<otd>
<td class="tablevalues">
{tal:block

tal:content="structure python:fsys.urlLink(text=fsys.mount,
attrs={’class’:’ tablevalues’)" >
{otd>
Btd class="tablevalues"
"deviceOsDetail.pt"” I[readonlyl 648 lines ——80x—— 521,7 78 |~

(on||] sher |

Figure 15: deviceOsDetail.pt showing layout of table for filesystems data

So what links the device object class with the skins file that displays web pages of
data relating to a device? This is coded in the object class file, after the relationship
statements. Each tab required for the object has a stanza defining its id, name, action
and permissions; it is the action field that specifies the name of the skins file (without
the .pt). Compare the (incomplete) definitions in Figure 16 with the tabs shown for a
device in Figure 13. The name field gives the name shown on the tab; the action field
should match with the name of a skins file (without the .pt) in

$SZENHOME | Products | ZenModel | skins | zenmodel.

22 © Skills 1st Ltd 15 September 2009

I:| Jane@zen241:~ - Shell - Konsole <2

Session Edit View Bookmarks Settings Help

Screen action bindings (and tab definitions)
factory_type_information = (

'id” : 'Device’,
'meta_type’ : 'Device’,
'description’ : """Base class for all devices""",
' icon’ : 'Device_icon.gif’,
' product’ : "ZenModel’,
' factory’ : "manage_addDevice’ ,
'"immediate view' : 'device3tatus’,
'actions’ :
(
{ "id’ : 'status’
» 'name’ : 'Status’
, "action’ ! 'deviceStatus’
, 'permissions’ : (ZEN_VIEM, 13
}J
{'id' : 'osdetail’
» 'name’ : ‘o8’
, "action’ ! 'deviceDsDetail’
, 'permissions’ : (ZEN_VIEM, 3
}J
{'id' : 'hudetail’
» "name’ ! 'Harduware’
, Taction’ : 'deviceHardwareDetail’
» 'permissions’ : (ZEN_VIEM, 2
}J
{'id' ! 'sudetail’
» "name’ ! 'Softuare’
, 'action’ : 'deviceSoftwareDetail’
» 'permissions’ : (ZEN_VIEM, 2
3,
{'id’ : 'events’
» "name’ : 'Events’
, "action’ ! 'viewEvents'
, 'permissions’ : (ZEN_VIEM, 2
X,
{’id’ : 'historyFuents’
L3 s 'name’ : "History’
» action’ : 'vieuwHistoryEvents’
it , 'permissions’ : (ZEN_VIEW,)
L3 I,
g ia : ’perfServer’
» "name’ : 'Perf’
, "action’ ! "viewDevicePerformnance’
. 'permissions’ : (ZEM_VIEM,)
I' a
"Device.py” [readonlyl 2113 lines —15+— 317,17 13~

Figure 16: Device.py object class file showing the action filenames for each tab

4.1.4 Databases, Daemons and Directories

To summarise this “Basic Principles” section, here are a couple of diagrams showing
the architecture of Zenoss.

23 © Skills 1st Ltd 15 September 2009

Databases and Daemons for Zenoss data collection

Round Robin Databases Zope Object Database MySQL
(RRD files) (ZODB) relational d/b
-~ TN
x __// Device classes & instances h i
Networks, Event classes
$ZENH OME/perf Locations, Systems, Groups
- Devices Services, Processes, Mibs
- <hostname> Repgrts, Manufacturers
_ <datasource>.<datapoint>.rrd onitors, Templates, Users
- <component=> status
- <component instance> 6
- <datasource>.<datapoint>.rrd
zentrap

Assigned modeler
plugins define data
to collect using

- shmp [zensyslog] [zeneventlog]

- ssh

- wWmi

zenperfsnmp | [zencommand |

Bound templates define
data values to collect

Performance Data Configuration D ata Event Data

Figure 17: Databases and Daemons for Zenoss data collection

Figure 17 shows the 3 different databases used by Zenoss:

e Performance data is held in Round Robin Database (RRD) files under
$ZENHOME/perf

e Configuration data is held in the Zope Object Database (ZODB)
e Event data is held in a MySQL database

Performance data is typically collected at frequent intervals (SNMP data is collected
every 5 minutes, by default). Templates define datasources and datapoints to be
collected, where a datasource includes the source type (such as SNMP) and the OID to
collect (in the case of SNMP). For SNMP data, the datapoint will have the same name
as the datasource. If data is collected using ssh then the datasource type will be
COMMAND and the polling interval can also be specified. Since an ssh command may
return several datapoints, each has to be specified with a unique name. SNMP
performance data is collected by the zenperfsnmp daemon whilst ssh data is
collected by zencommand.

Performance data is stored under $ZENHOME/perf/Devices with a separate directory
for each device. Performance values for the device itself will be under this hostname
subdirectory, with the format <datasource>.<datapoint>.rrd; for example:

24 © Skills 1st Ltd 15 September 2009

$ZENHOVE/ per f/ Devi ces/ zen241. cl ass. exanpl e. org/ |l aLoadlnt1_l aLoadlntl.rrd
$ZENHOVE/ per f / Devi ces/ bi no. skil | s-1st. co. uk/ procs_I i nuxNum rrd

If the object class of the device has contained components, such as os, which itself
contains filesystems objects and interfaces objects, then the directory hierarchy under
the hostname is extended to reflect and store the component data. Thus, interface
information for the interface called ethl on the device bino.skills-1st.co.uk would be

stored in $ZENHOME |/ perf | Devices/ bino.skills-1st.co.uk [os/interfaces/eth1 and
would include datafiles such as ifInOctets_ifInOctets.rrd.

Note that a template must actually be bound to a device or device class before data
collection will be effected.

Configuration data is collected by the zenmodeler daemon, each device or device
class having been configured for one or more modeler plugins. The standard
modeler plugins include SNMP, WMI and ssh as data collection protocols.
Configuration data is stored in the Zope Object Database (ZODB).

Event data is stored in a MySQL relational database (that is installed and configured
automatically when Zenoss is installed). The database has 6 tables:

e status

e history

o log

o detail

e heartbeat

e alert_status

The active events are in the status table whereas closed events are in the history
table.

Events are generated and inserted into the database by various of the Zenoss daemons
(such as zenping, zenstatus and zenperfsnmp). External events can also be
captured and inserted from syslogs by the zensyslog daemon, from SNMP TRAPs by
the zentrap daemon, and from Windows event logs by the zeneventlog daemon.

Figure 18 shows the directory structure for performance and configuration data.

25 © Skills 1st Ltd 15 September 2009

Directories for Zenoss data collection

$ZENH OME

/ \
pit Products
| T— / \

Devices Daemons DataCollector ZenModel
| |
<hostname=> plugins —Device py
| — OperatingSystem.
<datasource=>.<datapoint>.rrd zenoss —DeviceClass.py
o —Perfo_rmanceConf.
<component> —Location.py
<component instance> — skins
— <datasource>.<datapoint>.rrd zenmodel
— deviceQsDetail.
| | ‘ ‘ viewlpInterface pt
cmd portscan snmp python nmap
DeviceMap.py
InterfaceMap.

HRS WRunMap_py
Performance Data HRS WRunMa

Object classes
and skins

Modeler Plugins

Figure 18: Directory hierarchy for Zenoss data collection

4.2 Requirements for the sample ZenPack

To illustrate the different elements of ZenPacks, a sample ZenPack will be created to
get extra information from switch devices that support the BRIDGE MIB (as defined
by RFCs 1493 and 4188). The BRIDGE MIB provides information for each port on a
switch, including the MAC address(es) that have been seen connected at the other end
of the switch port; thus it is possible to build some ideas of layer 2 connectivity.

The main information that the BRIDGE MIB will supply to the ZenPack comes from
the Forwarding Database for Transparent Bridges table (OID .1.3.6.1.2.1.17.4.3.1).

26 © Skills 1st Ltd 15 September 2009

Session Edit View Bookmarks Settings Help

—— The Forwarding Database for Transparent Bridges

dot1dTpFdbTable OBJECT-TYPE
SYNTAX SEQUENCE OF Dot1dTpFdbEntry
MAX-ACCESS not-accessihle
STATUS current

DESCRIFTION
"A table that contains information about unicast

entries for which the bridge has forwarding and-or

filtering information. This information iz used

by the transparent bridging function in

determining how to propagate a received frame."
= { dot1dTp 3 ¥

dot1dTpFdbEntry OBJECT-TYPE

SYNTAX Dot1dTpFdbEntry
MAX-ACCESS not-accessible
STATUS current

DESCRIFTION
"Information about a specific unicast MAC address

for which the bridge has some forwarding and-or
filtering information."

INDEX { dotldTpFdbAddress }

::= { dotldTpFdbTable 1 ¥

Dot1dTpFdbEntry ::=
SEQUENCE {
dot1dTpFdbAddress
MacAddress,
dot1dTpFdbPort
Integer3Z,
dotldTpFdbStatus
INTEGER
¥

Figure 19: BRIDGE MIB - Forwarding Database for Transparent Bridges section

The three leaf-node OIDs are:
e dotldTpFdbAddress of type MacAddress
e dotldTpFdbPort of type Integer32
e dotldTpFdbStatus — an enumerated INTEGER type where :

° other(1),

° invalid(2),
° learned(3),
° self(4),

° mgmt(5)

For this ZenPack sample, only ports that have a status of “learned” (3) are going to be
considered as active (ie. traffic has actively been seen going out of that port to a MAC

address).

27 © Skills 1st Ltd 15 September 2009

To make matters more confusing, the value supplied by the BRIDGE MIB for
dot1dTpFdbPort for some switches, does not match obvious port numbers. For
example, a Cisco Catalyst 2900 has 24 physical ports (actually labelled 1 — 24). The
BRIDGE MIB reports the first physical port as dot1dTpFdbPort = 13, the second as
14, and so on. To help a little with this confusion, the BRIDGE MIB provides the
Generic Bridge Port Table (OID .1.3.6.1.2.1.17.1.4.1) whose first two leaf-node OIDs
are:

e dotldBasePort - "The port number of the port for which this entry contains
bridge management information" — ie. the same port number as reported by
dot1dTpFdbPort

e dotldBasePortIfIndex - "The value of the instance of the ifIndex object, defined
in IF-MIB, for the interface corresponding to this port." In other words, this
value provides a cross-reference between BRIDE MIB port references and their
interfaces reported by the standard MIB-2 interface table. For example, the
port that is physically labelled 1, reports dot1dTpFdbPort=13,
dot1dBasePortIfIndex=2 and information from the MIB-2 interface table for
this port reports iflndex=2 with the corresponding ifDescr="FastEthernet0/1” - I
do hope that's clear!

So, to build any semblance of a layer 2 topology, we need to coordinate several pieces
of information from the BRIDGE MIB and from MIB-2. The target is to be able to
display information as shown in Figure 20.

Logout Help
Iswitch.skills-1st.co.uk Zenoss semver ime: 13.21:20
0s Hardware Software Events Perf Edit Bridge Interfaces
ot Name ot Number Port Interface Bemote Address Remote [P Remote Remote Interface Status Port

Index i Address Hostname Description VR Status
13/000C 41:9D:D3 81 13 z 000C:41:9D:D3 81 1 1 1 Leamed @) Q@
13000 0F 35 647247 13 2 000E 356472 A7 1 1 1 Leamed @) @
13/00:11:25:80:1 C4F 13 2 00:11:2580:1C:4F [0.0.0127] E"Sit"c"nsukli‘j‘s' reth] Leamed (3) @
140/00:04:C1:9C:90:C0 40 A 00:04:C1:9C:80:C0 [10.0.0.253] Ess"t“'c‘shljijk”‘s' [VLANT] Notactve @) @
140/0004:C1:9C90.C 1 40 a 0004:C18C80:C1 [1000253] gss"t“'c':"u':;‘”‘s' [FastEtherneto_1] Motactve (4) (@
140/00.04:C1:9C:90:C2 40 a 00:04:C1:9C:80:C2 [10.0.0.253] Ess"l“'c‘é”ljijk”‘s' [FastEtherme0_2] Notactve @) @

Browse By e e
140/00.04:C19C:00.C3 40 4l 00:04:61.9C.90:C3 [10.0.0.253] gi"t“'c';"u-:;‘”‘s [FastEthermet0 3] Notactve @) @
140/00.04:C1:9C:90.C4 40 a 00:04:C1.9C80:C4 [10.00253] Ess"l“'c's"ljijk”‘s' [FastEthernet0_4] Notactve @) @
140/00.04:C19C:90.C5 40 4l 00:04:61.9C.90:C5 [10.0.0.253] gi"t“'c';"u-l‘j;‘”‘s' [FastEtherme0 51 Notactve @ @
l40/00.04:C1.9C.90.C6 40 a 00.04:C19C.90.C6 1000353 gi':“'c';huijk"‘s' [FastEtherneto_6] Notactve @) @
Wanagement 140/00.04:C19C:00.C7 40 A 00:04:61.9€.90:C7 [10.0.0.253] gi"t“'c's"u-ﬂ‘”‘s' [FastEthermet0 7] Notactve @) @
la0i00.04:C1.9C.90.C8 40 a 00,04:C19C.90.C8 [1000353] gi':“'c';huijk"‘s' [FastEtherneto_g] Notactve @) @
140/00.04:C1:9C:90.C9 40 4l 00:04:61.9€:90:CO [10.0.0.253] gi"t“'c's"u-ﬂ‘”‘s' [FastEthermet0 9] Notactve @ @
l40/00:04:C1-9C-00:CA 40 a 00:04:C1:9C80:CA [10.0.0253] ESS':“L';”U;””S' [FastEthermeto_10] Notactve @) @
140/00.04-C19C90.CB 40 ol 00:04:C18C 90:CB [10.00253] gss"t“'c‘;hu'i%‘”‘s' [FastEthemnetd 11] Not active (4) @
. e r'switch skills- T ~~

Deone

Figure 20: The Bridge Interfaces Table for a Catalyst 2900

28 © Skills 1st Ltd 15 September 2009

This screenshot shows three active MAC addresses, two of which have been detected
on the same port 13 (ifIndex 2, physically labelled port 1); this is perfectly likely as the
port is connected to a router. Of these two MAC addresses, Zenoss is unable to
provide remote information (other than the MAC itself) for the first address — this is
because the remote device has not been discovered by Zenoss. The second MAC
address seen down port 13 is for a device that Zenoss has discovered so the remote IP
address, hostname and interface description has been supplied out of the ZODB
database. Port number 22 (ifIndex 10, physically labelled port 9) is also active and
connected to remote IP address 10.0.0.20, hostname taplow-20.skills-1st.co.uk, whose
remote interface description is ethl. The rest of the ports are actually not connected
so show a Port Status that is not 3.

In addition to getting port information from the BRIDGE MIB, it can also deliver its
base bridge address as OID .1.3.6.1.2.1.17.1.1.0 and the total number of ports on the
switch as OID .1.3.6.1.2.1.17.1.2.0. These values will be collected and displayed on the
Status tab of a switch.

As shown in Figure 20, port information will be displayed in a new tab that will
automatically be created for devices that support the BRIDGE MIB.

In addition to showing a table of ports, clicking on any port row will display
performance information for that port as shown in Figure 21.

5 Logout Help

Zenoss semvertime: 17.2407

Bridge Interface Template Modifications

Performance Graphs Range Link graphs? M &= Stop EXE]

Port_traffic

i,

Wed 12: 08 Thu 8@: 8a Thu 12: 08
Z0e9-87-28 SiZ2:20 to 2009-07-30 17:22:20
B dot1TpPortoutFrames cur: 1.12 avg: 1.54 max: 5.87
Browse By [dotTpPortINFrames Cur:28.73m avg 426, 8OM max: 6.01

Port_traffic

Systems

e 21: Performance graph for a selected switch port

The template that delivers switch port performance information can have whatever
datapoints you wish to configure but the template name must match the object class
of the device component (BridgeInterface in this case) — more of this later.

29 © Skills 1st Ltd 15 September 2009

4.3 Creating the sample ZenPack

It is essential to plan out the pieces of code required for a ZenPack and clearly
document the names that will be used as many elements are referenced in other
elements. Note that all names are case-sensitive.

4.3.1 Elements required and their names

This ZenPack is for devices that support the bridge MIB and it is created by Skills 1st,
so the name of the ZenPack will be:

e ZenPacks.skillslst.bridge

This means that a directory hierarchy will automatically be created under
ZenPacks.skills1st.bridge:

e ZenPacks.skillslst.bridge/ZenPacks/skillslst/bridge

This directory will be referred to as the base directory of the ZenPack throughout this
section, as it contains the object class files, the modeler directory and the skins
directory.

A new device class will be used for such devices which is a subclass of the standard
Switch device class. The device class is created through the GUI, simply by
navigating to Devices -> Network -> Switch and using the Sub-Devices table drop-
down menu to Add New Organizer. The new device class will be:

e BridgeMIB

Zeni)ss Core “Vd_ references Logout Help

[Devices /Network /Switch Zenoss servertime: 9:53.47

Events zProperties Templates

Events [) | Sub Count 1 Device Count

Description

- Sub-Devices 4 Devices _
" BridgemiB

Events

Figure 22: Creating a device class for BridgeMIB as a subclass of [Devices [Network [Switch

Note that this is a device class. It is not the object class file that specifies what
makes such a device unique (relating the device class with the object class file will be
discussed later).

The solution actually needs two new object class files; one for the device itself
(BridgeDevice) and one to represent an interface on a bridge device
(Bridgelnterface). These files contain Python code and must exist in the base

30 © Skills 1st Ltd 15 September 2009

directory of the ZenPack. The name of the file should reflect the name of the object
class that is being defined; thus:

e BridgeDevice.py contains the line class BridgeDevice(Device):
e Bridgelnterface.py contains the line
class BridgeIlnterface(DeviceComponent, ManagedEntity):

Within these object class files, the relationships between BridgeDevice and
Bridgelnterface will be specified (refer back to section 4.1.3 for information on
relationships). Each relationship also has a name, distinct from the object class name
S0:

e A BridgeDevice object will have a relationship called Bridgelnt defining a
ToManyCont relationship with a BridgeInterface object (ie a BridgeDevice may
contain many Bridgelnterfaces).

e A Bridgelnterface object will have a relationship called BridgeDev defining a
ToOne relationship with a BridgeDevice object (ie. a BridgeInterface is
associated with only one BridgeDevice).

Note that, by convention, the relationship name tends to reflect what is being related
to.

Also note that some ZenPacks (especially older ones) define relationships in the
__init__.py file of the base directory of the ZenPack. This procedure is also alluded to
in the Zenoss Developer's Guide 2.4. My understanding, with recent versions of code,
is that there is no requirement to modify any of the automatically-created __init_ .py
files if relationships are specified in object class files, as shown here.

Having created new object class files, modeler plugin code is required to populate the
fields of these objects so the modeler /plugins directory under the ZenPack base
directory contains:

e BridgeDeviceMib.py
e BridgelnterfaceMib.py

These files have Python code that use the standard SnmpPlugin collector to gather
relevant SNMP data for the new objects. As discussed in section 4.1.1, modeler
plugins are assigned to devices or device classes using the GUI with the More ->
Collector Plugins drop-down menu.

The final elements required are the web pages to show information about the new
objects — these are held in the skins/ZenPacks.skills1st.bridge directory under the
ZenPack base directory and have a .pt extension:

e BridgeDeviceDetail.pt

e viewBridgelnterface.pt

31 © Skills 1st Ltd 15 September 2009

4.3.2 SNMP data required

Fundamentally, a protocol is necessary to gather both configuration and performance
data. This ZenPack uses SNMP for both. It is always advisable to check that devices
do respond to SNMP using a basic (non-Zenoss) SNMP command utility. The format
of the command depends on the version of SNMP for which the device is configured.
Here are examples for SNMP versions 1, 2 and 3, using the net-snmp utility, to walk
the SNMP MIB tree from the BRIDGE MIB Forwarding Table (.1.3.6.1.2.1.17.4.3.1)
for a device called switch (the hostname can be anything you can ping so potentially
short hostnames will work just as well as fully-qualified Domain Names). SNMP
versions 1 and 2¢ have a community name of fraclmye configured for use with the
Zenoss server. The SNMP V3 version uses MD5 authentication, passphrase
fraclmyea, and user jane2.

e snmpwalk -v 1 -c¢ fraclmye switch .1.3.6.1.2.1.17.4.3.1

e snmpwalk -v 2c -c fraclnye switch .1.3.6.1.2.1.17.4.3.1

® snnpwalk -v 3 - a MD5 -A fraclmyea -1 authNoPriv -u jane2 switch .1.3.6.1.2.1.17.4.3.1
Once basic SNMP communication is established, make sure that Zenoss device classes
and/or devices have the correct SNMP parameters configured in their zProperties
page.
The ZenPack will need two sets of table data from the BRIDGE MIB and two scalar
values:

.1.3.6.1.2.1.7.4.3.1 (dot1dTpFdbEntry) .1 (RemoteAddress)
2 (Port)
.3 (PortStatus)
.1.3.6.1.2.1.7.1.4.1 (dot1dBasePortEntry) .1 (BasePort)
2 (BasePortifIndex)

Table 4.1.: Table entries from the BRIDGE MIB for each port of a switch

.1.3.6.1.2.1.17.1.1.0 dot1dBaseBridgeAddress
1.3.6.1.2.1.17.1.2.0 dotldBaseNumPorts
Table 4.2.: Scalar entries from the BRIDGE MIB

Note that the .0 is required on the end for the scalar MIB values.

Some of the values returned are shown in the following screenshots:

32 © Skills 1st Ltd 15 September 2009

Session Edit View Bookmarks Seftings Help

ssZenPacks.skillslst.bridge>
SHMPUZ-SMI: :mib-2Z.17. 1.
SHMPUZ-SMI: imib-2.17.
SHMPUZ-SMI: :mib-2Z.17.
SHMPUZ-SMI: imib-2.17.
SHMPUZ-SMI: :mib-2Z.17.
SHMPUZ-SMI: imib-2.17.
SHMPUZ-SMI: :mib-2Z.17.
SHMPUZ-SMI: imib-2.17.
SHMPUZ-SMI: :mib-2Z.17.
SHMPUZ-SMI: imib-2.17.
SHMPUZ-SMI: :mib-2Z.17.
SHMPUZ-SHI: imib-2.17.
SHMPUZ-SMI: :mib-2Z.17.
SHMPUZ-SHI: imib-2.17.
SHMPUZ-SMI: :mib-2Z.17.
SHMPUZ-SHI: imib-2.17.
SHMPUZ-SMI: :mib-2Z.17.
SHMPUZ-SHI: imib-2.17.
SHMPUZ-SMI: :mib-2Z.17.
SHMPUZ-SHI: imib-2.17.
SHMPUZ-SMI: :mib-2Z.17.
SHMPUZ-SHI: imib-2.17.
SHMPUZ-SMI: :mib-2Z.17.
SHMPUZ-SHI: imib-2.17.
SHMPUZ-SMI: :mib-2Z.17.
SHMPUZ-SHI: imib-2.17.
SHMPUZ-SMI: :mib-2Z.17.
SHMPUZ-SHI: imib-2.17.
SHMPUZ-SMI: :mib-2Z.17.
SHMPUZ-SHI: imib-2.17.
SHMPUZ-SMI: :mib-2Z.17.
SHMPUZ-SHI: imib-2.17.
SHMPUZ-SMI: :mib-2Z.17.

nmpwalk v 1 —c public switch.skills-1st.co.uk .1.3.6.1.2.1.17.4.3.1.1 -
.193.156.144.192 = Hex-STRING: 00 04 C1 9C 90 CO
.193.156.144.193 = Hex-STRING: 00 04 C1 95C 90 C1
.193.156.144.194 = Hex-STRING: 00 04 C1 9C 90 C2
.193.156.144.195 = Hex-STRING: 00 04 C1 9C 90 C3
.193.156.144.196 = Hex-STRING: 00 04 C1 9C 90 C4
.193.156.144.197 = Hex-STRING: 00 04 C1 9C 90 C5
.193.156.144.198 = Hex-STRING: 00 04 C1 9C 90 C6
.193.156.144.199 = Hex-STRING: @0 04 C1 95C 90 CY
.193.156.144.200 = Hex-STRING: 00 04 C1 9C 90 C8
.193.156.144.201 = Hex-STRING: 00 04 C1 95C 90 C9
.193.156.144.202 = Hex-STRING: 00 04 C1 9C 90 Ch
.193.156.144.203 = Hex-STRING: 00 04 C1 9C 90 CB
.193.156.144.204 = Hex-STRING: 00 04 C1 9C 90 CC
.193.156.144.205 = Hex-STRING: @0 04 C1 9SC 90 CD
.193.156.144.206 = Hex-STRING: 00 04 C1 9C 90 CE
.193.156.144.207 = Hex-STRING: 00 04 C1 95C 90 CF
.193.156.144.208 = Hex-STRING: 00 04 C1 9SC 90 DO
.193.156.144.209 = Hex-STRING: 00 04 C1 95C 90 D1
.193.156.144.210 = Hex-STRING: 00 04 C1 9SC 90 D2
.193.156.144.211 = Hex-STRING: @0 04 C1 95C 90 D3
.193.156.144.212 = Hex-STRING: 00 04 C1 9SC 90 D4
.193.156.144.213 = Hex-STRING: 00 04 C1 9C 90 D5
.193.156.144.214 = Hex-STRING: 00 04 C1 9C 90 D6
.193.156.144.215 = Hex-STRING: @0 04 C1 9C 90 D?Y
.193.156.144.216 = Hex-STRING: 00 04 C1 9SC 90 D8
.12.41.149.80.111 = Hex-STRING: 00 0C 29 95 50 6F
.12.65.157.211.129 = Hex-5TRING: 00 0C 41 9D D3 81
.14.53.100.114.167 = Hex-STRING: 00 OE 35 64 72 A7
.17.37.128.28.79 = Hex-STRING: 00 11 25 80 1C 4F
0.12.0.0.0 = Hex-STRING: 01 00 OC 00 00 00
.0.12.204.204.204 = Hex-STRING: 01 00 0C CC CC CC
0.12.204.204.205 = Hex-STRING: 01 00 oC CC CC CD
.0.12.221.221.221 = Hex-STRING: 01 00 oC DD DD DD

N NN N N N G N N N G N N G G N N i G N G N

s
0]
0]
0]
0]
0]
0]
0]
0]
0]
0]
0]
0]
0]
0]
0]
0]
0]
0]
0]
0]
0]
0.
0]
0]
0]
0]
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

L A A A A L L L L L L L L L L L T L L LT L T L T Y]
oty Lo Lo Lot Lo o Lo Lo Lo B L0 L0 L0 L L0 E0 L0 Lo L B L0 0 L0 L L B0 0 Lo Lo L L 0 Lo L L L L o L L B B
g N N N N N N N N N
T N N N NN

SNMPuZ-3SMI: :imib-2.17. .128.194.0.0.0 = Hex-STRING: 01 80 CZ 00 00 00
SNMPUZ-SMI: :mib-2.17. .128.194.0.0.1 = Hex-STRING: 01 80 CZ 00 00 01
SNMPuZ-3SMI: :imib-2.17. .128.194.0.0.2 = Hex-STRING: 01 80 CZ2 00 00 0Z
SNMPUZ-SMI: :mib-2.17. .128.194.0.0.3 = Hex-STRING: 01 80 CZ 00 00 03
SNMPuZ-3SMI: :imib-2.17. .128.194.0.0.4 = Hex-STRING: 01 80 CZ 00 00 04
SNMPUZ-SMI: :mib-2.17. .128.194.0.0.5 = Hex-STRING: 01 80 CZ 00 00 05
SNMPuZ-3SMI: :imib-2.17. .128.194.0.0.6 = Hex-STRING: 01 80 CZ 00 00 06
SNMPUZ-SMI: :mib-2.17. .128.194.0.0.7 = Hex-STRING: 01 80 CZ 00 00 07
SNMPuZ-3SMI: :imib-2.17. .128.194.0.0.8 = Hex-STRING: 01 80 CZ 00 00 08
SNMPUZ-SMI: :mib-2.17. .128.194.0.0.9 = Hex-STRING: 01 80 CZ 00 00 09
SNMPuZ-3SMI: :imib-2.17. .128.194.0.0.10 = Hex-STRING: 01 80 CZ 00 00 0n
SNMPUZ-SMI: :mib-2.17. .128.194.0.0.11 = Hex-STRING: 01 80 CZ 00 00 OB =

Figure 23: Results from performing snmpwalk for the RemoteAddress values of the Port Forwarding
table of the BRIDGE MIB

Note that the OID index (the numbers after mib-2.17.4.3.1.1 represent the MAC
address in decimal; thus in the first response of:
SNVPV2-SM :: i b-2.17.4.3.1.1.0. 4. 193. 156. 144. 192 = Hex- STRING 00 04 C1 9C 90 CD

the RemoteAddress MAC is 00 04 C1 9C 90 CO and the index is 0.4.193.156.144.192
where:

o MAC Address Index

e 00 0

o 04 4

e C1 12x16 +1 =193

o 9C 9x 16 + 12 = 156 and so on

33 © Skills 1st Ltd 15 September 2009

Q Jane @zen241:~ - Shell - Konsole <3>

Session Edit View Bookmarks Settings Help

zenossBzenZdl: -usr-local zenoss-/zenoss-locals janesZenPacks .skillslst.bridge/ZenPacks-skillslst bridgesskin [«
ssZenPacks.skillslst.bridge> snmpwalk —v 1 —c public switch.skills-1st.co.uk .1.3.6.1.2.1.17.4.3.1.2

SNMPuZ-SMI: :mib-2.17. .4.193.156.144.19Z2 = INTEGER: 40
SNMPuZ-SMI: :mib-2.17. .4.193.156.144.193 = INTEGER: 40
SNMPuZ-SMI: :imib-2.17. .4.193.156.144.194 = INTEGER: 40
SNMPuZ-SMI: imib-2.17. .4.193.156.144.195 = INTEGER: 40
SNMPuZ-SMI: :mib-2.17. .4.193.156.144.196 = INTEGER: 40
SNMPuZ-SMI: :mib-2.17. .4.193.156.144.197 = INTEGER: 40
SNMPuZ-SMI: :imib-2.17. .4.193.156.144.198 = INTEGER: 40
SNMPuZ-SMI: imib-2.17. .4.193.156.144.199 = INTEGER: 40
SNMPuZ-SMI: :mib-2.17. .4.193.156.144.200 = INTEGER: 40
SNMPuZ-SMI: :mib-2.17. .4.193.156.144.201 = INTEGER: 40
SNMPuZ-SMI: :imib-2.17. .4.193.156.144.202 = INTEGER: 40
SNMPuZ-SMI: imib-2.17. .4.193.156.144.203 = INTEGER: 40
SNMPuZ-SMI: :mib-2.17. .4.193.156.144.204 = INTEGER: 40
SNMPuZ-SMI: :mib-2.17. .4.193.156.144.205 = INTEGER: 40
SNMPuZ-SMI: :imib-2.17. .4.193.156.144.206 = INTEGER: 40
SNMPuZ-SMI: imib-2.17. .4.193.156.144.207 = INTEGER: 40
SNMPUZ-SMI: :mib-2.17. .4.193.156.144.208 = INTEGER: 40
SNMPuZ-SMI: :mib-2.17. .4.193.156.144.209 = INTEGER: 40
SNMPuZ-SMI: :imib-2.17. .4.193.156.144.210 = INTEGER: 40
SNMPuZ-SMI: imib-2.17. .4.193.156.144.211 = INTEGER: 40
SNMPUZ-SMI: :mib-2.17. .4.193.156.144.212 = INTEGER: 40
SNMPuZ-SMI: :mib-2.17. .4.193.156.144.213 = INTEGER: 40
SNMPuZ-SMI: imib-2.17. .4.193.156.144.214 = INTEGER: 40
SNMPuZ-SMI: imib-2.17. .4.193.156.144.215 = INTEGER: 40
SNMPUZ-SMI: :mib-2.17. .4.193.156.144.216 = INTEGER: 40
SNMPuZ-SMI: :mib-2.17. .12.65.157.211.129 = INTEGER: 13

SNMPuZ-SMI: imib-2.17.
SNMPuZ-SMI: :mib-2.17.
SNMPuZ-SMI: :mib-2.17.
SNMPuZ-SMI: :mib-2.17.
SNMPuZ-SMI: imib-2.17.
SNMPuZ-SMI: :mib-2.17.

.14.53.100.114.167 = INTEGER: 13
17.37.128.28.79 = INTEGER: 13
.0.12.0.0.0 = INTEGER: 0
.0.12.204.204.204 = INTEGER: 0
.0.12.204.204.205 = INTEGER: 0
L0.12.221.221.221 = INTEGER: ©

B N N N N N N N N G I G N Y Y
Lo b0 Lo o o B0 L0 L0 0 B0 L0 L0 0 00 L0 L0 L0 L0 Lo L0 L0 L0 Lo Lo Lo Lo Lo Lo Lo Lo Lo Lo B0 Lo Lo B0 B0 B B0 B0 B B B W
A A G AN
NN
i—-n'-i—-E—-E—-n'-i—-E—-E—-n'-i—-E—-i—-n'-i—-i—-:e'e'9'ebébbbébbbébbbébbbébbéébb

SNMPuZ-SMI: :mib-2.17. 128.194.0.0.0 = INTEGER: 0O
SNMPuZ-SMI: :mib-2.17. .128.194.0.0.1 = INTEGER: 0
SNMPuZ-SMI: imib-2.17. .128.194.0.0.2 = INTEGER: 0
SNMPuZ-SMI: :mib-2.17. 126.194.0.0.3 = INTEGER: 0
SNMPuZ-SMI: :mib-2.17. 128.194.0.0.4 = INTEGER: 0O
SNMPuZ-SMI: :imib-2.17. .128.194.0.0.5 = INTEGER: 0
SNMPuZ-SMI: imib-2.17. .128.194.0.0.6 = INTEGER: 0
SNMPuZ-SMI: :mib-2.17. 126.194.0.0.7 = INTEGER: 0
SNMPuZ-SMI: :mib-2.17. 128.194.0.0.8 = INTEGER: 0O
SNMPuZ-SMI: :imib-2.17. .128.194.0.0.9 = INTEGER: 0
SNMPuZ-SMI: imib-2.17. .128.194.0.0.10 = INTEGER: ©
SNMPuZ-SMI: :mib-2.17. .128.194.0.0.11 = INTEGER: © =

Figure 24: Results from performing snmpwalk for the Port values of the Port Forwarding table of the
BRIDGE MIB

The Port values are also indexed by the same representation of the MAC address in
decimal. The only “real” values shown in Figure 24 are for port 13 (as only one port
actually has anything connected to it). The other values of 0 and 40 are for internal
and management addresses.

34 © Skills 1st Ltd 15 September 2009

Session Edit View Bookmarks Seftings Help

zenossBzenZdl: susrs/local szenoss/zenosss locals janersZenPacks.skillslst.bridgesZenPackssskillslst/bridgesskin [«
ssZenPacks.skillslst . bridge> sompwalk -u 1 —c public switch.skills-1st.co.uk .1.3.6.1.2.1.17.4.3.1.3
SHMPUZ-SHI: imib-2.17. .193.156.144.192 = INTEGER:

.4 4
SNMPuZ-SMI: mib-2.17. .4.193.156.144.193 = INTEGER: 4
SNMPuZ-SMI::mib-2.17. .4.193.156.144.194 = INTEGER: 4
SNMPu2-SMI: :mib-2.17. .4.193.156.144.195 = INTEGER: 4
SNMPuZ-SMI: :mib-2.17 .4.193.156.144.196 = INTEGER: 4
SNMPuZ2-SMI: :mib-2.17 .4.193.156.144.197 = INTEGER: 4
SNMPu2-SMI: :mib-2.17. .4.193.156.144.198 = INTEGER: 4
SNMPuZ-3MI: :mib-2.17. .4.193.156.144.199 = INTEGER: 4
SNMPuZ-SMI::mib-2.17. .4.193.156.144.200 = INTEGER: 4
SNMPu2-SMI: :imib-2.17 .4.193.156.144.201 = INTEGER: 4
SNMPuZ-3MI: :mib-2.17. .4.193.156.144.202 = INTEGER: 4
SNMPuZ-SMI::mib-2.17. .4.193.156.144.203 = INTEGER: 4
SNMPu2-SMI: :mib-2.17. .4.193.156.144.204 = INTEGER: 4
SNMPuZ-3MI: imib-2.17 .4.193.156.144.205 = INTEGER: 4
SNMPuZ2-SMI: :mib-2.17 .4.193.156.144.206 = INTEGER: 4
SNMPu2-SMI: :mib-2.17. .4.193.156.144.207 = INTEGER: 4
SNMPuZ-3MI: tmib-2.17. .4.193.156.144.208 = INTEGER: 4
SNMPuZ-SMI: :mib-2.17. .4.193.156.144.209 = INTEGER: 4
SNMPu2-SMI: :imib-2.17 .4.193.156.144.210 = INTEGER: 4
SNMPuZ-3MI: tmib-2.17. .4.193.156.144.211 = INTEGER: 4
SNMPuZ-SMI: :mib-2.17. .4.193.156.144.212 = INTEGER: 4
SNMPu2-SMI: :mib-2.17. .4.193.156.144.213 = INTEGER: 4
SNMPuZ-3MI: imib-2.17 .4.193.156.144.214 = INTEGER: 4
SNMPuZ-SMI: :mib-2.17 .4.193.156.144.215 = INTEGER: 4
SNMPu2-SMI: :mib-2.17. .4.193.156.144.216 = INTEGER: 4
SNMPuZ-3MI: tmib-2.17. .12.65.157.211.129 = INTEGER: 3

SNMPUZ2-SMI: :mib-2.17.
SNMPUZ-SMI::mib-2.17
SNMPu2-SMI: :mib-2.17.

.17.37.128.28.79 = INTEGER: 3
.22.212.93.8.253 = INTEGER: 3
.0.12.0.0.0 = INTEGER: 5

B N N N N N N 'S
0 Lo 0 L (0 Lo B0 0 B0 Lo B 0 B0 G B G0 L) B0) D L B0 D) L 0 B0 L0 B0 60 B 0 B G B B L B0) B0 M B0 LY B O
o R R R R R e R e R bR R R R PR R e R R R R R R R e e e e

ek ks ek ek ek ek ek ek ek ek ek ek ek ek ek e S DD OO0 DD

SNMPuZ-SMI: :mib-2.17. .0.12.204 .204 .204 = INTEGER: 5
SNMPuZ2-SMI: :mib-2.17. .0.12.204.204.205 = INTEGER: 5
SNMPuZ-SMI: :mib-2.17 0.12.221.221.221 = INTEGER: 5
SNMPuZ-SMI: :mib-2.17 .126.194.0.0.0 = INTEGER: 5
SNMPuZ2-SMI: :mib-2.17. .128.194.0.0.1 = INTEGER: 5
SNMPuZ2-3MI: :mib-2.17. .128.194.0.0.2 = INTEGER: 5
SNMPuZ-SMI: :mib-2.17. .128.194.0.0.3 = INTEGER: 5
SNMPuZ2-SMI: :imib-2.17 .128.194.0.0.4 = INTEGER: 5
SNMPuZ2-SMI: imib-2.17. .128.194.0.0.5 = INTEGER: 5
SNMPuZ-SMI: :mib-2.17. .128.194.0.0.6 = INTEGER: 5
SNMPuZ2-SMI: :mib-2.17. .128.194.0.0.7 = INTEGER: 5
SNMPuZ2-SMI: imib-2.17 .128.194.0.0.8 = INTEGER: 5
SNMPuZ-SMI: :mib-2.17 .128.194.0.0.9 = INTEGER: 5
SNMPuZ2-SMI: :mib-2.17. .128.194.0.0.10 = INTEGER: 5
SNMPuZ2-SMI: imib-2.17. .128.194.0.0.11 = INTEGER: 5 =

Figure 25: Results from performing snmpwalk for the PortStatus values of the Port Forwarding table of
the BRIDGE MIB

The same indexing technique is used again. A PortStatus of 3 represents a “real”
learned value. A value of 4 represents self addresses and a value of 5 represents
mgmt addresses.

4.3.3 Creating the ZenPack

The ZenPack is created from the GUI as discussed in section 2.1. The name of the
ZenPack is ZenPacks.skillslst.bridge. A dependency of Zenoss >= 2.2 was imposed.

Once the directory hierarchy is created, rather than working under
$ZENHOME/ZenPacks, the whole ZenPack directory hierarchy is moved to
$ZENHOME/local jane to prevent accidental deletion:

cp -r $ZENHOVE/ ZenPacks/ ZenPacks. skil | s1st. bri dge $ZENHOME/local/jane

35 © Skills 1st Ltd 15 September 2009

The ZenPack is then “reinstalled” with the zenpack —link --install command:

zenpack --link --install $ZENHOME/local/jane/ZenPacks. skillslst. bridge

At this stage, the ZenPack can be modified either using Development mode (ie from
GUI menus), or by modifying files in the directory hierarchy (Source mode); a
combination of both is perfectly acceptable and both will follow the redirection link.

4.3.4 Adding elements to the ZenPack using Development mode

The first thing to do is to create the new device class, BridgeMIB, as a subclass of

/ Devices | Network | Switch. This is simply achieved with the GUI using the drop-down
Add New Organizer menu, as shown in Figure 22. Once created, this device class can
be added to a ZenPack with the drop-down Add To ZenPack menu — you will be
prompted for the ZenPack to which it is to be added.

7) Zenoss: Switch - Mozilla Firefox -

File Edit Mew Higtary Bookmaks Toals Help

- 5 =
~ http:/#zan2a1 cl le.org:B0BO0/zpart/dmd/Devices/Netwoik/Switch b ‘]
« s -0 AN [Q\ p:ifs 281 class xs m ple. arg:B0BO/zp ar/dmad/DevicesfN etwoik/Switc v][n'v @,

(%] Zope on hupiizen241 8080

O Zenoss: Swiitch € | 2enoss: taplow20 shills 1 st.co.uk

ZenQss Core

€3 | C zenoss: zenPacks stillsl stbridge Q|+

Classes Events ZProperties Templates

a— - ~ —
Events [- 0 u | Sub Count 1 Device Count
L y \ J .. J

Description |~ 1]

Sub-Devices v | Devices [FE——

Devices Events Events

: @

If the BridgeMIB device class is subsequently modified, it should be re-added in the
same way, overwriting the previous version.

It is useful to have relevant MIBs loaded and included as part of any ZenPack. The
BRIDGE MIB and the standard SNMP MIBs had already been loaded (using the left-
hand MIBs menu). To include these in a ZenPack, simply select the relevant MIBs
and use the drop-down Add to ZenPack menu.

36 © Skills 1st Ltd 15 September 2009

Zenss Core

-

Overview Modifications

Main Views

Dashboard Sub-Folders

Sub-Folders

Select: All None

Mame Description Notifications
u& BRIDGE-MB The Bridge MIB module for managing devices that support IEEE 802 2
[y
T eReERE MIB Definition used in the ORINOC O Wireless Product Line: iso(1)
1
S recioizme
[y

" savpvzms The MIE module for SNMP enfities. Copyright (C) The Intemet So

wy
] 6: SNIMPVZ- S|

Management

Figure 27: Use the drop-down Mibs table menu to select Add to ZenPack

The contents of a ZenPack can be seen at any stage by using the left-hand Settings
menu, choosing the ZenPacks tab, and selecting the relevant ZenPack.

C zenoss: Switch () Zenoss: taplow-20 skills-1st.co uk Q Zope on http/fzen241:8080 (O Zenoss: ZenPacks.skillsl stbiidge
Dependencies
Select: All None
Required? Name Version(s)
Zenoss [>=22

ZenPacks.AndreaConsadori.Colubris I

ZenPacks. community.mib_utils

ZenPacks.skills1sttest

ZenPacks.zenoss. HitpMonitor

ZenPacks.zenoss.Linudvionitor

Management Files in ZenPack

fusrlocal/zenossizenoss/iocalljane/ZenPacks.skills1stbridge/ZenPacks/skills stbridge/BridgeDevice py
fusrlocal/zenossizenoss/iocalljanefZenPacks skills1st bridge/ZenPacks/skills1 sttbridge/Bridgelnterface py
iustlocalizenossizenoss/localljanefZenPacks.skills1st.bridge/ZenPacks/skills stbridgedib/__init__py
iustlocalizenossizenoss/localljanefZenPacks.skills1stbridge/ZenPacks/skills stbridge/skins/ZenPacks.skills1 st bridge/BridgeDevice Detail pt
iustlocalizenossizenossilocalljanefZenPacks.skills1stbridge/ZenPacks/skills1 stbridge/skins/ZenPacks. skills1stbridgeiiewBridgelnterface pt
iustlocalizenossizenoss/localljanefZenPacks.skills1stbridge/ZenPacks/skills1 stbridge/skins/ZenPacks.skills1 stbridge/placeholder.bt
iustlocalizenoss/zenoss/localljaneZenPacks.skills1stbridge/ZenPacks/skills1 stbridge/migratel__init__py
iustlocalizenoss/zenoss/localljaneZenPacks.skills1st.bridge/ZenPacks/skills1 stbridge/migrateMenu. py
/usr/local/zenoss/zenossl/localljane/ZenPacks skills1st bridge/ZenPacks/skills1stbridge/datasources/__init__py
fustilocallzenoss/zenoss/iocalljane/ZenPacks skills1st bridge/ZenPacks/skills stbridge/modeler/__init__py
fusrilocal/zenossizenoss/iocalljanefZenPacks. skills1stbridge/ZenPacks/skills stbridge/modeler/plugins/BridgeDeviceMib. py
iustlocalizenossizenossl/localljanefZenPacks.skills1st.bridge/ZenPacks/skills1 stbridge/modelerplugins/BridgeMib.pyc.old
iustlocalizenossizenoss/localljanefZenPacks.skills1stbridge/ZenPacks/skills stbridge/modelerplugins/BridgelnterfaceMib. py
iustlocalizenoss/zenoss/localljanefZenPacks.skills1stbridge/ZenPacks/skills1 stbridge/maodeler/plugins/__init__py
fusrlocal/zenossizenoss/localljane/ZenPacks.skills1stbridge/ZenPacks/skills1 stbridge/modeler/plugins/BridgeMib.py.old

v ZenPack Provides

Select: Al None
DfDevlcestetworkaw\tcn.andgeMlB
| Mibsimibs/BRIDGE-MIB

| Mibs/mibs/RECT213448

| Mibsimibs/SNMPV2-MIB

| pibsinibs/SHMPYZ-SMI

Figure 28: Inspecting the contents of the ZenPacks.skills1st.bridge ZenPack

37 © Skills 1st Ltd 15 September 2009

4.3.5 Creating the object class files

Two object class files are needed; one will represent the device itself (BridgeDevice)
and one will represent an interface on the device (Bridgelnterface). The two are

linked by a matching pair of relationships. Both files must be in the ZenPack base
directory.

] jane@zen241:~ - Shell - Konsole <3:

Session Edit View Bookmarks Settings Help

i g R R R R R R R 3
i

BridgeDevice object clasf

i

RIEiRia i 08 d iRt 3 iziainiaiRid i 8 gid ¥ Ridiainiaidia &iRud 8 iR iR gia R iaiBia 6 A R A A AR e

from Globals import InitializeClass

from Products.ZenRelations.RelSchema import =

from Products.ZenModel .Device import Device

from Products.ZenModel .ZenossSecurity import ZEN_VIEW
from copy import deepcopy

class BridgeDevice(Device):
" Bridge Device"

_relations = Device._relations + (
("BridgeInt’, ToManyCont(ToOne,
'ZenPacks.skillslst.bridge.BridgeInterface’, ’'BridgeDeu’)),
)

factory_type_information = deepcopy(Device.factory_type_information)
factory_type_information[®1['actions’] += (

{’id’ : 'BridgeInt’

» 'name’ : '"Bridge Interfaces’
, ’action’ : "BridgeDeviceDetail’
. ‘permissions’ : (ZEN_VIEW,) 3,

)

def _ init_ (self, =args, ==ku):
Device.__init_ (self, =args, ==ku)
self.buildRelations()

InitializeClass(BridgeDevice)

"BridgeDevice .py" 36L, 1080C written 3.27 alr =

& shell |
Figure 29: BridgeDevice.py object class file in ZenPack base directory

This is a very simple object class file as it does not define any unique field attributes,
only a relationship and a skins file.
The BridgeDevice class inherits from the base Device class:

cl ass BridgeDevi ce(Device):
The relationship stanza adopts all existing relations for the base Device class and
adds on a relationship called Bridgelnt of type ToManyCont, with the device object

class defined in ZenPacks.skills1st.bridge.Bridgelnterface (which corresponds to the
file under the ZenPack base directory called Bridgelnterface.py).

38 © Skills 1st Ltd 15 September 2009

_relations = Device. _relations + (
"Bridgelnt', ToManyCont (ToOne,
' ZenPacks. ski |l | sist. bri dge. Bri dgel nterface', 'BridgeDev')),

)

The BridgeDevice object class will have all the standard menu options for the base
Device class and will also have an extra tab whose id is Bridgelnt; whose tab label will
be Bridge Interfaces; whose page layout will be specified by the file
BridgeDeviceDetail.pt under the skins/ZenPacks.skills1st.bridge subdirectory of the
ZenPack base directory. Access permissions to use this tab is the standard-supplied
ZEN_VIEW.

factory type_information = deepcopy(Device.factory_ type infornation)
factory type_ information[0]["'actions'] += (

id . 'Bridgelnt'
' nane' . 'Bridge Interfaces'
"action' . ' BridgeDeviceDetail"
' perm ssi ons' . (ZENVIEW) 1},

)
A Python function _ init__is defined for the BridgeDevice object class which will

initialize the object and create relationships.
def __init__(self, *args, **kw):
Device. _init__ (self, *args, **kw)
sel f. buil dRel ati ons()
The last line delivers the new object.
Initialized ass(BridgeDevice)
The Bridgelnterface.py object class file is more interesting as some unique fields are

defined in addition to a relationship and a skins file. Several extra functions are also
defined which will be used in the skins files.

39 © Skills 1st Ltd 15 September 2009

Q Jane @zen241:~ - Shell - Konsole <3>

Session Edit View Bookmarks Settings Help

ettt g R R RS R R RS R R R R R R R R S 3
ﬁ BridgelInterface object class

ﬁunmutumumummmutmmumummmmtmumtunmmmmmmmmuuuuuuuuuuuuuuuuuuu

__doc__=""""BridgelInt

BridgeInt is a component of a Bridge Deuice

S1a: ™

__wersion__ = "SRevision: 5"[11:-21

from Globals import DTHMLFile
from Globals import InitializeClass

from Products.ZenRelations.RelSchema import =
from Products.ZenModel .ZenossSecurity import ZEN_VIEW, ZEN_CHANGE_SETTINGS

from Products.ZenModel .DeviceComponent import DeuviceComponent
from Products.ZenModel .ManagedEntity import ManagedEntity
class BridgeInterface(DeviceComponent, ManagedEntity):

""Bridge Interface object"""

event_key = portal_type = meta_type = ’BridgelInterface’

feessesnnnnnnxCuston data Variables here from modeling

Remotefiddress = '00:00:00:00:00:00°
Port = '-1’

PortIfIndex = 2

PortStatus = "4’

fisoeeoeaoaosacsaaseEND CUSTOM VARIABLES

i
_properties = (
{"id" :’ Remotenddress’, ’type’ :’string’, "mode’:’’3,
{"id’ :’Port’, ’type’ :'string’, 'node’:'’},
{"id’ :'PortIfiIndex’, "type’:’'int’, 'mode’:’''},
{"id" :’ PortStatus’, ’type’ :'string’, 'mode’:’'"'}
)

Those should match this list below

"BridgeInterface.py” [readonlyl 135 lines —Ox— 1.1 Top
Figure 30: Bridgelnterface.py object class file - first part with unique field definitions

The Bridgelnterface class is defined as a DeviceComponent and a ManagedEntity.
cl ass Bridgel nterface(Devi ceConponent, ManagedEntity):
There are 4 unique fields defined for a BridgeIlnterface object:
e RemoteAddress
e Port
e PortIfIndex
e PortStatus

The data types (such as string or int) must be specified and the mode of read or write
('w') may be specified.

40 © Skills 1st Ltd 15 September 2009

The middle part of BridgeInterface.py defines the relationship with BridgeDevice and
three web pages associated with this object.

) jane@zen241:~ - Shell - Konsole <3> £

Session Edit View Bookmarks Seftings Help

m
]

_relations = (
("BridgeDeuv", ToOne(ToManyCont,
"ZenPacks.skillsist.bridge.BridgeDevice”, "BridgeInt”)),
)

factory_type_information = (

'id’ : 'BridgelInterface’,
'meta_type’ : '"BridgelInterface’,
'description’ : ""Bridge Interface info'"'",
’ product’ : 'bridge’,
'immediate_view’ : 'viewBridgelInterface’,
'actions’ :
(

{ "id’ : "status’

s 'mname’ : 'Bridge Interface Status’

, 'action’ : 'vieuBridge Interface’

, 'permissions’ : (ZEN_VIEY,)

T,

{’id’ : 'perfConf’

s 'mname’ : 'Bridge Interface Template’

s 'action’ : "objTenplates’

, 'permissions’ : (ZEN_CHANGE_SETTINGS,)

}J

{ id’ : 'viewHistory’

s 'mame’ : 'Modifications’

s 'action’ : "viewHistory’

, 'permissions’ : (ZEN_VIEM,)

}l

Figure 31: Bridgelnterface.py showing relations and web pages

The first skins file that is referenced, viewBridgelnterface, is part of this ZenPack and
thus is to be found in the skins/ZenPacks.skills1st.bridge subdirectory; the other two
files, objTemplates and viewHistory are standard pages provided by Zenoss and

these .pt files are found in $ZENHOME/Products/ZenModel/skins/zenmodel.

Note the product line in the factory_type_information:
' product’ . 'bridge'

The value of 'bridge’ denotes the last part of the ZenPack name (and hence the
directory hierarchy) ie. ZenPacks.skills1st.bridge. Unlike the BridgeDevice definitions
of skins files, nothing is inherited from the base Device object. The resulting web page
with its three tabs can be seen in Figure 32.

41 © Skills 1st Ltd 15 September 2009

Zenoss servertime: 19:00:3¢

Bridge Interface Template Modifications

Performance Graphs Range Link gra

Port_traffic

1
Classes 0.

]
&
a
2

Q.
a.
[}

Mon 12: 08 Tue 12! 60
2009-08-083 Ti@2:47 2009-0B-04 19:02:147
W doti1TpPortOutFrames max: @.00
Browse By B dotTpFortInFrames max: 0.00

[Port_traffic|
| Port_traffic

Figure 32: The web page having drilled into the interface of a switch port - note the 3 tabs

An object class definition file can specify not only object attributes but also methods
for the object; these are coded as function definitions in Python. The methods can
then be used in skins files to augment the data that is displayed.

42 © Skills 1st Ltd 15 September 2009

|:| Jane@zen241:...s/skills1st/ibridge - Shell - Konsole r___.

Session Edit View Bookmarks Settings Help

def viewhame (5e1):
if se1f RemoteAddress == '00:00:00:00:00:00'
ar self.Port == '-1":
return "Unknown"
else:
return str{ self.Port 3 + "/ + self. RemoteAddress

name = primarysortkey = viewhame
name = viewhame

def primarySortkey (self):
""'sart on Port status"""
return self. PortStatus

def device (sel1f):
return self. Bridgelev O

def getIpRemotebdddress (sel1f):
dmd=se1F. dmdl
devmac=se1T.Remotedddress
IpAddress=[]
Ips=dmd.ZenLinkManager. layer?_catal og (nacaddress=devmac)
for i in Ips:
IpAddress=Ipiddress + [i.getObject managelp]
return IpAddress

def getIpRemotelfDesc (self):
dmal=5e1T. dmcl
devmac=str(self.Remotedddress)
IfDesc=[]
Ips=dmd. ZenlinkManager. Tayer2Z_catal og (nacadd ress=devmac)
for i in Ips:
IfDesc=ITDesc + [i.getlbjectOd . idl
return IfDesc

def getIpRemoteHostname (self):
dmd=se1f. dmd
find = dmd.Devices. findDevice
devmac=str (se1T.RemoteAddress)
Hos tname=[]
Ips=dmd. ZenlinkManager. Tayerz_catal og (nacadd ress=devmac)
for i in Ips:
Hosthame=Hostrame + [Tind(i.getObjectd . managelpl.id]
return Hosthname

#THIS FUNCTION IS REQUIRED LEAVE IT BE IF NO RRD INFO IS PRESENT
def getRRDNames {self):
return []

i1 tializeClass BridgeInterface) 5
"BridgeInterface py" [readonly] 135 lines --100%-- 135,1 Bot |«

=] & shel [

Figure 33: Bridgelnterface.py part 3 showing functions defined for this object class

The first function, viewName, returns either the string “Unknown” or a string that
concatenates the Port number with a “/” and the RemoteAddress. For example,
13/00:11:25:80:1C:4F .
def vi ewNane(sel f):
i f self.RenoteAddress == '00:00: 00: 00: 00: 00" \
or self.Port =="-1":
return "Unknown"

el se:
return str(self.Port) + "/" + self.RenoteAddress

nane = vi ewNane

43 © Skills 1st Ltd 15 September 2009

There are three similar functions that use the MAC address delivered by the
RemoteAddress field and then search the Zope database for devices that have a
matching MAC address, delivering from the database the corresponding interface IP
address, Interface description or Hostname. A Python list is returned (denoted by
square brackets []) as there may be more than one matching value.

def getl pRenot eAddress(sel f):

dnd=sel f. dnd

devnac=sel f . Renpt eAddr ess

| pAddr ess=[]

| ps=dnd. ZenLi nkManager . | ayer 2_cat al og(nacaddr ess=devnac)
for i in Ips:

| pAddr ess=I pAddress + [i.get Cbject().mnagel p]
return | pAddress

The getObject() method is called with the required attribute of the device — managelp
in the case of the getIpRemoteAddress function.

One way to find what attributes of a device are available, is to use the Zenoss zendmd
utility and run a small series of Python commands:

zendnd
>>> dev=find('switch.skills-1st.co.uk")
>>> for key,value in dev.__dict__.items():

print key, val ue

Note that >>> is the zendmd prompt and . . . indicates that a new level of indentation
is required. A blank line ends the code and runs the Python, delivering results similar
to those shown in Figure 34.

44 © Skills 1st Ltd 15 September 2009

] jane@zen241:~ - Shell - Konsole <2>

Session Edit View Bookmarks

Seftings Help

_lastChange 1249382930.2

snmpContact andrew.findlay@skills-1st.co.uk

preMiProductionState 1000

_snmpLastCollection 1249414843.41

rackSlot 0

id switch.skills-1st.co.uk

maintenancelindows <ToManyContRelatiomship at maintenanceWindows>

admninRBoles <{ToManyContRelationship at adminRoles>

__primary_parent__ <ToManyContRelationship at devices>

conments

monitors <(ToManyRelationship at monitors>

priority 3

_temp_device False

systems <{ToManyRelationship at systems>

_ob jects ({'meta_type’: ’ToManyRelationship’, *id’: ’dependencies’}, {’'meta_type’: ’ToManyRelationship”,
id’ : "dependents’}, {"meta_type’: ’ToOneRelationship’, "id’: “deviceClass’}, {'meta_type’: ‘ToOneRelations
*id’: ’perfServer’}, {'meta_type’: ’ToOneRelationship”’, ’id’: ’location’}, {'meta_type’: 'ToManyRela
tionship’, 'id’: 'systems’}, {'meta_type’': ’'ToManyRelationship’, ’'id’: 'groups’'}, {'meta_type’: ’'ToManyCon
tRelationship’, ’id’: 'maintenancelindows’}, {'meta_type’: *ToManyContRelationship’, ’id’: "adminRoles’},
': ' ToManyContRelationship’, 'id’: ’‘userCommands’}, {'meta_type’: ’ToManyRelationship’', 'id": "’
monitors’}, {'meta_type’: ’ToManyContRelationship’, 'id’: 'BridgeInt’}, {'meta_type’: ’'Software’, "id’': 'o
s'}, {'meta_type’: 'DeviceHW’, ’id': "hu'})

location <ToOneRelationship at location>

_lastPollSnampUpTine <Products.ZenModel .ZenStatus.ZenStatus object at 0x96d44Zc>

snmp0id .1.3.6.1.4.1.9.1.217

hw <{DeviceHW at hu>

snmpDescr Cisco Internetwork Operating System Software

I0S (tm) C2900XL Software (CZIVOXL-C3HZS-M), Version 12.0(5.1)XP, MAINTENANCE INTERIM SOFTWARE

Copyright (c) 1986-1999 by cisco Systems, Inc.

Conmpiled Fri 10-Dec-99 10:37 by cchang

dependencies {ToManyRelationship at dependencies>

groups <ToManyRelationship at groups>

perfServer <ToOneRelationship at perfServer>

deviceClass <{ToOneRelationship at deviceClass>

snmpSysName suitch.skills-1st.co.uk

productionState 1000

zCollectorPluging [’ =zenoss.snmp.MeuDeviceMap’, ’zenoss.snmp.DeviceMap’ . ‘=zenoss.snmp. InterfaceMap’, ’zenos
s.snmp.RouteMap’, ’BridgeInterfaceMib’, 'BridgeDeviceMib’]

managelp 10.0.0.253

BridgeInt <ToManyContRelationship at Bridgelnt>

_properties ({'type’: ’string’, 'id’: ‘sompindex’, "mode’: ‘w’}, {’type’: 'boolean’, ’id’': "monitor’, ’mod
e’: 'w'}, {'type’: 'string’, 'id': 'managelp’, 'mode’: ‘uw'}, {'select_variable’': ’'getProdStateConversions’
» 'setter’: ’setProdState’, "type’: "keyedselection’, ’id’: ’productionState’, 'mode’: ’w’}, {'select_vari
able’: 'getProdStateConversions’, 'setter’: ’'setProdState’, ’type’: 'keyedselection’, 'id’: ’preMWProducti
onState’, ‘mode’: ‘w’}, {"type’: ’‘string’, ’id’: ’sompAgent’, ‘'mode’: ‘w’3}, {'type’: ’string’, 'id’: ‘snmp [*

Figure 34: Output of zendmd commands to print attributes of the device switch.skills-1st.co.uk

The getIpRemotelfDesc function delivers the interface description of the remote
device interface:

def getl pRenotel fDesc(self):

dnd=sel f. dnd

devmac=str (sel f. Renpt eAddr ess)

| f Desc=[]

| ps=dnd. ZenLi nkManager . | ayer 2_cat al og(macaddr ess=devnac)
for i in Ips:

| fDesc=IfDesc + [i.getQvject().id]
return | fDesc

Note that the i.getObject().id value relates to a device interface, not the device itself,
so the id attribute is the interface description, not the hostname of the device.

To get the hostname associated with a remote IP address in the Zope database, an
extra twist is required:

45 © Skills 1st Ltd 15 September 2009

def get| pRenot eHost nane(sel f):
drmd=sel f. dnd
find = dnd. Devi ces. fi ndDevi ce
devmac=str (sel f. Renpt eAddr ess)
Host nanme=[]
| ps=dnd. ZenLi nkManager . | ayer 2_cat al og(nacaddr ess=devnac)
for i in Ips:
Host name=Host nane + [find(i.getObject(). managelp).id]
return Host nanme

The remote interface IP address is delivered by i.getObject().managelp. The find
function then takes that IP address as a parameter and looks for a device with the
same managelp address and delivers the id attribute of the device — that is, the device
hostname.

Ultimately, we want to have performance graphs related to the interfaces of a switch
port so the final function is required:

def get RRDNanes(sel f):
return []

4.3.6 Creating the modeler plugin files

This ZenPack has two modeler plugin files, residing under the base ZenPack directory
under the modeler/plugins subdirectory hierarchy. They are:

e BridgelnterfaceMib.py gets port data for each switch port
e BridgeDeviceMib.py gets scalar data for the switch device

These names can be anything but should obviously be relevant. The only place where
these names appear is when a device or device class has its Collector Plugins
configured from the Zenoss GUI. The purpose of a modeler plugin is to map collected
data into the attributes of Zenoss objects.

46 © Skills 1st Ltd 15 September 2009

Q Jane@zen241:~ - Shell - Konsole <3>

Session Edit View Bookmarks Settings Help

ﬂlﬂi#IﬂﬂtiﬂﬂﬂﬂﬂﬂﬂﬂlIﬂimﬂﬂliﬂﬂﬂﬂﬂ“ﬂﬂlIﬂﬂﬂﬂﬂiIﬂﬂﬂtiﬂﬂﬂﬂﬂﬂﬂﬂtIﬂmlﬂmiﬂﬂtiﬂiﬂiﬂimﬂmﬂﬂ =
it

#t BridgeInterfaceMib modeler plugin

it

HHE L R R R R R R S R R R R

_ doc__="""BridgeInterfaceHib

Bridge InterfaceMib maps interfaces on a switch supporting the Bridge MIB
$1a: g

__version__ = 'SRevision: $'[11:-21

from Products.DataCollector.plugins.CollectorPlugin import SnmpPlugin, GetTableMap, GetMap
from Products.DataCollector.plugins.DataMaps import ObjectMap

class BridgeInterfaceMib(SnmpPlugin):

relname = “BridgeInt"

modname = “ZenPacks.skillslst.bridge.BridgeInterface”

compname not needed as Bridgelnt is a relationship on object class BridgeDevice
which is a direct child of Device™

compname =

R

basecolunns = {
'.1': ’'BasePort’,
'.2': 'BasePortIfIndex’,
¥

portcolumns = {
'.1’: 'Remotefaddress’,
*.2': 'Port’,
'.3': 'PortStatus’,
¥

snmpGetTableMaps gets tabular data
snmpGetTableMaps = (
Physical Port Forwarding Table
GetTableMap(’ dotidBasePortEntry’, *.1.3.6.1.2.1.17.1.4.1", basecolumns]),

Physical Port Forwarding Table
GetTableMap (' dot1dTpFdbEntry’, *.1.3.6.1.2.1.17.4.3.1", portcolumns),

1,1 Top [*

Figure 35: BridgelnterfaceMib modeler plugin (part 1) with SNMP data to be collected

The first part of the BridgeInterfaceMib modeler plugin code imports some standard
Zenoss utilities for getting SNMP information and formatting it.

from Products. Dat aCol | ect or. pl ugi ns. Col | ector Pl ugi n i nport SnnmpPl ugi n, Get Tabl eMap, Get Map
from Products. Dat aCol | ect or. pl ugi ns. Dat aMaps i nport Obj ect Map

Note that the modeler plugin, BridgeInterfaceMib, is itself defined as an object class
which derives from the standard SnmpPlugin modeler. The modeler must be
activated for a device or device class (from the More -> Collector Plugins menu) — it
cannot be directly activated for a device component such as a port on a switch. Hence,
the relname and modname directives specify that the data is to be applied to a

47 © Skills 1st Ltd 15 September 2009

relationship of the device, the component object class being specified by the modname
line.

cl ass Bridgel nterfaceM b(SnnpPl ugi n):

rel name
nodnanme

"Bridgelnt"
"ZenPacks. skil | sist. bri dge. Bri dgel nterface"

In other words, the modeler is applied to a device of object class BridgeDevice but the
data will be mapped to the contained relationship called BridgeInt whose data
attributes are specified by ZenPacks.skills1st.bridge.BridgeIlnterface; this comes down
to populating the unique RemoteAddress, Port, PortIfIndex and PortStatus attributes.

The next part of the modeler plugin specifies SNMP data tables and ObjectIDs (OIDs)
to collect.

basecol ums = {
'.1': 'BasePort',
'.2': '"BasePortlflndex',

}

portcolums = {
".1': ' Renot eAddress',
'.2': "Port',
'.3: '"PortStatus',

}

snnmpGet Tabl eMaps gets tabul ar data

snmpGet Tabl eMaps = (
Physical Port Forwardi ng Tabl e
CGet Tabl eMap(' dot 1dBasePortEntry', '.1.3.6.1.2.1.17.1.4.1",
basecol ums),

Physical Port Forwardi ng Table
Get Tabl eMap(' dot 1dTpFdbEntry', '.1.3.6.1.2.1.17.4.3.1",
portcol ums),

The GetTableMap standard Zenoss function takes three parameters:

e A table name you'll be using later (this can be anything but it is helpful if it
matches the name of the SNMP table)

e The OID of the SNMP table

e A dictionary of "OID-endings" and column names (OID-endings being the keys,
used later)

If there are only one or two OIDs required, it is perfectly possible to code them directly
as part of GetTableMap. It is also possible to specify the OID-ending as more than the
last digit. For example, the following code has the same effect as the first
GetTableMap stanza above.

CGet Tabl eMap(' dot 1dBasePortEntry', '.1.3.6.1.2.1.17.1.4",

{*1.1': 'BasePort"',
"1.2': 'BasePortlflndex',

}

48 © Skills 1st Ltd 15 September 2009

),

It is usually clearer and more convenient to specify the dictionary of "OID-endings"
and column names separately as shown above with basecolumns.

The snmpGetTableMaps function can get one or more SNMP tables of data.

The only mandatory function required in a modeler plugin is the process() function.

] jane@zen241:~ - Shell - Konsole <3> £

Session Edit View Bookmarks Settings Help

def process(self, device, results, log):
""collect snmp information from this device
log.info(’ processing #s for device xs’, self.name(), device.id)
#tiCollect Phyzical Port Forwarding Table
getdata, tabledata = resultis

#t Uncomment next £ lines for debugging when modeling
log.warn("Get Data= xs", getdata)
log.warn("Table Data= xs", tabledata)

BaseTable = tabledata.get(“dotldBasePortEntry™)

#t If nwo data returned then simply return
if not BaseTable:
log.warn(‘Mo SHMP response from ¥s for the #s plugin’, device.id, self.name())
log.uarn(“"Data= »s", getdata)
log.warn("Columns= »s", self.basecolumns)
return

PortTable = tabledata.get("dot1dTpFdbEntry™)

#t If no data returned then simply return
if not PortTable:
log.uwarn('No SHMP response from ¥s for the #s plugin’, device.id, self.name())
log.warn("Data= »s", getdata)
log .warn{ "Columns= »s", self.portcolumns

return
46,0-1 53«

-

(|| = shen |

Figure 36: BridgelnterfaceMib modeler plugin (part 2) showing data collection and error checking

The part that actually gets the data is the line:

getdata, tabledata = results

Scalar data is populated into getdata; table data is populated into tabledata.
Debugging can be provided using log statements with different severities such as
log.info and log.warn.

log.info('processing % for device %', self.nane(), device.id)

Remember that snmpGetTableMaps retrieves two tables of data into the variables
dot1dBasePortEntry and dot1dTpFdbEntry. The second half of Figure 36 checks that
SNMP data was actually retrieved (as the device may, for example, have been down

49 © Skills 1st Ltd 15 September 2009

on a modeler cycle). If either table is not populated then logging is produced and the
process function simply returns.

The last part of the modeler plugin code creates a relationship mapping that will
contain entries for each object that represents a port on the device.

E:l Jane@zen241:~ - Shell - Konsole £

Session Edit View Boockmarks Settings Help

rm = self.relMap()
for oid, data in PortTable.items():

oid for the Bridge MIB i= dotted decimal representation of remote MAC addresst
However, the port number is used as the oid index into most of the other useful tables
egy. Port 13 = slot 1 on 2900 port ZZ2 = =lot 9

Hence, =et snmpindex to port

to a string that displays sensibly

H
H
i
H
i
i
#t Mote that the RemotefAddress MAC field is raw hex so use asmac function to convert
i
H
#t dotldBasePortIfIndex provides a link between port numbers on the switch from the BRIDGE
MIB and the interface table for standard MIB-Z data (like interface description and
#t performance parameters).

om = self.objectMap(datal

on . Renotefddress = self.asmac (on.Remotefiddress)

om.snmpindex = int(om.Port)
#t The BasePortIfIndex is found from the BaseTable where the Port number from
#t dotldTpFdbEntry table matches the Port number from the dotildBasePortEntry

on.PortIfIndex = -1
for boid,bdata in BaseTable.items():
if bdatal’'BasePort’1 == om.Por{:
on.PortIfIndex = bdatal’BasePortIfIndex’]

prepld function ensures that results are all unigue — will add _1, _Z etc to achieve this
on.id = self.prepld("Port_" + striom.Port) + "_ifIndex_" + str(om.PortIfIndex) +

" Remlp_ " + str(om.RenoteAddress))

For lots of debugging, uncomment next Z lines

i for key,value in om.__ dict_ .items():

i log.warn("om key = xs, om value = »s", key,value)

rm.append (om)
return rm

"Bridge InterfaceMib.py" 114 lines —88x— 101,46 Bot =

Figure 37: BridgelnterfaceMib modeler plugin (part 3) mapping and modifying SNMP data onto objects

Remember that the GetTableMap delivers a table (strictly a Python dictionary). The
two fields of the dictionary are the OID and the data; the data itselfis also a
dictionary containing column names and values. To see what is actually delivered,
make sure that the following lines are uncommented and then model a switch device
from the Manage -> Model device menu.

Uncomrent next 2 lines for debuggi ng when nodeling
| og. warn("GCet Data= %", getdata)

50 © Skills 1st Ltd 15 September 2009

| og. warn("Tabl e Data= %", tabledata)

G httpizen241 cla. . ukicollectDevice &3 |ﬁ Zenoss: taplow-20.skills-1steo.uk €3 [@ Zope on hitp:/izen241:8080 (%] [é Zenoss: ZenPacks.skilsstbridge €3 l o =
tin, 2009-08-05

125708 INFO zen.ZenModeler processing BridgelnterfaceMib for device switch.skills-1st.co.uk
2009-08-05
12:27:08 WARNING zen.ZenModeler Get Data=

Table Data= {'dotl dTpFdbEntry": {'1.0.12.204 204 204" {Port’ 0, PortStatus' S, 'RemoteAddress” w1000 cikeckxecixee),
"1.0.12204 204 205" {Port" 0. PortStatus' 5, RemoteAddress” w0 1000 checchecched}, 0.17.37.128 28 79" {Port’ 13, 'PoriStatus” 3,
‘RemoteAddress” w0l 1%wB0w] c0], 0.4.193.156.144. 214" {Port" 40, 'PortStatus” 4, 'RemoteAddress” w00w04be 1@ cka0xdE]},
'0.4.193.156.144 215" [Port: 40, PortSiatus' 4, 'RemoteAddress”. wl0W04'%e 1@ cu@0d?), 0.4.153.156.144 218" [Por" 40, 'PoriStatus” 4,
‘RemoteAddress” wWi0w04ke 1w@cka0xds]), 0.4.193.156.144 210" {Port: 40, 'PortStatus' 4, RemoteAddress”: w00w04Wxe 1w cka0xd2},
'0.4.193.156.144 211" {Port: 40, FortStatus' 4, 'RemoteAddress” wi004'we 1w@cw@0wd3), 0.4.193.156.144 212" {Port" 40, 'PortStatus” 4.
‘RemoteAddress” wWi0w04ke 1w@cka0xdd), 0.4.193.156.144 213" {Port 40, 'PortStatus' 4, RemoteAddress” w00w04xe 1 wAcka0xdS),
"1.128.194.00.15" {Port: 0. PortStatus” 5. RemoteAddress”. w01 wB0wc2w00w00w0(}, '1.128.184.00.14" {Port" 0. 'PortStatus” 5.
‘RemoteAddress” w0l 1wB0Wc2w00w00w0eT, 1.128.194.00.16" {Port: 0, PortStatus” 5. 'RemoteAddress” Wi 1'wB0wc2w00w00W10%,
"1.128.194.00.11" {Port’ 0. PortStatus” 5. RemoteAddress”. w01 wB0%c2w00w00%0b}. 1.128.194.0.0.10" {Port: 0, 'PortStatus" 5.
‘RemoteAddress” 'l 1wB0Wc2w00%00n], "1.128.194 0.0.13" {Port" 0. PoriStatus”’ 5. RemoteAddress" w01 uB0kc2w00w00\],
"1.128.194.00.12" {Port: 0. PortStatus” 5. RemoteAddress" w0 1wB0wc2u0w00W0 e}, 255 255 255 255 255 255" {Port" 0, 'PortStatus” 5,
‘RemoteAddress". dfodfodfudfudfodf]), 1.128.194.0.0.9" {Port" 0, 'PortStatus’ 5. 'RemoteAddress'. w01 wB0wcZw00000M], 1.128.194 00 8"
{Port" 0, 'PortStatus" 5. ‘RemoteAddress" w01%B0wc2w00w00%08]}, 1.0.120.00" {Port 0, 'PortStaius' 5. RemoteAddress” w1000 cx00
WO0W00}, 1.128.194 0.0.1" {Port" 0. 'PortStatus” 5. RemoteAddress". w0 1uB0wc2w00w000%01}, 1.128.184 0.00" {Port" 0, 'PortStatus" 5,
‘RemoteAddress” w0 1wB0Wc2w00w00w007, 1.128.194.00.3" {Port" 0, PorStatus" 5, 'RemoteAddress” 'wl1wB0Wc2w00%00w031,
"1.128.194.00.2" {Port. 0, 'PortStatus' 5, 'RemoteAddress" w0 1wB0%c2W00w00%02Y, '1.128.194.0.0.5" {Port. 0, 'PoriStatus’ S,
‘RemoteAddress” w0l 1xB0Wc2w00w00w057, 1.128.194.00.4" {Port" 0, PortStatus' 5, 'RemoteAddress” wl1wB0Wc2w00%00w04 1,
"1.128.194.00.7 {Port" 0, 'PortStatus’ S, 'RemoteAddress” w0 1wa0wc2w00W00%07), '1.128.194 006 {Port" 0, 'PortStatus" S,
‘RemoteAddress” w0 1wB0Wc2w00W00w067, 1.0.12.221.221.221" {Port: 0. PortStatus” 5. 'RemoteAddress” w01 w00w0ckddxddxdd],
WARNING zen.ZenModeler 0.1265.157.211.129" {Port: 13, PortStatus' 3. 'RemaoteAddress”. wO0LOcAXI dwd3vE1], 0.4.193.156.144. 207", {Port" 40, 'PortStatus’ 4.
‘RemoteAddress” wW00w04ke 1w@cha@0xcr}, '0.4.183.156.144. 206" {Port" 40, PortStatus’ 4, 'RemoteAddress” w00w04xc 1w@ ce@0ixce’}.
0.4.193.156.144 205" {Fort: 40, PortStatus' 4, 'RemoteAddress” wi0wO4we 1w@cu@0wcd}, 0.4.193.156.144.204" {Port" 40, 'PortStatus” 4,
‘RemoteAddress” wW00w04 e 1v@cha0xce}, '0.4.193.156.144 203" {Port" 40, PortStatus’ 4, 'RemoteAddress” wO0wD4%c 1wE co@0ch},
0.4.193.156.144 202" {Port: 40, PortStatus” 4, ‘RemoteAddress” w0wd4xc1w3ckad0wcal, D.4.192.156 144 201" {Port" 40, 'PortStatus" 4.
‘RemoteAddress” wW0w04 ke 1w@cha0xcd}, 0.4.193.156.144.200" {Port’ 40, PortStatus” 4. RemoteAddress” wO0W04ke w3 w08}
'0.4.193.156.144 209" {Port" 40, PortSiatus" 4, 'RemoteAddress” wl0wO4'%e 1@ cud0dl), 0.4.153.156.144 208" {Port" 40, 'PoriStatus” 4.
‘RemoteAddress”. 0004 v chd0xd0], 0.4.193.156.144.197" [Port” 40, 'PoriStatus” 4, 'RemoteAddress . w041 bAckE0ncS],
'0.4.193.156.144 196" [Port 40, PortSiatus" 4, 'RemoteAddress" wO0bWO4xe1bchd0ked), 0.4.193.158.144.195" {Port'" 40, 'PortStatus” 4.
‘RemoteAddress” wWi0w04ke 1w@cka0xe3}, 0.4.193.156.144.194" {Port" 40, PortStatus” 4, RemoteAddress” wO0w04 ke 1w cwa0e2,
'0.4.193.156.144 193" [Port: 40, PortSiatus" 4, 'RemoteAddress" w0bO4ke1bchd0ke 1}, 0.4.193.158.144.192" {Port" 40, 'PortStatus” 4.
‘RemoteAddress” wWi0w04ke 1w@cka0xc0}, 0.4.193.156.144.199" {Port" 40, PortStatus” 4, RemoteAddress” w0004 ke 1w w07 |,
'0.4.193.156.144 198" {Port: 40, PortStatus' 4, 'RemoteAddress” wi0w04'we 1w@cw20wc6}). 'dotl dBasePonEntry: {24" {BasePortiiindex: 12,
‘BasePort: 24}, 25" {BasePorilfindex’ 13, 'BasePort’ 25}, 26" {BasePorifindex: 14, 'BasePort: 26}, 27" {BasePortifindex’ 15, 'BasePort’ 27},
20" {BasePortifindex" 3, ‘BasePaort" 20}, 22" {BasePoriindex" 10, ‘BasePort: 22}, 23" {BasePortifindex" 11, BasePaort: 23}, 28"
{BasePorilfindex’ 16, 'BasePort: 28}, 29" {BasePorlindex: 17. 'BasePort: 29}, 13" {BasePorifindex" 2. 'BasePort: 13}, 38"
{BasePorifindex" 25. 'BasePort: 38}, 15" {BasePoriindex: 4, 'BasePort: 15} 14" {BasePorifindex 3. 'BasePort: 14}, 17" {BasePortifindex’
E. 'BasePort” 17}, 16" {BasePorliindex" 5. 'BasePort’ 16}, 33" [BasePoriliindex" 20, 'BasePort: 33}, 32" {BasePorilfindex’ 13, 'BasePort"
32}, 31" {BasePorifindex" 18, BasePort: 31}, 37" {BasePorifindex: 24, 'BasePort: 37}, 36" {BasePortlfindex: 23, 'BasePort' 36}, 35"
{BasePortlfindex" 22, 'BasePort" 35}, 34" [BasePortiindex: 21, 'BasePort' 34}, 18" {BasePortifindex" 8, BasePort" 13}, 18"
{BasePortifindex" 7. 'BasePort" 18}}}

2009-08-05
12:27.08

2008-08-05

129708 INFO zen.Zenhodeler processing BridgeDeviceMib for device switch.skills-1st.co.uk

Figure 38: Debug output for BridgelnterfaceMib modeler plugin

The BridgeInterfaceMib modeler plugin doesn't, in fact, get scalar data, so the the
getdata dictionary is empty (ie. {}). snmpGetTableMaps delivers two tables (Python
dictionaries) — dot1dTpFdbEntry and dot1dBasePortEntry; these are all shown
highlighted in red in Figure 38. Each of dot1dTpFdbEntry and dotldBasePortEntry
comprises a dictionary with OID and data components. The first few OID values are
highlighted in blue for each table. The data component is itself a dictionary with
column names and values; these are highlighted in yellow.

So, the lines:
for oid, data in PortTable.itens():
onrsel f. obj ect Map(dat a)

cycles through each of the OID, data sets of values in the PortTable, mapping the data
values to the attributes of the Bridgelnterface object; Port, PortStatus and
RemoteAddress.

Note in Figure 38 that the MAC address is in hex format. To display this for users, it
needs converting to a string-type representation so the delivered value of the
RemoteAddress is converted using the Python asmac function, replacing the
RemoteAddress value on the object.

om Renpt eAddr ess = sel f. asmac(om Renot eAddr ess)

51 © Skills 1st Ltd 15 September 2009

The ZenPack only defined four unique attributes for the BridgeInterface object in the
object class file Bridgelnterface.py:

e RemoteAddress
e Port

e PortIfIndex

e PortStatus

However, it also inherited attributes as a DeviceComponent and ManagedEntity and
thus has other attributes, including:

o id
e snmpindex

The id should be a unique and meaningful identifier. snmpindex is used when
performance data is configured using Zenoss templates and provides the instance to
collect for any given SNMP OID. Most of the useful SNMP data to do with switch
ports is actually indexed using the value of the port number (remember for the test
Catalyst 2900 switch, the values of Port representing real interfaces run from 13 to 38
— you can see the values for a real active port in Figure 38 right in the middle,
opposite WARNING zen.ZenModeler). Hence, the snmpindex attribute is set to the
Port value, having first converted the raw data to an integer type.

om snnpi ndex = int(om Port)

Note that many modeler plugins use the OID value from the tabledata as the
snmpindex but this is only useful if that OID does actually represent a useful SNMP
index. The OID value that we have delivered (highlighted in blue in Figure 38) is the
decimal representation of a MAC address and is not useful as an instance for
collecting performance information. More on this topic later.

A switch discovered by Zenoss will automatically gather information on each of the
ports, using information from the MIB-2 MIB. This doesn't provide much port-level
information but it does provide some. The interfaces are indexed using the interfaces
table of MIB-2.

52 © Skills 1st Ltd 15 September 2009

VIB /switch.skills-1st.co.uk Zenoss semvertime: 18:(

Main Views Status Hardware Software Events Perf Edit Bridge Interfaces
Ey Select: All Nore
Al IP_Address Network MAC Descr o A M Lock

[l FastEtherneton 0004:C1:9C:90°C1 Linksys wireless access point @ @ @
Classes || FastEthernetono 0004:C1'9C90 CA @ @ @
[FastEthernetor1 00:04:C1:9C90.CB @ @ @
[l EastEthemeton2 0004:C18C80:CC @ @ @
[EastEthermnetons 0004:C18C90 CD @ @ @
P [EastEthernetona 0004:C19C90:CE @ @ @
P [l FastEthernetons 0004:C19C90:CF Sunshine @ @ @
|| FastEthemetone 00:04:C1'9C:90'D0 Pappet @ @ @
ez B [l FastEtherneton? 0004:C1:9C:80:01 @ @ @
m ["] EastEthemnetons 0004:C18C80.02 @ @ @
Grouy [EastEthernetona 00.04:C18C:90.03 @ @ @
[EastEthemetn 0004:C19C90:C2 Blue Aflas @ @ @
[l FastEthernetn/20 0004:C19C90:04 @ @ @
|| FastEthermneto1 00:04:C1:9C:90'D5 @ @ @
— [FastEthemeto/22 0004:C1:9C:90:06 @ @ @
["] FastEthemeton3 00.04:C1.9C90 07 @ @ @
A [EastEthermeto/z4 00.04:C18C:90.08 @ @ @
& [EastEthemetn3 0004:C19C90:C3 Brick @ @ @
|| FastEthernetos 0004:C19C90:C4 Blossom @ @ @
|| FastEthemetds 0004:C1:8C:90:C5 @ @ @
[l FastEthemetos 0004:C1:9C:90:C6 @ @ @
FIr=T—— T A A A

Done

Figure 39: Standard OS tab for switch device with MIB-2 interfaces

Drilling in to an interface results in both tabular information and performance graphs
for bound templates.

idgeMIB /switch.skills-1st.co.uk Jos /FastEthernetd_1

Status

Main Views Events Template Modifications
Ipinterface
Name FastEthernetd/1 MAC Address 00:04:C1:9C:20:C1
IP Addresses
i Operational Status Up Administrative Status Up
) Type ethemetCsmacd Speed 100.000Mbps
¢l MTU 1500 SMMP Index 2
asses
Description Linksys wireless access point Monitor True j
! Locks
Savel
Pr
Pr
Throughput
Browse By
w 1.5k
S
S n Lok
= I
< |[# BEk Aot il A >
0.0 -
Tue 12:080 wed 00! 00 wed 1200 C‘l
Management 2009-08-04 G:05:58 to 2009-08-05 18 05:58
A 5 B Trbound cur: 259 .57 avg: 279,89 max: 1.74k
y B outbound cur:417.ze avg:457.76 max: 1.95k
5 Packets
z.0
nt r ‘{
o
o
o (2]

Read zen241.class.example.arg

Figure 40: Tabular information and performance graphs for a switch interface from MIB-2

53 © Skills 1st Ltd 15 September 2009

Note in the table at the top of Figure 40 that the SNMP Index for this interface is
given as 2. It is this index number that is delivered by the BRIDGE MIB to coordinate
MIB-2 interface information with BRIDGE MIB information. The OID is the
BasePortIfIndex from the dotldBasePortEntry table (.1.3.6.1.2.1.17.1.4.1.2). .
1.3.6.1.2.1.17.1.4.1.1 (BasePort from the same table) will be the same as the Port OID
from the forwarding table (.1.3.6.1.2.1.17.4.3.1.2). The following code delivers the
PortIfIndex attribute to the BridgeInterface object, if a valid PortIfIndex exists (it
won't for internal and management ports); otherwise PortIfindex will be -1.

The BasePortlflndex is found fromthe BaseTabl e where Port nunber from
dot 1dTpFdbEntry table natches the Port nunmber fromthe dotldBasePortEntry

om Portlflndex = -1
for boid,bdata in BaseTable.itens():
if bdata['BasePort'] == om Port:

om Portlflndex = bdata[' BasePortlflndex']

The last attribute to populate is the unique id attribute. This is constructed by
concatenating the string “Port_"with the Port number, followed by the string
“_ifIndex_" and the PortIfIndex, followed by the string “ RemlIp_” and the
RemoteAddress. The Python prepid function is applied to ensure uniqueness. An
example would be Port_13_ifIndex_2_Remlp_00_0C_41_9D D3 81 .

prepld function ensures that results are all unique - will add _1, _2 etc
to achieve this

omid = self.prepld("Port_" + str(omPort) + " _iflndex_ " +
str(omPortlflndex) + " _Rem p_" + str(om RenoteAddress))

Having cycled around these attribute mappings for the data for the first port, the
object map is appended to the relationship map, and the next set of port data is
processed.

rm append(om
return rm

The second modeler plugin for the ZenPack is trivial in comparison but demonstrates
a useful feature and a neat trick. The BridgeDeviceMib.py plugin will be activated for
switch devices but will deliver device-wide information, rather than port component
information.

The BRIDGE MIB delivers:
e .1.36.1.2.1.17.1.1.0 dot1dBaseBridgeAddress
e .1.3.6.1.2.1.17.1.2.0 dot1ldBaseNumPorts

Now consider the standard information that is displayed for any Zenoss device on its
Status page. This includes a number of standard device properties such as:

e Tag number

e Serial number

54 © Skills 1st Ltd 15 September 2009

e Rack Slot

) Zenoss: switch.skills-1st.co.uk - Mozilla Firefox Pr

File Edit Wiew History Bookmaks Tools Help

< @ - G @ ‘.& [é http:ifzen241 .class.example. org:B0B0/zp Devic i i estowitch.skills-1 st.co.uk vl [-‘l- @

a Zenoss: switch.skills-1st.co.uk O é Zenoss: taplow-20 skills-1st.co.uk Q [@ Zope on hitp:ffzen241 8080 Q [é Zenoss: ZenPacks.skills] st.bridge Q l L =

Device Status

ent Device: switch.skills-1st.co.uk P 10.0.0.253 status: @ Up
eLi
' — Component Type Status
rk ,:’ ‘: Availability 83 949% P v
Uptime 01d:07h:15m:37s Other
Classes
State Production
0 @
T Priority Normal 0/01:00:0C:DD:DD:DD
b 4 Locks None
@ LastChange 2009/08/05 17:29:07 lplrterface @
] Last Collection 2009/08/05 18:27:25 .
: Bridgelnterface @
FirstSeen 2009/07/09 11:58 48
Browse By
Device Information
Organizers 0s
Location mMone Tag# Number of ports = 24
Groups Mone Serial# 00:04:C1:9C:90:C0
M t
Managemen Systems Mone HWMake Cisco
e Collector Jocalhost HWMode| 2924X1v
05 Make Unknown
) 0S Version |10S 12.0i5 1)xP
tHing
RackSlot g
=Nt Manager
Name switch skills-1st.co.uk
Contact andrew findlay@skills-1st co uk
Location Skills 1st Office
Description Cisco Internetwork Operating System Software 105 (tm) C2900XL Software (C2900XL-C3H2S-M), Version 12.0(5.1)%P, MAINTENANCE INTERIM SOFTWARE Copyright
(c) 1986-1999 by cisco Systemns, Inc. Compiled Fri 10-Dec-99 10:37 by cchang
Comments
Links
Done 4

Figure 41: Standard Status page for any Zenoss device

The Tag number is not used normally for switch devices neither is the Serial number
field populated; however, the Status page for a device automatically displays data for
these fields, if values exist. This is the trick that the BridgeDeviceMib plugin will use.
These fields will have data mapped from the dot1dBaseBridgeAddress and
dotldBaseNumPorts OIDs described above.

So, how to get the OIDs into the relevant standard device attributes? Zenoss provides
a number of setter methods for standard attributes, including setHWSerialNumber and
setHWTag (see the Zenoss Wiki — Diving into the Device Model at
http://community.zenoss.org/trac-zenpacks/wiki/DeviceModel for more information on
both device setters and properties) . The really useful feature that this plugin
demonstrates is that SNMP data can not only be mapped to object attributes; it can
also be mapped to setter methods.

55 © Skills 1st Ltd 15 September 2009

http://community.zenoss.org/trac-zenpacks/wiki/DeviceModel

£ jane@zen241:~ - Shell - Konsole <)

Session Edit Wiew Bookmarks Settings Help

GG R R R R R R R R R R R e S R =
i

BridgeDeviceMil] modeler plugin

it

W R R R R R R R

_doc__ BridgeDeviceMib

BridgeDeviceMib gets number of ports and base MAC address for switch supporting Bridge MIB
$Id: $uuu
__wversion__ = 'SRevision: 5'[11:-21

from Products.DataCollector.plugins.CollectorPlugin import SnmpPlugin, GetTableMap, GetMap
from Products.DataCollector.plugins.DataMaps import ObjectMap

class BridgeDeviceMib(SnmpP lugin):

i relname = “"Bridgelnt"
modname = "ZenPacks.skillslst.bridge.BridgeDevice"
i compnane = “BridgeDeuvice"

#t snmpGetMap gets scalar SHHF HIBs (single values)

Use .1.3.6.1.2.1.17.1.1 (dotldBaseBridgefddres=s) to populate the Serial No
and 1.3.6.1.2.1.17.1.2 (dotldBaseNumPorts) to populate the Hardware tag

#t setHWSerialNumber and setHWTag are standard methods on any Device

snmpGetMap = GetMap({
'1.3.6.1.2.1.17.1.1.0" : ‘setHdSerialNumber’,
*.1.3.6.1.2.1.17.1.2.9" : ’setHUTag’,
i3]

def process(self, device, results, log):
""'collect snmp information from this device
log.info(’processing #s for device xs’, self.name(), device.id)
#Collect Physical Port Forwarding Table
getdata, tabledata = results

#t Uncomment next 2 lines for debugging when modeling
log .warn(“Get Data= xs", getdata)
log .warn(“Table Data= »s", tabledata)
om = self.objectMap(getdatal
on.setHWSerialNumber = self.asmac(om.setHWSer ialNumber)
om.setHUTag = “"Number of ports = " + str(om.setHUTag)
return om

"BridgeDeviceMib.py" 48L, 1669C written 3.17
Figure 42: BridgeDeviceMib.py modeler plugin to gather device-wide information for a switch

This modeler populates data into the device specified by
ZenPacks.skills1st.bridge.BridgeDevice ie. the device itself, not a component of the
device.

Scalar data is gathered using snmpGetMap (whereas the BridgeInterfaceMib plugin
used snmpGetTableMaps). Note that the OIDs need the trailing .0 on the end.

snnmpGet Map gets scalar SNMP M Bs (single val ues)
Use .1.3.6.1.2.1.17.1.1 (dotl1ldBaseBri dgeAddress) to popul ate Serial No

56 © Skills 1st Ltd 15 September 2009

and 1.3.6.1.2.1.17.1.2 (dotldBaseNunPorts) to popul ate Hardware tag
setHWSeri al Nunber and set HWlag are standard net hods on any Device

snnmpGet Map = Get Map({

'.1.3.6.1.2.1.17.1.1.0" : 'setHWBerial Nunber',
'.1.3.6.1.2.1.17.1.2.0" : 'setHWag',
})

The OID values are mapped to the setHWSerialNumber and setHWTag setter
methods, respectively.

In this plugin the tabledata in

getdata, tabledata = results

will be empty (it is perfectly possible to have modeler plugins that get both scalar data
and table data in the same modeler).

A single object mapping takes place, rather than a looped relationship mapping, and
the data is processed slightly for readability.

om = sel f. obj ect Map(get dat a)

om set HWser i al Nunber = sel f.asmac(om set H\Ser i al Number)
om set HWrag = "Nunber of ports = " + str(om set HATag)
return om

The result is demonstrated in Figure 41.

4.3.7 Creating the skins files

Having created new object classes for different device types and modeler plugins to
collect configuration data for those devices, we now need to design web pages to
display the data.

Since the new objects are a device object (BridgeDevice) and a contained component
object (Bridgelnterface), a new tab is required to augment the standard device tabs.
This new “Bridge Interfaces” tab will have details of the individual ports; further,
clicking on an individual port will result in a web page showing performance data for
that port. So, three new elements are required.

New tabs are created in the object class files; the contents of those pages are in skins
files. Thus BridgeDevice.py copied all standard device tabs and added an extra tab
whose label is Bridge Interfaces and whose skins file is called BridgeDeviceDetail (note
that there is no .pt here but the actual file under the skins directory hierarchy must
end in .pt).

57 © Skills 1st Ltd 15 September 2009

) jane@zen241:~ - Shell - Konsole <3> -

Session Edit View Bookmarks Settings Help

REiRia i 08 d iRt 3 iaiainiaiRid d 8 gid diRiaiainiaidi &iRid 8 iR A R iR R iaRia H R R A A AR e o
I

BridgeDevice object clasf
i
i g R R R R R R S R

from Globals import InitializeClass

from Products.ZenRelations.RelSchema import =

from Products.ZenModel .Device import Device

from Products.ZenModel .ZenossSecurity import ZEN_VIEW
from copy import deepcopy

class BridgeDevice(Device):
"A Bridge Device"

_relations = Device._relations + (
("BridgeInt’, ToManyCont(ToOne,

'ZenPacks.skillslst.bridge.BridgeInterface’, ’'BridgeDeu’)),
)

factory_type_information = deepcopy(Device.factory_type_information)
factory_type_information[®1['actions’] += (

{’id’ : 'BridgeInt’

» "name’ ! "Bridge Interfaces’
, ‘action’ : "BridgeDeviceDetail’
. ‘permissions’ : (ZEN_VIEW,) 3,

)

def __init__(self, =args, »=kw):
Device.__init_ (self, =args, ==ku)
self.buildRelations()

InitializeClass(BridgeDevice)

"BridgeDevice .py" 36L, 1080C written 3.27 alr =

(on]| = shell |
Figure 43: BridgeDevice.py object class file - note the action called BridgeDeviceDetail

Similarly, Bridgelnterface.py defines three tabs, one of which is specific to the
ZenPack (the viewBridgelnterface action) and two standard tabs from
$ZENHOME/Products/ZenModel/skins/zenmodel (objTemplates and viewHistory).
Note that Bridgelnterface.py does not copy any existing tabs and that the product
parameter must indicate the last part of the ZenPack name (bridge in this case). The
immediate_view parameter can be used to define which tab is initially opened.

58 © Skills 1st Ltd 15 September 2009

L/ jane@zen241:~ - Shell - Konsole <3> -Z

Session Edit View Bookmarks Settings Help

m
]

_relations = (
("BridgeDeu", ToOne(ToManyCont,
“"ZenPacks .skillslst.bridge.BridgeDevice"”, “BridgeInt™)),
)

factory_type_information = (
Jidl

"meta_type’
‘description’

: 'BridgeInterface’,
: 'BridgelInterface’,
: ""Bridge Interface info™"",

’ product’ : *bridge’,
'immediate view' : 'viewBridgelInterface’,
‘actions’
(
{’id’ : "status’
. 'name’ : 'Bridge Interface Status’
» 'action’ ! 'uiewBridgeInterface’
; 'permissions’ : (ZEN_VIEMW,)
}J
£ 'id’ : ' perfConf’
. 'name’ : 'Bridge Interface Template'
, "action’ : 'objTemplates’
; 'permissions’ : (ZEN_CHANGE_SETTINGS,)
}J
£ 'id’ : 'viewHistory'
s 'name’ : 'Modifications’
, action’ : 'viewHistory’
; 'permissions’ : (ZEN_VIEMW,)
}J
)
I,

Figure 44: Bridgelnterface.py object class file showing tab definitions

Skins files defining web pages live under the skins/ZenPacks.skills1st.bridge
subdirectory (for this ZenPack). As a general guideline, start creating skins files by
looking for a sample file (on the forum, the wiki, or in the standard
$ZENHOME/Products/ZenModel/skins/zenmodel directory); copy the sample and
modify it to suit. Consult Chapter 13 of the Zenoss Developer's Guide 2.4 for lots of
explanations about skins files.

If you are not familiar with the different techniques of TAL, METAL, TALES, HTML
and ZPT , it can be very confusing as to what is going on!

e HyperText Markup Language (HTML) - is the most basic formatting language
available on the Web, and some version of HTML is understood by every Web
browser. HTML is in practice a sloppy variant of eXtensible Markup Language
(XML) which divides up a page into elements (tags such as title, head or h3) and
content (for example, the things that you actually care about). Common HTML
tags found in Zenoss skins files include:

table header
table data

o <th>
o <td>

© Skills 1st Ltd 15 September 2009

59

60

o <tr> table row

o
 break

o <block> creates larger structures that can include other blocks
o <form> for user input

o <input> input directive

Zope Page Templates (ZPT) - are in essence HTML pages which are well-
formed and have extra XML attributes (ie the bits after the element name in-
between the < and > characters). The extra XML bits (attributes) are not a part
of any HTML standard and are ignored by HTML editors, meaning that ZPT
pages live happily with HTML. These attributes and the programming
functionality that they deliver are called the Template Attribute Language
(TAL). Zenoss skins files all have a .pt extension for Page Template.

Template Attribute Language (TAL) - the TAL attributes allow you to add
dynamic content using information from inside the Zope database (ZODB).
From a Zenoss perspective, this allows you to write a query that you can use to
build a table, or show different items depending on what objects or devices exist
in a particular state. In other words, TAL is the Zope way of accomplishing
what you would normally need to do in a CGI inside of a plain web server like
Apache. It should be noted that inside TAL it is also possible to use a restricted
subset of Python. The restrictions include not being able to load certain
standard libraries, as well as operations like reading and writing to disk. This
is done intentionally for security reasons. See
http://docs.zope.org/zope2/zope2book/source/AppendixC.html for a Zope Page
Template reference. TAL includes statements such as:

o tal:define define variables

o tal:condition test conditions

o tal:content replace the content of an element
o tal:repeat repeat an element
o tal:ireplace replace content of an element

o tal:attributes dynamically change element attributes

Macro Expansion for TAL (METAL) - because TAL is hidden away inside
HTML, there's no way to reuse blocks of HTML and TAL for your site just by
using TAL. METAL allows page templates to define macros (which are
essentially sub-templates that may be called by other templates) and slots
(which may be filled by other templates). Several METAL macros are provided
with Zenoss such as:

o pagel provides web page with breadcrumbs and content

o page2 page 1 plus standard breadcrumbs and navigation tabs

© Skills 1st Ltd 15 September 2009

http://docs.zope.org/zope2/zope2book/source/AppendixC.html

o page3 page 1 plus standard breadcrumbs, no tabs
o zentable creates tables of data for display
o navbodypagedevice macro to support sorting, filtering, multi-pages

e TAL Expression Syntax (TALES) - TALES allows access to the template's
namespace, including useful properties such as the here context object. TALES
accepts paths (e.g. here/id) which it resolves into object properties. It will
attempt to resolve the final path element as a key index, a key name, an
attribute, or a method. For example, if getSomething() is a method on the
context, here/getSomething will return the result of that method. TALES
statements are what normally provides the dynamic content for a page
template, delivering data from the ZODB database.

This ZenPack has referred to two ZenPack-specific skins files; BridgeDeviceDetail.pt
from BridgeDevice.py and viewBridgelnterface.pt from BridgeInterface.py.

viewBridgelnterface.pt is simple and in fact, only uses a standard METAL macro to
display any performance graphs that have been customised for a port interface.

Q Jane@zend1.. are/ZenPack_bndge - Shell - Konsole ,;

Session Edit View Bookmarks Seftings Help

Ftal:block metal:use-macro="here-templates/macros page2"> -
<tal:block metal:fill-slot="contentPane">

{form method=post
tal:define="manager here~isManager" >
<input type="hidden" name="zenScreenName"
tal:attributes="value templaterid" >

<sform>

<tal:block tal:condition="here-monitored" >

<table metal:use-macro="here-vieuPerformanceDetail- macros-ob jectperf" >
<stal:block>

<stal:block>

<stal:block>

"uiewBridge Interface.pt” 16 lines ——6x— 1,1 All [«

(|| [shen

Figure 45: viewBridgelnterface.pt skins file to display performance graphs for a port interface

The first line calls a METAL macro to define a page with standard breadcrumbs and
automatic tabs (here/templates/ macros/page2).

There is a TAL condition to check that the device is being monitored.

The standard macro to display performance data for an object is called (

he

re /viewPerformanceDetail | macros [objectperf). This macro can be found in

$ZENHOME/Products/ZenModel/skins/zenmodel/viewPerformanceDetail.pt .

61

© Skills 1st Ltd 15 September 2009

The resulting page is shown in Figure 46. At this stage, do not worry about the
contents of the graph, simply that the graph is displayed with data. Performance data
will be looked at in more detail later.

Zenoss servertime: 12:30:46

Bridge Interface Status

Bridge Interface Template Modifications

rformance Graphs nge

Main Views

nt Port_traffic
1.5
Classes 1l @:L
R T T | i
o 2 Ll
< | >
0.8 r"w'n"""’.”J I'Jﬁr"ﬁ'-r‘-«\
et} »
wed 12! 60 Thu 60: 60 Thu 12! 60 @\
Z005-08-85 0:31:24 to 2009-08-86 12:31:24
Bl dotiTpPortoutFrames cur: 1.11 avg: 1.65 max: 1.25
W dotTpPortInFrames cur :384.49m avg: 386, 62m max: 1.53
Browse By
Port traffic

Figure 46: Performance graph for a bridge interface

The second skins file is more complex. It is best described alongside a screenshot of
the result — see Figure 47.

Iswitch.skills-1st.co.uk
P - i Bridge Interfaces
Main Views 0s Hardware Software Events Parf Edit 9
Part Interfa Remote IP Remot Remote Interfa Port
Port Mame Paort Mumber E L - Remote Address e T— e — (et B Wi Status s

Index Address Hostname Description Value Status
13/000C 41:9D:0381 13 z 000C:41:9D:D381 1 1 1 Leamed @) Q@
13/000E 35647247 13 2 000 35647247 1 1 1 Leamed @) Q@
1310011:25:801C 4F 13 2 001125801 C:AF (1000121 E”Sit"c"nsu":(‘j‘s' reth] Leamed (3) @
140/00:04:C1°9C:90°CO 40 5 00:04:C1:9C:80:C0 [10.0.0253] ESS‘:‘L';”U;””S' PVLANT] Notactve @) @
140/00:04:C19C-90:C 1 40 ¢l 00:04:C1:9C90:C1 [1000253] gss"t“'c':"u';k”‘s' [FastEthereto 1] Not active (4) @
140/00:04:C1°9C:80°C2 40 a 00:04:C1:9C:80:C2 [10.0.0253] Ess‘:”c';”uijki”s' [FastEthermeo_2] Notactve @) @

Browse By ° _
140/00.04:C1:9C:90.C3 40 a 00:04:C1.9C80:C3 [10.00253] gss"t“'c':"u';k”‘s [FastEtherneto_3] Notactve @) @
140/00:04:C1:9C:90:C4 40 a 00:04:C1:9C:80:C4 [10.0.0.253] Ess';‘“c‘g”liﬁ,}‘”‘s' [FastEthermeo_d] Notactve @) @
l40/00.04:C1.9C.90.C5 40 4l 00.04:C19C.90:C5 [1000253] Ess"t“'c':"u';"”‘s' [FastEtherneto_5] Notactve @) @
l40/00:04:C1:9C:90:C6 40 A 00:04:C1:9C:90:C6 10003253 gss:“'c';"uﬁ,;‘"‘s' [FastEtherneto_6] Notactve @) @
Management l40/00.04:C1.9C.90.C7 40 4l 00.04:C19C.90:C7 [1000253] Ess"lf'c's_"lj;k”‘s' [FastEthermeto_7] Notactve @) @
l40/00:04:C1:9C:90:C8 40 a 00:04:C1:9C:90:C8 000353 gss:“'c';"uﬁ,;‘"‘s' [FastEtherneto_g] Notactve @) @
l40/00.04:C1:9C.90.C9 40 a1 00.04:C19C.90:C9 [1000253] glss"l“'c's"lj;k”‘s' [FastEtherneto_9] Notactve @) @
l40/00.04:C19C90:CA 40 a 00:04:C18C90:CA [1000353] ESS‘:”C'S"U;T‘”S' [FastEthemeto_10] Notactve @) @
l40/00.04:C1:9C90.CB 40 1 00D04:C19CS0.CB [10.00253] gss"l“'c';huijk”‘s' [FastEthemeto_11] Notactve @) @
- - S r'awiteh skills- S S -~

Figure 47: Web page produced by BridgeDeviceDetail.pt

62 © Skills 1st Ltd 15 September 2009

The objective is to produce a single table with information for each port on a separate
line. The readability of adjacent lines is enhanced by alternating the background
colour.

Some of the port information is simply object attribute values, such as Port,
PortIfiIndex and RemoteAddress - the unique attributes defined in BridgeInterface.py.

Some of the information is constructed using methods of the object, again defined in
Bridgelnterface.py; these include Port Name, Remote IP Address, Remote Hostname
and Remote Interface Description.

The last two fields of the table present the value of the object attribute PortStatus in
two different ways. Fundamentally, if the status is 3 (learned) then it is deemed to be
“active”. The last field is a green bullet for an active port; otherwise the bullet is red.
The previous field presents the PortStatus value but rather than just presenting the
numeric value (3, 4, 5, etc), it also provides a decode for the number (Learned or Not
Active).

£ jane@zen241:~ - Shell - Konsole -2

Session Edt View Bookmarks Seftings Help

Btal:block metal:use-macro="herertemplates/macros/page2">
<tal:block metal:fill-slot="contentPane">

<form method="post"
name="BridgeDeviceDetail” tal:attributes="action string:S{here-absolute_url_path}-S{template~id">

<tal:block metal:define-macro="BridgeDeviceFormList"

tal:define="tableName string:BridgeDeviceFormList:

ob jects here/BridgeInt.objectValuesnll:

tabletitle string:Bridge Interfaces Table:

batch python:here.ZenTableManager.getBatch(tableName,ob jects):

menu_id string:Bridgelnt:

shouwfilterbox python:True;">
<input type='hidden’ name="tableName’ tal:attributes="uvalue tableMame" >
<input type="hidden"” name="zenScreenName" tal:attributes="value template-id"/>

<tal:block metal :use-macro="here-zenuinacros-/macros-zentahle">
<tal:block metal:fill-slot="zentablecontents">

Figure 48: BridgeDeviceDetail.pt (part 1) showing page type and BridgeDeviceFormList macro

The first line of BridgeDeviceDetail.pt uses the page2 macro again for a page with
breadcrumbs and tabs.

The BridgeDeviceFormList macro is defined to get all the objects from the device's
Bridgelnt relationship (here / Bridgelnt / objectValuesAll) and supply them in a table.
Since there may be many interfaces, the filter box (at the top right of the GUI page)
should be enabled (showfilterbox python:True).

<tal : bl ock metal:define-macro="BridgeDevi ceForniList"
tal : defi ne="t abl eNane string: Bri dgeDevi ceFor nLi st ;
obj ects here/Bridgel nt/objectVal uesAll;
tabletitle string:Bridge Interfaces Table;
bat ch pyt hon: here. ZenTabl eManager . get Bat ch(t abl eNane, obj ect s) ;
nmenu_i d string: Bridgelnt;
showfilterbox python: True;">

63 © Skills 1st Ltd 15 September 2009

The second part of the skins file defines the table headers with their layout.

Figure 49: BridgeDeviceDetail.pt (part 2) showing table headers layout

The line:

<tr tal:condition="objects">

starts the definition of the table row (<tr matched by the closing </tr> 5 lines from
the end of Figure 49), and uses a TAL statement to ensure that the variable objects
was actually populated from here/Bridgelnt/objectValuesAll in the earlier section. If
objects is null then the remainder of the <tr> row definition will be ignored..

There are lots of permutations for structuring header and data lines of a table. The
comments in Figure 49 explain some of the consequences. A flexible way is to use
lines like the following:

<th tal:replace="structure
pyt hon: her e. ZenTabl eManager . get Tabl eHeader (t abl eName, ' Port', " Port Nunmber',
attributes="w dt h=15")"/>

The table header (< th ... />) uses a TAL replace statement to use Python to access the
table defined with the object attribute values and to use the string 'Port Number' as
the column header for Port data, allowing 15 characters width.

Another alternative would be to use a table data (<td ... />) HTML tag but this seems
to result in a table where columns are not sortable:

<td cl ass="t abl eheader" align=left>Port Name</td>

If the attributes are more complex or extensive, they can be declared separately:

<th tal:define="attributes string:'w dth=20""

tal :replace="structure
pyt hon: her e. ZenTabl eManager . get Tabl eHeader (t abl eName, ' Renot eAddr ess’
'Renote Address', attributes=attributes)"/>

64 © Skills 1st Ltd 15 September 2009

If the objects variable is null then a warning message is displayed:

<tr tal:condition="not:objects">
<th cl ass="t abl eheader" align="1eft" col span="9">
No Interfaces found. Double check you have the correct
col l ector plugin and you have renodel ed.
</th>
</tr>

Next, a block is set up that will repeatedly output one row of the table for each port,
with alternate lines having a different background.

E;| Jjane@zen241:~ - Shell - Konsole -£

Session Edt View Bookmarks Settings Help

<t— the tal:repeat statement takes a variable name and an expression. The expression should evaluate to
a sequence — in this case the expression is "batch"” and will be the table of values for the
attributes ~» methods on the BridgelInt relation.
The variable is a local variable — here the variable name "Bridge" is used. For each repetition,
the local variable iz =set to the current sequence element. ——>

<tal:block tal:repeat="Bridge batch">

{t— In order to have our rows altermate colors, we'll use the useful TALES attribute odd,
which is True for every other item in a tal:repeat loop ——>

<tr tal:define="odd repeat-Bridge-odd"
tal:attributes="class python:test(odd, ’odd’, ’even’)">

"BridgeDeviceDetail .pt" 121 lines ——52%—— 64,7 46

(o] o shen [
Figure 50: BridgeDeviceDetail.pt (part 3) showing the controls for the data rows of the port table

The tal:repeat statement takes a variable name and an expression. The expression
should evaluate to a sequence - in this case the expression is batch (defined earlier in
the BridgeDeviceFormList macro) and will be the table of values for the attributes/
methods on the Bridgelnt relationship. The variable is a local variable - here the
variable name Bridge is used. For each repetition, the local variable is set to the
current sequence element.

<tal:block tal:repeat="Bridge batch">

A standard TALES attribute, odd, can be used which evaluates to True for every other
item in a tal:repeat loop. It provides different background colours for alternate lines.
This code fraction also shows the start of the table row definition (<tr).

<tr tal:define="odd repeat/Bridge/odd"
tal:attributes="class python:test(odd, 'odd', 'even')">

The next section provides the data values for a row of the table.

65 © Skills 1st Ltd 15 September 2009

) jane@zen241:~ - Shell - Konsole -2

Session Edit View Bookmarks Sehtings Help

<td class="tablevalues">
<a class=tablevalues tal:content="Bridge-name"
tal:attributes="href Bridge-getPrimaryUrlPath”>BlaBla<-/a>
<std>

<td class="tablevalues">

<a class=tablevalues tal:content="Bridge-Port”

tal:attributes="href Bridge-getPrimaryUrlPath”>BlaBla<-/a>
<std>
<td class="tablevalues">

<a class=tablevalues tal:content="Bridge-PortIfIndex"

tal:attributes="href Bridge-getPrimarylr1Path"”>BlaBla<-/a>
Lotd>
<td class="tablevalues">

<a class=tablevalues tal:content="Bridge-RemoteAddress"

tal:attributes="href BridgergetPrimaryUr1Path">BlaBla<-/a>
<otd>
<td class=""tablevalues" tal:content="Bridge-getIpRemoteAddress”>Nomatch < td>
<td class="tablevalues" tal:content="Bridge-getIpRemoteHostname">Nomatch < td>
<td class="tablevalues" tal:content="Bridge-getIpRemotelfDesc">Nomatch < td>
<td class="tablevalues"

tal:content="python:Bridge.PortStatus==3 and ’Learned (3)’ or ‘Mot active (’ + str(Bridge.PortSt

atus) +)" ">
Learned
<otd>

<td class=""tablevalues" align="center">
<img border="0"
tal:attributes="src python:test(Bridge.PortStatus==3,
here .getStatusIngSrc(0),
here .getStatusIngSrc(3))" />
<otd>

<str>
<rtal:block>
"BridgeDeviceDetail.pt" 121 lines —53x— 65,6 e "

=] !!Shdl[

Figure 51: BridgeDeviceDetail.pt (part 4) showing the data values for the port table

Each table data (<td>) tag uses a tal:content statement to reference either an
attribute or a method on the Bridgelnterface object to deliver a data value. Remember
that Bridge is the local variable that takes the next set of values from the port table,
each time round the tal:repeat loop. Extra attributes can be specified, if required.

<td cl ass="t abl eval ues" >
<a cl ass=t abl eval ues tal:content="Bridge/ nane"
tal:attributes="href Bridge/getPrimryUl Path">Bl aBl a
</td>

The first PortStatus data value, rather than simply showing the numeric value from
the object, will also “translate” the numeric value into a more useful human
representation. This uses a Python test:

<td cl ass="t abl eval ues”
tal : content="python: Bridge. Port Status==3 and ' Learned (3)' or
"Not active (' + str(Bridge.PortStatus) + ')"'">
Lear ned

</td>

If the PortStatus of this switch port is 3 then the output will be the string 'Learned
(3)'; otherwise the output will be the string 'Not active' concatenated with the string
representation of the value of PortStatus, concatenated with a closing ')’ .

66 © Skills 1st Ltd 15 September 2009

The final data column in the table of data is a red or green bullet representing either
an active port (with PortStatus = 3) or a non-active port.

£l jane@zen241:~ - Shell - Konsole £l

Session Edit Wiew Bookmarks Settings Help

<td class="tablevalues" align="center'>
<img border="0"
tal:attributes="src python:test(Bridge.PortStatus==3,
here.get3tatusIngSrc(0),
here.getStatusIngSrc(3))" 2
<otd>

90,6 i P

||| @ she ‘

Figure 52: BridgeDeviceDetail.pt (part 5) showing code to produce coloured bullets to represent
PortStatus

This is code used in several places in the standard Zenoss skins files. Again, it uses a
Python test to evaluate PortStatus and then uses here.getStatusImgSrc(0) to
represent a green bullet and here.getStatusImgSrc(3) for a red bullet.

The remainder of BridgeDeviceDetail.pt has the closing table row tag and the closing
block tag for the data rows. The standard METAL macro navbodypagedevice is called
to ensure that the table can be searched, the columns can be ordered and large
numbers of rows will correctly be split into pages. Note that the earlier navtool macro
does not seem to implement filtering and paging correctly. The last few lines of the
file are the closing tags for blocks and the overall form.

67 © Skills 1st Ltd 15 September 2009

] jane@zen241 -~ Shell - Konsole r__l-

Session Edit View Bookmarks Settings Help

<otr>
<stal :block>
<tr>
<td colspan="9" class="tableheader" align='center’>

¢1—— The hererszenTableNauigation-/macros-nautool doesn’t seem to support table filtering and “Show all"
although it does support sorting. The hereszenTableNavigation/macros-/navbodypagedevice
seems to support sorting, filtering and breaking into pages ~ show all ——>
{1— <form metal :use-macro="hereszenTableNavigation/macros-navtool">< form> ——>

{rtd>
<otr>

<t—— END TABLE CONTENTS —>

<stal:block>

<sform>

"BridgeDeviceDetail .pt"” 121 lines —-100x— 121,6 Bot |+

2 el aren |
Figure 53: BridgeDeviceDetail.pt (part 6) with closing tags and the navbodypagedevice macro call

4.3.8 Linking development mode elements with source mode elements
At this stage we have:

e A new device class, BridgeMIB, a subclass of /Devices/Network/Switch, created
via the GUI and added to the ZenPack in Development mode

e Some MIBs added to the ZenPack in Development mode

e Two new object class files, BridgeDevice.py and Bridgelnterface.py in the base
directory of the ZenPack, created in source mode

e Two modeler plugins, BridgelnterfaceMib.py and BridgeDevice.py in the
modeler/plugins subdirectory of the base ZenPack directory, created in source
mode

e Two skins files, BridgeDeviceDetail.pt and viewBridgelnterface.pt in the
skins/ZenPacks.skills-1st.bridge subdirectory of the base ZenPack directory,
created in source mode

Nothing yet links the new device class with the object classes and their associated
modelers. This is achieved using the GUI.

68 © Skills 1st Ltd 15 September 2009

9) Zenoss: BridgeMIB - Mozilla Firefox -2

File Edit View Hisiory BEockmaks Toals Help

« @ - @ @ ? [6|hﬂp"-‘:en2d‘|.class.examp\a.org. 080 Devic v] [-,-'.]v| @
G 2enoss BridgeMIB € | O zenoss: ZenPacks.sillsl st bidge @ [6 Zenoss: Events Q [@ Zope on hitpi//zen241:8080 (%] I - <
wFileSystemMaplgnoreTypes |2 lines 1/

Done

zFileSystemSize Offset 1o float f
zHardDiskMapMatch | string /
zlcon |fzportfdmdfimg.’iconsmmcon.png string /
2D escription [Tue ™ =] boolean MNetwark
zinterfaceMaplgnoreNames | string /
zinterfaceMaplgnoreTypes | string /
ZlpSenviceMapMaxPort |‘\024 int !
aKeyPath |~r.sshvid_dsa sting
aLinks | string f
zlocalinterfaceNames [rropwminet string /
LocallpAddresses [M27rov0ME9N 2541224 stiing /
Max0IDPerRequest J40 int I
NmapPorscanOptions [-p 1-1024:-sT:~open:-0G - string /
#PinglnterfaceDescription | string
zPingInterfaceMame | string f
zPingMonitorlgnore lm boolean /
zProdStateThreshaold |300 int !

ZPythonClass

zRouteMapCollectOnlylndirect m boolean /
RouteMapCollectonyLocal [False -] boolean /
zRouteMapMaxRoutes E] int !
ZSnmpAuthPassword | string /
ZSnmpAUthType | string /
public
zsnmpCommunities [z lines f
2SnmpCommunity Ipublic string /
zsnmpMonitorignaore lm boolean f

2SnmpPort

virtualMemaory
removableDisk

IZenPacKS skills1st. bridge. BridgeDevice

stiing /MNetwork/Switch/BridgeIB

161

int !

Figure 54: Linking a device class with the object class file that describes its unique properties

To associate the device class, BridgeMIB, with the object class BridgeDevice, simply
modify the zProperty zPythonClass, either for an individual device or for a subclass
of devices. Remember to save the modifications. The zPythonClass should be the
fully-qualified object name. In this case, the object is defined in this ZenPack so the
zPythonClass is ZenPacks.skills1st.bridge. BridgeDevice (no .py on the end). Don't
forget to save the modification. There is no direct association here with the
Bridgelnterface class as that is a contained object class of BridgeDevice.

The second link required, is between the device class and the modeler plugins to be
deployed for that class. This is done from the More -> Collector Plugins menu of either
an individual device or a device class. If the plugin source code is valid then the name
of the plugin should automatically appear in the Add Fields list. Required plugins are
dragged to the top, selected area and can be reordered simply by dragging them
around. Again, don't forget the Save button.

69 © Skills 1st Ltd 15 September 2009

IfSwitch /BridgeMIB /switch.skills-1st.co.uk Zenoss servertime: 12:13:40

v Status os Hardware Software Events Perf Edit Bridge Interfaces

Main Views

rd Sortable Selection

Name: zCollectorPlugins

Path: /MNetwork/Switch/BridgeMIB/devices/switch skills-1st.co uk

Classes

* zenoss.snmp.NewDeviceMap
Zenoss.snmp.DeviceMap

» zenoss.snmp.InterfaceMap
» zenoss.snmp.RouteMap

» BridgelnterfaceMib

» BridgeDeviceMib

Browse By

Management

Plugins (drag to change order)

ColubrisDeviceMap
zenoss.cmd.darwin.cpu

zenoss.cmd.darwin.ifconfig

Figure 55: Associating a device with a set of modeler plugins

To propagate these associations to the ZenPack, return to the ZenPacks tab under the
Settings menu, select the ZenPack, and use the table drop-down menu to Export
ZenPack. In addition to creating the egg file (ZenPacks.skills1st.bridge-1.0-py2.4.egg)
for the ZenPack in $ZENHOME /export, exporting also updates the object.xml file in
the objects subdirectory of the ZenPack.

2] jane@zen241:~ - Shell - Konsole <)

Session Edit View Bookmarks Seftings Help

{7xnl version="1.0"7> -
<ob jects>

<t-— (', ‘zport’, 'dnd’, 'Devices’, ‘Network’, ’Switch’, ’BridgeMIB’) —->

<ob ject id=",zport-dmd-Devices/Network-Switch/BridgeMIB’ module='Products.ZenModel .DeviceClass’ class='DeviceClass’>

<property visible="True" type="string" id="zPythonClass" >

ZenPacks.skillslst.bridge.BridgeDevice

<~property>

<property visible="True" type="lines" id="zCollectorPlugins" >

[’ zenoss .snmp .NewDeviceMap’ , 'zenoss.snmp.DeviceMap’, ’zenoss.snmp.InterfaceMap’, 'zenoss.snmp.RouteMap’, 'BridgelnterfaceMib’, ’BridgeDeviceMib’]
</property>

"ob jects.xml" [readonlyl 6870 lines —O0x— 1.1 Top *

] Shen

Figure 56: Start of objects.xml showing zPythonClass and zCollectorPlugins

The egg file could now be moved to a different system and loaded there.

5 Gathering Performance Data

Performance data is gathered, usually by either the zenperfsnmp daemon (for SNMP
data), or by the zencommand daemon (for ssh data). Other performance data
collectors may be made available by other ZenPacks.

70 © Skills 1st Ltd 15 September 2009

By default, zenperfsnmp runs every 5 minutes; for ssh-collected data, the performance
template allows you to specify a collection interval although zencommand only runs
every minute, by default. With Zenoss Core, a single zenperfsnmp daemon is
available (although it is possible to deploy others); with Zenoss Enterprise, multiple
data collectors can be configured fairly easily. This means in a typical Zenoss Core
installation, that there really is only one polling interval configuration to collect
SNMP performance data. The default of 5 minutes can be changed easily using the
Collectors -> localhost -> Edit menu, but there is still only one collector (or monitor, as
it used to be called).

To specify performance data for collection, Zenoss templates need to be created and
bound to a device or device class. A template defines:

e One or more data sources
e One or more data points
e Threshold values, if required

e Graph definitions, if required

5.1 Performance templates for devices

For the Bridge MIB ZenPack, some data may be required pertinent to the whole
device; other data will be per-port. Device-wide data can be gathered in the usual
manner and will be displayed under the standard Perf tab.

For example, the Bridge MIB provides values out of the Spanning Tree Protocol (Stp)
subtree of the MIB which gives:

e dot1ldStpTimeSinceTopologyChange (TimeTicks) .1.3.6.1.2.1.17.2.3.0
e dot1ldStpTopChanges (Counter32) .1.3.6.1.2.1.17.2.3.0

These values give a measure of the number of centi-seconds since the last Stp topology
change and the number of topology changes since the last initialise or reboot of the
device. Note that both have .0 on the end — they are scalar MIB values ie. there is
only one value for the whole device. A Zenoss template can be configured to collect
and graph these values.

71 © Skills 1st Ltd 15 September 2009

Zen@ss’” Core

[Devices MNetwork /Switch /BridgeMIB /Templates /Bridge_Stp_Topo Zenoss server time: 9:53:13

Performance Template

Name [prigge_Sto_Topa

Target Class |Products.lenModeI.Dewce

Description

Check for dot1 dStpTimeSinceTopologyChange and dotl dStpTopChanges (since init or resef)

Classes

Save

Select All None

Browse By Name Source Source Type Enabled

| dot1dStp Time Since Topology Change 13IEN 20230 SNMP True
| dot1dStpTopChanges 13612117240 SNMP True

Data Points Enabled

o Graph Definitions

Select: All None

Name Graph Points
ﬁ rdoﬂdst TopChanges dotldStp Top Changes
1 rdoﬂdst Time Since Topology Change dot1 dStp Time Since Topology Change

Figure 57: Zenoss performance template to gather Bridge Stp topology change data for the BridgeMIB
device class

To activate the template, it must be bound either to a device class or to a specific
device. Use the Templates tab for a device class or the More -> Templates menu for a
specific device and then use the table drop-down menu to bind one or more templates.

Bind Performance Templates

Bridge Stp Topo [[Devices/Network/Switch/Bridgeh B B
Bridgeinterface [Devices/Metwork/Switch/BridgeMIB]
Device [[Devices]

Figure 58: Binding templates to the | Devices/ Network [Switch [BridgeMIB device class

You should then see graph outlines under the Perf tab for any device that has this
template applied; however it will typically be two zenperfsnmp collection intervals
before you start to see data. Note that since dot1dStpTimeSinceTopologyChange is in

72 © Skills 1st Ltd 15 September 2009

units of centi-seconds the graph point has been modified with a Reverse Polish
Notation (RPN) expression to convert it to seconds and the Units field of the graph
definition has been set to secs.

ZenOSS Core

Main Views

Classes

Graph Point

[Devices Network /Switch BridgeMIB Templates /Bridge_Stp_Topo /dot1dStpTimeSinceTopologyChange /dot1dStpTimeSinceTopologyChange

Zenoss server time: 1013

State at time: 2009/08/12 10:13:31

Naime

Type
DataPoirt
Consalidation

RPN

Limit

Line Type

Line Width

Stacked

Color (Hex value RRGGBB)
Format

Legend

(Available RRD Variables

dotldStpTimeSinceTopologyChange

DataPoint
dot1 dStpTime Since Topology Change_dot1d Stp Time Since Topology Change:

WERAGE

100./

1
Line =l
1
False ~|

"5 2If%s

#{graphPointfid}

Save

Hone

Flgure 59: dot1d Stp template showing Reverse Polish Notation (RPN) to change data units

The resultant graph is shown in Figure 60.

ZenOSS Core

[Devices Network /Switch BridgeMIB /switch.skills-1st.co.uk

Main Views

Classes

0s Hardware

Performance Graphs
dot1d StpTop Changes

Events

Software

Link graphs? &g

Zenoss server time: 1019

Bridge Interfaces

< Stop

0.8+
Tue oo:ee
2009-08-10 22:16:05
[dotildstpTopchanges

Tue 12:00 wed 90: 00

to 2000-88-12 10:16:05

cur: @.ee avg: @.88

max: 8,80

dot1d StpTime Since Topology Change

SEcs
w
@

284
Tue ©8:80
2009-08-10 22:16:05

[dotildstpTimeSinceTopologyChange

Tue 12:00 wed 90: 00

to 2000-88-12 10:16:05

cur:3e. 35 avg:32.07

max:3o, 35

gure 60: Performance graph for switch showing dotld Stp data

Thus far, none of the new ZenPack functionality has been used though it may be
useful to add the Bridge_Stp_Topo template to the ZenPack as shown in Figure 61.

73

© Skills 1st Ltd

15 September 2009

Zen @SS Core

[Devices Network /Switch /BridgeMIB /Templates Bridge_Stp_Topo

Bridge_Stp_Topo

|Pmducts ZenModel Device

Check for dot1dStpTimeSinceTopologyChange and
dot1dStpTopChanges (since init or reset)

Save

Source Source Type Enabled

13612117230 SNIMP True
13612117240 SNMP True

=
o
3
o
E
™

Data Points Severity Enabled

Management

MName Graph Points Units Height Width
ﬁ l_dul‘!dSI TopChanges dot1dStpTopChanges 100 500
I‘\ | dotl dStp Time Since Topology Change dot1d5tpTime Since Topology Change secs 100 500

Figure 61: Adding Zenoss performance Template to a ZenPack

Re-exporting the ZenPack will also update the definition of the BridgeMIB device class
in objects /objects.xml, including the zDeviceTemplates zProperty, if you have bound
the template to that device class.

5.2 Performance templates for contained devices

To get performance information for the switch ports that are supported by the
ZenPack, there are two important factors:

e A Zenoss Template with exactly the same name as a contained,
component class object, will automatically be bound to instances of that
object. The object class representing a switch port is BridgeInterface; thus a
template called Bridgelnterface will automatically be bound to such objects.

e When specifying a template for SNMP performance data to be collected, unless
the data is a scalar, you do not specify the instance to be collected. The
instances are taken from the object class (BridgeInterface) snmpindex
attribute.

Remember when the BridgeInterfaceMib modeler plugin was created, it populated not
only the unique attributes of the BridgeInterface object class, but also populated the
inherited attributes of:

e id

e snmpindex

74 © Skills 1st Ltd 15 September 2009

Since most of the useful performance data from the BRIDGE MIB is indexed by the
Port value, the snmpindex attribute was set to this value, having first converted the
raw data to an integer type. Thus for a Catalyst 2900, the Port values, and hence the
snmpindex values, run from 13 to 38.

The Zenoss zendmd utility is useful to see the values of objects — see Figure 62 for the
code and Figure 63 for an output fragment.

I >>
o>
I>>> dev=Ffind(’switch.skills-1st.co.uk’}
I>>> for i in dev.BridgeInt():
for key,value in i._ dict__ .items():
print key,value

Figure 62: Using zendmd to see values of the attributes of
a Bridgelnterface object

Note in Figure 62 that you start with a device and then print information for the
Bridgelnt relationship for that device.

snmpindex 13

Remotefiddress 00:0C:41:9D:D3:81

id Port_13_iflndex_2 RemIp 00_0C_41 9D _D3_81

__primary_parent__ <ToManyContRelationship at BridgelInt>
BridgeDev {ToOneRelationship at BridgeDeu>

createdTine 2009-07-29 21:02:40.04Z GMT+1

_objects ({'meta_type’: ‘ToOneRelatiomship’, ’id’: ’'BridgeDeuv’},)
Port 13

Port3tatus 3

snmpindex 13

Remotefiddress 00:11:25:80:1C:4F

id Port_13_iflndex_2 RemlIp 00_11 25 80_1C_4F

__primary_parent__ <ToManyContRelationship at BridgelInt>
BridgeDev {ToOneRelationship at BridgeDeu>

createdTine 2009-07-29 21:02:37.981 GMT+1

_objects ({'meta_type’: ‘ToOneRelatiomship’, ’id’: ’'BridgeDeuv’},)
Port 13

Port3tatus 3

snmpindex 40

Remotefiddress 00:04:C1:9C:90:C0

id Port_40_ifIndex_—1 RemIp 00_04_Cl1_9C_90_C0O

__primary_parent__ <ToManyContRelationship at BridgelInt>
PortIfIndex -1

createdTine 2009-07-29 21:02:41.107 GMT+1

_objects ({'meta_type’: ‘ToOneRelatiomship’, ’id’: ’'BridgeDeuv’},)
Port 40

BridgeDev {ToOneRelationship at BridgeDeu>

PortStatus 4

Figure 63: Output of the zendmd code to view attributes of a Bridgelnterface object

The BridgeInterfaceMib modeler plugin set the id attribute of a Bridgelnterface object
by concatenating the string “Port_"with the Port number, followed by the string
“_ifIndex_" and the PortIfIndex, followed by the string “ RemIp_” and the
RemoteAddress. The Python prepid function was applied to ensure uniqueness. An
example would be Port_13_ifIndex_2_RemlIp_00_0C_41_9D_D3_81.

75 © Skills 1st Ltd 15 September 2009

The BRIDGE MIB provides values for:
e dotlTpPortInFrames (Counter32) .1.3.6.1.2.1.17.4.4.1.3
e dot1TpPortInFrames (Counter32) 1.3.6.1.2.1.17.4.4.1.4

These are performance counters for traffic seen on a transparent bridge port and they
are indexed by port number. To be able to graph these values per-port, when an
individual port is clicked on in the GUI, create a template with the name
Bridgelnterface for the /Devices/Network/Switch/BridgeMIB device class.

ZenOSssS’ Core

Devices Network /Switch /BridgeMIB /Templates /Bridgelnterface enoss server time: 10:3816

Performance Template

State at time: 2009/08/12 10:38:08
Name Bridgelnterface

|Pmduct5 ZenModel Device

Target Class
Description

Get performance data for switch ports from
G dot1 TpPoriTahle

]
Browse By Name Source Source Type Enabled

I dot1 TpPort Out Frames 136121174414 SNMP True
I~ dotToPartinFrames 136121174413 SNMP True
Lo
N
R
Name Type Data Points Severity Enabled

Name Graph Points Units Height idth
ﬁ l_ Port traffic dotl TpPort OutFrames, dot TpPortinFrames 100 500

Figure 64: Bridgelnterface template

There is no need to bind this template to any device or device class. To see
performance data, simply click on a port under the Bridge Interfaces tab (remembering
that it will generally take two SNMP polling intervals before data is displayed). Note
in Figure 65 that the breadcrumb at the top shows the object's id attribute as the last
element.

76 © Skills 1st Ltd 15 September 2009

ZehOSS Core

Bridge Interface Template Maodifications

Performance Graphs Range Link graphs? @l = Stop

Part_traffic

1o

B
. ®
a
2

Tue 0B: 60 Tue 12:0@ wed D0: 00
2000-08-10 23:48B:40 to 2000-08-12 11:48B:40 EL
B dotlTpPortOutFrames cur: 1.87 avg: 1.39 max: 9.46
B dotTpPortInFrames cur:364,.387m avg:682,96m max: .95

Browse By

F 5: Performance graph for a specific switch port

The three tabs shown in Figure 65 were defined in the object class file
Bridgelnterface.py as shown in Figure 31 on page 41. The skins file to display
performance graphs for a port is in

skins [ZenPacks.skills-1st.bridge | viewBridgelnterface.pt shown in Figure 45 on page
61.

Remember to add the BridgeInterface performance template to the ZenPack when it is
complete and to re-export the ZenPack.

6 Testing and debugging ZenPacks

The chances of getting a ZenPack with new source code, correct first time, is not high.
This section offers some testing and debugging hints.

6.1 Testing

There may be three main areas where you have added code; object class files, modeler
plugins and skins.

6.1.1 Testing new object class files

If you have created or changed object class files, you should always delete any
discovered instances that use those files and rediscover them to ensure that any
relationship changes are established correctly. You should certainly recycle zenhub
and zopectl with:

e zenhub restart

e zopectl restart

77 © Skills 1st Ltd 15 September 2009

Typically you will be doing initial testing with a single device so delete the device and
use the Add Device menu to re-add it, ensuring that you specify your new device class
in the Device class path dropdown. Adding the device runs zendisc which calls
zenmodeler. You may see error messages in the discovery GUI. Usually they are
quite good at pinpointing the problem to a particular line in a particular file. Watch
out particularly for syntax errors in your code such as missing closing brackets,
missing quotes or missing colons (:).

Another way to start testing object class files is to use the Zope interface to navigate to
http:/ | zen241.class.example.org:8080 / zport /dmd / manage and then navigate down
Devices/Network/Switch/BridgeMib/devices/<a specific device> and check that the
Bridgelnt relationship exists.

A classic error to make in Python files is to get white space indentation wrong.
Python uses indentation to structure if, while, for and other structures; you must be
consistent with the number of spaces used at each level of indentation.

6.1.2 Testing modeler plugins

If you have created or changed a modeler plugin, you need to restart zenhub and
zopectl; typically you do not need to delete your test device and re-add it. It should
be sufficient to simply use the Manage -> Model Device menu and watch the output.

Note the dialogue particularly to ensure that your modeler does at least attempt to
run — the output will show what plugins are to be run.

Zen 6 SS Core

IDevices INetwork /Switch /BridgeMIB /switch.skills-1st.co.uk Zenoss server time: 19:32:1¢

Main

Views D over De

Dashboard Time Level Module Message

Event 2009-08-12 INFO sen.Utils Executing command: /usrlocal/zenoss/zenoss/bin/zenmodeler run --now --monitor localhost -F -d

Console 19:28:27 ' switch.skills-1st.co.uk --weblog

Device List 12802982851 2 NFO zen. ZenModeler Connecting to localhost8789

Network 20090812

Map 192835 INFO zen. ZenModeler Connected to ZenHub

Classes 38%%%%1 2 INFO zen.ZenModeler Collecting for device switch.skills-1st.co.uk

Ever‘nts 1280298{;%1 2 INFO zen. ZenModeler Mo WMI plugins found for switch.skills-1st.co.uk

Devices =

" 2008-08-12 ’) ;

Services 192836 INFO zen. ZenModeler No Python plugins found for switch.skills-1st.co.uk

IRERE== S 20,09',08'1 z INFO zen. ZenModeler Mo command plugins found for switch.skills-1st.co.uk

Products el
20,097,08’1 2 INFO zen. ZenModeler SNMP collection device switch.skills-1st.co.uk

Browse 19:28:36

By 2009-08-12 plugins: zenoss.snmp.DeviceMap, zenoss. snmp.InterfaceMap, zenoss.snmp.RouteMap,
19:28:36 Il i ZEb e Bridgelnterfacemib, BridgeDeviceMib

L 2009'08'12\NFO zen.ZenModeler Mo portscan plugins found for switch. skills-1st.co.uk

Groups 19:28:36 ' p plug : .Co.

Locations 12802982?11 2 INFo zen, SnmpClient snmp client finished collection for switch.skills-1st.co.uk

s 2009-08-12

=P T~~~ .. "INFO zen.ZenModeler processing zenoss.snmp.Devicemap for device switch. skills-1st.co.uk

Done

Figure 66: Output from Manage -> Model Device highlighting the plugins to be run

78 © Skills 1st Ltd 15 September 2009

If your modeler doesn't appear on the plugins list it is probably a compilation error.
Remember that you have created python source files (ending in .py); Zenoss will
compile-on-demand to generate .pyc files. A good check is always to inspect the base
Zenoss directory and the modeler/plugins directory to ensure that you have
matching .pyc files for each of your .py files.

A good way to test for compilation errors is to use the zendmd utility to import the file
in question.

zenosszens4l: > zendmd
Welcome to the Zenoss dmd command shell!
‘dmd’ is bound to the DataRoot. 'zhelp()’ to get a list of commands.
»»>» from ZenPacks.skillslst.bridge.modeler.plugins import BridgeDeviceMib
»»>» from ZenPacks.skillslst.bridge.modeler.plugins import BridgeDeviceMib
2
zenossPzenZ41:7> zendmd
Welcome to the Zenoss dmd command shellt
‘dmd’ is bound to the DataRoot. “zhelp()’ to get a list of commands.
>>> from ZenPacks.skillslst.bridge.modeler.plugins import BridgeDeviceMib
Traceback (most recent call last):

File "<comnsole>", line 1, in 7

File “~usr-local-zenoss-/zenoss-locals janesZenPacks.skillslst.bridge-ZenPackssskillslst-bridgesmn
odeler/plugins/BridgeDeviceMib.py"”, line 32

~

SyntaxError: invalid symtax
»»> |

Figure 67: zendmd dialogue showing successful compilation and unsuccessful compilation

The figure above shows a successful import — you simply receive a command prompt
back. Note that you need to specify an object path to the Python source file, not a file
path. The second zendmd dialogue shows a failed compilation (I removed a closing
brace from line 32).

Note that, for some Python files you might also test compilation simply with:
pyt hon Bri dgeM b. py

however, you may get different compilation errors from this test as python on its own
has no concept of the Zenoss environment or libraries whereas zendmd has, and
python compilation may fail with unknown imports.

If the modeler runs but fails then hopefully you get a message in the GUI showing the
modeler output. If there are insufficient clues here, try running zenmodeler
standalone with full debugging turned on (-v 10):

zennodel er run -v10 -d switch.skills-1st.co. uk

If you still can't see the problem, try putting log statements in the modeler plugin code
to output intermediate data stages. Figure 68 highlights log.warn statements that
output the results of the SNMP getdata and tabledata structures.

79 © Skills 1st Ltd 15 September 2009

T

] jane@zen241:...del/skinsizenmodel - Shell - Konsole -2

Session Edit View Bookmarks Seftings Help

B def processiself, device, results, log): -
""eollect somp information from this device"""
log. info(’ processing »s for device #s', self.name(), device.id)
#Collect Physical Port Forwarding Table
getdata, tabledata = resultis

Uncomment next £ lines for debugging when modeling
log.warn(“"Get Data= »s", getdata 1
log.warn{ “"Table Data= xs", tabledata)

BaseTable = tabledata.get(“dotldBasePortEntry')

#t If no data returned then simply return
if not BaseTable:
log.warn("No SHMP response from »s for the #s plugin’, device.id, self.name())
log.warn("Data= »xs", getdata)
log .warn("Columns= »s", self.basecolumns)
return

PortTable = tabledata.get("dot1dTpFdbEntry")

If no data returned then simply return
if not PortTable:
log.warn("Ho SHMP response from #s for the »s plugin’, device.id, self.name())
log .warn("Data= »s", getdata)
log.warn("Columns= »s", self.portcolumns)
return

"Bridge InterfaceMib.py" [readonlyl 114 lines —42x— 18,1 L% e -

Figure 68: BridgelnterfaceMib.py code highlighting debugging logging

If you get really desperate, try the logging lines highlighted in Figure 69 to output all
the attributes for an object instance; do not leave these lines uncommented once the
problem is resolved.

80 © Skills 1st Ltd 15 September 2009

] jane @zen241:...del/skins/zenmodel - Shell - Konsole <

Session Edit View Bookmarks Settings Help
dot1dTpFdb@intry table matches the Fort number from the dotldBaseFortEntry

on.PortIfIndex = -1
for boid,bdata in BaseTable.items():
if bdatal’BasePort’]l == on.Port:
om.PortIfIndex = bdatal’BasePortIfIndex’]

tt prepld function ensures that results are all unigque - will add _1, _2 etc to achieve this
om.id = self.prepld("Port_" + striom.Port) + " _ifIndex_" + str(om.PortIfIndex) +

' + str(omn.Remotefddress))

" _RemlIp_ '

For lots of debugging, uncomment next 2 lines
for key,value in om.__dict_ .items():
log.warn('om key = #s, om value = #s", key,value)

E= -]

rm.append(om)
return rm

"BridgeInterfacelib.py" [readonlyl 114 lines —B84x— 96,13 Bot

Figure 69: BridgelnterfaceMib .py highlighting debugging logging to output all the final object
attributes

6.1.3 Testing skins files

If skins files have been created or changed, you generally only need to restart zopectl
and then refresh the web page in the Zenoss GUI. If the code is incorrect a standard
error page is shown and you can get more information by clicking the View Error
Details link.

81 © Skills 1st Ltd 15 September 2009

Logout Help

ZenQss Core

Zenoss server time: 20:30:

LI A5 A Zenoss error has occurred

View Error Details
An error was encountered while publishing this resource. Please use the form below to submit details of this error to Zeness, Inc. This information helps us identify
and fix issues with the software, though we are unable to respond individually to all submissions
The Zenoss community forums are very active and a good resource for solving problems and answering questions. Zenoss also provides commercial services and
support packages.
The following fields are optional. This information will only be used to contact you if further information is needed regarding this error.
Your name:

Your email address:

Additional info you would like to provide:

Browse By

Click this button to send the above information to Zenoss, Inc

Send Error Details

Logout Help

Zenoss server time: 20:32:(

A Zenoss error has occurred

View Error Details

Type: PTRuntimeError
Value: Page Template BridgeDeviceDetail has errors: [Compilation falled", "TAL.TAL Defs. TALErTor: TAL attributes on <tr> require explicit <ftr>, at line 21, column 57
Traceback (innermost last)

Module ZPublisher Publish, line 114, in publish

Module ZPublisher.mapply, line 88, in mapply

Module ZPublisher Publish. line 40, in call_object

Module Shared DC Scripts Bindings, line 311, in__call__

Module Shared.DC. Scripts Bindings. line 348, in _bindAndExec

Module Products. CMFCore FSPageTemplate, line 195, in _exec

Module Products.CMFCore FSPageTemplate, line 134, in pt_render

Module Products.PageTemplates.PageTemplate. line 95, in pt_render

<FSPageTemplate at /zportBridgeDeviceDetail used for ;zport/dmd/Devices Network/Switch/BridgeMIBi/devices/switch.skills-1st.co.uk>
Warning: Compilation failed

Warning: TAL.TALDefs.TALError: TAL attributes on <t require explicit <tr>, at line 21, column 5

PTRuntimeErmor: Page Ternplate BridgeDeviceDetail has errors: [Compilation failed’, TAL.TALDets TALError: TAL attributes on <tr= require explicit<Ar=, atline 21, column 57

An error was encountered while publishing this resource. Please use the form below to submit details of this error to Zenoss, Inc. This information helps us identify
and fix issues with the software, though we are unable to respond individually to all submissions

The Zenoss community forums are very active and a good resource for solving problems and answering questions. Zenoss also provides commercial services and
support packages

The following fields are optional. This information will enly be used to contact you If further information is needed regarding this error

Your name
Management

A

“Your email address:

Additional info you would like to provide:

Figure 71: View Error Details for a faulty web page definition

Figure 71 shows the detailed error output. The file and line number at fault are
documented (I had indeed commented out a closing </tr> at line 21 of the
BridgeDeviceDetail.pt file). Simply fix the file, issue zopectl restart and refresh the
web page.

82 © Skills 1st Ltd 15 September 2009

Sometimes the web View Error Details page suggests something is wrong that is
nowhere near anything you have recently changed. If this happens, try restarting the
whole Zenoss system with:

zenoss stop
zenoss start

6.1.4 Debugging problems with performance data

There are several ways that performance data collection can fail:

A template is created but not bound to a device. In this case, no attempt will
be made to collect data. Go to the device's template page and use the table
drop-down menu Bind Templates to check what is actually bound (remember
that contained component templates, matching the component object class
name, do not not binding — this happens automatically).

Scalar MIB values need the trailing .0; otherwise no data will be collected.

If SNMP community names configured in Zenoss do not match those in the
target agents then you will get no SNMP data. Test with a simple snmpwalk
command from a command line; for example:

snmpwal k -v 1 -c public switch.skills-1st.co.uk system
If a template is correctly configured and bound but there are only one or two
data values collected (counter values need at least two values before a point can
be plotted as it is a rate-of-change measurement), you will see a graph with no
data and the cur, avg and max values will have the value nan. This simply
means graph points are not yet available; another snmp polling interval usually
fixes this issue.

For component, contained device templates collecting tables of SNMP data, the
instance may be the issue. Increasing the logging level for zenperfsnmp may
help diagnose this.

Templates collect data into Round Robin Database (rrd) files, held under
$ZENHOME/perf/Devices with a separate subdirectory for each device and each device
may have subdirectories for components such as os or Bridgelnt (ie. the relationship
name of the contained device).

Always check that rrd files exist. Templates for devices have the format:

83

<dat asour ce nane>_<dat apoi nt nane>.rrd

© Skills 1st Ltd 15 September 2009

E;l Jane @zen241:...deliskins/izenmodel - Shell - Konsole

Session Edit View Bookmarks Settings Help

-ru-r-—r—— 1 zenoss zenoss 35296 Z003-08-13 10:04 sysUpTime_sysUpTine.rrd [E
zenoss@zen4l: usrslocal- zenoss/zenoss/perf-Devices>
zenoss@zen4l :rusrrslocalszenoss/zenoss/perf-Devices>
zenoss@zen4l : susr/localszenoss/zenoss/perf-Devices>

zenoss@zen4l : susr/locals/zenoss/zenoss/perf-Devices> ls -1

total 60O

druxr-x-—— 3 zenoss zenoss 4096 2009-05-28 15:16 adslZ.skills-1st.co.uk

druxr-x-—— 3 zenoss zenoss 4096 2009-06-30 17:14 bino.skills-1st.co.uk

druxr-x-—— 3 zenoss zenoss 4096 Z2009-08-06 05:17 deodar.skills-1st.co.uk

druxr-x-—— 3 zenoss zenoss 4096 2009-06-22 16:12 group-100-linuwx.class.examnple.org

druxr-x-—— 3 zenoss zenoss 4096 2009-06-30 15:46 group-100-rl.class.example.org

druxr-x-—— 3 zenoss zenoss 4096 2009-06-2Z22 13:27 group-100-rZ.class.example.org

druxr-x-—— 3 zenoss zenoss 4096 2009-06-2Z22 13:32 group-100-r3.class.example.org

druxr-x-—— 4 zenoss zenoss 4096 2009-08-04 12:05 group-100-sl.class.example.org

druxr-x-—— 4 zenoss zenoss 4096 2009-08-12 09:46 group-100-sZ.class.example.org

druxr-x-—— 3 zenoss zenoss 4096 2009-05-28 15:16 hp?410.skills-1st.co.uk

druxr-x-—— 3 zenoss zenoss 4096 2009-06-30 15:36 server.class.example.org

drwxr-x-—— 4 zenoss zenoss 4096 2009-08-12 09:41 suwitch.skills-1st.co.uk

drwxr-x-—— 3 zenoss zenoss 4096 2009-08-12 19:16 taplow—20.skills-1st.co.uk

druxr-x-—— 3 zenoss zenoss 4096 2009-08-12 18:17 teamlitm.class.example.org

druxr-x-—— 3 zenoss zenoss 4096 Z2009-07-06 10:46 zenZ4l.class.example.org

zenoss@zen4l: /usr/local/zenoss/zenoss/perf-Devices> ls -1 switch.skills-1st.co.uks

total 116

druxr-x-—— 9 zenoss zenoss 4096 2009-07-30 21:04 Bridgelnt

—rw-r-—r—— 1 zenoss zenoss 35296 2009-08-13 10:04 dotl1ldStpTimeSinceTopologyChange_dot1dStpTimeSinceTopologyChange.rrd
—ru-r-—r—— 1 zenoss zenoss 35£96 Z009-08-13 10:04 dotld3tpTopChanges_dot1dStpTopChanges.rrd

druxr-x-—— 3 zenoss zenoss 4096 2009-07-09 12:08 os

~ru-r-—r—— 1 zenoss zenoss 35296 2009-08-13 10:04 sysUpTime_sysUpTine.rrd =
zenoss@zen4l: usrslocal zenoss/zenoss/perf-Devices> I =

o) @ shen

Figure 72: Directories for performance files for devices

If you see graphs that have no data at all, this generally means that a template is
bound but there is no rrd file, as shown in Figure 73.

[} Zope on http:#zen241.clas... C Zenoss: switch.skills-1st.c...

© Zenoss: group-100-s1.cla... C Zenoss: switch.skills-1s... @
Doy o e —

Eac

dot] dStp TopChanges
Metwaork

2,
@,
Classes o
[}
o

0.0

Wed @o: 00 Wed 12:00 Thu oo: oo Q
2000-08-11 22:20:42 to 2000-08-13 10:20:42
W dotidstpTopchanges cur: 0.80 avg: 8.08 max: 8.00

dot1 d Stp Time Since Topology Change

1000

A
secs

5 @ @
@ @ o
& @ o
v

wed ©: o0 wed 12100 Thu oo:oe Q
2009-08-11 22:20:42 to 2009-08-13 10:29:42
W dotldstpTimeSinceTopologyChange cur:91z.27 avg:510.84 max:912.27

Bridge StpPriority

Y

Figure 73: The empty graph at the bottom suggests that a template is bound but no data has been
collected

84 © Skills 1st Ltd 15 September 2009

Note that when you configure data sources in a template, there is a test button that
you can use to specify a device known to Zenoss; however, the test that is run, strictly,
is an snmpwalk whereas the zenperfsnmp daemon is more likely to issue an snmpget,
so the test button can disguise problems with instances. Note that versions of Zenoss
prior to 2.4 did not always implement the Test button correctly.

ZenOss’ Core

[Devices MNetwork /Switch BridgeMIB /Templates [BridgeStpPriority /BridgeStpPriority

Data Source

v State at time: 2009/08/13 10:38:54

Name BridgeStpPriority
Source Type SNMP
vork Enabled Tue ~|
cID 13612117220
Clas: —
Type GAUGE =]
RRD Mn
RRD Max
[Pl Create Cmd
Browse By
|Aliases
Save
Loca . - =
Test Against Device |Swwtch skills-1stco uk Testl

Fgure 74: Using the test button from the Data Source configuration dialogue

6.1.5 General testing and debugging hints and tips

There are two two general areas for debugging help. Zenoss logfiles are all held under
$ZENHOME /log. By default they have an Info level of logging but this can be
increased to Debug to provide lots more data. When the problem is resolved, the
original logging level should be restored.

Daemon log files and their configuration can be inspected from the Settings menu
under the Daemons tab. From Zenoss 2.4, the edit config link offers a separate page to
choose configuration options (previous versions simply took you to an editable copy of
the configuration file). To increase the debug level, change the logseverity to Debug. If
you check the configuration file for this daemon in $ZENHOME | etc you will see a

line:

| ogseverity 10

Any changes to a daemon's configuration file requires a restart of the daemon, either
through the GUI or using <daemon> restart from a command line.

In addition to checking specific Zenoss daemon files like zenmodeler.log or
zenperfsnmp.log, it is always worth also checking zenhub.log and event.log.

The second general debugging tool is zendmd. This is a Python interpretive
environment provided by Zenoss that already understands some of the Zenoss object
hierarchy. It is an excellent “sandpit” to test out bits of Python and to query Zenoss

85 © Skills 1st Ltd 15 September 2009

objects and their attributes and methods. Several examples have already been
demonstrated throughout this document.

When weird things happen that really make no sense at all, try recycling the whole
Zenoss system with a:

zenoss stop
zenoss start

7 Conclusions

ZenPacks are a powerful and flexible way to extend core Zenoss capability.
Development mode provides a simple method to achieve simple ZenPacks. Source
mode ZenPacks require more understanding of Zenoss internals, SNMP and of
Python, but anything is possible.

The Bridge MIB ZenPack will be available from the Zenoss ZenPacks website -
http:/www.zenoss.com/community/projects/zenpacks/ . The source code for the
ZenPack is available, with this document, at

http://www.skills-1st.co.uk/papers/jane/zenpacks/

86 © Skills 1st Ltd 15 September 2009

http://www.skills-1st.co.uk/papers/jane/zenpacks/
http://www.zenoss.com/community/projects/zenpacks/

References

87

9.

Zenoss Developer's Guide 2.4 - http:/www.zenoss.com/community/docs

Zenoss Administration Guide 2.4 - http:/www.zenoss.com/community/docs

Zenoss Extended Monitoring Guide 2.4 for documentation on Core and
Enterprise ZenPacks - http:/www.zenoss.com/community/docs/

Zenoss ZenPack FAQ at

http:/www.zenoss.com/community/projects/zenpacks/zenpack-documentation/zenpack-faq

Zenoss ZenPacks site at http:/www.zenoss.com/community/projects/zenpacks/

Zenoss-ZenPacks forum at http://forums.zenoss.com/viewforum.php?f=6

Zenoss community developer site wiki at http:/community.zenoss.org/trac-
zenpacks/wiki , look especially at “Instructions for creating an ssh ZenPack”
and “Diving into the device model”.

“Custom ZenPacks rough guide” contributed by blacks to the Zenoss forum at

http:/www.zenoss.com/community/wiki/user-
contributed/CustomZenPackRoughGuide/

Zenoss download site - http://www.zenoss.com/download/links/

10.net-SNMP SNMP agent from http:/www.net-snmp.org/
11.BRIDGE MIB, RFC 1493 - http://www.ietf.org/rfc/rfc1493.txt
12.oidview online website for viewing MIBs such as the BRIDGE MIB -

http://www.oidview.com/mibs/0/BRIDGE-MIB.html

13.“Learning Python” by Mark Lutz, published by O'Reilly

14. Zope web application server information from http:/www.zope.org/WhatIsZope

15.Zope Page Templates Reference -

16.

http://docs.zope.org/zope2/zope2book/source/AppendixC.html

© Skills 1st Ltd 15 September 2009

http://docs.zope.org/zope2/zope2book/source/AppendixC.html
http://www.zope.org/WhatIsZope
http://www.oidview.com/mibs/0/BRIDGE-MIB.html
http://www.ietf.org/rfc/rfc1493.txt
http://www.net-snmp.org/
http://www.zenoss.com/download/links?creg=no
http://www.zenoss.com/community/wiki/user-contributed/CustomZenPackRoughGuide/
http://www.zenoss.com/community/wiki/user-contributed/CustomZenPackRoughGuide/
http://community.zenoss.org/trac-zenpacks/wiki
http://community.zenoss.org/trac-zenpacks/wiki
http://forums.zenoss.com/viewforum.php?f=6
http://www.zenoss.com/community/projects/zenpacks/
http://www.zenoss.com/community/projects/zenpacks/zenpack-documentation/zenpack-faq
http://www.zenoss.com/community/docs/
http://www.zenoss.com/community/docs
http://www.zenoss.com/community/docs

Acknowledgements

Several people have contributed either actively or passively to this paper:

e “blacks” on the Zenoss forum for his Custom ZenPack Rough Guide that got me
started. The original work for this was submitted by Zach Davis.

e Danny Deng who sent me his ZenPack samples and explanations

e George Fakhri for his blog post on “How to create a ZenPack..”

88 © Skills 1st Ltd 15 September 2009

	1 What are ZenPacks?
	2 The process of building a ZenPack
	2.1 ZenPack creation
	2.2 Exporting and installing ZenPacks

	3 “Simple” ZenPacks
	4 Designing complex ZenPacks
	4.1 Basic principles
	4.1.1 Configuration data and performance data
	4.1.2 The Zope Object Database (ZODB)
	4.1.3 Coding techniques and terminology
	4.1.4 Databases, Daemons and Directories

	4.2 Requirements for the sample ZenPack
	4.3 Creating the sample ZenPack
	4.3.1 Elements required and their names
	4.3.2 SNMP data required
	4.3.3 Creating the ZenPack
	4.3.4 Adding elements to the ZenPack using Development mode
	4.3.5 Creating the object class files
	4.3.6 Creating the modeler plugin files
	4.3.7 Creating the skins files
	4.3.8 Linking development mode elements with source mode elements

	5 Gathering Performance Data
	5.1 Performance templates for devices
	5.2 Performance templates for contained devices

	6 Testing and debugging ZenPacks
	6.1 Testing
	6.1.1 Testing new object class files
	6.1.2 Testing modeler plugins
	6.1.3 Testing skins files
	6.1.4 Debugging problems with performance data
	6.1.5 General testing and debugging hints and tips

	7 Conclusions
	References
	Acknowledgements

