Creating Zenoss ZenPacks
for Zenoss 3

Version 2
DRAFT

Updated January 2011

Jane Curry
Skills 1st Ltd

www.sKkills-1st.co.uk

Jane Curry
Skills 1st Ltd
2 Cedar Chase
Taplow
Maidenhead
SL6 OEU
01628 782565

jane.curry@skills-1st.co.uk

1 © Skills 1st Ltd 22 January 2011

http://www.skills-1st.co.uk/
mailto:jane.curry@skills-1st.co.uk

© Skills 1st Ltd 22 January 2011

Synopsis

ZenPacks are the extension mechanism provided by Zenoss to build new functionality
and also to easily port customisation from one Zenoss server to another. Some
documentation is provided in the Zenoss Developer's Guide; this paper is intended to
enhance and extend that documentation, including a sample ZenPack.

The process of creating, modifying and exporting ZenPacks is discussed, along with
debugging hints. The sample ZenPack explores:

e creating new object classes and relationships
e creating new collector modeler plugins to populate the new classes with data

creating skins to display web pages for the new types of object

e creating JavaScript to display components of devices
e creating performance data templates for the object classes

It is assumed that the reader is familiar with basic SNMP concepts and with standard
Zenoss configuration techniques.

This paper was originally written based on a stack-built Zenoss Core 2.4.1 on SuSE
10.3. The updated paper is based on a stack-built Zenoss 3.0.3 on SuSE 10.3. All
commands and menu options have been updated for Zenoss 3, unless otherwise stated.

The hostname of the Zenoss server in the updated paper is zend3.class.example.org.

Notations

Throughout this paper, text to by typed, file names and menu options to be selected,
are highlighted by italics; important points to take note of are shown in bold.

3 © Skills 1st Ltd 22 January 2011

Table of Contents

1 What are ZenPacks?.........ooii ittt e e e e e e e et e e e e e e e e e e e e eeaaaae 5
2 The process of building a ZenPacK..............oooovvviiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeee e 6
2.1 ZenPack Creation.............uuuuuiiiiiii e eaaaaaannanaaa e e eeasaraaas 6
2.2 Exporting and installing ZenPacks...........cccooeeeveeieiiiiieiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee, 7

B 18011 o) (S /13 0N o= Tl T 9
4 Designing complex ZenPacks........ccoooeeeeiiiiiiiiiieeieeeeeceeceeeeeeeeeeeeeeeeeeeee e 10
4.1 BasiC PIriNCIPLES.....covviiiiiiiiiiieiiiiiieiieeeeeeeeeeeeeeeeeeeeeeeeeeerereereerrrerreersreeessrrraaeeeesreranns 11
4.1.1 Configuration data and performance data..............ccccccevvvviiiniiiiiieeiennnnnnn. 11
4.1.2 The Zope Object Database (ZODB).......cccooeeeeeeeeieiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee, 14
4.1.3 Coding techniques and terminology............ccccvvvvviiiiiiriiiriiiiiiiiieieeee e eeeeaeennn 15
4.1.4 Databases, Daemons and Directories...........ccccoeeeeiiiiiiiiiiiiiieeeeeeiieeeiieeeeeeeeens 27

4.2 Requirements for the sample ZenPack......................ccco 29
4.3 Creating the sample ZenPack...........cccoooeeiiiiiiiiiiiececccccccccceee e 33
4.3.1 Elements required and their Nnames...........ccccceevvvvvevvevirieeeeeereeereeeeeeeeeeevreen 33
4.3.2 SNMP data required.........ccocoooieeeieiiieiieeeecccceeceeeccce s 35
4.3.3 Creating the ZenPack.................ccccciiii 39
4.3.4 Adding elements to the ZenPack using Development mode......................... 40
4.3.5 Creating the object class files............uuuvueiiiiiiiiiiiiiiiee e 42
4.3.6 Testing with the zendmd utility........ccccooeiiiiiiiiiiiiieee, 50
4.3.7 Creating the modeler plugin files..........ccccceeeeiiiiiiiiiiiiiiiieen 53
4.3.8 Displaying data for the ZenPack with Zenoss 2.............oovvvevvvevvrrieeeeereennnnnn.. 65
4.3.9 Displaying data for the ZenPack with Zenoss 3..........cooovvvvivviiiviiieeiiiiinnnnnnn. 76
4.3.9.1 What needs changing between Zenoss 2 and Zenoss 3? 76

4.3.9.2 BridgeMIB ZenPack without any changes to presentation code.......... 80

4.3.9.3 Improving Bridge Interface information with JavaScript additions....83

4.3.9.4 Understanding the Component Panel in Zenoss 3...............cccceeeeeeee.... 94

4.3.10 Linking development mode elements with source mode elements.......... 102

5 Gathering Performance Data................cccccoiiiiiie e 105
5.1 Performance templates for devices.........cooovvuuumiiuiiiiiiiiiiiice e e eees 105
5.2 Performance templates for contained devices..........cccoeeeieeiiiiiiiiiiiiiiiiiiiiiiieeeeeee, 111

6 Testing and debugging ZenPacks...........cccceeeeeieiiiiiiiiieie e 115
0 B =TS 7 = PO PPUPUPPRRRPPPPPPRIR 115
6.1.1 Testing new object class files.........ccccceiiiiiiiiieee, 115
6.1.2 Testing modeler PIUZINS............uuuuiiiiiiiiiiiiiiie e e eeeeaaaes 116
6.1.3 Testing skins files and JavaScript files............ccccccoeiiiiiiiiiiiiiieeeeeee, 119
6.1.4 Debugging problems with performance data...........................ccc. 121
6.1.5 General testing and debugging hints and tips..........cccccvviieeeiiiiiiiieeennnnne. 123

A 0703 el L E o) o VTR 124
RETEIEINCES......eeeeieeiiiie e aa e e e eeetaaaaeaeeranan 125
ACKNOWIEAZEIMENIES.o e e e e e 126

4 © Skills 1st Ltd 22 January 2011

1 What are ZenPacks?

ZenPacks are the method of extending the standard Zenoss functionality. There are
four different sources of ZenPacks:

e Zenoss Core ZenPacks that can be downloaded from
http:/www.zenoss.com/community/projects/zenpacks/ . These are developed
and maintained by Zenoss and are available to both Zenoss Core and Zenoss
Enterprise users. They include monitoring of Apache, Dell, FTP, HTTP, LDAP,
JMX and MySQL, amongst others.

e Zenoss community ZenPacks, also from
http://www.zenoss.com/community/projects/zenpacks/ . These are ZenPacks
developed by individuals or organisations and made freely available to the
Zenoss community. No support should be implied for them. There are a large
number of community ZenPacks covering the monitoring of VMware, wireless
devices, Cisco devices, various switches, printers and several ZenPacks to
enhance the reporting of Zenoss devices, events and thresholding.

e Zenoss Enterprise ZenPacks are available at no extra charge to Zenoss
Enterprise (ie. paying) customers. They include enhanced VMware and
Windows monitoring, fine-grained user management, distributed monitoring
and high availability, and a global dashboard, as well as enhanced monitoring
of many third-party devices and software packages.

e Write your own ZenPack — and optionally make it available as a community
ZenPack

Since Zenoss 2.2, ZenPacks are packaged as Python eggs. Earlier zip format ZenPacks
can be converted to eggs (see the reference document at
http://community.zenoss.org/docs/DOC-2372). This packaging is performed
automatically for you and you don't need to get into the details of eggs.

Some of the core and community ZenPacks come with their own documentation;
sometimes it is a little sparse. Searching the Zenoss forums is a good way to glean
information (http:/community.zenoss.org/community/forums).

ZenPacks may be used for two main reasons:
e Creating new monitoring of new types of devices

e Porting either standard or ZenPack configuration of Zenoss, from one Zenoss
server to another

Many of the standard Zenoss Graphical User Interface (GUI) menus have an Add to
ZenPack option; thus event classes, event commands, user commands, device classes,
service classes, process classes, reports and product definitions as well as the the data
sources, graphs and thresholds of performance templates, can be simply added to a
ZenPack using the GUI (a simple ZenPack).

5 © Skills 1st Ltd 22 January 2011

http://community.zenoss.org/community/forums
http://community.zenoss.org/docs/DOC-2372
http://www.zenoss.com/community/projects/zenpacks/
http://www.zenoss.com/community/projects/zenpacks/

A ZenPack can also add daemons, new device types and user interface features such as
menus but this requires programming effort (a complex ZenPack). Check Chapter
13 of the Zenoss 3 Administration Guide for a short introduction to ZenPacks.

2 The process of building a ZenPack

Before diving into the complexities of writing Python code for complex ZenPacks, step
back and examine the process that is required. The first question is whether this
will be a simple ZenPack that can be entirely created from the GUI, or whether code
needs to be written. Either way, the process for creating the ZenPack is exactly the
same.

2.1 ZenPack creation

As a Zenoss user with the Manager role, use the top-level ADVANCED -> Settings
option and select ZenPacks from the left-hand menu.

Z8N0SS’ DASHBOARD EVENTS INFRASTRUCTURE — REPORTS ADVANGED “ jane sigNouT B
CORE

e
Settings _

Settings Loaded ZenPacks ||

Gommands Pack Create a ZenPack. . L Package Author Version Egg

e —— |

Users [] ZenPacks.SCC.ShowG Install ZenPack... SCC Anton Menshutin may@chg.ru 02 Yes

i | ZenPacks.community. A Delete ZenPack... community Jane Curry 1.26 Yes

Jobs | ZenPacks community. EventGraph. By Severit community Nathan Ellictt 4.0 Yes

Portlets || ZenPacks.community. SQOLDataSource community Egor Puzanov 1.3 Yes

Daemons

ZenPacks.community. WMIDataSource community Egor Puzanov 29 Yes

Versions ZenPacks.community WMIPerf Windows community Egor Puzanov 2.3 Yes
Backups [} ZenPacks.community groupreporting community Jane Curry / David Nicklay 1.4 Yes
] ZenPacks.skills1st.EventClassMappin skills1st Jane Curry 1.0 Yes

ZenPacks. skills1st. WinSerNo skills1st Jane Curry 1.0 Yes

| ZenPacks. skills1st.bridge skills1st Jane Curry 1.04 Yes

Figure 1: ZenPacks option from the ADVANCED -> Settings menu

The Action icon (the “gear” icon at the top of the main panel) then offers the following
options:

e Create a ZenPack
e Install ZenPack
e Delete ZenPack

When creating a new ZenPack, the first thing you are asked for is the ZenPack name.
ZenPack names are a sequence of three package names separated by periods. The first
part of the name is always ZenPacks. The second part usually identifies the person
or organization responsible for the ZenPack. The last part of the name usually
identifies the function of the ZenPack (see the screenshot above for examples). Once
named, you can then specify other parameters for your ZenPack, like Zenoss version
dependency or other co-requisite ZenPacks. You should also specify an author and a
version for this ZenPack.

6 © Skills 1st Ltd 22 January 2011

Z€MNOSS DASHBOARD EVENTS INFRASTRUCTURE REPORTS — ADVANGED jane siGNouT H
CORE

Settings Collectors Monitoring Templates MIBs Page Tips

ZenPackManager > ZenPacks.skKills1st.bridge

MName ZenPacks. skills1st.bridge

version |‘\.O.4

Author [Jane Curry

Save

=
o
|
o

Required? ‘ersion(s)
Zenoss >=2.5
IenPacks.SCC.ShowGraphPortlet

ZenPacks.community AvailabilityReportPerCollection

ZenPacks.community. EventGraph. BySeverity

ZenPacks. community SQLDataSource

ZenPacks.community. WiMIDataSource

ZenPacks. community WMIPerf_Windows

ZenPacks.community. groupreparting

ZenPacks skills1st EventClassMapping

ZenPacks.skills1st WinSerMo

Ooooooooooo

Export ZenPack... ZenPacks skills1st cascadeEventTemplateTest

Figure 2: Creation details for a ZenPack

When you create the ZenPack, a directory hierarchy is created under
$ZENHOME/ZenPacks (note that older style, pre Zenoss 2.2 ZenPacks, used
$ZENHOME/Products as the base directory). Each of the directories will have a
largely-empty __init__.py file that needs to be there but you probably won't need to
modify it.

The main directory areas that will be discussed in this paper, for the ZenPack called
ZenPacks.skills1st.bridge, are:

e ZenPacks.skillslst.bridge — the base ZenPack directory. It contains object class
definition files

e ZenPacks.skillslst.bridge/modeler/plugins - modeler plugins for object classes

e ZenPacks.skills1lst.bridge/skins/ZenPacks.skills1st.bridge - contains skins files
describing web page templates associated with displaying aspects of the new
object classes

Some of these are rather long-winded but they are created automatically and that is
what we have to go with! Once the structure is created, “things” can be added to the
ZenPack either from the GUI using Add to ZenPack menu options (this is known as
development mode), or programmatically by placing files in the appropriate
directories (source mode); indeed, both these methods can be used at any stage.

2.2 Exporting and installing ZenPacks

When you are ready to test the ZenPack on a different system it needs to be exported
to create the Python egg file. Note that the export process also creates the

7 © Skills 1st Ltd 22 January 2011

objects [objects.xml file - more of this later. From the Detail page of the ZenPack, use
the Action icon at the bottom of the left-hand menu to Export ZenPack.

The options presented are:
e Export to $ZENHOME/exports
e Export to $ZENHOME/exports and download

Typically you leave the top radio button selected to just create the ZenPack egg file in
$ZENHOME/exports. The file is first created in your ZenPack's dist directory then
copied to the $ZENHOME/exports directory.

The .egg file can now be moved to a different Zenoss server (perhaps you have a test
and a production server?) and installed as any other ZenPack, either using the
ADVANCED -> Settings -> ZenPacks menus and then the Action icon option to Install
ZenPack; or you can use the command line:

zenpack --install ZenPacks.skillslst. bridge-1.0.4-py2.6.egg
Note the syntax here is 2 hyphens preceding the install.

The formal documentation varies somewhat as to what daemons you need to recycle
after importing a ZenPack. zenoss restart would always be safe but bounces all of the
daemons. I believe that zenhub restart and zopectl restart is sufficient. Note that if
you forget to recycle the daemons, you may well get error messages from the ZenPacks
page and from ZenPack functionality.

When you install an egg ZenPack, you usually don't have the ability to modify it,
thought is possible to do so — see Chapter3, page 25 of the Zenoss 3 Developer's Guide
for instructions.

If you wish to continue to develop the ZenPack on the new system, the other
alternative is to copy the whole ZenPack directory structure and then install the
ZenPack with a --link parameter (2 hyphens again). This is good practise during
initial development as well as in the scenario where you wish to export a ZenPack and
then continue to modify it on a different system, largely because if you accidentally
use the Remove ZenPack menu, it deletes all files relating to that ZenPack under
$ZENHOME/ZenPacks and this will include any development code you have created if
it is stored there.

The sample ZenPack discussed in this paper was created as described above and then
moved out of the $ZENHOME/ZenPacks directory using:

cp -r $ZENHOVE/ ZenPacks/ ZenPacks. ski | | s1st . bri dge $ZENHOME/local
zenpack --link --install $ZENHOME/local/ZenPacks. ski | | s1st. bri dge

It is perfectly acceptable to reinstall a ZenPack that already exists — it will simply give
a warning message that the ZenPack is already installed, but it will do the install.
Remember to restart zenhub and zopectl.

8 © Skills 1st Ltd 22 January 2011

The result of the --link parameter is to replace the ZenPacks.skills1st.bridge directory
hierarchy in the standard $ZENHOME/ZenPacks directory with a single file,
ZenPacks.skills1st.bridge.egg-link, which simply contains the base directory of where
your ZenPack really is. Now, if anyone removes this ZenPack, the only thing that is
deleted from $ZENHOME/ZenPacks is this link file, not all your ZenPack code.

From this point, you can continue to develop the ZenPack, either in Development
mode, or by writing code in appropriate directories; a mixture of both is perfectly
acceptable and all changes will follow this link to actually update code in your private
directory.

Zenoss requires a Python module called setuptools to create and install eggs. In
Zenoss 3, the setuptools module is under $ZOPEHOME (which for a SuSE install
translates to /usr/local /zenoss/python) and then down lib /pythonZ2.6 / site-packages .
Zenoss also provides a module named zenpacksupport which extends setuptools . The
zenpacksupport class defines additional metadata that is written to and read from
ZenPack eggs. This metadata is provided through additional options passed to the
setup() call in a ZenPack's setup.py file.

When a ZenPack is exported, it automatically creates an egg file whose name includes
the python version, where “2.4” represents Zenoss 2 and “2.6” represents Zenoss 3 (for
example ZenPacks.skills1st.bridge-1.0.4-py2.6.egg) . Attempting to install a 2.6 egg
file in a Zenoss 2 environment and vice versa, will often fail with a message including
“FBLOCKED*** by —allow-hosts”. Simply renaming the egg file to have the correct
2.x in the filename often circumvents the problem.

If you want to work with ZenPacks from the Zenoss ZenPacks website, checking out
and in existing ZenPacks, there is an excellent document by David Buler, “ZenPack
Development Procedures” at http:/community.zenoss.org/docs/DOC-10223 .

3 “Simple” ZenPacks

Some ZenPacks can simply be created using the Zenoss GUI; this is especially useful
for moving standard configurations from one Zenoss server to another but may also be
appropriate when creating ZenPacks to share with other people.

The ZenPack is created exactly as described in chapter 2 above. To add “things” to the
ZenPack, simply use the Add to ZenPack option that is available on many of the
dropdown menus. The following can be added from menus (ie. in development mode):

e Device Classes
e Event Classes
e KEvent Mappings
e User Commands

e Event Commands

9 © Skills 1st Ltd 22 January 2011

http://community.zenoss.org/docs/DOC-10223

e MIBs

e Service Classes

e Process Classes

e Device Organizers

e Performance Templates

You will be prompted as to which ZenPack you wish to add the item to. Objects can
be removed from the ZenPack by selecting the checkboxes next to them and using the
Delete from ZenPack menu item. Devices themselves are the conspicuous omission
from this list. Any individual device is usually specific to a particular site and
therefore not likely to be useful to other Zenoss users.

To see what a ZenPack contains, simply use the ZenPacks option from the
ADVANCED -> Settings menu and choose the appropriate ZenPack.

When a ZenPack is exported (using the Action icon from the Detail page of the
ZenPack), not only is the egg file created but it is at this time that all the objects
under the “ZenPack Provides” list, are written to the objects.xml file under the
objects directory of the ZenPack. This file can be inspected with an editor — as the
name suggests, it is in xml format.

4 Designing complex ZenPacks

When developing new functionality for Zenoss with ZenPacks, some tasks require
more than the standard customisation tools can capture using development mode. For
example:

e Supporting a different type of device with different attributes eg. a switch that
supports the Bridge MIB

e Polling for SNMP variables from the Bridge MIB to populate these new
attributes, such as Port number and the MAC address of the remote device
connected to that port

e Displaying web pages that show information about the new device types and
their attributes

e Creating new daemons to gather either configuration polling information
(modeling) or performance data. Data collection methods for SNMP and ssh are
provided as standard but you may need JMX, HTTP or any other method (there
are Core ZenPacks that support JMX and HTTP).

This paper will examine the first three of these in detail.

10 © Skills 1st Ltd 22 January 2011

4.1 Basic principles

Before discussing the sample ZenPack requirements and its implementation, let's get
some basic principles straight first.

4.1.1 Configuration data and performance data

Zenoss documentation is apt to be a little imprecise sometimes in its terminology and
to use different words to mean the same thing. There are two very different concepts
to do with collecting data. Configuration data is typically polled for every 12 hours
and is held in the Zope Object Database (ZODB). Performance data is typically
polled for every 5 minutes and is held in Round Robin Database (RRD) files from
where it can be graphed. The two are very different.

Configuration data is polled for by the zenmodeler daemon, using modeler plugins,
also sometimes called collector plugins. Lots of these are provided as standard with

Zenoss under $ZENHOME/Products/DataCollector/plugins/zenoss with separate
subdirectories for:

e cmd

e nmap

e portscan
e python

e snmp

Don't be fooled by the directory path containing “DataCollector” - these are
configuration modeler plugins used by the zenmodeler daemon and nothing to do with
the collection of performance data that typically is collected by the zenperfsnmp or
zencommand daemons.

Any device or device class can have several modeler plugins assigned to it. This is
configured from the left-hand Modeler Plugins menu of a device's Detail page or, for a
device class, follow the DETAILS link at the top of the left-hand menu for the
equivalent Modeler Plugins option.

11 © Skills 1st Ltd 22 January 2011

Zen GSS DASHBOARD EVENTS INFRASTRUCTURE REPORTS ADVANCED

Devices Networks Processes IP Services Windows Services Network Map Manufacturers

Overview
Events
4 Components
(v] Bridge Interfaces (25)
@ Network Routes (2) Plugins (drag to change order) G Available Tields (drag to other list to add)
o inieriacedt | * zenoss.snmp.NewDeviceMap x B + BSUData W
SR * zenoss.snmp.DeviceMap ® « BridgeMib
Graphs * zenoss.snmp.InterfaceMap X * LinkRadio
TR * zenoss.snmp.RouteMap ® * MeshAP
Configuration Properties « BridgelntertaceMib X « MeshPoHal
Custom Properties * PackageProcessesMap =
Medifications « SUstandaloneModeler
4 Monitoring Templates * VirualMachines
Bridge_Stp_Topo (/Network/Switch/BridgeMIE * WinSerNo
Device (/Devices) * WmiSerNo
* community.wmi.DeviceMap
¢ community.wmi.DiskDriveMap

i o - HQ vlcommund- -

Figure 3: The Modeler Plugins dialogue for a specific device

Initially the dialogue shows the modeler plugins that are currently assigned on the
left, and the right of the dialogue has “Add Fields”, greyed out. Although the option
appears to be greyed out, click it to see the other modeler plugins that exist. They can
be selected simply by dragging them to the assigned area; the order the plugins are
run can be changed by dragging the plugins to the appropriate order. Don't forget to
use the Save button.

Another way to achieve exactly the same effect is to go to the device class or individual
device's zProperties page and click on the Edit button beside zCollectorPlugins, which
takes you to exactly the same dialogue shown in Figure 3.

12 © Skills 1st Ltd 22 January 2011

Zenoss'
CORE

—_—
Devices

172.31.100.21

Overview
Events
« Components
0 Bridge Interfaces

>, group-1 00-s2.class.example.org
 INetwork/Switc

@ Network Routes (2)

DASHBOARD EVENTS INFRASTRUCTURE

h/BridgeMIB

Configuration Properties ||

Property

REPORTS

|

Value

ADVANCED

DEVICE STATUS

“ jane SIGN OUT

| Type 'Path

zGCollectorClientTimeout

zCollectorDecoding

[180

[iatin-1

int

string

@ Interfaces (26) zCollectorLogChanges Tue =] boolean
Software x zCollectorPlugins Edit lines INetwork/Switch/BridgeMIB
Graphs
P zCommandCommandTimeout I‘I 50 float
Administration
' zCommandCycleTime |GO int
zCommandExistanceTest |test -f %s 1 string
Custom Properties zCommandLoginTimeout I‘IO‘O float
Modifications
zCommandLoginTries 1 int
4 Monitoring Templates s I
Bridge_Stp_Topo (/Network/Switch/BridgeMIg Z&emmandPassword | password /
Device (/Devices) zCommandPath |,'usn‘loca\t‘zenossflibexec string
zCommandPort I22 int
zCommandProtecol ssh j string I

[+~ [oonmmer]

Figure 4: Modify the zCollectorPlugins zProperty to activate modeler plugins

As is usual with Zenoss, modeler plugins should be assigned as high as possible in the
device class hierarchy to prevent unnecessary configuration and all sub device classes
and devices will inherit that property; modeler plugins can always be deconfigured for
a specific device if necessary.

There is no need to use the Action icon and Push Changes menu; new modeler plugins
will be automatically applied the next time zenmodeler is run or a manual remodel is
performed (Action icon -> Model Device).

Alternatively, for a specific device called switch.skills-1st.co.uk, use the following
command line. The -v 10 turns on debugging to loglevel 10 (the highest level).

zennodeler run -v 10 -d switch. skills-1st.co. uk
You should see each of the modeler plugins listed and some results from each plugin.

Performance data to be collected is specified using Zenoss templates. As with modeler
plugins, templates can be assigned either to a device class hierarchy or to a specific
device but the definition of these templates, the RRD databases that contain the data
and the daemons that collect the data are entirely separate from the configuration
data collection mechanism. If you can access performance data using either SNMP or
ssh then, typically, there is no need to write new code to collect performance data.

Modeler plugins are run by the zenmodeler daemon whereas SNMP performance
template data is collected by zenperfsnmp and ssh-driven performance data is
collected by the zencommand daemon. Another significant difference between
modeler plugins and performance templates is that if thresholds set in performance
templates are exceeded, or if performance data collection fails, then indications will
show for the Component on the device's Detail page, as shown in Figure 5.

13 © Skills 1st Ltd 22 January 2011

ZGI"\OSS' DASHBOARD EVENTS INFRASTRUCTURE REPORTS ADVANCED jane siGNoOUT H
CORE

Devices Networks Processes IP Services Windows Services Network Map Manufacturers Page Tips

ol
}

L.

e
Overview Q; Type to filter by name

Events

4 Components
A\ File Systems (5)
@ Network Routes (8)
@ Interfaces (12)

@ 0S Processes (3)
@ 1P Services (17)

@ Processors (2)
Software

Graphs

2461GB

11.72GB 12.88GB
/boot 106.31MB 19.87MB 86.45MB 18% true
/home 423.89GB 379.00GB 44.83GB 89% true
41 82MB

10.00GB

Administration
Configuration Properties
Modeler Plugins

Custom Properties
Modifications ! /PertiFilesystem disk space threshold: 98.8% used 2010-12.21 12:58:44 2010-12-21 16:12:17 39
4 Monitoring Templates
Availability (/Server)
Device (/Server/Linux)
Device Events (/Devices)
Users (/Server)

Figure 5: Device details for lotschy.skills-1st.co.uk with events for exceeded thresholds

4.1.2 The Zope Object Database (ZODB)

Zenoss is developed in Python using the open source Zope web application server — see
http://www.zope.org/WhatlsZope for more information.

The Zope Object Database (ZODB) is an object-oriented Configuration Management
Database (CMDB) used by Zope to store Python objects and their states; modeler
plugins maintain information about devices and their configuration in the ZODB.

Zenoss uses ZEO, which is a layer between Zope and the ZODB. ZEO allows for
multiple Zope servers to connect to the same ZODB. The ZODB is started and stopped
by zeoctl . Note that the Zenoss documentation tends to use ZODB and ZEO rather
interchangeably.

One way to get a feel for what is in the ZODB database and what Zope provides, is to
use the Zope Management Interface (ZMI); point your browser at:

http://<zenoss server>: 8080/ zport/dnd/ manage
You will need to authenticate yourself as a Zenoss user with Manager privileges if you
have not already done so. The resulting screens allow you to explore the Zenoss
objects (such as devices, event classes and MIBs) and also to display the instances of
those objects (such as switch.skills-1st.class.example.org and BRIDGE-MIB).

14 © Skills 1st Ltd 22 January 2011

http://www.zope.org/WhatIsZope

5] Zope on hitp://zen3.class.example.org:8080 - Mozilla Firefox ';

Eile Edit View History Bookmarks Tools Help
‘ % i O @ “-? L@' http://zen3.class. example. org:B0B0/zport/dmd/manage v‘! ;-‘Iv ""g!
f} Zenoss: group-100- Q [é Zenoss: group-100-r. Q l f:‘) Zenoss: Events Q H) Zenoss: switch.skill Q [ﬁ) Zenoss: lotschy.skil... Q l E} Zenoss: ZenPacks. ... G ‘Z Zope on http://zen3 Q I Lo Josa
Set Preferences| s | Go
Contents Ownership Intertaces
Devices
& Coenis DataRoot at /zport/dmd Help!
5 Groups
JobManager [Acce\erated HTTP Cache Manager| :][Ed]
m Y ;
kﬂoac::‘f(:jurers Type Name Size Last Modified
Mibs 1 ./# DevicelLoader 2009-10-28 11:31
& Moritors (] Devices 2010-12-20 01:10
b il [& Events 2010-05-26 15:40
Processss [5 Groups 2010-08-06 19:08
E] Reports a JobManager 2009-10-28 11:31
Senines [47 Locations 2010-08-06 19:08
@‘Systems O Manufacturers 2010-08-11 10:31
ZenEventHistory O Mibs 2010-01-08 12:46
ZenEventManager [-# Monitors [2009-10-28 11:32
(3 ZenLinkManager [e Networks 2010-09-02 15:08
ZenPackManager O Processes 2010-06-24 18:45
ZenUsers [Bl Reports 2009-10-28 11:31
& maintenanceWindows | Services 2008-10-28 11:33 4
& searchRRDTemplates | 0« Systems 2010-08-06 19:08
[zenPackPersistence | [ZenEventHistory 2010-09-07 16:47
© Zope Corporation 0 ZenEventManager 2010-09-07 16:47
Refresh [(3 ZenLinkManager 2009-10-28 11:31
0 ZenPackManager 2009-10-28 11:31
il O ZenUsers 2010-01-19 11:46 =

T e T
Figure 6: Accessing the ZODB database using the Zope interface

The top level of the ZODB database is zport/dmd (where dmd stands for Device
Management Database). Note that the Zenoss 3 Developer's Guide has a very
helpful glossary at the back which explains many of Zope's terms. If you omit the
manage from the URL shown above, you will simply get to the standard Zenoss
dashboard; adding manage provides access to the underlying Zope. For more
information on Zope and the Zope Management Interface (ZMI), see
http://docs.zope.org/zope2/zope2book/index.html , especially Chapter 6, “Using the
Zope Management Interface”, http://docs.zope.org/zope2/zope2book/UsingZope.html .

4.1.3 Coding techniques and terminology

When developing ZenPack code (in fact when administering Zenoss in any way),
always ensure you are logged on as the zenoss user. When Zenoss is installed, this
user is created but will be setup such that you cannot login directly as zenoss; you
need to su to root and then use:

Su - zenoss
to switch to the zenoss user.

If Python code is to be written, be aware that Python is very white-space sensitive.
Program constructs such as if-then-else, while loops, for loops and many other coding
elements depend on white space indentation (and the same number of spaces for the
same level of the construct). If testing Python with the Zenoss-provided zendmd
utility, the same white-space rules must be obeyed.

15 © Skills 1st Ltd 22 January 2011

http://docs.zope.org/zope2/zope2book/UsingZope.html
http://docs.zope.org/zope2/zope2book/index.html

If a ZenPack is going to support new types of devices then a new Python object class
needs to be created to describe the unique features of this device type. As with all
object-oriented code, the new class can (and probably should) inherit some
characteristics from its parent object class in a class hierarchy. Thus, the ZenPack
discussed in this paper will create a new device class called BridgeMIB, which inherits
from the standard device class /Devices / Network /| Switch; the unique characteristics
of such a device are coded in a Python file in the base directory of the ZenPack
(/usr/local | zenoss [zenoss [local | ZenPacks.skills1st.bridge | ZenPacks [skills1st | bridg
e/ BridgeDevice.py).

A new device class is associated with a Python class through the zPythonClass
zProperty (note that you do not specify the zPythonClass as a normal filesystem path
but as a dotted class path from the ZenPack ie. ZenPacks.skills1st.bridge. BridgeDeuvice
represents the file BridgeDevice.py (but don't include the .py) under the Zenoss
ZenPacks directory ZenPacks.skills1st.bridge /| ZenPacks | skills1st / bridge . More
details on this later.

Standard object classes, such as Device, OSComponent and IpInterface can be found
under $ZENHOME | Products | ZenModel . Note that each object class definition will
have two files. The .py file is the Python source code; the .pyc file is the compiled
Python code. There is no need to manually compile any Python code for Zenoss as this
will be done automatically, as required.

ZeN0OSS™ DASHBOARD EVENTS | INFRASTRUCTURE = REPORTS ADVANCED “ jane SIGNOUT H
CORE

BridgeMIB < .|| zLocallnterfaceNames |"In\"vmnet string /
zL |"127|"O\‘O\"169\254\"224 string g
Devices (3) zMaxOIDPerRequest |4O int /
Events |
T 7 zMySglPassword password |
Configuration Properties
Cverridden Chjects zMySglUsemame |zenoss string /
Custom Schema zNmapPortscanOptions [-p 1-1024 -sT --open -0G - ${here/managelp} string
Administration
zPingMeonitorignore False j boolean /
Modeler Plugins
Modffications zProdStateThreshold IBOO int
4 Monitoring Templates zPythonClass |ZenPacks‘skiHs‘Ist‘bridge.BridgeDevice x string ;g%gz:ﬁwitch 4
Bridge_Stp_Topo (/Network/Switch/BridgeMIE
Device (/Devices) zRouteMapCollectOnlylndirect False j boolean /
zRouteMapCollectOnlyLocal False j boolean /
zRouteMapMaxR outes |§00 A3 int
zSnmpAuthPassword | password [/ I
zSnmpAuthType | string
public
zSnmpGommunities RIVRLE lines /
zSnmpCommunity Ipub\ic string /
zSnmpMonitorlgnore False ~| boclean / i
+[elo-

Figure 7: Associating a device class (BridgeMIB) with a Python class

16 © Skills 1st Ltd 22 January 2011

Object classes that represent devices can have relationships with other classes. For
example, $ZENHOME | Products | ZenModel | Device.py, which defines the base object
class for devices, specifies a number of relationships as shown in Figure 8.

) Jane@zen241:~ - Shell - Konsole <

Session Edit View Bookmarks Setftings Help

_relations = ManagedEntity._relations + (

("deviceClass", ToOne(ToManyCont, “Products.ZenModel.DeviceClass”,
"devices")),

("perfServer”, ToOne(ToMany., "Products.ZenModel.PerformanceConf”,
"deuices")),

("location™, ToOne(ToMany, “Products.ZenModel.Location”, “devices™)),

("systems", ToMany(ToMany, "Products.ZenModel.System”, “devices")),

("groups"”, ToMany(ToMany, "Products.ZenModel.DeviceGroup™, “devices")),

("maintenancelindows", ToManyCont (ToOne,
"Products.ZenModel .Haintenancellindow"”, “productionState")),

("adminRoles™, ToManyCont(ToOne," Products.ZenModel .AdministrativeRole”,
"managedOb ject'')),

(*userCommands’ , ToManyCont(ToOne, ’Products.ZenModel.UserCommand’ ,
"commandable’ 33,

#t unused:

CUmonitors’, ToMany(ToMany, *Products.ZenModel.StatusMonitorConf’,
"devices’)),

)]

"Device.py"” [readonlyl 2113 lines ——12x— 270,0-1 11

on|| B shell

Figure 8: Relationships defined in Device.py

Look at Chapter 9 of the Zenoss 3 Developer's Guide for details on the different types
of relationships. Fundamentally, the code shown in Figure 8 is saying:

e A Device has a ToOne relationship with the object class DeviceClass (ie. any
specific device can only belong to one device class)

e A Device has a ToOne relationship with the object class PerformanceConf (ie.
any specific device will have only one performance data collector associated with
it)

e A Device has a ToOne relationship with the object class Location (ie. any
specific device can only be assigned to a single location)

e A Device has a ToMany relationship with the object class System (ie. any
specific device can be assigned to several System groupings)

e A Device has a ToMany relationship with the object class DeviceGroup (ie. any
specific device can be assigned to several Groups)

e A Device has a ToManyCont relationship with the object class
MaintenanceWindow (ie. any specific device can contain several maintenance
windows)

17 © Skills 1st Ltd 22 January 2011

e A Device has a ToManyCont relationship with the object class
AdministrativeRole (ie. any specific device can contain several administrative
roles)

e A Device has a ToManyCont relationship with the object class UserCommand
(ie. any specific device can contain several user commands)

e A Device has a ToMany relationship with the object class StatusMonitorConf
(ie. any specific device can have several status monitors associated with it)

The syntax of the relationship statement seems rather perverse. Taking the first
relationship from Device.py as an example:

("devi ced ass", ToOne(ToManyCont, "Products.ZenModel . Deviced ass", "devices"))

e All relationships in this file are for the object class being defined, ie. Device in
$ZENHOME/Products/ZenModel/Device.py

e The first field, deviceClass is the name of this relationship
e The relationship is a ToOne between Device and DeviceClass

e There is a corresponding relationship between DeviceClass and Device

e The file $ZENHOME/Products/ZenModel/DeviceClass.py must contain
this corresponding relationship (see Figure 9)

e The relationship is a ToManyCont ie. a DeviceClass can contain many
devices

e The name of the relationship defined in $ZENHOME/Products/ZenModel/
DeviceClass.py is the last field, ie. devices

18 © Skills 1st Ltd 22 January 2011

Q Jjane@zen3:~ - Shell - Konsole <

Session Edit ‘iew Bookmarks Seftings Help

class DeviceClass(DeviceOrganizer, ZenPackable, TemplateContainer):
DeviceClass is a device organizer that manages the primary classification
of device objects within the Zenoss system. It manages properties
that are inherited through acquisition that modify the behavior of
many different sub systems within Zenoss.
It also handles the creation of new devices in the system.

Organizer configuration
dmdRootName = "Devices"

manageDeviceSearch = DTHMLFile(’ dtml/manageDeviceSearch’ ,globals())

manageDeviceSearchResults = DIMLFile(’dtnl- manageDeviceSearchResults’,
globals())

portal_type = meta_tuype = event_key = "DeviceClass"

default_catalog = 'deviceSearch’

_properties = Devicelrganizer._properties + (

{’id’' :'devtypes’, *type’:’lines’, 'nmode’:'u’},
)

_relations = DeviceOrganizer._relations + ZenPackable._relations + S
TemplateContainer._relations + (
("devices", ToManyCont(ToOne,"Products.ZenModel.Device”, deviceClass")),
)

"DeviceClass.py" [readonlyl 860 lines ——-7x— 65,0-1 e
(5] | (= shen

Figure 9: $ZENHOME / Products | ZenModel | DeviceClass.py showing corresponding relationship with
Device

Note that there is a specific relationship type when an object contains another object.
Better examples exist in $ZENHOME/Products/ZenModel/OperatingSystem.py where
an Operating System may contain many interfaces, routes, ipservices, winservices,
processes, filesystems and software packages.

;' Jane@zen3:~ - Shell - Konsole

Session Edit View Bookmarks Seftings Help

class OperatingSystem(Software):

totalSwap = OL

uname =

_properties = Software._properties + (
{'id’ :"totalSwap’, ’type’:’'long’, 'mode’ :'w’},
{'id’ :"uname’, ‘type’ :’string’, ‘mode’:’’%,

)

_relations = Software._relations + (
("interfaces”, ToManyCont(ToOne,
"Products.ZenModel . IpInterface”, "os")),
("routes”, ToManyCont(ToOne, “Products.ZenModel.IpRouteEntry"”, “os")),
("ipservices”, ToManyCont(ToOne, "Products.ZenModel.lIpService"”, “os")),
("winservices", ToManyCont(ToOne,
"Products.ZenModel .WinService"”, “os")),
("processes", ToManyCont(ToOne, "Products.ZenModel.0SProcess", “os")),
("filesystens”, ToManyCont(ToOne,
"Products.ZenModel .FileSystemn"”, "o0s")),
("software"”, ToManyCont(ToOne, “Products.ZenModel.Software”, “os")),
)

"OperatingSystem.py"” [readonlyl 660 lines ——5x— 39,0-1 S

Figure 10: ToManyCont relationships for the OperatingSystem object class

19 © Skills 1st Ltd 22 January 2011

Where a container relationship exists, this leads to a requirement to be able to
conveniently display data about those contained components. Almost all devices will
have some contained components — a network interface, perhaps. Other devices such
as servers may have lots of components.

The Zenoss 2 GUI displayed device components under an OS tab as shown in Figure
11. Clicking on a component, such as the eth0 interface, produced panels with
component configuration information and performance graphs.

Zenoss server time: 18:49:11

Hardware Software Events Perf Edit

Network MAC
10.191.101.7/24 10.191.101.0 00:0C:29 AEAT4F
Classes 127.00.18

Class Restarts Fail Severity Status I Lock

show all Page Size |40 ok
Moniored

Description Status M Lock
tp Domain Name Server @ @ B2
show all Fage Size |40 ok

Management

Total bytes Used bytes Free bytes
872 4MB 617 7MB 254 7MB

Interface Protocol

Done

Figure 11: Zenoss 2 GUI with OS tab for device components

In the Zenoss 3 GUI, device components are shown in the left-hand menu of a device's
details page, with a sub-menu for each component type, as shown in Figure 12.
Clicking a component type results in a panel showing all instances of that component.
In the middle of this panel is a Display dropdown which is customisable but typically
offers Graphs, Events, Template and Details menus for the selected component
instance.

20 © Skills 1st Ltd 22 January 2011

ZeNOSS™ DASHBOARD EVENTS | INFRASTRUCTURE = REPORTS ADVANCED
ConE

Networks ~ Processes IP Services

10.191.1i

E1 line to remote site

172.30.100.1/30

Configuration Prope rtie s
WModeler Plugins - @ @ @ @ @ @ @ @ @ @ @ @ @ @ @O
Custom Props rties erts " Stop

Modifications

4 Monitoring Templates
Device (INetworkiRouter/Gisco)

Tue 12:08 wed 00: 0
W Inbound cur:510.53k avg:992. 96k max: 1.94M
[outbound cur:2e2.50k avg:148. 34k max:270.74k

[T P I P

ST .JMLIHMMM]U‘L‘fﬂ._mi'lﬂ_ | -

Figure 12: The Components option for a device showing data for the contained Interfaces relationship

Prior to Zenoss 3, most web pages for displaying data were defined in skins files. The

skins files for the standard Zenoss objects are in the
$ZENHOME | Products | ZenModel | skins | zenmodel directory and all have a .pt file
extension (for Page Template).

With Zenoss 3 there is now a move towards using JavaScript to define page layouts
so we are currently in a transition period where both skins files and JavaScript files
are employed. Chapter 14 of the Zenoss 3 Developer's Guide has some information on
conversion tasks when moving from Zenoss 2 to Zenoss 3.

The Zenoss 3 Developer's Guide, Chapter 13 provides details on writing skins files.
You can use a mixture of:

e HyperText Markup Language (HTML)
e Cascading Style Sheets (CSS)

e Zope 2, Zope Page Templates (ZPT) and the Template Attribute Language
(TAL)

e ZPT and Macro Expansion for TAL (METAL)
e JavaScript / Asynchronous JavaScript And XML (AJAX))
e Yahoo User Interface (YUI) Library and Mochikit

The file that defines the page for the Zenoss 2 OS tab, shown above in Figure 11, is
S$ZENHOME | Products | ZenModel | skins [zenmodel | deviceOsDetail.pt. It defines a

21 © Skills 1st Ltd 22 January 2011

form containing a table for each type of component, where the data to populate the
table comes from the ZODB database.

f:| j'anecf_'l:\ieni-l"l - -S'I-fél-l_ '--Iéunsnl'e 3 -r_-.'

Session Edit View Bookmarks Settings Help

<form method="post" tal:attributes="action here-os-absolute_url" -
name="fileSystemListForn">

<tal:block metal:define-macro="fileSysList"
tal:define="tableNMame string:fileSyslist:
ob jects here-os-filesystems- ob jectValueshll:
tabletitle string:File Systems:
batch python:here.ZenTableManager.getBatch(tableName,ob jects,
sortedHeader="mount’):
ts python:here.ZenTableManager.getTableState(tableNamel:
menu_id string:FileSystem:
showfilterbox python:True;">
<input type="hidden" name="context" value="filesystemns" >
<tal:block metal:use-macro="here-zenuinacros-macros-zentable">

<tal:block metal:fill-slot="zentablecontents'>

"deviceOsDetail .pt" [readonlyl 648 lines —73x—— 476,0-1 Ten |2

l":‘ﬁJ ! Shell

Figure 13: deviceOsDetail.pt skin file with definition of form for displaying filesystem information

The key line to note in Figure 13 is:
obj ects here/os/fil esysteniobjectVal uesAll;

where here is the device in question (such as server.class.example.org), os is the
Operating System object on the device, which in turn contains the filesystem object.
objectValuesAll will return a table of data with one row for each filesystem on the
device.

The layout of the table, including header columns and data columns can be very finely
controlled. The first half of Figure 14 defines the table header columns; the middle 5
lines shows a check to ensure that data does actually exist to display; the next 3 lines
(with odd and even in them) ensures that the rows of the table will have alternating
light and dark backgrounds; and the rest of the screenshot is the start of the data
values to populate the filesystem table. The intricacies of skins files will be examined
in more detail later.

22 © Skills 1st Ltd 22 January 2011

] jane@zen241:~ - Shell - Konsole <3> -2

Session Edit “Wiew Bookmarks Settings Help

{t—— BEGIN TABLE CONTENTS ——> -
<tr tal:condition="ob jects">

<th class="tableheader" width="20"><{,th>

<th tal:replace="structure python:here.ZenTableManager .getTableHeader(
tableName,’ mount’ , " Mount’ 3" >Mount

<sth>

<th tal:replace="structure python:here.ZenTableHanager .getTableHeader(
tableName,’ totalBytes’,’ Total bytes’)">Total Bytes

<sth>

<th tal:replace="structure python:here.ZenTableHanager.getTableHeader(
tableName, usedBytes’ ,’Used bytes’)":Used Bytes

<sth>

<th tal:replace="structure python:here.ZenTableManager.getTableHeader(
tableName,’ freeBytes’ ,’ Free bytes’)">Free Bytes

<sth>

<th tal:replace="structure python:here.ZenTableManager.getTableHeader(
tableName,’capacity’,’» Util’ "> Util

<sth>

4

<th tal:replace="structure python:here.ZenTableManager .getTableHeader(
tableName,’ storageDevice’ ,’ Storage Device’)">Device

<th class="tableheader" align=""center" width="30">M< th>
<th class="tableheader" align="center" width="60">Lock< th>
<otry
<{tr tal:condition="not:objects">
<th class="tableheader" align="1eft">
Mo File Systems
<sth>
{otry
<tal:block tal:repeat="fsys batch">
<tr tal:define="odd repeat-fsys-odd"
tal:attributes="class python:test(odd, 'odd’, 'even’)">

<td class="tablevalues" align="center">
<input type="checkbox" name="componentNames:list"
tal:attributes="value fsys-getRelationshipManagerId" >

<otd>
<td class="tablevalues'>
{tal:block

tal:content="structure python:fsys.urlLink(text=fsys.mount,
attrs={’class’ :’ tablevalues’})" >

<td>

Btd class="tablevalues"
"deviceOsDetail.pt"” [readonlyl 648 lines ——80x— 521,7 78 |~
(on)|] sher | An

Figure 14: deviceOsDetail.pt showing layout of table for filesystems data

In Zenoss 3 the devices main page has been completely redesigned and uses
JavaScript to present device details, components and subsequent component details
and graphs. A new subdirectory, ZenUI3, appears under $ZENHOME / Products
which contains a large subdirectory hierarchy with JavaScript files. The Device
Detail page is defined in

$ZENHOME | Products | ZenUI3 | browser [resources | js | zenoss | devdetail.js — this
presents the overall view for a device.

23 © Skills 1st Ltd 22 January 2011

Q Jane@zen3:~ - Shell - Konsole <4:

Session Edit Wiew Bookmarks Seftings Help

Zenoss .nav.register ({ -
Device: [{
id: 'device_overvieuw’,
nodeType: ’subselect’,
text: _t(’ Duerview’)

A
id: 'device_events’,
nodeType: ‘subselect’,
text: _t(’Euvents’)
i
id: UID,
nodeType: "async’,
text: _t('Components’),
s+ hide the node: show it only when it’s determined we have components
hidden: true,
expanded: true,
leaf: false,
listeners: {
beforeclick: functiont(node, e) £
node . firstChild.select();
I,
beforeappend: function(tree, me, noded{
node.attributes.action = function(node, target) {
target . layout .setActiveltem(’ component_card’);
target . layout .activeltem.setContext(UID, node.id):
}
Iy
load: function(node) I
var card = Ext.getCmp(’component_card’),
thar = card.getGridToolbar():
if (node.hasChildNodes()) {
node.ui.show();
if (thar) {
thar.shou();
¥
} else {
node.ui.hide();
if (tharl){
thar.hide():
¥
card.detailcontainer.removenll();
Bry € —
"deuvdetail. js" [readonlyl 853 lines ——16x—— 144,21 12

Figure 15: devdetail.js fragment showing some of the navigation menu options

Component details display is handled by
$ZENHOME | Products | ZenUI3 | browser [resources [js | zenoss | ComponentPanel.js .

Comparison of the Page Template code in Figure 14 and the JavaScript in Figure 16
shows similar headers.

24 © Skills 1st Ltd 22 January 2011

£ jane@zen3:~ - Shell - Konsole -2

Session Edit “iew Bookmarks Settings Help

ZC.FileSystemPanel = Ext.extend(ZC.ComponentGridPanel, < -
constructor: function(config) £
config = Ext.applylf(configlli}, {

autoExpandColumn: “mount’,

componentType: 'FileSysten’,

fields: [
iname: ‘uwid’ ¥,
{name: ’name’},
iname: ’status’’,
{name: 'severity’’,

iname: ’usesMonitorAttribute’’,
iname: 'monitor’},
{name: ‘monitored’’,

{name: ’locking’Z,
{name: "mount’},
{name: ’totalBytes'?,
{name: ’availableBytes’:,
{name: 'usedBytes’},
{name: 'capacityBytes’t
1,
columns: [{
id: ’'severity’,
datalndex: ’severity’,
header: _t('Events’),
renderer: Zenoss.render.severity,
width: 60
3.4
id: "mount’,
datalndex: 'mount’,
header: _t(’'Mount Point’)
3,1
id: ’totalBytes’,
datalndex: ’totalBytes’,
header: _t(’'Total Butes’),
renderer: Zenoss.render.bytesString
3,1
id: 'usedBytes’,
datalndex: ’usedBytes’,
header: _t(’'Used Bytes'),
renderer: Zenoss.render.bytesString

3,1
id: 'availableBytes’,
MataIndex: ’availableBytes’, -
"ComponentPanel . js" [readonlyl 1002 lines ——88x—- 882,17 8% -

== | [shell

Figure 16: Definition of FileSystem component display in ComponentPanel.js

Again, JavaScript files will be revisited in much more detail later in this paper.

So what links the device object class with the skins file or JavaScript files that display
web pages of data relating to a device? This is coded in factory statements in the
object class file, after the relationship statements. Each tab required for the object in
Zenoss 2 has a stanza defining its id, name, action and permissions; it is the action
field that specifies the name of the skins file (without the .pt). Compare the
(incomplete) definitions in Figure 17 with the tabs shown for a device in Figure 11.
The name field gives the name shown on the tab; the action field should match with
the name of a skins file (without the .pt) in $ZENHOME |/ Products | ZenModel | skins /
zenmodel.

25 © Skills 1st Ltd 22 January 2011

|:| Jane@zen241:~ - Shell - Konsole <2>

Session Edit View Bookmarks Seftings Help

#t Screen action bindings (and tab definitioms)
factory_type_information = (

'id’ ! 'Device’ ,
'meta_type’ : 'Device’,
'description’ : ""Base class for all deuvices""",
" icon’ : 'Device_icon.gif’,
! product’ : 'ZenModel’,
' factory’ : "manage_addDevice’,
"immediate_view' : 'deviceStatus’,
'actions’ :
(
{'id’ : 'status’
» "name’ : 'Status’
, "action’ : 'deviceStatus’
, 'permissions’ : (ZEN_VIEM,)
1,
{ "id’ : 'osdetail’
» "name’ : 'ns’
, "action’ : 'devicebsDetail’
, 'permissions’ : (ZEN_VIEM, 2
3,
{ "id’ : "hudetail’
» "name’ : 'Hardware’
, "action’ ! 'deviceHardwareDetail’
, 'permissions’ : (ZEM_VIEM,)
}l
{ "id’ ! 'suwdetail’
» "name’ : 'Software’
, "action’ ! "deviceSoftwareDetail’
, 'permissions’ : (ZEM_VIEM,)
}l
{ "id’ ! events’
» 'name’ : 'Events’
, "action’ ! 'viewEvents'
, 'permissions’ : (ZEN_UIEW,)
}l
{id’ : "historyEvents’
. name’ : 'History’
" , "action’ : 'viewHistoryEvents'
it ; 'permissions’ : (ZEN_VIEMW,)
it ¥,
g'ia’ : ! perfServer’
, 'name’ : 'Perf’
, "action’ ! 'viewDevicePerformance’
i fpernissions’ : (ZEN_VIEM,)
"Device.py" [readonlyl 2113 lines —15x— 317,17 132 1,

Figure 17: Device.py object class file for Zenoss 2 showing the action filenames for each tab

Device.py for Zenoss 3 has a very similar section with a few subtle changes; for
example, the tab labelled Perf becomes a menu labelled Graphs, but largely the
definitions are the same. The new mechanism in Zenoss 3 picks up the V2 Page
Template (.pt) definitions, excludes a few specific tab names (such as edit and events)
and then uses these old definitions to augment the new, standard Zenoss 3 left-hand
menus for a device. Thus the Software and Graphs menus are added.

26 © Skills 1st Ltd 22 January 2011

4.1.4 Databases, Daemons and Directories

To summarise this “Basic Principles” section, here are a couple of diagrams showing
the architecture of Zenoss.

Databases and Daemons for Zenoss data collection

Round Robin Databases Zope Object Database MySQL
(RRD files) (ZODB) relational d/b

o Y
S— R

Device classes & instances
Networks, Event classes

$ZENH OME/perf Locations, Systems, Groups
- Devices Services, Processes, Mibs
- <hosthame> Reports, Manufacturers

onhitors, Templates, Users

- <datasource>.<datapoint=>.rrd

- <component= i BLatu
- <component instance> i
- <datasource=>.<datapoint>.rrd
Assigned modeler

plugins define data
to collect using

-snm zensyslog | |zeneventlog
zenperfsnmp [zencommand] _ s P [] []
- wmi

Bound templates define
data values to collect
Performance Data Configuration D ata Event Data

Figure 18: Databases and Daemons for Zenoss data collection

Figure 18 shows the 3 different databases used by Zenoss:

e Performance data is held in Round Robin Database (RRD) files under
$ZENHOME/perf

e Configuration data is held in the Zope Object Database (ZODB)
e Event data is held in a MySQL database

Performance data is typically collected at frequent intervals (SNMP data is collected
every 5 minutes, by default). Templates define datasources and datapoints to be
collected, where a datasource includes the source type (such as SNMP) and the OID to
collect (in the case of SNMP). For SNMP data, the datapoint will have the same name
as the datasource. If data is collected using ssh then the datasource type will be
COMMAND and the polling interval can also be specified. Since an ssh command may
return several datapoints, each has to be specified with a unique name. SNMP
performance data is collected by the zenperfsnmp daemon whilst ssh data is
collected by zencommand.

27 © Skills 1st Ltd 22 January 2011

Performance data is stored under $ZENHOME/perf/Devices with a separate directory
for each device. Performance values for the device itself will be under this hostname
subdirectory, with the format <datasource>.<datapoint>.rrd; for example:

$ZENHOVE/ per f / Devi ces/ zen241. cl ass. exanpl e.org/l aLoadlnt1_| aLoadInt1.rrd
$ZENHOVE/ per f / Devi ces/ bi no. ski |l | s-1st. co. uk/ procs_I i nuxNum rrd

If the object class of the device has contained components, such as os, which itself
contains filesystems objects and interfaces objects, then the directory hierarchy under
the hostname is extended to reflect and store the component data. Thus, interface
information for the interface called ethl on the device bino.skills-1st.co.uk would be
stored in $ZENHOME |/ perf | Devices/ bino.skills-1st.co.uk [os/interfaces/ethl and
would include datafiles such as ifInOctets_ifInOctets.rrd.

Note that a template must actually be bound to a device or device class before data
collection will be effected (component templates are bound automatically).

Configuration data is collected by the zenmodeler daemon, each device or device
class having been configured for one or more modeler plugins. The standard
modeler plugins include SNMP, WMI and ssh as data collection protocols.
Configuration data is stored in the Zope Object Database (ZODB).

Event data is stored in a MySQL relational database (that is installed and configured
automatically when Zenoss is installed). The database has 6 tables:

e status

e history

o log

o detail

e heartbeat

e alert_status

The active events are in the status table whereas closed events are in the history
table.

Events are generated and inserted into the database by various of the Zenoss daemons
(such as zenping, zenstatus and zenperfsnmp). External events can also be
captured and inserted from syslogs by the zensyslog daemon, from SNMP TRAPs by
the zentrap daemon, and from Windows event logs by the zeneventlog daemon.

Figure 19 shows the directory structure for performance and configuration data.

28 © Skills 1st Ltd 22 January 2011

Directories for Zenoss data collection

$ZENHOME
/ Products
ik e =
| ST e Zenui3
Devices Daemons DataCollector ZenModel
| | <JavaScript files>
<hostname> plugins — Device.py
| —OQperatingSystem.
<datasource>.<datapoint>.rrd Zenoss —DeviceClass.py
o — PerformanceConf,
<component> —Location.py
<component instance> — skins
— <datasource>.<datapoint>.rrd ze|nmode|

- ‘ ‘ deviceOsDetail.pt

viewlpInterface.pt
cmd portscan snmp python nmap

DeviceMap.py Zenoss 3

InterfaceMap. J_aVaS(_:rlpt

HRSWRunMap.py p resources
Performance Data HRSWRunMa Object classes

i and skins

Modeler Plugins

Figure 19: Directory hierarchy for Zenoss data collection

4.2 Requirements for the sample ZenPack

To illustrate the different elements of ZenPacks, a sample ZenPack will be created to
get extra information from switch devices that support the BRIDGE MIB (as defined
by RFCs 1493 and 4188). The BRIDGE MIB provides information for each port on a
switch, including the MAC address(es) that have been seen connected at the other end
of the switch port; thus it is possible to build some ideas of layer 2 connectivity.

The main information that the BRIDGE MIB will supply to the ZenPack comes from
the Forwarding Database for Transparent Bridges table (OID .1.3.6.1.2.1.17.4.3.1).

29 © Skills 1st Ltd 22 January 2011

Session Edit View Bookmarks Settings Help

—— The Forwarding Database for Transparent Bridges

dot1dTpFdbTable OBJECT-TYPE
SYNTAX SEQUENCE OF Dot1dTpFdbEntry
MAX-ACCESS not-accessihle
STATUS current

DESCRIFTION
"A table that contains information about unicast

entries for which the bridge has forwarding and-or

filtering information. This information iz used

by the transparent bridging function in

determining how to propagate a received frame."
= { dot1dTp 3 ¥

dot1dTpFdbEntry OBJECT-TYPE

SYNTAX Dot1dTpFdbEntry
MAX-ACCESS not-accessible
STATUS current

DESCRIFTION
"Information about a specific unicast MAC address

for which the bridge has some forwarding and-or
filtering information."

INDEX { dotldTpFdbAddress }

::= { dotldTpFdbTable 1 ¥

Dot1dTpFdbEntry ::=
SEQUENCE {
dot1dTpFdbAddress
MacAddress,
dot1dTpFdbPort
Integer3Z,
dotldTpFdbStatus
INTEGER
¥

Figure 20: BRIDGE MIB - Forwarding Database for Transparent Bridges section

The three leaf-node OIDs are:
e dotldTpFdbAddress of type MacAddress
e dotldTpFdbPort of type Integer32
e dotldTpFdbStatus — an enumerated INTEGER type where :

° other(1),

° invalid(2),
° learned(3),
° self(4),

° mgmt(5)

For this ZenPack sample, only ports that have a status of “learned” (3) are going to be
considered as active (ie. traffic has actively been seen going out of that port to a MAC

address).

30 © Skills 1st Ltd 22 January 2011

To make matters more confusing, the value supplied by the BRIDGE MIB for
dot1dTpFdbPort for some switches, does not match obvious port numbers. For
example, a Cisco Catalyst 2900 has 24 physical ports (actually labelled 1 — 24). The
BRIDGE MIB reports the first physical port as dot1dTpFdbPort = 13, the second as
14, and so on. To help a little with this confusion, the BRIDGE MIB provides the
Generic Bridge Port Table (OID .1.3.6.1.2.1.17.1.4.1) whose first two leaf-node OIDs
are:

e dotldBasePort - "The port number of the port for which this entry contains
bridge management information" — ie. the same port number as reported by
dot1dTpFdbPort

e dotldBasePortIfIndex - "The value of the instance of the ifIndex object, defined
in IF-MIB, for the interface corresponding to this port." In other words, this
value provides a cross-reference between BRIDE MIB port references and their
interfaces reported by the standard MIB-2 interface table. For example, the
port that is physically labelled 1, reports dot1dTpFdbPort=13,
dot1dBasePortIfIndex=2 and information from the MIB-2 interface table for
this port reports iflndex=2 with the corresponding ifDescr="FastEthernet0/1” - I
do hope that's clear!

So, to build any semblance of a layer 2 topology, we need to coordinate several pieces
of information from the BRIDGE MIB and from MIB-2. The target is to be able to
display information as shown in Figure 21 for a Zenoss 2 system.

ZenOss’ Core 4
{ ¥ 7 -« st
e QSS OI e es Logout Help
£ IDevices INetwork ISwitch IBridgeMIB /group-100-s2.class.example.org Zenoss server time: 16:39:24

- : i Bridge Interfaces
Main Views v Status 0s Hardware Software Events Perf Edit g

Bridge Interfaces Table

Port Remote MAC Remote Interfaces Remote Device

24 00:30:E2:F7:2A:1C FastEthernet1/1: 172.31.100.18 group-100-13.class.example. org eamed (3) @

Classes 2 00:30:33:0A.0F:5A FastEthernet1/1: 172.31.100.17 aroup-100-12.class. example. org Learned 3) @
] 08:4C:BF:C2:79:F5 Learned (3) @

4 08:4C:92:D0:88:89 Learned 3) @

10 00:04:C1:02:00:CA EastEthernet0/n0: aroup-100-s2.class. example.org Not active (4) @

n 00:04:C1:02:00:CB FastEthernet0/11 Qroup-100-s2 class example org Not active (4) 0

2 00:04:C1:02:00:CC EastEthernet0n2: g%uug—mO—sZ class.example.org Not active (4) @

Browse By 3 00:04:C1:02:00:CD FastEthernet0/3: group-100-s2.class. example.org Not active (4) @

tems

4 00:04:C1:02:00:CE EastEthernet0/4: aroup-100-s2.class. example.org Not active (4) @

s 00:04:C1:02:00:CF FastEthernet0/5s: group-100-s2.class. example.org Not active (4) @

e 00:04:C1:02:00:D0 EastEtherneto/e: aroup-100-52.class. example.org Not active (4) @

7 00:04:C1:02:00:D1 FastEtherneton7: group-100-s2.class. example.org Not active (4) @

Management 8 00:04:C1:02:00:D2 FastEthernet0/18 group-100-s2 class example org Not active (4) O
-

Figure 21: The Bridge Interfaces Table for a Catalyst 2900 displayed by a Zenoss 2 system

This screenshot shows four active MAC addresses two of which Zenoss is unable to
provide remote information for (other than the remote MAC itself); this is because the

31 © Skills 1st Ltd 22 January 2011

remote device has not been discovered by Zenoss. Ports 2 and 24 are connected to
devices already discovered so the remote interface description and IP address have
been supplied out of the ZODB database, along with the hostname of the remote
device. The rest of the ports are actually not connected so show a Port Status that is
not 3.

In addition to getting port information from the BRIDGE MIB, it can also deliver its
base bridge address as OID .1.3.6.1.2.1.17.1.1.0 and the total number of ports on the
switch as OID .1.3.6.1.2.1.17.1.2.0. These values will be collected and displayed on the
Status tab of a switch.

As shown in Figure 21, port information will be displayed in a new tab that will
automatically be created for devices that support the BRIDGE MIB.

In addition to showing a table of ports, clicking on the Port link will display
performance information for that port as shown in Figure 22.

Zen f) SS Core €=

IDevices INetwork ISwitch IBridgeMIB /group-100-s2.class.example.org /24 - 00:30:E2:F7:2A:1C Zenoss server time: 11:15:08

Bridge Interface Status Bridge Interface Template Modifications

Main Vi

Performance Graphs ~ Range Link graphs? & & Stop
Port,_traffic

400 k

3o k
Classes
208 k

108 k

R shad AN dis o I Bl £ O
25 26 27 28 29 30 31 a1 a2 03 Q
2010-12-25 11:14:12 to 2611-61-04 11:14:13
H dotiTpPortoutFrames cur:379. 82k avg:! B.64k max: 1.90M
B dotTpPortInFrames cur:273. 21k avg: 25, 87k max: 1.2G6M

Browse By

ir 22: Performance graph for a selected switch port

The template that delivers switch port performance information can have whatever
datapoints you wish to configure but the template name must match the object class
of the device component (BridgeInterface in this case) — more of this later.

In Zenoss 3, there is a slight design change. The Bridge Interfaces will be displayed
as a component of a device, rather than being displayed as a separate element. The
equivalent in Zenoss 2 would have been to extend the tables on the OS tab to include
all the port information but this could have resulted in a huge OS page. Note that
this is only a change in display technique — the fundamental device and component
definitions do not change. Since Zenoss 3 provides the component submenu for a
device, we will capitalise on it. Hence bridge interfaces will appear as shown in
Figure 23.

32 © Skills 1st Ltd 22 January 2011

ZE@NOSS™ DASHBOARD EVENTS | INFRASTRUCTURE | REPORTS ADVANCED jane SIGN OUT
CORE

Devices Networks Processes IP Services Windows Services Network Map Manufacturers Page Tips |

Overview
Events g
4 Components 2 Q0:30:EZF7:2A0C FactEthemstt/1: 172.31.100.18 group-100-r3.class. example.ong U 24 - 00:30:E2:F7:2A:1C E q

@ Network Routes (2)

@ Interfaces (25) 9 ¢ 08:4C:92:00:88:83 3 4-08:4C.92:D0:88:89

v Bridge Interfaces (28) o 2 00:30:93:0A0F 5A FastEtherneti/1: 172.31.10017 group-100-r2.class. example. org g up @ 2- 00:30:93:0A0F 5A
S a 3 08:4C.BF:C2:79:F5 £ § up @ 3-08:4C.BF.C2:79:F5
Grap.hé . o 18 00:04:C1:02:00:D2 FastEthermeto/18: group-100-s2.class. example. org 4 Down @ 18 - 00:04:€1.02:00.02
Administration
Configuration Properties [] 4 00:04:C1:02:00:C4 Lo e ooy group-100-s2.class. example. org 4 Down @ 4 - 00:04:C1:02:00:C4
Modeler Plugins
Custom Properties e S 00:04:C1:02:00:C5 FastEthernet/s: aroup-100-52.class. example. org 4 Down @ 5-00:04:C1:02:00:C5 =

Modifications
I

4 Monitoring Templates

Graphs ange Houny <l Weser| bmcgmpnsevl o0 L]
Bridge_Stp_Topo (/Network/Switch/BridgeMIE 5top E ;
Events i
Device (/Devices)
g Details < mnnm Oull >
Bridge Interface Graphs
4,/ Bridige Intertace Template . . .
Madifications
3. oW 2
20M Il--
0.0 - - - -
mMon oe: oo mon 12: oo Tue 0908
B dotlTpPortOuUtFrames cur: 5.esk avgi2e. 63k max: 2,98M :
@ dotTpPortInFramas Cur:ges. 73 avg:1e. 08k max:558. 77K ~|I:

Figure 23: The Bridge Interfaces Table for a Catalyst 2900 displayed by a Zenoss 3 system

The Graphs, Template and Modifications history that were represented in separate
tabs in Figure 22, are now shown in the dropdown Display menu in the bottom half of
the component panel.

4.3 Creating the sample ZenPack

It is essential to plan out the pieces of code required for a ZenPack and clearly
document the names that will be used as many elements are referenced in other
elements. Note that all names are case-sensitive.

4.3.1 Elements required and their names

This ZenPack is for devices that support the bridge MIB and it is created by Skills 1st,
so the name of the ZenPack will be:

e ZenPacks.skillslst.bridge

This means that a directory hierarchy will automatically be created under
ZenPacks.skills1st.bridge:

e ZenPacks.skillslst.bridge/ZenPacks/skillslst/bridge

This directory will be referred to as the base directory of the ZenPack throughout this
section, as it contains the object class files, the modeler directory and the skins
directory. It also contains the resources directory for Zenoss 3.

A new device class will be used for Bridge MIB devices which is a subclass of the
standard Switch device class. The device class is created through the GUI, simply by
navigating to Devices -> Network -> Switch and using the “+” symbol at the bottom of
the Zenoss 3 left-hand menu to add a sub device class. The new device class will be:

33 © Skills 1st Ltd 22 January 2011

e BridgeMIB

Devices

Infrastructure

Ccim
Discovered Add Device Class Production
HTTP
KVM

Name:

! Network
. : o BridgeMIE
Access Point
Link Radio Description:
e !
! BridgeMIB
Ping
Power
Printer
D server
! Servics
! snmp_no_ping
bladeChassis
Iiotaro
o -

Figure 24: Creating a device class for BridgeMIB as a subclass of [Devices [Network [Switch

(In Zenoss 2, use the table dropdown menu from Devices -> Network -> Switch to add
a new organizer).

Note that this is a device class. It is not the object class file that specifies what
makes such a device unique (relating the device class with the object class file will be
discussed later).

The solution actually needs two new object class files; one for the device itself
(BridgeDevice) and one to represent an interface on a bridge device
(Bridgelnterface). These files contain Python code and must exist in the base
directory of the ZenPack. The name of the file should reflect the name of the object
class that is being defined; thus:

e BridgeDevice.py contains the line class BridgeDevice(Device):
e Bridgelnterface.py contains the line
class BridgeIlnterface(DeviceComponent, ManagedEntity):

Within these object class files, the relationships between BridgeDevice and
Bridgelnterface will be specified (refer back to section 4.1.3 for information on
relationships). Each relationship also has a name, distinct from the object class name
S0:

e A BridgeDevice object will have a relationship called Bridgelnt defining a
ToManyCont relationship with a BridgeInterface object (ie a BridgeDevice may
contain many Bridgelnterfaces).

34 © Skills 1st Ltd 22 January 2011

e A Bridgelnterface object will have a relationship called BridgeDev defining a
ToOne relationship with a BridgeDevice object (ie. a BridgeInterface is
associated with only one BridgeDevice).

Note that, by convention, the relationship name tends to reflect what is being related
to.

Also note that some ZenPacks (especially older ones) define relationships in the
__init__.py file of the base directory of the ZenPack. This procedure is also alluded to
in the Zenoss Developer's Guide 2.4. My understanding, with recent versions of code,
is that there is no requirement to modify any of the automatically-created __init_ .py
files if relationships are specified in object class files, as shown here.

Having created new object class files, modeler plugin code is required to populate the
fields of these objects so the modeler /plugins directory under the ZenPack base
directory contains:

e BridgeDeviceMib.py
e BridgelnterfaceMib.py

These files have Python code that use the standard SnmpPlugin collector to gather
relevant SNMP data for the new objects. As discussed in section 4.1.1, modeler
plugins are assigned to devices or device classes using the GUI with the Modeler
Plugins left-hand menu (More -> Collector Plugins for Zenoss 2).

The final elements required are the web pages to show information about the new
objects — these are held in the skins/ZenPacks.skills1st.bridge directory under the
ZenPack base directory and have a .pt extension:

e BridgeDeviceDetail.pt
e viewBridgelnterface.pt

Zenoss 3 requires a JavaScript file to extend the details of the new component menu
layout with Bridge Interface information. It is located under the resources directory:

e bridge.js

4.3.2 SNMP data required

Fundamentally, a protocol is necessary to gather both configuration and performance
data. This ZenPack uses SNMP for both. It is always advisable to check that devices
do respond to SNMP using a basic (non-Zenoss) SNMP command utility. The format
of the command depends on the version of SNMP for which the device is configured.
Here are examples for SNMP versions 1, 2 and 3, using the net-snmp utility, to walk
the SNMP MIB tree from the BRIDGE MIB Forwarding Table (.1.3.6.1.2.1.17.4.3.1)
for a device called switch (the hostname can be anything you can ping so potentially
short hostnames will work just as well as fully-qualified Domain Names). SNMP
versions 1 and 2c¢ have a community name of fraclmye configured for use with the

35 © Skills 1st Ltd 22 January 2011

Zenoss server. The SNMP V3 version uses MD5 authentication, passphrase
fraclmyea, and user jane2.

e snnpwalk -v 1 -c fraclnye switch .1.3.6.1.2.1.17.4.3.1

e snnpwalk -v 2¢c -c fraclmye switch .1.3.6.1.2.1.17.4.3.1

® snnpwalk -v 3 - a MD5 -A fraclmyea -1 authNoPriv -u jane2 switch .1.3.6.1.2.1.17.4.3.1

Once basic SNMP communication is established, make sure that Zenoss device classes
and/or devices have the correct SNMP parameters configured in their zProperties
page.

The ZenPack will need two sets of table data from the BRIDGE MIB and two scalar
values:

.1.3.6.1.2.1.7.4.3.1 (dot1dTpFdbEntry) 1 (RemoteAddress)
2 (Port)
.3 (PortStatus)
.1.3.6.1.2.1.7.1.4.1 (dot1dBasePortEntry) .1 (BasePort)
2 (BasePortifIndex)

Table 4.1.: Table entries from the BRIDGE MIB for each port of a switch

.1.3.6.1.2.1.17.1.1.0 dot1dBaseBridgeAddress
1.3.6.1.2.1.17.1.2.0 dotldBaseNumPorts
Table 4.2.: Scalar entries from the BRIDGE MIB

Note that the .0 is required on the end for the scalar MIB values.

Some of the values returned are shown in the following screenshots:

36 © Skills 1st Ltd 22 January 2011

Session Edit View Bookmarks Seftings Help

ssZenPacks.skillslst.bridge>
SHMPUZ-SMI: :mib-2Z.17. 1.
SHMPUZ-SMI: imib-2.17.
SHMPUZ-SMI: :mib-2Z.17.
SHMPUZ-SMI: imib-2.17.
SHMPUZ-SMI: :mib-2Z.17.
SHMPUZ-SMI: imib-2.17.
SHMPUZ-SMI: :mib-2Z.17.
SHMPUZ-SMI: imib-2.17.
SHMPUZ-SMI: :mib-2Z.17.
SHMPUZ-SMI: imib-2.17.
SHMPUZ-SMI: :mib-2Z.17.
SHMPUZ-SHI: imib-2.17.
SHMPUZ-SMI: :mib-2Z.17.
SHMPUZ-SHI: imib-2.17.
SHMPUZ-SMI: :mib-2Z.17.
SHMPUZ-SHI: imib-2.17.
SHMPUZ-SMI: :mib-2Z.17.
SHMPUZ-SHI: imib-2.17.
SHMPUZ-SMI: :mib-2Z.17.
SHMPUZ-SHI: imib-2.17.
SHMPUZ-SMI: :mib-2Z.17.
SHMPUZ-SHI: imib-2.17.
SHMPUZ-SMI: :mib-2Z.17.
SHMPUZ-SHI: imib-2.17.
SHMPUZ-SMI: :mib-2Z.17.
SHMPUZ-SHI: imib-2.17.
SHMPUZ-SMI: :mib-2Z.17.
SHMPUZ-SHI: imib-2.17.
SHMPUZ-SMI: :mib-2Z.17.
SHMPUZ-SHI: imib-2.17.
SHMPUZ-SMI: :mib-2Z.17.
SHMPUZ-SHI: imib-2.17.
SHMPUZ-SMI: :mib-2Z.17.

nmpwalk v 1 —c public switch.skills-1st.co.uk .1.3.6.1.2.1.17.4.3.1.1 -
.193.156.144.192 = Hex-STRING: 00 04 C1 9C 90 CO
.193.156.144.193 = Hex-STRING: 00 04 C1 95C 90 C1
.193.156.144.194 = Hex-STRING: 00 04 C1 9C 90 C2
.193.156.144.195 = Hex-STRING: 00 04 C1 9C 90 C3
.193.156.144.196 = Hex-STRING: 00 04 C1 9C 90 C4
.193.156.144.197 = Hex-STRING: 00 04 C1 9C 90 C5
.193.156.144.198 = Hex-STRING: 00 04 C1 9C 90 C6
.193.156.144.199 = Hex-STRING: @0 04 C1 95C 90 CY
.193.156.144.200 = Hex-STRING: 00 04 C1 9C 90 C8
.193.156.144.201 = Hex-STRING: 00 04 C1 95C 90 C9
.193.156.144.202 = Hex-STRING: 00 04 C1 9C 90 Ch
.193.156.144.203 = Hex-STRING: 00 04 C1 9C 90 CB
.193.156.144.204 = Hex-STRING: 00 04 C1 9C 90 CC
.193.156.144.205 = Hex-STRING: @0 04 C1 9SC 90 CD
.193.156.144.206 = Hex-STRING: 00 04 C1 9C 90 CE
.193.156.144.207 = Hex-STRING: 00 04 C1 95C 90 CF
.193.156.144.208 = Hex-STRING: 00 04 C1 9SC 90 DO
.193.156.144.209 = Hex-STRING: 00 04 C1 95C 90 D1
.193.156.144.210 = Hex-STRING: 00 04 C1 9SC 90 D2
.193.156.144.211 = Hex-STRING: @0 04 C1 95C 90 D3
.193.156.144.212 = Hex-STRING: 00 04 C1 9SC 90 D4
.193.156.144.213 = Hex-STRING: 00 04 C1 9C 90 D5
.193.156.144.214 = Hex-STRING: 00 04 C1 9C 90 D6
.193.156.144.215 = Hex-STRING: @0 04 C1 9C 90 D?Y
.193.156.144.216 = Hex-STRING: 00 04 C1 9SC 90 D8
.12.41.149.80.111 = Hex-STRING: 00 0C 29 95 50 6F
.12.65.157.211.129 = Hex-5TRING: 00 0C 41 9D D3 81
.14.53.100.114.167 = Hex-STRING: 00 OE 35 64 72 A7
.17.37.128.28.79 = Hex-STRING: 00 11 25 80 1C 4F
0.12.0.0.0 = Hex-STRING: 01 00 OC 00 00 00
.0.12.204.204.204 = Hex-STRING: 01 00 0C CC CC CC
0.12.204.204.205 = Hex-STRING: 01 00 oC CC CC CD
.0.12.221.221.221 = Hex-STRING: 01 00 oC DD DD DD

N NN N N N G N N N G N N G G N N i G N G N

s
0]
0]
0]
0]
0]
0]
0]
0]
0]
0]
0]
0]
0]
0]
0]
0]
0]
0]
0]
0]
0]
0.
0]
0]
0]
0]
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

L A A A A L L L L L L L L L L L T L L LT L T L T Y]
oty Lo Lo Lot Lo o Lo Lo Lo B L0 L0 L0 L L0 E0 L0 Lo L B L0 0 L0 L L B0 0 Lo Lo L L 0 Lo L L L L o L L B B
g N N N N N N N N N
T N N N NN

SNMPuZ-3SMI: :imib-2.17. .128.194.0.0.0 = Hex-STRING: 01 80 CZ 00 00 00
SNMPUZ-SMI: :mib-2.17. .128.194.0.0.1 = Hex-STRING: 01 80 CZ 00 00 01
SNMPuZ-3SMI: :imib-2.17. .128.194.0.0.2 = Hex-STRING: 01 80 CZ2 00 00 0Z
SNMPUZ-SMI: :mib-2.17. .128.194.0.0.3 = Hex-STRING: 01 80 CZ 00 00 03
SNMPuZ-3SMI: :imib-2.17. .128.194.0.0.4 = Hex-STRING: 01 80 CZ 00 00 04
SNMPUZ-SMI: :mib-2.17. .128.194.0.0.5 = Hex-STRING: 01 80 CZ 00 00 05
SNMPuZ-3SMI: :imib-2.17. .128.194.0.0.6 = Hex-STRING: 01 80 CZ 00 00 06
SNMPUZ-SMI: :mib-2.17. .128.194.0.0.7 = Hex-STRING: 01 80 CZ 00 00 07
SNMPuZ-3SMI: :imib-2.17. .128.194.0.0.8 = Hex-STRING: 01 80 CZ 00 00 08
SNMPUZ-SMI: :mib-2.17. .128.194.0.0.9 = Hex-STRING: 01 80 CZ 00 00 09
SNMPuZ-3SMI: :imib-2.17. .128.194.0.0.10 = Hex-STRING: 01 80 CZ 00 00 0n
SNMPUZ-SMI: :mib-2.17. .128.194.0.0.11 = Hex-STRING: 01 80 CZ 00 00 OB =

Figure 25: Results from performing snmpwalk for the RemoteAddress values of the Port Forwarding
table of the BRIDGE MIB

Note that the OID index (the numbers after mib-2.17.4.3.1.1 represent the MAC
address in decimal; thus in the first response of:
SNVPV2-SM :: i b-2.17.4.3.1.1.0. 4. 193. 156. 144. 192 = Hex- STRING 00 04 C1 9C 90 CD

the RemoteAddress MAC is 00 04 C1 9C 90 CO and the index is 0.4.193.156.144.192
where:

o MAC Address Index

e 00 0

o 04 4

e C1 12x16 +1 =193

o 9C 9x 16 + 12 = 156 and so on

37 © Skills 1st Ltd 22 January 2011

Q Jane @zen241:~ - Shell - Konsole <3>

Session Edit View Bookmarks Settings Help

zenossBzenZdl: -usr-local zenoss-/zenoss-locals janesZenPacks .skillslst.bridge/ZenPacks-skillslst bridgesskin [«
ssZenPacks.skillslst.bridge> snmpwalk —v 1 —c public switch.skills-1st.co.uk .1.3.6.1.2.1.17.4.3.1.2

SNMPuZ-SMI: :mib-2.17. .4.193.156.144.19Z2 = INTEGER: 40
SNMPuZ-SMI: :mib-2.17. .4.193.156.144.193 = INTEGER: 40
SNMPuZ-SMI: :imib-2.17. .4.193.156.144.194 = INTEGER: 40
SNMPuZ-SMI: imib-2.17. .4.193.156.144.195 = INTEGER: 40
SNMPuZ-SMI: :mib-2.17. .4.193.156.144.196 = INTEGER: 40
SNMPuZ-SMI: :mib-2.17. .4.193.156.144.197 = INTEGER: 40
SNMPuZ-SMI: :imib-2.17. .4.193.156.144.198 = INTEGER: 40
SNMPuZ-SMI: imib-2.17. .4.193.156.144.199 = INTEGER: 40
SNMPuZ-SMI: :mib-2.17. .4.193.156.144.200 = INTEGER: 40
SNMPuZ-SMI: :mib-2.17. .4.193.156.144.201 = INTEGER: 40
SNMPuZ-SMI: :imib-2.17. .4.193.156.144.202 = INTEGER: 40
SNMPuZ-SMI: imib-2.17. .4.193.156.144.203 = INTEGER: 40
SNMPuZ-SMI: :mib-2.17. .4.193.156.144.204 = INTEGER: 40
SNMPuZ-SMI: :mib-2.17. .4.193.156.144.205 = INTEGER: 40
SNMPuZ-SMI: :imib-2.17. .4.193.156.144.206 = INTEGER: 40
SNMPuZ-SMI: imib-2.17. .4.193.156.144.207 = INTEGER: 40
SNMPUZ-SMI: :mib-2.17. .4.193.156.144.208 = INTEGER: 40
SNMPuZ-SMI: :mib-2.17. .4.193.156.144.209 = INTEGER: 40
SNMPuZ-SMI: :imib-2.17. .4.193.156.144.210 = INTEGER: 40
SNMPuZ-SMI: imib-2.17. .4.193.156.144.211 = INTEGER: 40
SNMPUZ-SMI: :mib-2.17. .4.193.156.144.212 = INTEGER: 40
SNMPuZ-SMI: :mib-2.17. .4.193.156.144.213 = INTEGER: 40
SNMPuZ-SMI: imib-2.17. .4.193.156.144.214 = INTEGER: 40
SNMPuZ-SMI: imib-2.17. .4.193.156.144.215 = INTEGER: 40
SNMPUZ-SMI: :mib-2.17. .4.193.156.144.216 = INTEGER: 40
SNMPuZ-SMI: :mib-2.17. .12.65.157.211.129 = INTEGER: 13

SNMPuZ-SMI: imib-2.17.
SNMPuZ-SMI: :mib-2.17.
SNMPuZ-SMI: :mib-2.17.
SNMPuZ-SMI: :mib-2.17.
SNMPuZ-SMI: imib-2.17.
SNMPuZ-SMI: :mib-2.17.

.14.53.100.114.167 = INTEGER: 13
17.37.128.28.79 = INTEGER: 13
.0.12.0.0.0 = INTEGER: 0
.0.12.204.204.204 = INTEGER: 0
.0.12.204.204.205 = INTEGER: 0
L0.12.221.221.221 = INTEGER: ©

B N N N N N N N N G I G N Y Y
Lo b0 Lo o o B0 L0 L0 0 B0 L0 L0 0 00 L0 L0 L0 L0 Lo L0 L0 L0 Lo Lo Lo Lo Lo Lo Lo Lo Lo Lo B0 Lo Lo B0 B0 B B0 B0 B B B W
A A G AN
NN
i—-n'-i—-E—-E—-n'-i—-E—-E—-n'-i—-E—-i—-n'-i—-i—-:e'e'9'ebébbbébbbébbbébbbébbéébb

SNMPuZ-SMI: :mib-2.17. 128.194.0.0.0 = INTEGER: 0O
SNMPuZ-SMI: :mib-2.17. .128.194.0.0.1 = INTEGER: 0
SNMPuZ-SMI: imib-2.17. .128.194.0.0.2 = INTEGER: 0
SNMPuZ-SMI: :mib-2.17. 126.194.0.0.3 = INTEGER: 0
SNMPuZ-SMI: :mib-2.17. 128.194.0.0.4 = INTEGER: 0O
SNMPuZ-SMI: :imib-2.17. .128.194.0.0.5 = INTEGER: 0
SNMPuZ-SMI: imib-2.17. .128.194.0.0.6 = INTEGER: 0
SNMPuZ-SMI: :mib-2.17. 126.194.0.0.7 = INTEGER: 0
SNMPuZ-SMI: :mib-2.17. 128.194.0.0.8 = INTEGER: 0O
SNMPuZ-SMI: :imib-2.17. .128.194.0.0.9 = INTEGER: 0
SNMPuZ-SMI: imib-2.17. .128.194.0.0.10 = INTEGER: ©
SNMPuZ-SMI: :mib-2.17. .128.194.0.0.11 = INTEGER: © =

Figure 26: Results from performing snmpwalk for the Port values of the Port Forwarding table of the
BRIDGE MIB

The Port values are also indexed by the same representation of the MAC address in
decimal. The only “real” values shown in Figure 26 are for port 13 (as only one port
actually has anything connected to it). The other values of 0 and 40 are for internal
and management addresses.

38 © Skills 1st Ltd 22 January 2011

Session Edit View Bookmarks Seftings Help

zenossBzenZdl: susrs/local szenoss/zenosss locals janersZenPacks.skillslst.bridgesZenPackssskillslst/bridgesskin [«
ssZenPacks.skillslst . bridge> sompwalk -u 1 —c public switch.skills-1st.co.uk .1.3.6.1.2.1.17.4.3.1.3
SHMPUZ-SHI: imib-2.17. .193.156.144.192 = INTEGER:

.4 4
SNMPuZ-SMI: mib-2.17. .4.193.156.144.193 = INTEGER: 4
SNMPuZ-SMI::mib-2.17. .4.193.156.144.194 = INTEGER: 4
SNMPu2-SMI: :mib-2.17. .4.193.156.144.195 = INTEGER: 4
SNMPuZ-SMI: :mib-2.17 .4.193.156.144.196 = INTEGER: 4
SNMPuZ2-SMI: :mib-2.17 .4.193.156.144.197 = INTEGER: 4
SNMPu2-SMI: :mib-2.17. .4.193.156.144.198 = INTEGER: 4
SNMPuZ-3MI: :mib-2.17. .4.193.156.144.199 = INTEGER: 4
SNMPuZ-SMI::mib-2.17. .4.193.156.144.200 = INTEGER: 4
SNMPu2-SMI: :imib-2.17 .4.193.156.144.201 = INTEGER: 4
SNMPuZ-3MI: :mib-2.17. .4.193.156.144.202 = INTEGER: 4
SNMPuZ-SMI::mib-2.17. .4.193.156.144.203 = INTEGER: 4
SNMPu2-SMI: :mib-2.17. .4.193.156.144.204 = INTEGER: 4
SNMPuZ-3MI: imib-2.17 .4.193.156.144.205 = INTEGER: 4
SNMPuZ2-SMI: :mib-2.17 .4.193.156.144.206 = INTEGER: 4
SNMPu2-SMI: :mib-2.17. .4.193.156.144.207 = INTEGER: 4
SNMPuZ-3MI: tmib-2.17. .4.193.156.144.208 = INTEGER: 4
SNMPuZ-SMI: :mib-2.17. .4.193.156.144.209 = INTEGER: 4
SNMPu2-SMI: :imib-2.17 .4.193.156.144.210 = INTEGER: 4
SNMPuZ-3MI: tmib-2.17. .4.193.156.144.211 = INTEGER: 4
SNMPuZ-SMI: :mib-2.17. .4.193.156.144.212 = INTEGER: 4
SNMPu2-SMI: :mib-2.17. .4.193.156.144.213 = INTEGER: 4
SNMPuZ-3MI: imib-2.17 .4.193.156.144.214 = INTEGER: 4
SNMPuZ-SMI: :mib-2.17 .4.193.156.144.215 = INTEGER: 4
SNMPu2-SMI: :mib-2.17. .4.193.156.144.216 = INTEGER: 4
SNMPuZ-3MI: tmib-2.17. .12.65.157.211.129 = INTEGER: 3

SNMPUZ2-SMI: :mib-2.17.
SNMPUZ-SMI::mib-2.17
SNMPu2-SMI: :mib-2.17.

.17.37.128.28.79 = INTEGER: 3
.22.212.93.8.253 = INTEGER: 3
.0.12.0.0.0 = INTEGER: 5

B N N N N N N 'S
0 Lo 0 L (0 Lo B0 0 B0 Lo B 0 B0 G B G0 L) B0) D L B0 D) L 0 B0 L0 B0 60 B 0 B G B B L B0) B0 M B0 LY B O
o R R R R R e R e R bR R R R PR R e R R R R R R R e e e e

ek ks ek ek ek ek ek ek ek ek ek ek ek ek ek e S DD OO0 DD

SNMPuZ-SMI: :mib-2.17. .0.12.204 .204 .204 = INTEGER: 5
SNMPuZ2-SMI: :mib-2.17. .0.12.204.204.205 = INTEGER: 5
SNMPuZ-SMI: :mib-2.17 0.12.221.221.221 = INTEGER: 5
SNMPuZ-SMI: :mib-2.17 .126.194.0.0.0 = INTEGER: 5
SNMPuZ2-SMI: :mib-2.17. .128.194.0.0.1 = INTEGER: 5
SNMPuZ2-3MI: :mib-2.17. .128.194.0.0.2 = INTEGER: 5
SNMPuZ-SMI: :mib-2.17. .128.194.0.0.3 = INTEGER: 5
SNMPuZ2-SMI: :imib-2.17 .128.194.0.0.4 = INTEGER: 5
SNMPuZ2-SMI: imib-2.17. .128.194.0.0.5 = INTEGER: 5
SNMPuZ-SMI: :mib-2.17. .128.194.0.0.6 = INTEGER: 5
SNMPuZ2-SMI: :mib-2.17. .128.194.0.0.7 = INTEGER: 5
SNMPuZ2-SMI: imib-2.17 .128.194.0.0.8 = INTEGER: 5
SNMPuZ-SMI: :mib-2.17 .128.194.0.0.9 = INTEGER: 5
SNMPuZ2-SMI: :mib-2.17. .128.194.0.0.10 = INTEGER: 5
SNMPuZ2-SMI: imib-2.17. .128.194.0.0.11 = INTEGER: 5 =

Figure 27: Results from performing snmpwalk for the PortStatus values of the Port Forwarding table of
the BRIDGE MIB

The same indexing technique is used again. A PortStatus of 3 represents a “real”
learned value. A value of 4 represents self addresses and a value of 5 represents
mgmt addresses.

4.3.3 Creating the ZenPack

The ZenPack is created from the GUI as discussed in section 2.1. The name of the
ZenPack is ZenPacks.skillslst.bridge. A Zenoss version dependency can also be
imposed; for example, >=3.0 .

Once the directory hierarchy is created, rather than working under
$ZENHOME/ZenPacks, the whole ZenPack directory hierarchy is moved to
$ZENHOME/local to prevent accidental deletion:

39 © Skills 1st Ltd 22 January 2011

cp -r $ZENHOVE/ ZenPacks/ ZenPacks. ski | | s1st. bri dge $ZENHOME/local

The ZenPack is then “reinstalled” with the zenpack —link --install command:
zenpack --link --install $ZENHOME/local/ZenPacks. skil | slst. bridge

At this stage, the ZenPack can be modified either using Development mode (ie from

GUI menus), or by modifying files in the directory hierarchy (Source mode); a

combination of both is perfectly acceptable and both will follow the redirection link.

4.3.4 Adding elements to the ZenPack using Development mode

The first thing to do is to create the new device class, BridgeMIB, as a subclass of
/ Devices | Network /| Switch. This is simply achieved with the GUI as shown in Figure
24. Once created, this device class can be added to a ZenPack. In Zenoss 2 use the

Sub-Devices drop-down Add To ZenPack menu — you will be prompted for the ZenPack

to which it is to be added.

9) Zenoss: Switch - Mozilla Firefox -

File Edit View Histery Boockmadks Tools Help

© zenoss: switch € | O 2enoss: taplow-20 skills1 st.co.uk Q Zope on http://zen241 :B0B0 @ | 2enoss: ZenPacks siillst st bridge Q|+

Classes Events zProperties Templates

N = F 3
Events 9 | i ' Sub Count 1 Device Count
_ 4

Description [= 1]

Sub-Devices Devices

Events

Browse By

Figure 28: Adding a device class to a ZenPack in Zenoss 2

With Zenoss 3, GUI additions to ZenPacks are generally achieved from the “gear”
Action icon and the Add to ZenPack option.

40 © Skills 1st Ltd 22 January 2011

DASHBCARD EVENTS INFRASTRUCTURE REPORTS ADVANCED ouT H

Networks Processes IP Services Windows Services Network Map Manufacturers Page Tips

BridgeMIEB

a o v E0ED - e
PR Beees

- @ cm (o) \ ‘ ‘ | |[
W Discovered (1) qroup-100-s1.class.example.org 172.31.100.37 MNetwork/Switch/Bridae Production
° HTTP (1) aroup-100-s2.class. example. org. 172.31.100.21 [Network/Switch/Bridge Praduction
@ KM (0) } }
switch.skills-1st.co.uk 10.0.0.253 Network/Switch/Bridge Production

4 1 Network (7)
2 ° Access Point (0]
@ Link Radio (0)
€ Router (4)
4 ' Switch (3) | |
.
@ Ping (7)
© @ Power (0)
;@ Pp

Bind Templates

Reset Bindings

Clear Geocode Cache

Edit

Add to ZenPack..

Fe 29: Adding a device class to a ZenPack in Zenoss 3

If the BridgeMIB device class is subsequently modified, it should be re-added in the
same way, overwriting the previous version.

It is useful to have relevant MIBs loaded and included as part of any ZenPack. The
BRIDGE MIB and the standard SNMP MIBs had already been loaded (using the left-
hand MIBs menu in Zenoss 2 and the ADVANCED -> MIBs menu in Zenoss 3). To
include these in a ZenPack, simply select the relevant MIBs and use the drop-down
Add to ZenPack menu.

EVENTS INFRASTRUCTURE REPORTS ADVANCED sicnouT H

Settings Collectors Monitering Templates Page Tips

Overview

Modifications | ul

Add Mib...

Download MIBs... The Bridge MIB module for managing devices that support IEEE 802
[THOST- Install MIBs... This MIB is for use in managing host systems. The term “host' is a7 0
[JINFOR Delete Mibs... £ 0
[oRiNE e b MIB Definition used in the ORINOGO Wireless Product Line: iso(1) 969 62
DAFC1 R i to ZerPacks 0 0
[JRFC12 e N 201 0
[SNMPv2MIB The MIB module for SNMP entities. Copyright (C) The Intemet So 57 3
[ShMPv2-SMI 16 0
[sNMmPvaTC 0 0
10t9 BRIDGE-MIB ~| show i Page Size [40
ok

Figure 30: Use the drop-down Mibs table menu to select Add to ZenPack

The contents of a ZenPack can be seen at any stage by using the ADVANCED ->
Settings -> ZenPacks option.

41 © Skills 1st Ltd 22 January 2011

ZEeNOSS DASHE0ARD EVENTS INFRASTRUCTURE REPORTS | ADVANCED jane sianouT H

@D Colectors Monitering Templates MiBs Page Tips

ZenPackManager > ZenPacks.skills1st.bridge
(] ZENPacks.2en0ss.
(]

Save

CIRtvonItor

ZenPacks zenoss MySqiMonitor [

Justllocalizenoss/zenossilocal/ZenPacks skills1st bridge/ZenPacks/skills1stbridge/BridgeDevice py
Ks.skills st 1 oy

skillsTst. 1 zeml
skills1st acks/skills1 py L
ks.skills1 st acks/skills1 P
nPacks.skills1st acks/skillsTstbridgel__init__py
skills1stbridge 1 init_py
cks.skills1 st bridge 1 i
skills1stbridge 1stibri js old
nPacks skills1st acks/skills1stbri jis work
ks skills1st. 1 acks skills1st DeviceDetail.pt
skillsTst. 1 ks skills1st. pt -
skills1st ills1 ks skills1st
skills1st. ills1 _init__py
skills1st ills1 Iy b
skills1stbridge 1 /_init__py
skills1stbridge 1 int__py
skills1stbridge 1 int_py
skills1stbridge 1 Deviceldib py
skillsTst. 1 Py
nPacks skills1st. acksiskills1 P
nPacks.skills1st acksiskills1 [init__py

I

DfDeV\Cei/NeMrWSWH‘CthHd EMIB
L
Figure 31: Inspecting the contents of the ZenPacks.skills1st.bridge ZenPack

4

4.3.5 Creating the object class files

Two object class files are needed; one will represent the device itself (BridgeDevice)
and one will represent an interface on the device (BridgeInterface). The two are
linked by a matching pair of relationships. Both files must be in the ZenPack base
directory.

42 © Skills 1st Ltd 22 January 2011

Q Jane@zen3:~ - Shell - Konsole <4

Session Edit View Bookmarks Seftings Help

muuuuuuuuuuuuuuuuuuunnnuuuuuuuuuuuuuuuuuuuuuuunnuuuuuuuuuuuuuuuuuuuuuu -
#

BridgeDevice object class

#

R R i R R R R i

from Globals import InitializeClass

from Products.ZenBelations.RelSchema import =

from Products.ZenModel .Device import Deuvice

from Products.ZenModel .ZenossSecurity import ZEN_UIEW
from copy import deepcopy

class BridgeDevice(Device):
"A Bridge Device"

_relations = Device._relations + (
(’Bridgelnt’, ToManyCont(ToOne,
’ZenPacks.skillslst.bridge.BridgeInterface’, "BridgeDev’)),
)]

factory_type_information = deepcopy(Device.factory_type_information)

t factory_type_information[@I[’ actions’ 1 += (
it {id’ : ’BridgelInt’
i , 'name’ : 'Bridge Interfaces’
i , Taction’ : 'BridgeDeviceDetail”’
i , 'permissions’ : (ZEN_VIEW,) 3,
it)
I
def _ init_ (self, =args, ==ku):
Device._ init_ (self, =args, ==ku)
self.buildRelation=()
InitializeCla=zs(BridgeDevice)
"BridgeDevice.py” [readonlyl 36 lines —Zx—— 1,1 A1l [~

o || (] Shell

Figure 32: BridgeDevice.py object class file in ZenPack base directory

This is a very simple object class file as it does not define any unique field attributes,
only a relationship and a skins file — and it only needs the skins file with Zenoss 2
(Figure 32 shows the extra tab commented out for Zenoss 3).

The BridgeDevice class inherits from the base Device class:

cl ass BridgeDevi ce(Device):

The relationship stanza adopts all existing relations for the base Device class and
adds on a relationship called Bridgelnt of type ToManyCont, with the device object
class defined in ZenPacks.skills1st.bridge.Bridgelnterface (which corresponds to the
file under the ZenPack base directory called Bridgelnterface.py).

_relations = Device. _relations + (
"Bridgelnt', ToManyCont (ToOne,
' ZenPacks. ski |l | sist. bri dge. Bri dgel nterface', 'BridgeDev')),
)

The BridgeDevice object class will have all the standard menu options for the base
Device class and, in Zenoss 2, will also have an extra tab whose id is Bridgelnt; whose
tab label will be Bridge Interfaces; and whose page layout will be specified by the file
BridgeDeviceDetail.pt under the skins/ZenPacks.skills1st.bridge subdirectory of the

43 © Skills 1st Ltd 22 January 2011

ZenPack base directory. Access permissions to use this tab is the standard-supplied
ZEN_VIEW.

factory type_information = deepcopy(Device.factory type infornation)
factory type_ information[0]["'actions'] += (

id . 'Bridgelnt'
' nane' . 'Bridge Interfaces'
"action' . ' BridgeDeviceDetail"
' perm ssi ons' . (ZENVIEW) 1},

)
Note that if these lines are left uncommented in Zenoss 3 then the left-hand menu for

a BridgeMIB device will also have a separate Bridge Interfaces menu, in addition to
the same information under the Component submenu.

A Python function __init__ is defined for the BridgeDevice object class which will
initialize the object and create relationships.
def __init_ (self, *args, **kw):
Device. init_ (self, *args, **kw)
sel f. buil dRel ati ons()
The last line delivers the new object.
Initialized ass(BridgeDevice)
The Bridgelnterface.py object class file is more interesting as some unique fields are

defined in addition to a relationship and a skins file. Several extra functions are also
defined which will be used in the skins files.

44 © Skills 1st Ltd 22 January 2011

ﬂlﬂﬂﬂﬂﬂﬂﬂtlﬂtlﬂﬂﬂﬂﬂﬂﬂtlﬂilﬂﬂﬂﬂﬂﬂﬂtlﬂﬂﬂﬂﬂﬂﬂﬂﬂtlﬂﬂﬂﬂﬂﬂﬂtlﬂm#ﬂﬂﬂﬂiﬂﬂﬂm#ﬂﬂ#ﬂ#ﬂﬂ#ﬂ 5
it

#t BridgelInterface object class

i

gttt g e e e R R R R R R R R R R R T R T T

__doc__="""BridgelInt

BridgeInt iz a component of a Bridge Device
SId: §"

| uversion__ = “SRevision: §"I[11:-Z1

from Globals import DTMLFile
from Globals import InitializeClass

from Products.ZenRelations.RelSchema import =
from Products.ZenModel .ZenossSecurity import ZEN_UIEW, ZEN_CHANGE_SETTINGS

from Products.ZenModel .DeviceComponent import DeviceComponent
from Products.ZenModel .ManagedEntity import ManagedEntity

import logging
log = logging.getLogger(’BridgeInterface’)

class BridgeInterface(DeviceComponent, ManagedEntity):
"""Bridge Interface object"""

it event_key = portal_type = meta_type = ’Bridgelnterface’
portal_type = meta_type = 'Bridgelnterface’

fxssesnnsewnnsnsnxfuston data Variables here from modeling

Remotefiddress = "00:00:00:00:00:00° 1
Port = '-1°

PortIfIndex = 2

PortStatus = "4’

fisoeeosassocassoasEND CUSTOM VARIABLES

fsesssemsesssnswx Thozse should match this list below
_properties = (
{'id’ :’ RemoteAddress’, ’type’ :'string’, 'mode’ :"'},
{'id" :"Port’, 'type’ :’string’, ‘mode’:’’'Z,
{'id’ :"PortIfIndex’, "type’:’int", 'mode’ :''J,
{’id’ :’ PortStatus’, ’type’ :’string’, 'node’:"’%
)
#

“"BridgeInterface.py” [readonlyl 164 lines —0x— 1,1 Top |«

Figure 33: Bridgelnterface.py object class file - first part with unique field definitions

The Bridgelnterface class inherits attributes from the DeviceComponent and
ManagedEntity classes.

cl ass Bridgel nterface(Devi ceConponent, ManagedEntity):
There are 4 unique fields defined for a BridgeIlnterface object:
e RemoteAddress
e Port
e PortIfIndex
e PortStatus

45 © Skills 1st Ltd 22 January 2011

The data types (such as string or int) must be specified and the mode of read or write
(‘w') may be specified.

The middle part of BridgeInterface.py defines the relationship with BridgeDevice and
three web pages associated with this object.

7 jane @zen3:~ - Shell - Konsole <

Session Edit View Bookmarks Seftings Help
_relations = (
("BridgeDev”, ToOne(ToManyCont,
"ZenPacks.skillslst.bridge.BridgeDevice"”, "BridgeInt")),
)
factory_type_information = (
{
fid’ ! 'BridgeInterface’,
"meta_type’ : 'BridgeInterface’,
'description’ : ""Bridge Interface info""",
’ product’ : 'bridge’,
"immediate_view' : ’viewBridgelInterface’,
'actions’ :
(
{’id’ : 'status’
’ name’ : 'Bridge Interface Graphs’
, ‘action’ ! 'viewBridgeInterface’
; 'permissions’ ! (ZEN_VIEU,)
I,
{'id’ : ' perfConf’
’ name’ : 'Bridge Interface Template’
, ‘action’ : ’objTemplates’
, 'permissions’ : (ZEM_CHANGE_SETTINGS,)
I,
{'id’ : 'viewHistory’
’ name’ : 'Modifications’
, ‘action’ : 'viewHistory’
; 'permissions’ ! (ZEN_VIEU,)
) I
¥,
)
I Y
"BridgeInterface.py"” [readonlyl 164 lines —51x— 85,0-1 382 o

Figure 34: Bridgelnterface.py showing relations and web pages

The first skins file that is referenced, viewBridgelnterface, is part of this ZenPack and
thus is to be found in the skins/ZenPacks.skills1st.bridge subdirectory; the other two
files, objTemplates and viewHistory are standard pages provided by Zenoss and

these .pt files are found in $ZENHOME/Products/ZenModel/skins/zenmodel.

Note the product line in the factory_type_information:
' product’ : 'bridge'

The value of 'bridge’ denotes the last part of the ZenPack name (and hence the
directory hierarchy) ie. ZenPacks.skills1st.bridge. Unlike the BridgeDevice
definitions of skins files, nothing is inherited from the base Device object. The
resulting Zenoss 2 web page with its three tabs, can be seen in Figure 35.

46 © Skills 1st Ltd 22 January 2011

‘Zenoss server time: 19:00:3¢

Bridge Interface Template Modifications

Main Views

Part_tratffic

Classes

Mon 12: o8 Tue 12: 60

2008-08-83 Ti@2:47 2005-08-84 18:82:47
B dot1TpPortoutFrames avg: 0.00 max: 0.00
Browse By [dotTpPOTLINFTames avg: 0.00 max: 0.o0o

| Port, traffic.‘
o e

Figure 35: The Zenoss 2 web page having drilled into the interface of a switch port - note the 3 tabs

An object class definition file can specify not only object attributes but also methods
for the object; these are coded as function definitions in Python. The methods can
then be used in skins files to augment the data that is displayed.

def viewName(self):
"""Pretty version human readable version of this object

if self.Remotefddress == "00:00:00:00:00:00" or self.Port == "-1":
return "Unknoun"

else:
return str(self.Port) + * — " + self.Remotefddress

use vieuName as titleOrld because that method is used to display a human
readable version of the object in the breadcrumbs
titleOrld = name = vieuName

def primarySortKey(self):
""Sort by port number then remote MAC""'"
return “xsxs" » (self.Port, self.RemoteAddress)

def device(self):
return self.BridgeDev()

def monitored(self):
If a bridge chamel exists start monitoring it. Because chamels are
very dynamic we will just assume that they should be modeled if they
exist. Of course the modeler would need to run very fequently to give
accurate results as to who is talking at any given time. Looks like
the default timeout on a cisco switch iz 5 minutes so the modeler
would need to run at about that frequency to keep this table accurate.
If you increase the timeout you will get more accurate resuslts with a
longer modeling cycle. The max time on a cisco box is 12 hours.

return True

"BridgeInterface.py" 159 lines ——53#— 1 85,0-1 677 |-

Figure 36: Bridgelnterface.py part 3 showing basic functions defined for this object class

47 © Skills 1st Ltd 22 January 2011

The first function, viewName, returns either the string “Unknown” or a string that

concatenates the Port number with a “ - ” and the RemoteAddress. For example,
13- 00:11:25:80:1C4F .

def vi ewNane(self):
if self.RenpteAddress == '00: 00: 00: 00: 00: 00" \
or self.Port =="'-1":
return "Unknown"
el se:
return str(self.Port) + " - " + self.RenoteAddress

Zenoss 2.5.0 introduced a new device attribute of titleOrId. In Zenoss versions prior
to 2.5, a single identifier ("id") was used to represent a device in the system and in the
user interface. Beginning with 2.5.0, a separate "title" property, if specified, replaces
the name of the device in the user interface. (The "id" property is retained as the
internal, unique representation of the device.) This addition accommodates situations
in which a unique identifier and a "friendly" name are needed for a device. It also
allows devices to use a more descriptive or short name in the GUI rather than the
more typical fully-qualified domain name. Thus, Bridgelnterface.py has the following
line after defining viewName:

titleOld = name = vi ewName

The remainder of Bridgelnterface.py contains three method functions, two of which
can be used in skins files.

48 © Skills 1st Ltd 22 January 2011

def getRemotelInterfaces(=self):
return html snipits used in the UI to display links to remote
interfaces for a MAC and their associated IP addresses.
interfaces = [1
for intobj in =self._getInterfaces():
ipaddrs = L[ip.urlLink() for ip in intobj.getIpAddress0bjs()]
interfaces.append(’ <p style="padding:0.5em">xs: »=s{/p>" «
Cintobj.urlLink(), ", ". join(ipaddrs)))
return interfaces

def getRemoteDevice(self):
return the remote deuvice object for this bridge port. If any are
returned based on the MAC query we take the first one assuming that
MACs are unigue to devices (euventhough they aren’t om interfaces)
intobj = =self._getInterfaces()
if len(intobj) > @ and intobjl@].device():
return intobjlO].device().urlLink()

def _getInterfaces(self):
return a list of interfaces that match a MAC address from the layer?
index. There can be many interfaces per MAC because logical interfaces
on one physical port share the same MAC.
intobjs = [1
for brain in self._dmd.ZenLinkManager.layerZ_catalog(
nacaddress=self.Remotefddress):
try:
intobj = brain.getObject()
intob j=.append (intob j) I
except KeyError, e:
log .error(’ object #s not found from layerZ index’
"the index needs to be rebuilt’)
return intobjs

Initiali%eClass(BridgeInterface)
"BridgeInterface.py” 159 lines ——100x—— 159,9 Bot [«

| shel

Figure 37: Methods in Bridgelnterface.py for use in skins files

The private function _getInterfaces (underscore at the beginning of a variable or
function name denotes a private object, by convention in Python) uses the MAC
address delivered by the RemoteAddress field and then searches the Zope database for
devices that have matching MAC address(es) — there may be more than one IP address
associated with a MAC address. A Python list of interface objects is returned by
calling the standard Zenoss getObject() method for any matching MAC address.

def _getlnterfaces(self):
return a list of interfaces that match a MAC address fromthe |ayer2
i ndex. There can be many interfaces per MAC because | ogical interfaces
on one physical port share the same MAC
intobjs =[]
for brain in self.dnd. ZenLi nkManager. | ayer 2_cat al og(
macaddr ess=sel f. Renot eAddr ess) :
try:
i ntobj = brain.getQbject()

49 © Skills 1st Ltd 22 January 2011

i nt obj s. append(i ntobj)
except KeyError, e:
log.error (' object % not found fromlayer2 index
"the index needs to be rebuilt')
return intobjs

This private method is called by both the other methods, getRemotelnterfaces and
getRemoteDevice, which deliver links to matching IP interfaces and hostname,
respectively.

def getRenotel nterfaces(self):

return htm snipits used in the U to display links to renote
interfaces for a MAC and their associated | P addresses.

interfaces = []
for intobj in self._getlnterfaces():
i paddrs = [ip.urlLink() for ip in intobj.getlpAddressOjs()]
i nterfaces. append(' <p styl e="paddi ng: 0. 5enf' >%: %</p> %
(intobj.urlLink(), ", ".join(ipaddrs)))
return interfaces

The standard Zenoss getIpAddressObjs() method is called for each interface object to
deliver an IP address object and then the urlLink variable for that IP address.
getRemotelnterfaces returns a list of interfaces in the format:

<urlLink to renmpbte interface object>: <urlLink to renote |IP address>

The getRemoteDevice method simply returns the urlLink to the remote device.
def get Renot eDevi ce(sel f):

return the renote device object for this bridge port. If any are
returned based on the MAC query we take the first one assum ng that
MACs are unique to devices (even though they aren't on interfaces)

intobj = self. _getlnterfaces()

if len(intobj) > 0 and intobj[0].device():
return intobj[0].device().urlLink()

4.3.6 Testing with the zendmd utility

One way to find what attributes of a device are available, is to use the Zenoss zendmd
utility and run a small series of Python commands:

zendnd
>>> dev=find('switch.skills-1st.co.uk")
>>> for key,value in dev.__dict__.items():

print key, val ue

Note that >>> is the zendmd prompt and . . . indicates that a new level of indentation
is required. A blank line ends the code and runs the Python, delivering results similar
to those shown in Figure 38.

50 © Skills 1st Ltd 22 January 2011

| &) jane@zen3:~ - Shell - Konsole -2

Session Edit View Bookmarks Settings Help

_lastChange 1294139359.83

snmpContact andrew.findlay@skills-1st.co.uk

preMUProductionState 1000

_snmplLastCollection 1294164553.4

deviceClass <{ToOneRelationship at deviceClass>

monitors {ToManyRelationship at monitors>

monitor True

maintenanceWindows <ToManyContRelationship at maintenancelindouws>

title switch

adminRoles <ToManyContRelationship at adminRoles>

__primary_parent__ <{ToManyContRelationship at devices>

_propertyValues {’zSnmpVer’: ’uZc’}

id switch.skills-1st.co.uk

priority 3

systems <ToManyRelationship at systems>

ob jects ({'meta_type’: ’ToManyRelationship’, 'id’: ’dependencies’}, {'meta_type’: ’ToManyRelationship’,
ToOneRelationship’, ’id’: ‘deviceClass’}, {'meta_type’: ’ToOneRelationship’, ‘id’: ‘perfServer’}, {'met
"location’}, {"meta_type’: ’'ToManyRelationship’, 'id’: 'systems’}, {"meta_type’: ’'ToManyRelatiomship’, ’
yContRelationship’, "id’: ’maintenancelindows’}, {'meta_type’: ’ToManyContRelationship’, ’id’: ’adminRol
ionship’, *id’: 'userCommands’}, {'meta_type’: ’ToManyRelationship’, *id’: ’'monitors’}, {"meta_type’: T
elnt’}, {"meta_type’: 'Softuware’, 'id’: "os’}, {"meta_type’: ’'DeviceHW’, ’'id’: "hu'})

location <ToOneRelationship at location>

_lastPollSnmpUpTime <Products.ZenModel.ZenStatus.ZenStatus object at OxabBZcac>

snmp0id .1.3.6.1.4.1.9.1.217

hu <DeviceHW at hu>

snmpDescr Cisco Internetwork Operating System Software

103 (tm) CZ2900XL Software (CZ2900XL-C3HZ5-M), Version 12.0(5.1)XP, MAINTENAMCE INTERIM SO0FTWARE

Copyright (c) 1986-1999 by cisco Systems, Inc.

Conpiled Fri 10-Dec-99 10:37 by cchang

dependencies <{ToManyRelationship at dependencies>

groups <{ToManyRelationship at groups>

perfServer <{ToOneRelationship at perfServer>

snmpSysName switch.skills-1st.co.uk

productionState 1000

manageIp 10.0.0.253

BridgeInt <ToManyContRelationship at Bridgelnt>

_properties ({"type’: ‘string’, *id’: "sompindex’, ’'mode’: 'w’}, {"type’: 'boolean’, 'id’: ‘momitor’, 'm
‘managelp’, 'mode’: ’'w’}, {’select_variable’: ’'getProdStateConversions’, 'id’: 'productionState’, *type
etter’: ’'setProdState’}, {'select_variable’: ’'getProdStateConversions’, ’id’: ’preMWProductionState’, 't
'setter’: 'setProdState’}, {"type’: ’string’, ’id’: ’'snompAgent’, ‘mode’: "w’}, {"type’: ’'string’, ’id’:
"string’, ’id’: ‘somp0id’, ‘mode’: *'}, {"type’: ’‘string’, 'id’: ‘sompContact’, ’'mode’: "'}, {"type’': 's
¥, {'type’: 'string’, ’id’: 'somplocation’, ‘mode’: ’"F, {'type’: 'date’, ’"id’: ’'snmplastCollection’,
M’ : sompAgent’, ‘mode’: "'}, {"type’: ‘string’, *id’: ‘rackSlot’, ‘mode’: ‘w'}, {"type’: "text’, "id": ’
Mtring’, ’id’: ’sysedgeLicenseMode’, *mode’: *'3, {"type’: ’int’, *id’: ’priority’, 'mode’: ’uw’}, {'visib
MlzSnmpVer’ 33 =

—n|| . shell

F. igure 38: Output of zendmd commands to print attributes of the device switch.skills-1st.co.uk

zendmd can be used to test snippets of code. Note that command recall is generally
available in zendmd on the up arrow key.

51 © Skills 1st Ltd 22 January 2011

Q Jane@zen3:~ - Shell - Konsole ,—;

Session Edit View Bookmarks Settings Help

»»> deu = find(’suitch.skills-1st.co.uk’)

>>> MAC="00:22:68:15:33:65"

>»> intobjs = [1

>>> for brain in dmd.ZenLinkManager.layerZ_catalog(macaddress=MAC):
intobj = brain.get0Object()
print intobj

%iﬁlnterface at etho>
>»> |

25| = shel

Figure 39: Testing snippets of code with zendmd - getting an interface object

You often need to simplify your zendmd tests to small units; in Figure 39 and Figure
40 the MAC address of a known device has been hardcoded into the variable MAC.

Cl Jjane@zen3:~ - Shell - Konsole ,-;

Session Edit VWiew Bookmarks Settings Help

»»> dev = find(’suitch.skills-1st.co.uk’)

»»> MAC='00:22:68:15:33:65"

>>> interfaces = [1]

»»» for brain in dmd.ZenLinkManager.layerZ_catalog(macaddress=MAC):
intobj = brain.getObject ()
print intobj
ipaddrs = Lip.urlLink() for ip in intobj.getIpAddress0Objs()]
interfaces.append (" <p style="padding:0.5en">¥s: xs<{/p>’ ¥ C(intobj.urlLink(),
print ipaddrs
print interfaces

, V. joinCipaddrs)))

<IpInterface at etho>

[’ 10.0.0.125< a>" 1]

[’ <p style="padding:0.5em"><a href="/zport dnd- Devices Server-Linux,devices,lotschy.skills-1st . co.uk/oss
interfacesseth0"»eth@< a>: 10.0.0.125<

Il

pr]

oW

NN

oW
e

Figure 40: Testing snippets of code with zendmd — understanding the Remote Interface url links

Compare the print output in Figure 40 with the screenshot below that demonstrates
the Bridge Interfaces GUI for the device with MAC address 00:22:68:15:33:65. The
Remote Interface column shows eth0, followed by colon and a space, followed by the IP
interface address of 10.0.0.125 and both these elements are url links to other parts of
Zenoss.

52 © Skills 1st Ltd 22 January 2011

ZENOSS™ DASHBOARD EVENTS | INFRASTRUCTURE | REPORTS ADVANGED jane SIGN OUT

Networks Processes IP Services Windows Services Network Map Manufacturers Page

&

Overview

Q, Type to filter by name...

Events

4 Components 00:26:44:46:97:3A
@ Interfaces (26) 13 00:0C:41:90:D381 3 Up @ 1

 Bridge Interfaces (51) v o 0:22:6 S s lotschy. skills-1st.co.uk
Scoftware

00:21:6A:6D:90:B2

Graphs
Administration 40 00:04:C1:9C:90:D6 FastEthernet0/22: switch 4 Down @& 4
Configuration Properties °
40 00:04;C1:9C:90.07 en switch 4 Down 4
Modeler Plugins FastEthernet0/23: [} e
Custom Properties :04:C1:9C:90:
B a a0 00:04:C1:9C:90:D8 FastEthernet0/24: switch 4 Down @ 4

F Lgljtre 41: Bridge Interfaces GUI highlighting Remote Interface link for given MAC address

4.3.7 Creating the modeler plugin files

This ZenPack has two modeler plugin files, residing under the base ZenPack directory
under the modeler/plugins subdirectory hierarchy. They are:

e BridgelnterfaceMib.py gets port data for each switch port
e BridgeDeviceMib.py gets scalar data for the switch device

These names can be anything but should obviously be relevant. The only place where
these names appear is when a device or device class has its Collector Plugins
configured from the Zenoss GUI. The purpose of a modeler plugin is to map collected
data into the attributes of Zenoss objects.

53 © Skills 1st Ltd 22 January 2011

BridgeInterfaceMib modeler plugin -
it
gttt g g RS R S S R R R R R

__doc__="""BridgeInterfaceMib

Bridge InterfaceMib maps interfaces on a switch supporting the Bridge MIB
S1a: §"

__version__ = 'SRevision: §'[11:-2]

from Products.DataCollector.plugins.CollectorPlugin import SnmpPlugin, GetTableMap, GetMap
from Products.DataCollector.plugins.DataMaps import ObjectMap

class BridgelnterfaceMib(SnmpPlugin):

relname = “BridgeInt"”

modname = "ZenPacks.skillslst.bridge.BridgelInterface"

compname not needed as BridgeInt is a relationship on object class BridgeDevice
wvhich is a direct child of Deuice"

it compnane = "

=S

New classification stuff uses weight to help it determine what class a
device should be in. Higher weight pushes the device to towards the

class were this plugin is defined.

weight = 4

basecolumns = {
*.1': 'BasePort’,
*.2': 'BasePortIfIndex’,
¥

portcolumns = {
*.1': 'Remotefnddress”,
P2 'Port’,
’.3 : "PortStatus’,
¥

tt snmpGetTableMaps gets tabular data
snnpGetTableMaps = [{
Physical Port Forwarding Table
GetTableMap(’ dotldBasePortEntry’, *.1.3.6.1.2.1.17.1.4.1’, basecolumns),

#t Physical Port Forwarding Table
GetTableMap(’ dot1dTpFdbEntry’, ’.1.3.6.1.2.1.17.4.3.1’, portcolumns),

"Bridge InterfaceMib.py"” [Modifiedllreadonlyl 119 lines —42x— 50,5 2 |-

55| shell

Figure 42: BridgelnterfaceMib modeler plugin (part 1) with SNMP data to be collected

The first part of the BridgeInterfaceMib modeler plugin code imports some standard
Zenoss utilities for getting SNMP information and formatting it.

from Products. Dat aCol | ect or. pl ugi ns. Col | ector Pl ugi n i nport SnnpPl ugi n, Cet Tabl eMap, GCet Map
from Products. Dat aCol | ect or. pl ugi ns. Dat aMaps i nport Obj ect Map

Note that the modeler plugin, BridgeInterfaceMib, is itself defined as an object class
which derives from the standard SnmpPlugin modeler. The modeler must be
activated for a device or device class (from the Modeler Plugins left-hand menu) — it
cannot be directly activated for a device component such as a port on a switch. Hence,
the relname and modname directives specify that the data is to be applied to a
relationship of the device, the component object class being specified by the modname
line.

54 © Skills 1st Ltd 22 January 2011

cl ass Bridgel nterfaceM b(SnhnpPl ugi n):

rel name
nodnanme

“Bridgelnt"
"ZenPacks. skil | sist. bri dge. Bri dgel nterface"

In other words, the modeler is applied to a device of object class BridgeDevice but the
data will be mapped to the contained relationship called BridgeInt whose data
attributes are specified by ZenPacks.skills1st.bridge.BridgeInterface; this comes down
to populating the unique RemoteAddress, Port, PortIfIndex and PortStatus attributes.

The next part of the modeler plugin specifies SNMP data tables and ObjectIDs (OIDs)
to collect.

basecol ums = {
'.1': 'BasePort',
'.2': '"BasePortlflndex',

}

portcolums = {
".1': ' Renot eAddress',
".2': "Port',
'.3: '"PortStatus',

}

snnmpCet Tabl eMaps gets tabul ar data

snnmpGet Tabl eMaps = (
Physical Port Forwardi ng Tabl e
CGet Tabl eMap(' dot 1dBasePortEntry', '.1.3.6.1.2.1.17.1.4.1",
basecol ums),

Physical Port Forwardi ng Table
Get Tabl eMap(' dot 1dTpFdbEntry', '.1.3.6.1.2.1.17.4.3.1",
port col ums),

)

The GetTableMap standard Zenoss function takes three parameters:

A table name you'll be using later (this can be anything but it is helpful if it
matches the name of the SNMP table)

The OID of the SNMP table

A dictionary of "OID-endings" and column names (OID-endings being the keys,
used later)

If there are only one or two OIDs required, it is perfectly possible to code them directly
as part of GetTableMap. It is also possible to specify the OID-ending as more than the
last digit. For example, the following code has the same effect as the first
GetTableMap stanza above.

55

CGet Tabl eMap(' dot 1dBasePortEntry', '.1.3.6.1.2.1.17.1.4",
{*1.1': 'BasePort"',
"1.2': 'BasePortlflndex',
}

© Skills 1st Ltd 22 January 2011

It is usually clearer and more convenient to specify the dictionary of "OID-endings"
and column names separately as shown above with basecolumns.

The snmpGetTableMaps function can get one or more SNMP tables of data.

The only mandatory function required in a modeler plugin is the process() function.

L/ jane@zen241:~ - Shell - Konsole <3> £

Session Edit View Bookmarks Settings Help

def process(self, device, results, log):
""'collect snmp information from this device
log . info(’ processing #s for device xs', self.name(), device.id)
#tiCollect Physzical Port Forwarding Table
getdata, tabledata = resultis

#t Uncomment next Z lines for debugging when modeling
log.warn({ "Get Data= »s", getdata)
log.warn({ "Table Data= »s", tabledata)

BaseTable = tabledata.get("dotldBasePortEntry")

#t If wo data returned then simply return
if not BaseTable:
log.warn('Ho SHMP response from #s for the »s plugin’, device.id, self.name())
log .warn(“"Data= »s", getdata)
log.warn("Columns= xs", self.basecolumns)
return

PortTable = tabledata.get("dot1dTpFdbEntry")

#t If no data returned then simply return
if not PortTable:
log.warn{ 'Ho SHHMP response from ¥s for the xs plugin’, device.id, self.name())
log.warn("Data= »xs", getdata)
log .warn("Columns= »s", self.portcolumns)
return

-

16,0-1 53

(|| = shen |

Figure 43: BridgelnterfaceMib modeler plugin (part 2) showing data collection and error checking

The part that actually gets the data is the line:

getdata, tabledata = results

Scalar data is populated into getdata; table data is populated into tabledata.
Debugging can be provided using log statements with different severities such as
log.info and log.warn.

log.info(' processing % for device %', self.nane(), device.id)

Remember that snmpGetTableMaps retrieves two tables of data into the variables
dot1dBasePortEntry and dot1dTpFdbEntry. The second half of Figure 43 checks that
SNMP data was actually retrieved (as the device may, for example, have been down
on a modeler cycle). If either table is not populated then logging is produced and the
process function simply returns.

56 © Skills 1st Ltd 22 January 2011

The last part of the modeler plugin code creates a relationship mapping that will
contain entries for each object that represents a port on the device.

E| Jane@zen3:~ - Shell - Konsole <4:

Session Edt View Bookmarks Seftings Help

rm = self.relMap()
for oid, data in PortTable.items():

oid for the Bridge MIB is dotted decimal representation of remote MAC addresst
However, the port number is used as the oid index into most of the other useful tables
eq. Port 13 = slot 1 on 2900: port 22 = =slot 9

Hence, set snmpindex to port

to a string that displays sensibly

it
it
it
i
i
it
Mote that the RemotefAddress MAC field is raw hex so use asmac function to convert
it
i
it dotldBasePortIfIndex prouvides a link between port numbers on the switch from the BRIDGE
#t MIB and the interface table for standard MIB-Z data (like interface description and
performance parameters).

om = self.objectMap(data)

on.Remotefddress = self.asmac(on.Remotefddress)

on.sanpindex = int(om.Port)
#t The BasePortIfIndex is found from the BaseTable where the Port number from
#t dot1dTpFdbEntry table matches the Port number from the dotldBasePortEntry

om.PortIfIndex = -1
for boid,bdata; in BaseTable.itens():
if bdata[’;LsePnrt'] == on.Port:
on.PortIfIndex = bdatal’BasePortIfIndex’]

Unigque id attribute is <local port>_<remote MAC address>
T prepld function ensures that results are all unique - will add _1, _Z etc to achieve this
on.id = self.prepld("#s_»s" » (om.Port, om._RemoteAddress))

For lots of debugging, uncomment next Z lines
for key,value in om.__dict__.items():
log.warn{”om key = xs, om value = xs", key,value)

3]

rn.append(on)
return rm

"Bridge InterfaceMib._py" 120L, 4219C uritten 110,1 98 |~

Fi igﬁfe 44: BridgelnterfaceMib modeler plugin (part 3) mapping and modifying SNMP data onto objects

Remember that the GetTableMap delivers a table (strictly a Python dictionary). The
two fields of the dictionary are the OID and the data; the data itself is also a
dictionary containing column names and values. To see what is actually delivered,
make sure that the following lines are uncommented and then model a switch device
from the Manage -> Model device menu.

Uncommrent next 2 lines for debuggi ng when nodeling
| og. warn("Cet Data= %", getdata)
| og. warn("Tabl e Data= %", tabledata)

57 © Skills 1st Ltd 22 January 2011

6 http izen241 cla... ukicollectDevice 6 | C_: Zenoss: taplow-20.skills-1st co.uk 6 [@ Zope on hitp:#/zen241 8080 6 [c Zenoss: ZenPacks skills1stbridge Q] L h

=
(OO oe 0% INFO zenZenModeler processing BridgelntertaceMin for device switch skils-1 stco Uk

2008-08-05
12:27:08

WARMING zen.ZenModeler Get Data= §

Table Data= {'dot1dTpFdbEntry" {'1.0.12.204 204.204" {Port" 0. 'PortStatus” 5. 'RemoteAddress” vl Twi0W0ckeoweexee '},
1.0.12204.204 205" {Port’ 0. Portstatus' 5, RemoteAddress” WO 1w 00w ceckeckked}, 0.17.37.128 28 79" {Part’ 13, 'PorStatus” 3.
‘RemoteAddress” w00k 1%xB0w1 c0], 0.4.193 156.144 214" {Port" 40, 'PortStatus” 4, 'RemoteAddress” wO0w04xc1 w0 cwS0wdE]}.
'0.4.193.156.144 215" {Port: 40, PortStatus' 4, 'RemoteAddress” wl0w04'we 1w cw@0wd7), 0.4.193.156.144 216" {Port" 40, 'PortStatus” 4.
‘RemoteAddress” w0004 1w@c@0xdS). 0.4.193 156.144 210" {Port" 40, 'PortStatus" 4. 'RemoteAddress" w0004 ke 1 WO cw@0wd2}.
0.4.193.156.144 211" [Port: 40, PortSiatus' 4, 'RemoteAddress’. wl0b04'%c 1@ cud0ikd3], 0.4.153.156.144.212" [Port" 40, 'PoriStatus” 4,
‘RemoteAddress” w00w04e 1w@ck@0xd4], 0.4.193 156.144 213" [Port" 40, 'PortStatus" 4. 'RemoteAddress" w004 xe 1 WO ck@DwdS).
"1.128.194.00.15" {Port’ 0, PortStatus” 5, RemoteAddress®. w01 w80k c2w00w00%0f), '1.128.194.00.14" {Port" 0, 'PortStatus" 5,
‘RemoteAddress” 'l 1wB0Wc2w00W000e, 1.128.194.00.16" {Port" 0, PortStatus’ 5. 'RemoteAddress" w1 w80k 2u00w00W107.
"1.128.194.00.11" {Port’ 0, PortStatus” 5, RemoteAddress”. w0180k c2w00w00w0b}, 1.128.194.0.0.10" {Port" 0, 'PortStatus" 5,
‘RemoteAddress” w0 1wB0Wc2w00w00n}, 1.128.194.0.0.13" {Port’ 0. PortStatus” 5. RemoteAddress”. w01 wB0%c2w00w00\],
"1.128.194.00.12" {Port’ 0, PortStatus” 5, RemoteAddress”. w0180k c2w00w00w0 ¢, '255.255 255 255.255. 255" {Port" 0, 'PortStatus” S,
‘RemoteAddress” Wifedfudfuffxfuc}, 1.128.194.0.0.9" {Port: 0, 'PorStatus’ 5. 'RemoteAddress” w01 w80wc2w00w00\), 1.128.194.00.8"
{Port: 0, PortStatus': 5. ‘RemoteAddress” w0 1w B0kc2w00w00=08}. '1.0.12.0.00" {Port: 0. 'PortStatus® 5. 'RemoteAddress”. w01 w000 w00
WOOW00%. 1.128.194.0.0.1" {Port® 0. PortStatus” 5. RemoteAddress” w01 80w c2w00w00%01%. 1.128.134.0.00" {Port" 0. 'PortStatus” 5,
‘RemoteAddress” 'wl1wB0wc2W00W00wI07, 1.128 194 0.0.3" {Port" 0, PoriStatus” 5, 'RemoteAddress” 'wl1w80xc2w00w00w03],
"1.128.194.00.2" {Port" 0, 'PortStatus' 5. 'RemoteAddress” wl1w80wc2w00W00w02Y, "1.128.184.0.0.5% {Port: 0, 'PortStatus’ 5.
‘RemoteAddress” 'l 1wB0kc2v00%000057, 1.128.194 0.0.4" {Port" 0, PoriSiatus" 5, 'RemoteAddress”. 'l 1xB0Mc2w00W00004,
"1.128.124.007" {Port: 0, 'PortStatus” 5, 'RemoteAddress” w01 «B0wc2w00W00w07 }, '1.128.194 00 6 {Port" 0, 'PortStatus" 5,
‘RemoteAddress” 'l 1wB0kc2v00W000067, 1.0.12.221.221 221" {Port" 0. PortStatus” 5, 'RemoteAddress". 0 1w00w0ched dixddixdd]}.
WARNING zen.ZenModeler 0.1265.157.211.129" {Port: 13, PortStatus’ 3, 'RemaoteAddress” wO0LOcAWI dkd3wE1], 10.4.193.156.144 207", {Port" 40, 'PortStatus’ 4,
‘RemoteAddress” w00w04xe 1w3ceB0\xcf], '0.4.183.156.144 206" {Port: 40, PortStatus’ 4, 'RemoteAddress”, wO0w04xe 1S cd0ixce’),
'0.4.193.156.144 205" {Port: 40, PortStatus' 4, ‘RemoteAddress” wi0w04we 1w@ce@0ked]), 0.4.193.156.144.204" {Port" 40, 'PortStatus” 4,
‘RemoteAddress” wWi0w04ke 1w@cka0wxee], 0.4.193.156.144 203" {Port" 40, PortStatus’ 4, RemoteAddress” w0004 w3 ce@0wch},
0.4.193.156.144 202" {Port: 40, PortStatus' 4, 'RemoteAddress” wO0W04we 1w@cu@0kea), 0.4.193.156.144.201" {Port" 40, 'PortStatus” 4,
‘RemoteAddress” wWi0w04ke 1w@cka0xcd}, 0.4.193.156.144.200" {Port’ 40, PortStatus” 4, RemoteAddress” wO0w04 ke 1w cwa0we8,
'0.4.193.156.144 209" {Port: 40, PortStatus' 4, 'RemoteAddress” wi004we 1w@cwa0wdl), 0.4.193.156.144 208" {Port" 40, 'PortStatus” 4.
‘RemoteAddress” wW00w04kc 1v@cha0xd0). 0.4.193.156.144.187" {Paort: 40, 'PortStatus” 4, 'RemoteAddress” wWi0w04e1w@ck@0weS],
'0.4.193.156.144 196" {Fort: 40, PortStatus' 4, 'RemaoteAddress” wl0w04we 1w@cw@0w%c4), 0.4.193.156.144.195" {Port" 40, 'PortStatus”
‘RemoteAddress" wO0bd4be 1@ cd0e3}, 0.4 193156 144 194" {Port" 40, 'PorStatus” 4, RemoteAddress" w0004k 1@ co@0c2].
'0.4.193.156.144 193" {Port: 40, PortStatus' 4, 'RemaoteAddress” wO0w0D4we 1w@cu@0%c 1}, 0.4.193.156.144.192" {Port" 40, 'PortStatus”
‘RemoteAddress” 'w00w04ue 1w ce@0wc0}, 0 4193156 144 198" {Port" 40, PortStatus” 4. RemoteAddress" wO0W04kc] w3 cwO0wC7],
04133 156 144 198" {Port" 40, PortStatus” 4. 'RemoteAddress"” w0wd4xe 1w Acu@0wch). 'dotl dBasePordEntry" (24" {BasePortlfindex" 12,
‘BasePort" 24}, 25" {BasePorilfindex’ 13, 'BasePort" 25}, 28" {BasePorilfindex" 14, 'BasePort: 26). 27" {BasePorilfindex" 15. 'BasePort" 27},
‘20" {BasePortifindex’ 8, 'BasePort’: 20}, 22" {BasePorilindex’ 10, 'BasePort: 22}, 23" {BasePorilfindex" 11, 'BasePort’ 23}, 28"
{BasePortlfindex" 16, 'BasePort" 28}, 29" {BasePoriiindex: 17. 'BasePort" 28}, 13" {BasePortifindex" 2, BasePort" 13}, 38"
{BasePoriifindex’ 25, 'BasePort: 38}, 15" {BasePoriindex: 4, 'BasePor 15}, 14" {BasePorifindex: 3, 'BasePort’ 14}, 17" {BasePortlfindex’
€. 'BasePort" 17}, 16" {BasePorlfindex’ 5. 'BasePort" 16}, 33" {BasePorlfindex’ 20, BasePort: 33}, 32" {BasePorifindex’ 19, 'BasePort
32}, 31" {BasePorifindex" 18, BasePort: 31}, 37" {BasePorifindex: 24, 'BasePort: 37}, 36" {BasePortlfindex: 23, 'BasePort" 38}, 35"
{BasePorilfindex’ 22, 'BasePaort: 35}, 34" {BasePoriindex: 21. 'BasePort: 34}, 19" {BasePorifindex" 8. 'BasePort: 19}, 18"
{BasePortifindex’ 7, BasePort: 18}}}

2009-08-05
12:27.08

o

=

2009-08-05
12:27.08

Figure 45: Debug output for BridgelnterfaceMib modeler plugin

The BridgeInterfaceMib modeler plugin doesn't, in fact, get scalar data, so the the
getdata dictionary is empty (ie. {}). snmpGetTableMaps delivers two tables (Python
dictionaries) — dot1dTpFdbEntry and dot1dBasePortEntry; these are all shown
highlighted in red in Figure 45. Each of dot1dTpFdbEntry and dotldBasePortEntry
comprises a dictionary with OID and data components. The first few OID values are
highlighted in blue for each table. The data component is itself a dictionary with
column names and values; these are highlighted in yellow.

INFO zen.ZenModeler processing BridgeDeviceMib for device switch.skills-1st.co.uk

So, the lines:
for oid, data in PortTable.itemns():
onrsel f. obj ect Map(dat a)

cycles through each of the OID, data sets of values in the PortTable, mapping the data
values to the attributes of the Bridgelnterface object; Port, PortStatus and
RemoteAddress.

Note in Figure 45 that the MAC address is in hex format. To display this for users, it
needs converting to a string-type representation so the delivered value of the
RemoteAddress is converted using the Python asmac function, replacing the
RemoteAddress value on the object.

om Renpt eAddr ess = sel f. asmac(om Renot eAddr ess)

The ZenPack only defined four unique attributes for the BridgeInterface object in the
object class file Bridgelnterface.py:

e RemoteAddress
e Port

58 © Skills 1st Ltd 22 January 2011

e PortlfIndex
e PortStatus

However, it also inherited attributes as a DeviceComponent and ManagedEntity and
thus has other attributes, including:

o id
e snmpindex

The id should be a unique and meaningful identifier — it is set to <local port
number>_<remote MAC address> with the standard prepld function used to ensure
uniqueness of names.

snmpindex is used when performance data is configured using Zenoss templates and
provides the instance to collect for any given SNMP OID. Most of the useful SNMP
data to do with switch ports is actually indexed using the value of the port number
(remember for the test Catalyst 2900 switch, the values of Port representing real
interfaces run from 13 to 38 — you can see the values for a real active port in Figure 45
right in the middle, opposite WARNING zen.ZenModeler). Hence, the snmpindex
attribute is set to the Port value, having first converted the raw data to an integer
type.

om snnpi ndex = int(om Port)

Note that many modeler plugins use the OID value from the tabledata as the
snmpindex but this is only useful if that OID does actually represent a useful SNMP
index. The OID value that we have delivered (highlighted in blue in Figure 45) is the
decimal representation of a MAC address and is not useful as an instance for
collecting performance information. More on this topic later.

A switch discovered by Zenoss will automatically gather information on each of the
ports, using information from the MIB-2 MIB. This doesn't provide much port-level
information but it does provide some. The interfaces are indexed using the interfaces
table of MIB-2.

59 © Skills 1st Ltd 22 January 2011

Zenoss semver fime: 18:(

Main Views Status Hardware Software Events Perf Edit Bridge Interfaces
Ey Select: All Nore
=l IPAddress Network MAC Descr o A M Lock

[l FastEtherneton 0004:C1:9C:90°C1 Linksys wireless access point @ @ @
Classes || FastEthernetono 0004:C1:9C:90 CA @ @ @
[FastEthernetorn1 00:04:C1:9C90.CB @ @ @
[l EastEthemeton2 0004:C18C90:CC @ @ @
[EastEthermetons 0004:C18C90 CD @ @ @
p [EastEthernetona 0004:C19C90:CE @ @ @
P [l FastEthernetons 0004:C19C90°CF Sunshine @ @ @
[_| FastEthemetone 00:04:C1'9C:90'D0 Pappet @ @ @
e B [l FastEtherneton? 0004:C1:9C:80:01 @ @ @
tem ["] FastEthemetons 0004:C18C:80.02 @ @ @
Grouy [EastEthernetona 0004:C18C:90.03 @ @ @
[EastEthemetn 0004:C19C90:C2 Blue Aflas @ @ @
[l FastEthernetn/20 0004:C19C90:04 @ @ @
[_| FastEthemneto1 00:04:C1'9C:90'D5 @ @ @
SRR [FastEtherneto/22 0004:C1:8C:90:06 @ @ @
["] FastEthemneton3 00.04:C19C90 07 @ @ @
sl [EastEthernetorz4 00.04:C18C:90.08 @ @ @
1 [EastEthernetn3 0004:C19C90:C3 Brick @ @ @
|| FastEthernetos 0004:C19C90:C4 Blossom @ @ @
|| FastEthemetds 0004:C18C:90:C5 @ @ @
[l FastEthemetos 0004:C18C:90:C6 @ @ @
T TS A ™

Done

Figure 46: Standard OS tab for switch device with MIB-2 interfaces in Zenoss 2

Drilling in to an interface results in both tabular information and performance graphs
for bound templates.

i g |IBllwiinh.l_llilll-ht.nu.ullhlIFI:IEt_h:m:IﬂJ

Status

Whain e Events Template Modifications
Ipinterface
Name FastEthernetd/1 MAC Address 00:04:C1:9C:20:C1
IP Addresses
5 . Operational Status Up Administrative Status Up
Type ethemetCsmacd Speed 100.000Mbps
el MTU 1500 SMMP Index 2
asses
Description Linksys wireless access point Monitor True j
; Locks
Savel
Pr
Pr
Throughput
Browse By
w 1.5k | :
<
5 @ 1.0 k
B ook il
< ; | Ty >
0o -
Tue 12:80 wed 00! 00 wed 1200 Q
Management 2009-08-04 Gi05:58 to 2009-08-05 18 05:58
A N B Trbound cur: 259 .57 avg:278.89 max: 1.74k
3 B outbound cur:417.ze avg:457.76 max: 1.95k
5 Packets
2.0
nt r ‘{
o
o
&l =

Read zen241.class.example.arg

Figure 47: Tabular information and performance graphs for a switch interface from MIB-2 in Zenoss 2

60 © Skills 1st Ltd 22 January 2011

Note in the table at the top of Figure 47 that the SNMP Index for this interface is
given as 2. It is this index number that is delivered by the BRIDGE MIB to coordinate
MIB-2 interface information with BRIDGE MIB information. The OID is the
BasePortIfIndex from the dotldBasePortEntry table (.1.3.6.1.2.1.17.1.4.1.2). .
1.3.6.1.2.1.17.1.4.1.1 (BasePort from the same table) will be the same as the Port OID
from the forwarding table (.1.3.6.1.2.1.17.4.3.1.2). The following code delivers the
PortIfIndex attribute to the BridgeInterface object, if a valid PortIfIndex exists (it
won't for internal and management ports); otherwise PortIfindex will be -1.

The BasePortlflndex is found fromthe BaseTabl e where Port nunber from
dot 1dTpFdbEntry table natches the Port nunmber fromthe dotldBasePortEntry

om Portlflndex = -1
for boid,bdata in BaseTable.itens():
if bdata['BasePort'] == om Port:

om Portlflndex = bdata[' BasePortlflndex']

Having cycled around these attribute mappings for the data for the first port, the
object map is appended to the relationship map, and the next set of port data is
processed.

rm append(om
return rm

The last two screenshots showing the standard MIB-2 interface information for a
switch, are deliberately taken from Zenoss 2. Unfortunately Zenoss 3 delivers almost
the same information as Zenoss 2 between the Graphs dropdown and the Details
dropdown but the one piece of information omitted is the SNMP Index. This will be
revisited later. One way to see all MIB-2 interface information is to use zendmd.

61 © Skills 1st Ltd 22 January 2011

Q Jane@zen3:~ - Shell - Konsole -2

Session Edit

View

Bookmarks

Settings

Help

>3

»>» dev=find(’ switch.skills-1st.co.uk’)
»»» for int in dev.os.interfaces():
for key,value in int._ dict_ .items():
print int,key,value

{IpInterface
<IpInterface
<IpInterface
<IpInterface
{IpInterface
<IpInterface

at
at
at
at
at
at

FastEthernet0_1>
FastEtherneto_1>
FastEtherneto_1>
FastEthernetd_13>
FastEthernet0_1>
FastEtherneto_1>

pe’ : 'ToManyRelationship’, 'id’:

Fl

{IpInterface
<IpInterface
<IpInterface
{IpInterface
{IpInterface
<IpInterface
<IpInterface
<IpInterface
{IpInterface
<IpInterface
<IpInterface
<{IpInterface
{IpInterface
{IpInterface
<IpInterface
<IpInterface
{IpInterface
{IpInterface
<IpInterface
<IpInterface
<IpInterface
{IpInterface

at
at
at

: 'ToOneRelationship’, 'id’': ‘os

FastEtherneto_1>
FastEtherneto_1>
FastEthernetd_1>
FastEthernet0_13>
FastEtherneto_1>
FastEtherneto_1>
FastEthernet0_1>
FastEthernetd_13>
FastEthernet0_1>
FastEtherneto_1>
FastEthernet0_1>
FastEthernetd_1>
FastEthernet0_1>
FastEtherneto_1>
FastEthernet0_1>
FastEthernetd_1>
FastEthernet0_13>
FastEtherneto_1>
FastEtherneto_1>

adminStatus 1

description Linksys wireless access point

links <ToManyRelationship at links>

ifindex 2

dependencies <ToManyRelationship at dependencies>

_objects ({"meta_type’: ’ToManyRelationship’, *id’: *dependencies’ ¥, {'meta_ty
‘dependents’}, {'meta_type’: ’'ToManyRelationship’, "id": ’links’}, {’'meta_type
'}, {'meta_type’: ’ToManyRelationship’, 'id’: ’ipaddresses’}, {'meta_type’: 'T
oManyRelationship’, ‘id’: ’iproutes’})

_zendoc Linksys wireless access point

speed 100000000

id FastEthernet0d_1

interfaceNane FastEthernet0-1

nacaddress 00:04:C1:9C:90:C1

monitor True

title FastEtherneto-1

duplex 0

os <{ToOneRelationship at os>

_ primary_parent__ <{ToManyContRelationship at interfaces>
_ipAddresses [1

_propertyValues {3}

ntu 1500

operStatus 1

ipaddreszzes <{ToManyRelationship at ipaddresses>
createdTime 2010-12-21 13:15:49.236475 GHMT
iproutes <ToManyRelatiomship at iproutesx
dependents {ToManyRelationship at dependents>
type ethernetCsmacd_64

FastEthernet®_10> adminStatus 1
FastEthernet0_10> links <ToManyRelationship at links»
FastEthernet0_10> ifindex 11

& shell

Figure 48: Using zendmd in Zenoss 3 to show all attributes for all interfaces on switch, including ifindex

The second modeler plugin for the ZenPack is trivial in comparison but demonstrates
a useful feature and a neat trick. The BridgeDeviceMib.py plugin will be activated for
switch devices but will deliver device-wide information, rather than port component
information.

The BRIDGE MIB delivers:
.1.3.6.1.2.1.17.1.1.0
.1.3.6.1.2.1.17.1.2.0

dotl1dBaseBridgeAddress
dotldBaseNumPorts

Now consider the standard information that is displayed for any Zenoss device on its
Status page. This includes a number of standard device properties such as:

e Tag number
e Serial number

e Rack Slot

62 © Skills 1st Ltd 22 January 2011

Zenosg" DASHBOARD ~ EVENTS | INFRASTRUCTURE ' REPORTS ADVANGED i ot B

Devices Networks Processes IP Services Windows Services Network Map Manufacturers Page Tips
N
=25 o wommmo: |
s
Overview
Events " .
Uptime: Device Name: Tag!
4 Components R
004:09h:24m:54s =
& — [switen | | Number of ports = 24 |
© Bridge Interfaces (51) First Seen Production State: Serial Number,
Sottware 201012121 13:15:49 | Proguction [|ov04c1:9C30:C0 |
Sraphe Priorit Rack Slot
rori ac
Administration Hoa Bhirge ¥
Configuration Propeies 201100018 [Mormal H | |
Modeler Plugins Model Time: Collector: Hardware Manufacturer edit
Custom Propsies 2011/01/05 14:10:04 localhost Cisao ©

Modifications Hardware Mode! edi:

4 Wonitoring Templats s Locking: SvEtens 202431y O
s 2824XLv
Bridge_Stp_Topo (INetwork/Switch/Bridge M| Unlocked MNone
Device ({Devices) v s Groups: 08 Manufacturer sdit
emory/Swap: o Unknown ©
Unknown/Unknown it "
Lecation 0S Model edit:
Nere 108 12.0(5.1)xP ©

Links: SNMP SysName:
switch skills-1 steo.uk
Coemments:

| ‘ SNMP Location:

Skills 15t Office

SHMP Contact: =

Figure 49: Standard Overview details page for any Zenoss device

The Tag number is not used normally for switch devices neither is the Serial number
field populated; however, the Overview page for a device automatically displays data
for these fields, if values exist. This is the trick that the BridgeDeviceMib plugin will
use. These fields will have data mapped from the dot1dBaseBridgeAddress and
dotldBaseNumPorts OIDs described above.

So, how to get the OIDs into the relevant standard device attributes? Zenoss provides
a number of setter methods for standard attributes, including setHWSerialNumber and
setHWTag (see the Zenoss Wiki — Diving into the Device Model at
http:/community.zenoss.org/docs/DOC-2350 for more information on both device
setters and properties) . The really useful feature that this plugin demonstrates is
that SNMP data can not only be mapped to object attributes; it can also be mapped to
setter methods.

63 © Skills 1st Ltd 22 January 2011

http://community.zenoss.org/docs/DOC-2350

;| Jane@zen3:~ - Shell - Konsole <4>

Session Edt View Boockmarks Settings Help

ﬂnnnunnnnnnmtmmmmmtmmmtmmmtmmmtmmmtmmmtnnnnununnnnunnnnunnunnnn 4
: BridgeDeviceMib modeler plugin
:nnnunnnnnnmtmmmmmtmmmtmmmtmmmtmmmtmmmtnnnnununnnnunnnnunnunnnn

__doc__="""BridgeDeviceMib

BridgeDeviceMib gets number of ports and base MAC address for switch supporting Bridge MIB

SId: §™

| version_ = "SRevision: §'[11:-Z1

from Products.DataCollector.plugins.CollectorPlugin import SnmpPlugin, GetTableMap, GetMap
from Products.DataCollector.plugins.DataMaps import ObjectMap

class BridgeDeviceMib(SnmpPlugind:

it relnane = "BridgeInt”
modname = "ZenPacks.skillslst.bridge.BridgeDevice”
i compnane = "BridgeDevice”

snmpGetMap gets scalar SNMP MIBs (single values)

Use .1.3.6.1.2.1.17.1.1 (dotldBaseBridgefddress) to populate the 3erial Mo
and 1.3.6.1.2.1.17.1.2 (dotldBaseMumPorts) to populate the Hardware tag
setHWSerialNumber and setHUTag are standard methods on any Device

=

snmpGetMap = GetMap({
‘.1.3.6.1.2.1.17.1.1.
'.1.3.6.1.2.1.17.1.2.
1)) I

0’ : ’setHWSerialNumber’,
0’ : ’setHWTag’,

def process(self, device, results, log):
""collect snmp information from this device
log . info(’ processing »s for device #s', self.name(), device.id)
#iCollect Physical Port Foruarding Table
getdata, tabledata = results

||# Uncomment next 2 lines for debugging when modeling

log .warn("Get Data= »s", getdata)

log .warn{ “Table Data= »s", tabledata)

om = self.objectMap(getdata)

om.setHUSerialNumber = self.asmac(on.setHUSerialNumnber)

om.setHUTag = "Mumber of ports = " + str(om.setHUTag)

return om -
"BridgeDeviceMib.py" [readonlyl 48 lines —2x— 1,1 Top |~

Fig_ure 50: BridgeDeviceMib.py modeler plugin to gather device-wide information for a switch

This modeler populates data into the device specified by
ZenPacks.skills1st.bridge.BridgeDevice ie. the device itself, not a component of the
device.

Scalar data is gathered using snmpGetMap (whereas the BridgeInterfaceMib plugin
used snmpGetTableMaps). Note that the OIDs need the trailing .0 on the end.

snnmpGet Map gets scalar SNMP M Bs (single val ues)

Use .1.3.6.1.2.1.17.1.1 (dot1dBaseBri dgeAddress) to popul ate Serial No
and 1.3.6.1.2.1.17.1.2 (dotldBaseNunPorts) to popul ate Hardware tag

setHWSeri al Nunber and set HWMag are standard net hods on any Device

snmpGet Map = Get Map({
'.1.3.6.1.2.1.17.1.1.0" : 'setHWBerial Nunber',
'.1.3.6.1.2.1.17.1.2.0" : 'setHWaq',

)

64 © Skills 1st Ltd 22 January 2011

The OID values are mapped to the setHWSerialNumber and setHWTag setter
methods, respectively.

In this plugin the tabledata in

getdata, tabledata = results

will be empty (it is perfectly possible to have modeler plugins that get both scalar data
and table data in the same modeler).

A single object mapping takes place, rather than a looped relationship mapping, and
the data is processed slightly for readability.

om = sel f. obj ect Map(get dat a)

om set HABer i al Nunber = sel f.asnmac(om set HABer i al Nunber)
om set HWfag = "Nunber of ports = " + str(om set HMag)
return om

The result is demonstrated in Figure 49.

Note that some other ZenPacks, particularly for Cisco devices, will populate the serial

number field with a real serial number so you may wish to modify this part of the
BridgeMib ZenPack.

4.3.8 Displaying data for the ZenPack with Zenoss 2

There has been a major change between Zenoss 2 and Zenoss 3 in the way that device
data is presented, and this change is still continuing. This section will first discuss
how Zenoss 2 works and then address the changes required for Zenoss 3.

Zenoss 2 relies entirely on skins files to display data for devices, which always have a
.pt extension.

Since the new objects are a device object (BridgeDevice) and a contained component
object (Bridgelnterface), for Zenoss 2, a new tab will be created for the device to
augment the standard device tabs. This is preferable to adding layer 2 information to
the existing OS tab as that would potentially get to be a very long page. This new
“Bridge Interfaces” tab will have details of the individual ports; further, clicking on an
individual port will result in a web page showing performance data for that port. So,
three new elements are required.

New tabs are created in the object class files; the contents of those pages are in skins
files. Thus BridgeDevice.py copied all standard device tabs and added an extra tab
whose label is Bridge Interfaces and whose skins file is called BridgeDeviceDetail (note
that there is no .pt here but the actual file under the skins directory hierarchy must
end in .pt).

65 © Skills 1st Ltd 22 January 2011

Q Jane @zen3:~ - Shell - Konsole <4>

Session Edit View Bookmarks Settings Help

g g g g LS RS RS RS RS RS RS RS R R 4
it

BridgeDevice object class

it

g g g S RS RS RS RS R RS RS R R R R i

from Globals import InitializeClass

from Products.ZenRelations.RelSchema import ==

from Products.ZenModel .Device import Device

from Products.ZenModel .Zenoss3ecurity import ZEN_VIEW
from copy import deepcopy

class BridgeDevice(Device):
"A Bridge Device"

_relations = Device._relations + (
('BridgeInt’, ToManyCont(ToOne,

'ZenPacks.skillsist.bridge.BridgeInterface’, ’BridgeDeu’)),
)

factory_type_information = deepcopy(Device.factory_type_information)
factory_type_information[@1['actions’1 += (

{’id’ : "BridgelInt’

, 'name’ : "Bridge Interfaces’

. "action’ : ’BridgeDeviceDetail’
. . 'permissions’ : (ZEN_VIEM,) %,

)

def _ init_ (=self, =args, =xkul):
Device.__init__(self, =args, wxkw)
self.buildRelations ()

InitializeClass(BridgeDevice)
"BridgeDevice.py"” [Modifiedllreadonlyl 36 lines ——77%—— 28,1 All

Figure 51: BridgeDevice.py object class file for Zenoss 2 - note the action called BridgeDeviceDetail

Similarly, BridgeInterface.py defines three tabs, one of which is specific to the
ZenPack (the viewBridgelnterface action) and two standard tabs from
$ZENHOME/Products/ZenModel/skins/zenmodel (objTemplates and viewHistory).
Note that BridgeInterface.py does not copy any existing tabs and that the product
parameter must indicate the last part of the ZenPack name (bridge in this case). The
immediate_view parameter can be used to define which tab is initially opened.

66 © Skills 1st Ltd 22 January 2011

-ﬁ- Jane@zen3:~ - Shell - Konsole <4:

Session Edit View Boockmarks Seftings Help
_relations = (
("BridgeDeuv”, ToOne(ToManyCont,
"ZenPacks.skillslst.bridge.BridgeDevice"”, “BridgelInt")),
)
factory_type_information = (
1
"id” : 'BridgelInterface’,
"meta_type’ : 'BridgeInterface’,
'description’ : ""Bridge Interface info""",
' product’ : 'bridge’,
"immediate_view’ : ‘uviewBridgeInterface’,
"actions’ :
(
{’id’ : 'status’
, 'name’ : 'Bridge Interface Graphs’
, ‘action’ ! 'viewBridgeInterface’
, 'permissions’ : (ZEN_VIEW, 2
I,
{'id’ : ' perfConf’
’ name’ : 'Bridge Interface Template’
, ‘action’ : 'objTenplates’
, 'permissions’ : (ZEN_CHANGE_SETTINGS,)
I,
{'id’ : 'viewHistory’
’ name’ : 'Modifications’
, ‘action’ : 'viewHistory’
; 'permissions’ ! (ZEN_VIEU,)
) I
¥,
)
I Y
"BridgeInterface.py"” [readonlyl 164 lines —51x— 85,0-1 382 o

Figure 52: Bridgelnterface.py object class file showing tab definitions

Skins files defining web pages live under the skins/ZenPacks.skills1st.bridge
subdirectory (for this ZenPack). As a general guideline, start creating skins files by
looking for a sample file (on the forum, the wiki, or in the standard
$ZENHOME/Products/ZenModel/skins/zenmodel directory); copy the sample and
modify it to suit. Consult Chapter 13 of the Zenoss Developer's Guide 3 for lots of
explanations about skins files.

If you are not familiar with the different techniques of TAL, METAL, TALES, HTML
and ZPT , it can be very confusing as to what is going on!

e HyperText Markup Language (HTML) - is the most basic formatting language
available on the Web, and some version of HTML is understood by every Web
browser. HTML is in practice a sloppy variant of eXtensible Markup Language
(XML) which divides up a page into elements (tags such as title, head or h3) and
content (for example, the things that you actually care about). Common HTML
tags found in Zenoss skins files include:

o <th> table header
o <td> table data

67 © Skills 1st Ltd 22 January 2011

68

o <tr> table row

o
 break

o <block> creates larger structures that can include other blocks
o <form> for user input

o <input> input directive

Zope Page Templates (ZPT) - are in essence HTML pages which are well-
formed and have extra XML attributes (ie the bits after the element name in-
between the < and > characters). The extra XML bits (attributes) are not a part
of any HTML standard and are ignored by HTML editors, meaning that ZPT
pages live happily with HTML. These attributes and the programming
functionality that they deliver are called the Template Attribute Language
(TAL). Zenoss skins files all have a .pt extension for Page Template.

Template Attribute Language (TAL) - the TAL attributes allow you to add
dynamic content using information from inside the Zope database (ZODB).
From a Zenoss perspective, this allows you to write a query that you can use to
build a table, or show different items depending on what objects or devices exist
in a particular state. In other words, TAL is the Zope way of accomplishing
what you would normally need to do in a CGI inside of a plain web server like
Apache. It should be noted that inside TAL it is also possible to use a restricted
subset of Python. The restrictions include not being able to load certain
standard libraries, as well as operations like reading and writing to disk. This
is done intentionally for security reasons. See
http://docs.zope.org/zope2/zope2book/AppendixC.html for a Zope Page Template
reference. TAL includes statements such as:

o tal:define define variables

o tal:condition test conditions

o tal:content replace the content of an element
o tal:repeat repeat an element
o tal:ireplace replace content of an element

o tal:attributes dynamically change element attributes

Macro Expansion for TAL (METAL) - because TAL is hidden away inside
HTML, there's no way to reuse blocks of HTML and TAL for your site just by
using TAL. METAL allows page templates to define macros (which are
essentially sub-templates that may be called by other templates) and slots
(which may be filled by other templates). Several METAL macros are provided
with Zenoss such as:

o pagel provides web page with breadcrumbs and content

o page2 page 1 plus standard breadcrumbs and navigation tabs

© Skills 1st Ltd 22 January 2011

http://docs.zope.org/zope2/zope2book/AppendixC.html

o page3 page 1 plus standard breadcrumbs, no tabs
o zentable creates tables of data for display
o navbodypagedevice macro to support sorting, filtering, multi-pages

e TAL Expression Syntax (TALES) - TALES allows access to the template's
namespace, including useful properties such as the here context object. TALES
accepts paths (e.g. here/id) which it resolves into object properties. It will
attempt to resolve the final path element as a key index, a key name, an
attribute, or a method. For example, if getSomething() is a method on the
context, here/getSomething will return the result of that method. TALES
statements are what normally provides the dynamic content for a page
template, delivering data from the ZODB database.

This ZenPack has referred to two ZenPack-specific skins files; BridgeDeviceDetail.pt
from BridgeDevice.py and viewBridgelnterface.pt from BridgeInterface.py.

viewBridgelnterface.pt is simple and in fact, only uses a standard METAL macro to
display any performance graphs that have been customised for a port interface.

ﬁ Jjane @zen3:~ - Shell- Konsole <3> =

Session Edit View Bookmarks Settings Help

Btal:block metal:use-macro="herestemplates/macros/page2"> -
<tal:block metal:fill-slot=""contentPane">

<forn method=post
tal:define="manager here-isManager" >
<input type="hidden" name="zenScreenMame"
tal:attributes="value template-id” >

< forn>

<tal:block tal:condition="heresmonitored” >

<table metal :use-macro="here-vieuwPerformanceDetail macros-ob jectperf" >

<stal:block>

<stal:block>

<stal:block> T
"viewBridgeInterface.pt” [readonlyl 16 lines —6x— 1,1 Top |

F?gure 53: viewBridgelnterface.pt skins file to display performance graphs for a port interface

The first line calls a METAL macro to define a page with standard breadcrumbs and
automatic tabs (here/templates/ macros/page2).

There is a TAL condition to check that the device is being monitored.

The standard macro to display performance data for an object is called (
here | viewPerformanceDetail | macros / objectperf). This macro can be found in
$ZENHOME/Products/ZenModel/skins/zenmodel/viewPerformanceDetail.pt .

The resulting page is shown in Figure 54. At this stage, do not worry about the
contents of the graph, simply that the graph is displayed with data. Performance data
will be looked at in more detail later.

69 © Skills 1st Ltd 22 January 2011

% jane Pref Logout Help

Zenoss server time: 12:30:46

Bridge Interface Status

Bridge Interface Template Modifications

Performance Graphs Range Link graphs? ' Stop BN

[LETLRYT-T

Ex Port_traffic
) 1
etw
1.5
Classes I @:L
Ll \ il
.o A
D < : | >
0.5 b Al L
weati »
wed 12: 60 Thu 6o: 60 Thu 12! @0 E\\
]
Pr Z008-08-85 0:31:24 to 2009-08-86 12:31:24
Pr [dotiTpPortoutFrames cur: 1.11 avg: 1.65 max: 1.25
W dotTpPortInFrames cur :384.49m avg:3B6. 62m max: 1.53
Browse By
Port traffic

Flgue 54: Performance graph for a bridge interface in Zenoss 2

The second skins file is more complex. It is best described alongside a screenshot of
the result — see Figure 55.

Core g
ISwitch /BridgeMIB /group-100-s2.class.example.org Zenoss severtime: 12:42:32
Status os Hardware Software Events Perf Edit Bridge Interfaces
Bridge Interfaces Table
Ex T
Port Remote MAC Remote Interfaces Remote Device 1
etw I
124 00:30.E2F72A1C EasiEthernet!/1: 172.31.100.18 Qroup-100-13.class.example org Learned (3) O
Classes 2 00:30:93:0A0F SA FastEthernet1/1: 172.31.100.17 qroup-100-12.class.example.org Learned (3) 0
E] 084CBFC279F5 Learned (3) @
D 4_ 08:4C:92:0088:89 Learned (3) @
o 00:04:C1:02:00:CA FastEthermet0/10: roup-100-s2 class example.or Not active (4) 0
=t
n 11 00:04.C1:02.00.CB FasiEthernetd/11 group-100-s2 class example.org Mot active (4) 0
12 00:04.C1:02.00.CC FasiEthernetd/12 group-100-s2 class example.org Mot active (4) O
Aesvens: Ay 13 00:04:C1:0200.CD EasiEthernelo/3: Qroup-100-s2.class example.org Not active (4) @
114 00:04.C1:02.00.CE EasiEihernetd/14: Q*:ggrwu—sz class example.org Mot active (4) O
i 1S 00:04.C1:02.00.CF EasiEthernetd/1S: group-100-s2 class example.org Mot active (4) O
il 16 00:04:C1:02:00:00 FastEthernetd/16: group-100-s2 class example.org Not active (4) 0
17 00:04:C1:02:00:.01 FastEthermnetd/17: group-100-s2 class example.org Not active (4) 0
Management he 00:04:C1:02:00:02 FastEtherneto/ 8: Qroup-100-52 class example org Not active (4) @
118 00:04.C1:02.00.03 EasiEthernetd/19: Qroup-100-s2 class example.org Mot active (4) 0
1L 00:04.C1:02:00.C1 EasiEthernetd/1: Qroup-100-s2 class example.org Mot active (4) 0
120 00:04.C1:02.00.04 EasiEthernetd/20: Qroup-100-s2 class example.org Mot active (4) O
E 121 00:04:C1:02:00:05 FastEthernetd/21: group-100-52 class example.org Mot active (4) 0
= -~

Figuré 55: Web I;dge- produced by ér-idgeDéviceDetail. pt for Zenoss 2

The objective is to produce a single table with information for each port on a separate
line. The readability of adjacent lines is enhanced by alternating the background
colour.

Some of the port information is simply object attribute values, such as Port and
RemoteAddress - the unique attributes defined in BridgeInterface.py.

Some of the information is constructed using methods of the object, again defined in
Bridgelnterface.py; these include Remote Interfaces and Remote Device.

70 © Skills 1st Ltd 22 January 2011

The last two fields of the table present the value of the object attribute PortStatus in
two different ways. Fundamentally, if the status is 3 (Learned) then it is deemed to be
“active”. The last field is a green bullet for an active port; otherwise the bullet is red.
The previous field presents the PortStatus value but rather than just presenting the
numeric value (3, 4, 5, etc), it also provides a decode for the number (Learned or Not
Active).

E;| Jane@zenoss:~ - Shell - Konsole __L

Session Edit \iew Bookmarks Seftings Help

Htal:block metal:use-macro="here-/templates-macros/page2"> -
<tal:block metal:fill-slot="contentPane">

<form method="post"
nane="BridgeDeviceDetail” tal:attributes="action string:${heresabsolute_url_path} ${template/id}">

<tal:block metal:define-macro="BridgeDeviceFormList"

tal:define="tableMame string:BridgeDeviceFormList:

ob jects here-BridgeInt-objectValuesAll:

tabletitle string:Bridge Interfaces Table:

batch python:here.ZenTableManager.getBatch(tableName,ob jects):

menu_id string:Bridgelnt:

shoufilterbox python:True;">
<input type="hidden’ name='tableMame' tal:attributes="uvalue tableMame" >
<input type="hidden" name="zenScreenName" tal:attributes="ualue template-id" >

<tal:block metal :use-macro="here/zenuimacros-macros-zentahle'>
<tal:block metal:fill-slot="zentablecontents">

"BridgeDeuviceDetail .pt" [readonlyl 107 lines —0x— 1,1 Top

Figure 56: BridgeDeviceDetail.pt (part 1) showing page type and BridgeDeviceFormList macro

The first line of BridgeDeviceDetail.pt uses the page2 macro again for a page with
breadcrumbs and tabs.

The BridgeDeviceFormList macro is defined to get all the objects from the device's
Bridgelnt relationship (here/Bridgelnt /objectValuesAll) and supply them in a table.
Since there may be many interfaces, the filter box (at the top right of the GUI page)
should be enabled (showfilterbox python:True).
<tal : bl ock metal:define-macro="BridgeDevi ceForniist"

tal : defi ne="t abl eNane string: Bri dgeDevi ceFor nLi st ;

obj ects here/Bridgel nt/objectVal uesAll;

tabletitle string:Bridge Interfaces Table;

bat ch pyt hon: her e. ZenTabl eManager . get Bat ch(t abl eNane, obj ect s) ;

menu_i d string: Bridgelnt;

showfilterbox python: True;">

The second part of the skins file defines the table headers with their layout.

71 © Skills 1st Ltd 22 January 2011

>

t;l Jane@zenoss:~ - Shell - Konsole ';

Session Edit View Bookmarks Settings Help

<t— BEGIN TABLE CONTENIS -->

<tr tal:condition="objects">

<t— if you use a simple class="tableheader" statement then you don’t get the extra attributes that you
get if you use the structure python:here.ZenTableManager.getTableHeader - like the columm

isn’t sortable

<td

<th tal:

tal:replace="structure python:here.ZenTableManager.getTableHeader(tableName,’Remotenddress’,”Remote HAE' , attributes=atiributes)" >

<th tal:
<th tal:
<th tal:
<th tal:

<th tal:
<th tal:
< tr>

class="tableheader" align=left>Port Mame<- td> —>

<!— This works too - defining width attributes separately

define="attributes string:'width=20""

replace="structure python:here.ZenTableManager.getTableHeader (tableName,
replace="structure python:here.ZenTableManager.getTableHeader (tableName,
replace="structure python:here.ZenTableManager.getTableHeader (tableName,’
replace="structure python:here.ZenTableManager.getTableHeader (tableName,’

replace="structure python:here.ZenTableManager.getTableHeader (tableName,
replace="structure python:here.ZenTableManager .getTableHeader (tableName,’

<tr tal:condition="not:objects">
<th class="tableheader" align="left" colspan="6">
No Interfaces found. Double check you have the correct collector

plugin and you have remodeled.

<sth>
<rtr>

"BridgeDeviceDetail.pt"” [Modifiedllreadonlyl 107 lines —28x—

'Port’,’Port’, attributes="width=5x’)" >
'Remotefddress’ ,"Remote MAC', attributes="width=152")"/>

'PortStatus’,’Status Value', attributes="width=152")">

getRemoteInterface’ ,' Remote Interfaces’, attributes="width=40x')"/>
getRemoteDevice”,’ Remote Device’, attributes="width=25xz')"/>

PortStatus’,’Port Status ', attributes="width=10")",>

31,111 24

Figure 57: BridgeDeviceDetail.pt (part 2) showing table headers layout

The line:

<tr

tal :condition="objects">

starts the definition of the table row (<tr matched by the closing </tr> 6 lines from
the end of Figure 57), and uses a TAL statement to ensure that the variable objects
was actually populated from here/Bridgelnt/objectValuesAll in the earlier section. If
objects is null then the remainder of the <tr> row definition will be ignored..

There are lots of permutations for structuring header and data lines of a table. The
comments in Figure 57 explain some of the consequences. A flexible way is to use
lines like the following:

<th

tal :replace="structure

pyt hon: her e. ZenTabl eManager . get Tabl eHeader (t abl eNane, ' Renot eAddr ess'

' Renpt e MAC ,

attributes="w dt h=15%)"/>

The table header (< th ... />) uses a TAL replace statement to use Python to get values
from the table defined, accessing the object attribute value (RemoteAddress) and
using the string 'Remote MAC' as the column header, allowing 15 characters width.

Another alternative would be to use a table data (<td ... />) HTML tag but this seems
to result in a table where columns are not sortable:

<td

cl ass="t abl eheader" al i gn=I eft>Port

Name</ t d>

If the attributes are more complex or extensive, they can be declared separately:

<th tal :define="attributes string:'w dth=20""

t

al :repl ace="structure

pyt hon: her e. ZenTabl eManager . get Tabl eHeader (t abl eNane, ' Renot eAddr ess'

' Renpt e MAC ,

attributes=attributes)"/>

If the objects variable is null then a warning message is displayed:

72

<tr tal:condition="not:objects">

<th cl ass="t abl eheader" align="left" col span="6">

© Skills 1st Ltd

22 January 2011

No Interfaces found. Double check you have the correct
col l ector plugin and you have renodel ed.
</th>
</tr>

Next, a block is set up that will repeatedly output one row of the table for each port,
with alternate lines having a different background.

] jane@zenoss:~ - Shell - Konsole

Session Edit View Bookmarks Seftings Help

<?— the tal:repeat statement takes a variable name and an expression. The expression should evaluate to a sequence - i
n this case the expression is "batch” and will be the table of values for the attributes » methods on the Bridgelnt rela
tion.

The variable is a local variable - here the variable name "Bridge" is used. For each repetition, the local variabl
e is set to the current sequence element. ——>

<tal:block tal:repeat="Bridge batch">

{1— In order to have our rouws alternate colors, we’ll use the useful TALES
attribute odd, which is True for every other item in a tal:repeat loop —>

<tr tal:define="odd repeat,Bridge-odd"
I tal:attributes="class python:test(odd, ’odd’, 'even’)">
"BridgeDeviceDetail .pt" [Modifiedllreadonlyl 107 lines ——54x— 58,5 48 |~

Figure 58: BridgeDeviceDetail.pt (part 3) showing the controls for the data rows of the port table

The tal:repeat statement takes a variable name and an expression. The expression
should evaluate to a sequence - in this case the expression is batch (defined earlier in
the BridgeDeviceFormList macro) and will be the table of values for the attributes /
methods on the Bridgelnt relationship. The variable is a local variable - here the
variable name Bridge is used. For each repetition, the local variable is set to the
current sequence element.

<tal :block tal:repeat="Bridge batch">

A standard TALES attribute, odd, can be used which evaluates to True for every other
item in a tal:repeat loop. It provides different background colours for alternate lines.
This code fraction also shows the start of the table row definition (<tr).

<tr tal:define="odd repeat/Bridge/odd"
tal:attributes="class python:test(odd, 'odd', 'even')">

The next section provides the data values for a row of the table.

73 © Skills 1st Ltd 22 January 2011

[/ jane@zenoss:~ - Shell - Konsole &)

Session Edit View Bookmarks Seftings Help

<td class="tablevalues">
<a class=tablevalues tal:content="Bridge-Port”
tal:attributes="href Bridge-getPrimaryUrlPath" >
<std>

<td class="tablevalues"”
tal:content="Bridge-Remotenddress" >
<td class="tablevalues">
<span tal:repeat="intobj Bridge-getRemoteInterfaces"
tal:content="structure intobj" >

<td class="tablevalues" tal:content="structure Bridge-getRemoteDeuice" >

<td class="tablevalues"
tal:content="python:Bridge.PortStatus==3 and ’'Learned (3} or ’'Not active (' + str(Bridge.PortStatus) + "2"" >

<td class="tablevalues" align="center">
<img border="0"
tal:attributes="src python:test(Bridge.PortStatus==3,
here.getStatusIngSrc(0),
here.getStatusIngSrc(3)3" >
<std>

<str>
<stal :block>
59,0-1 K4

FEure 59: BridgeDeviceDetail.pt (part 4) showing the data values for the port table

Each table data (<td>) tag uses a tal:content statement to reference either an
attribute or a method on the Bridgelnterface object to deliver a data value. Remember
that Bridge is the local variable that takes the next set of values from the port table,
each time round the tal:repeat loop. Either object attributes or object methods can be
used to provide the table data values.

<td cl ass="t abl eval ues">
<a cl ass=t abl eval ues tal:content="Bridge/ Port"
tal:attributes="href Bridge/getPrinmaryUrlPath"/>
</td>

The first PortStatus data value, rather than simply showing the numeric value from
the object, will also “translate” the numeric value into a more useful human
representation. This uses a Python test:

<td class="t abl eval ues"
tal : content="python: Bridge. Port Status==3 and ' Learned (3)' or
'Not active (' + str(Bridge.PortStatus) + ')"'"/>

If the PortStatus of this switch port is 3 then the output will be the string 'Learned
(3)'; otherwise the output will be the string 'Not active' concatenated with the string
representation of the value of PortStatus, concatenated with a closing ')’ .

The final data column in the table of data is a red or green bullet representing either
an active port (with PortStatus = 3) or a non-active port.

74 © Skills 1st Ltd 22 January 2011

This is code used in several places in the standard Zenoss skins files. Again, it uses a

[jane@zenoss:~ - Shell - Konsole &)

Session Edit View Bookmarks Seftings Help

<td class="tablevalues" align="center">
<{img border="0"
tal:attributes="src python:test(Bridge.PortStatus==3,
here .getStatus ImgSrc(0),
here .getStatusIngSrc(32)" />
<std>

"BridgeDeviceDetail .pt"” [Modified1[readonlyl 10?7 lines —?1»— 76,0-1 75

Figure 60: BridgeDeviceDetail.pt (part 5) showing code to produce coloured bullets to
represent PortStatus

Python test to evaluate PortStatus and then uses here.getStatusImgSrc(0) to
represent a green bullet and here.getStatusImgSrc(3) for a red bullet.

The remainder of BridgeDeviceDetail.pt has the closing table row tag and the closing
block tag for the data rows. The standard METAL macro navbodypagedevice is called

to ensure that the table can be searched, the columns can be ordered and large

numbers of rows will correctly be split into pages. Note that the earlier navtool macro
does not seem to implement filtering and paging correctly. The last few lines of the

file are the closing tags for blocks and the overall form.

75

) jane@zenoss:~ - Shell - Konsole

Session Edit \iew Bookmarks Seftings Help

<tr>
<stal:block>
<tr>
<td colspan="6" class="tableheader" align="center’ >

{1— The hererzenTableNavigation/macros-nauvtool doesn’t seem to support table
filtering and "Show all" although it does support sorting. The
here-zenTableNavigat ion/nacros-navbodypagedevice seems to support sorting,
filtering and breaking into pages ~ show all —>
{1—<form metal :use-macro="here-zenTableNavigation-macros-navtool”></form> ——>
¢span metal :use-macro="hereszenTableMavigation/macros navbodypagedevice" ~>
<otd>
<otrd

{*— END TABLE CONTENTS ——>

{stal:block>
<stal:block>
<stal:block>

< form>

{stal:block>
<stal:Jlock>
"BridgeDeviceDetail .pt"” [Modifiedl[readonlyl 107 lines —100x— 107,7 Bot |*

-

F igl; 61: BridgeDeviceDetail.pt (part 6) with closing tags and the navbodypagedevice
macro call

© Skills 1st Ltd 22 January 2011

4.3.9 Displaying data for the ZenPack with Zenoss 3

Chapter 14 of the Zenoss 3 Developer's Guide provides some information about
converting ZenPacks from Zenoss 2 to Zenoss 3 but it is extremely terse. It depends
on understanding the difference between a re-skinned page and a redesigned page.

4.3.9.1 What needs changing between Zenoss 2 and Zenoss 3?

My understanding is that a redesigned page is one whose new page description is
written in JavaScript rather than in Page Template language, although the original,
redundant pt files still exist in directories such as
$ZENHOME/Products/ZenModel/skins/zenmodel (like deviceOsDetail.pt). Many of the
Page Template (.pt) files from Zenoss 2 have been modified for Zenoss 3 — hence re-
skinned pages.

Chapter 14 documents the following pages as redesigned:

Zenoss 2 Zenoss 3

Devices List, Devices Class, Systems, Devices
Groups, Locations

Device Status Device Detail

Event Console Event Console

Services Class IP Services, Windows Services
Templates Monitoring Templates
Networks Networks

Processes Class Processes

Reports Reports

Table 4.3: Redesigned pages in Zenoss 3
The conversion guide states that no changes are needed to a ZenPack if it:
o Adds tabs
e Adds dialogs to a re-skinned page
However, you must modify your ZenPack for compatibility if it:
e Overrides the page template of a redesigned page
e Adds a page-level dialog
e Includes custom data sources and thresholds

If your ZenPack didn't provide any skins files, then you're fine. If you simply provided
new modeler plugins and device types that didn't have new components, then there
are no changes needed.

If it added tabs for custom non-component data, then you're fine.

76 © Skills 1st Ltd 22 January 2011

I have not found many useful re-skinned pages to which one would want to add a
dialog (such as a custom Add, Delete or Edit — the sort of option that typically came
from the table dropdown menus in Zenoss 2).

What this really comes down to is that:

e Any ZenPack that wishes to display different component details or create new
components and display data for them, you need to write some JavaScript.

e Ifyou want to add your own items to the Action icon menu or Commands menu
or create new Add <item> options from the “+” icon menu, then you need to
write some JavaScript.

e If you have created your own data sources then you need to write some
JavaScript.

The Zenoss 2 skins files for devices and infrastructure can typically be found under
$ZENHOME/Products/ZenModel/skins/zenmodel (deviceList.pt,
deviceListMacro.pt, deviceStatus.pt, deviceOsDetail.pt, etc) with page template files
for events under $ZENHOME/Products/ZenEvents/skins/zenevents
(viewEvents.pt,).

Zenoss 3 stores many of its new JavaScript files under $ZENHOME/ZenUI3, which
did exist in Zenoss 2, but has been greatly extended in version 3. The main
subdirectory for web page layouts is
$ZENHOME/ZenUI3/browser/resources/js/zenoss with files like DevicePanels.js
to show the list of devices, DeviceOverviewPanel.js for a device overview template,
devdetails.js for the main layout of device details, including the left-hand menu, and
the options from the Action icon.

Perhaps the greatest change in GUI design between Zenoss 2 and Zenoss 3 is the way
that components of a device are displayed. With Zenoss 2, the OS tab showed the
components such as interfaces, filesystems and processes.

77 © Skills 1st Ltd 22 January 2011

Browse By

Management

d De

Figure 62: 6S tab for server device in Zenoss 2

Status Hardware Software Events Perf Edit

S Interfaces

Select All None

Status M Lock
[etho 100012524 10000 00:22:6815:33 65 @ @
O 17601 @ o
[nat1 19216810 224 182168100 @ @ Bk
[pano GE:F9:D7:E1 20:2B @ @
] usbo 02:80:37 EC.02:00 @ @
[vmnett 172162221724 00:50:56:C0:00:01 @ @
[] ymnet2 101910116 00:5056:C0:00:02 @ @
[wmnets 172162231724 00:50:56:C0:00:03 @ @
] vmnets 192.168.100.1/24 00:50:56:C0:00:04 @ @
[] wmnets 192.168.10.1/24 00:50:56:C0:00:08 @ @
[wlan 00:21:6A 60:60.38 @ @
[wmasterd 00:21:6A 6D:50:38 @ @
10712 ethd ~| show al Page Size |40 ok

v | 0SProcesses wmonitored T (D

Select All None

Class Restarts Fail Severity Status M Lock
["] tusrisbinisshd -o PidFile=Avarirunsshd.init pid Isshd False Error @ @
(] sshd: andrew [priv fsshd False Error @ @
["] sshd: andrew @pts6 isshd False Error @ @

10f3 fusrisbin/sshd . tpid ~| show al Pag

Size |40 ok

Name Proto _ Ips Description Status ™ Lock

Select All None

[] ssh tep 22 0000 SSH Remate Login Pratocal @ @
[smip tep 25 0000 Simple Mail Transfer @ @
10f2 2 ~| show al Page Size |40 ok

 File Systems —

Select: All None

_ Total bytes Used bytes Eree bytes % Uil M Lock

(] 24668 15.068 9668 il @
~

Clicking on an individual interface / filesystem / process resulted in a window that
contained both detailed information (such as interface name, type, MTU,
OperationalStatus, etc) and a set of performance graphs for the relevant interface, as
shown in Figure 63.

78

© Skills 1st Ltd 22 January 2011

IDevices /Server iLinux /lotschy.skills-1st.co.uk /os ivmnetl

Main Vi Status Events Template Maodifications
IpInterface
Name vmnet] MAC Address 00:50:56:C0:00:01
L IP Addresses 17216222 1124
Operafional Status Up Administrative Status Up
[Type ethernetCsmacd Speed 10.000Mbps
iy IMTU 1500 SMMP Index 42
Description Monitor True j
Locks
Save
Pre =
Performance Graphs Range [EETYIIE| Link graphs? & &*Stop
Throughput
Browse By
1.8
6.8
o
B o ES
& 2
@
8 6.4
-
< [.z >
0.8
Mon 12: 00 Tue B; 00 Tue 12:08
Management 2011-01-17 4:50:18 to 2011-01-18 15:59::.{]: £
B Inbound cur: 0.00 avg: 0.80 max: 0.60
W outbound Curi 9.00 avg: 9.80 max; @,ee
Packets
jer -
i
©
¥
[
< | = >
o
TMon 12: 00 Tue B; 00 Tue 12:08
2011-01-17 4:50:18 to 2011-01-18 16:50:18 £
B Inbound cur:l4.54 avg: 4.13 max:15.72

Figure 63: Interface comp.onent details and graphs for device in Zenoss 2

With Zenoss 3, the OS tab has gone and the left-hand menu from a device's detailed
page, includes a component submenu listing each component type. Selecting the
component type offers a list of instances (for example the interfaces); to see the
detailed information or the performance graphs for an interface, the Display dropdown
menu is provided in the middle of the panel, shown in Figure 64.

79 © Skills 1st Ltd 22 January 2011

= O DASHBCARD EVENTS INFRASTRUCTURE REPORTS ADVANCED
ORE

€™ Netwoks Processes [P Services Windows Senvices Network Map Manufacturers

AR

L

[@ Type tofilter by name:

Overview
Events

- Components © eto 10.0.0.125/24 00:22568:15:3365 Up @ true
L Flle Systems (5 @ Up @ frue
Network Routes (5 @ natt 192.168.10.2:24 Unknown false AR
’ @ @ pano EEFOD7EI2D2B Up® tue
@ 1P services I @ usho 02:80:37 EC:02.00 Unknown false
© Frocessors (2) v vmnet! 00:50:56:C0:00:01 Up true
Software a wmnet2 00:50.56.C0.00:02 Up @ true B
Graphs @ vmnet 00:50:56:C0:00:03 Up & true
Administration © vmnetd 0050:56:C0.00:04 Up® fue
Configuration Properties —
Modele Plugins T :
Custom Properties ;;:::‘: m =~ Stop
Modifications — [
-4 Monitoring Templates — oy Mmm omi ™
Availability (/Server) WModiications
Device {/Server/Linux) eTT i A " T
Device Events (/Devices) 0.8

Users (/Server) i

bits/sec

0.4

0.z

0.0

Man 12: @8 Tue 60: 00 Tue 12:00
E Inbound curi @.ee avogi 0,00 maxi 0.00
B outbound cur: @08 avg: 0,00 nax: 0.08

Note also in Figure 64 that the Components submenu includes Processors which used
to be under the Hardware tab for Zenoss 2. The other element that the Hardware tab
displayed was Memory, which is now on the Overview page for a device, in Zenoss 3.

4.3.9.2 BridgeMIB ZenPack without any changes to presentation code

So, for the BridgeMIB ZenPack, in Zenoss 2 a new tab was added for Bridge
Interfaces. If we had chosen to expand the OS tab with the layer 2 bridge interface
information, then we would break the rule of “overriding the page template of a
redesigned page” as this has moved to the new component detail page, but simply a
“new tab” should not require a change.

However, the Bridge Interfaces tab displays data related to a new component of a
device. We pass the “no-changes” test in that a new tab was added and there are no
page dialogs or custom data sources in the ZenPack, but in practise, a lot of
functionality is lost as the detailed interface information and the performance graphs
are lost. Figure 65 shows the standalone left-hand Bridge Interfaces menu which is
formatted by the original page template file, BridgeDeviceDetail.pt in the ZenPack's
skins subdirectory. Note that there is also a Bridgelnterface menu as a submenu of
Components.

80 © Skills 1st Ltd 22 January 2011

BOARD

EVENTS INFR IUCTURE REPORTS ADVANCED

Manufacturers

Devices

<=3

Overview

Networks Processes IP Services Windows Services Network Map

Events
4 Components
@ Network Routes (2) 24 00:30:E2:F7.2A11C FastEthemet1/1: 172.31.100.18 group-100-13.class. example. org Leamed (3) @
D interfaces (25) 2 00:30:93: 0A: OF:5A FastEthemet1/1; 172.31.100.17 group-100-2.class.example. org Leamed (3) @
@ Bridgelnterface (25)
Software 3 08:4C:BF: G275 Leamed (3) @
Graphs 4 08:4C:52:D0:88:89 Leamed (3) @
Bridge Interfaces .
a— 10 00:04:C1:02.00:CA FastEthernet0/10: aroup-100-s2.class.example. org Not active (4) @
Administration
Gonfiguration Properties 1 00:04:C1:02:00.CB FastEthemet0/11: group-100-s2.class. example.org Not active (4) @
Modeler Plugins
. 12 1 04: G1:02:00; V12 group-100-: ple.org i
Custom Properties 12 00:04:C1:02:00:CC EastEthemneto/12: roup-100-s2.class. example. of Not active (4) .
Modifications 13 00:04:G1:02:00:CD FastEthemsto/13: h droup-100-52 class. example.org Not active (4) O
4 Monitoring Templates
Bridge Stp_Topo (/Network/Switch/BridgeMIE 14 00:04: G1:02:00:CE FastEthemnsto/14: group-100-52.class. example. org Not active (4) O
Device (/Devices)
15 00:04:C1:02:00:CF FastEthermnet0/15: group-100-s2.class. example. org. Not active (4) O
16 00:04:C1:02.00:D0 FastEthemet0/16: group-100-s2.class example.org Not active (4) @
17 00:04:C1:02:00:D1 FastEthemeto/17: group-100-s2 class. example. org Not active (4) O
18 00:04:C1:02.00:D2 FastEthernet0/18: group-100-s2.class.example. org Not active (4) O

Figure 65: Standalone left-hand menu for Bridge Interfaces

In Zenoss 2, clicking on the relevant Port field resulted in the performance graph for
that interface (refer back to Figure 54 on page 70). In Zenoss 3, it is unable to follow
the factory action to viewBridgelnterface.pt to display the performance graph. It
resorts to displaying a default window which is the Overview window for the device.

EVENTS INFRASTRUCTURE REP T H

Zenoss SHBOARD

Networks Processes IP Services Windows Services Manufacturers Page Tips

Network Map

Overview DASHBOARD EVENTS INFRASTRUCTURE REPORTS ADVANCED our H

ZenGss'

Events

« Components IP Services Windows Services Manufacturers

© Network Routes (2)

Networks Processes Network Map Page Tips

@ Interfaces (286) E .“; -
@ Bridgelnterface (25)
Software it =
Overview
Graphs Event
vents
Bridge Interfaces c i Uptime: Device Name: Tag:
< Components
Administration op Netuwark Routes (2) ‘ ‘ ‘ |
work Routes i 2
Configuration Properties First Seen:) -
Modeler Plugi @ Interfaces (26) Production State: Serial Number:
odeler Plugins
Bridgelnterface (28 3
Custom Properties @ Bridgelntertace (25) Last Change \—H \—I
e Software -
Madlifications e Modsl Time: % Priority: Rack Slot:
4 Monitoring Templates o .: ey 2
Bridge_Stp_Topo (Network/Switch/BridgeMIE 00 o1 2oos Locking:
e Administration Collector: Hardware
Configuration Properties e e Manufacturer edit:
Modeler Plugins B 4 £ Systems:
S o7 Hardware Model edit:
ustom Properties
Groups:
Modifications i OS Manufacturer edit:

Figure 66: Result of clicking on a Port link - Overview device window rather than port graph window

The port performance graphs are not totally lost. The new, redesigned device details
page automatically includes a submenu for each component of a device, under the

81

© Skills 1st Ltd

22 January 2011

Components menu. Following the Bridgelnterface submenu from the left-hand
Components menu produces a panel where the attribute information for the ports is
absent (no Remote MAC, Port Status, etc) - a default panel is used for a standard
device with Events, Name, Monitored and Status fields; the Status column here does
not reflect the status of the port; the Name is the correct name of the Bridgelnterface
component.

Devices etwo Processe P Service do SRS o

()

|
Overview & - | © | select~ Q, Type to filter by name
4 Components 23-00:04:€1.02:00:D7 Down @&
© Network Routes (2) 24-00:04:C1:02:00:D8 Down ®
@ Interfaces (28) Do

g 3-00:04:C1:02:00:C3 Down @
Software 3-08:4C:BF:C2:79'FS Down &
Graphs 4-00:04:C1:02:00:C4 Down @
Bridge Interfaces 4-08:4C 92 D0:88:89 Down &
Administration =
Configuration Properties Bridge Interface Graphs|
Modeler Plugins Events
Custom Properties Details Hourly | Reset v L. 300
Modifications Bridge Interface Graphs
4 Monitoring Templates Bridge Interface Template < Zoom Out >
Bridge_Stp_Topo (/Network/Switch/BridgeMI Modifications
Device (/Devices) 2B

18 M
10 M| |

5 M

mon 1200 Tue oo eo Tue 12:e0
B dotiTpPortOutFrames cur: 2.48k avg:29. 62k max:1l,.57M
B dotTpPartInFrames curi562.22 awg!a7. 18K maxi12,48M

Figure 67: Default Bridgelnterface Component submenu with Display dropdown options

<10

However the Display dropdown offers the factory actions for a BridgeInterface
component. Note that the menu options exactly match the name stanza in
Bridgelnterface.py. In this case, the GUI does manage to follow the action stanza for
Bridge Interface Graphs and find the performance graph defined by
viewBridgelnterface.pt. The Bridge Interface Template and Modifications options also
work perfectly, although the options not defined by this ZenPack, Events and Details,
do not work.

82 © Skills 1st Ltd 22 January 2011

jane@zenB:-- - Shell - Kunsdl;e <> ,-;

Session Edit View Bookmarks Settings Help

factory_type_information = (

rid’ : 'BridgelInterface’,
"meta_type’ : 'BridgeInterface’,
‘description’ : """Bridge Interface info""",

’product”’ : 'bridge’,
'immediate_view' : 'viewBridgelInterface',
‘actions’ ;
(
{'id’ : 'status’
s 'name’ : 'Bridge Interface Graphs’
, ‘action’ : 'viewBridgeInterface’
, 'pernissions’ (ZEN_VIEW,)
1,
{id’ : ' perfConf’
» 'name’ : 'Bridge Interface Template’
. "action’ : 'objTenplates’
, 'pernissions’ (ZEN_CHANGE_SETTINGS,)
1,
{ 'id’ ! 'viewHistory’
s 'name’ : '"Modifications’
, ‘action’ : 'viewHistory’
, 'pernissions’ (ZEN_VIEW,)
1,

"BridgeInterface.py” [readonlyl 160 lines —-35x—

Figure 68: Factory information defining menus for a Bridgelnterface component

So, without modifications, the ZenPack can provide the same information in a Zenoss
3 environment; however it is divided between two similar but different menus, each of
which has a “working” part and a “non-working” part.

4.3.9.3 Improving Bridge Interface information with JavaScript additions

Section 14.1.7 of the Developer's Guide talks about changes necessary to display
customised information on the component grid. For the BridgeMIB ZenPack, this
means fixing the automatic components submenu so that it shows the port
information correctly. Since Zenoss 3 has redesigned all the device details page
elements and provided the automatic submenu for device components, it makes sense
to adapt to this, rather than trying to get graphs to work on the standalone left-hand
Bridge Interfaces menu.

In practise, the two skins files become almost redundant and a JavaScript file replaces
BridgeDeviceDetail.pt.

Three files are required in the base directory of the ZenPack
(...../ZenPacks.skills1st.bridge/ZenPacks/skills1st/bridge):

e configure.zcml

83 © Skills 1st Ltd 22 January 2011

e interfaces.py (note interfaces.py — the guide has this as interface.py)
e info.py

The info file abstracts object attribute information saved in the Zope Object Database
(ZODB), that will be displayed to the user. It allows code to be written for display that
it is not part of the class definition.

The interfaces file should have basic Zope schema information - formatting details
describing the fields of a form for the attributes to populate. Chapter 14 of the
Developer's Guide (page 118) suggests that it can be a “barebones”, effectively blank
file but it is good practise for any object attributes you are exposing in the info object,
to be defined in the corresponding interface. interfaces.py controls the fields seen in a
component's Details dropdown menu. For more information on Zope interfaces, see
http://wiki.zope.org/zope3/WhatArelnterfaces .

configure.zcml provides the glue between different components and this exact name
will be searched for by the Zope mechanisms. Zope Configuration Markup Language
(ZCML) is Zope 3's XML-based component configuration language for “wiring”
together application policy and component registrations. It is documented at the Zope
site at http:/apidoc.zope.org/++apidoc++/ - follow the ZCML link.

The actual detailed code for displaying the Remote Address, Port Status etc for a
bridge interface, comes from a JavaScript file (bridge.js in this case), which goes in
the new resources subdirectory of the ZenPack's base directory.

Q Jane @zen3:~ - Shell - Konsol

Edit

Session iew Bookmarks Settings Help

zenoss@zen3 : susr-local-zenossszenoss- local~ZenPacks.skillslst . bridge-ZenPacks-skills1st- bridge> k.
zenossEzen3:-usr-local-zenossszenossslocal ~ZenPacks.skillslst . bridgesZenPacks-zskillslst bridge>

zenossPzen3 ! usr-local-zenoss/zenoss/local ~ZenPacks . skillslst bridge-ZenPacks-skill=slst- bridge>

zenoss@zen3: susr-localszenossszenossslocal-Z2enPacks . skillslst bridgesZenPacks-skillsist bridge> ls -1

total 92
—rW-r-—r——
—rW-r-—r——
—rW-r——r——
—rW-r-—r——

1 zenoss zenoss 1080 Z2011-01-18 12:46 BridgeDevice.py

1 zenoss zenoss 1465 Z011-01-18 12:47 BridgeDevice.pyc

1 zenoss zenoss 5YZ2 2011-01-18 20:49 BridgeInterface.py
1 zenoss zenoss 5914 2011-01-18 20:50 Bridge Interface.pyc
1 zenoss zenoss 994 Z010-12-14 16:51 configure.zcml

2 zenoss zenoss 4096 2010-09-20 11:43 daemons

£ zenoss zenoss 4096 Z010-09-20 11:43 datasources

1 zenoss zenoss 1410 2010-12-17 09:46 info.py

1 zenoss zenoss 1652 2010-12-17 09:46 info.pyc

1 zenoss zenoss 652 Z2011-01-18 12:46 __init__.py

1 zenoss zenoss 194 2011-01-18 12:46 _ init_ .pyc
1
1
2
Z
3
2
z
2
3
2

zenoss zenoss 1310 2010-12-15 14:17 interfaces.py

zenoss zenoss 1308 2010-12-15 14:17 interfaces.pyc

zenoss zenoss 4096 2010-09-20 11:43 lib

zenoss zenoss 4096 2010-12-14 18:11 migrate

zenoss zenoss 4096 2010-11-11 11:13 modeler

zenoss zenoss 4096 2010-09-20 11:45 objects

zenoss zenoss 4096 2010-09-Z0 11:43 reports

zenoss zenoss 4096 2010-12-29 19:04 resources

zenoss zenoss 4096 2010-09-Z0 11:43 =kins

zenoss zenoss 4096 2010-09-20 11:43 tests -
zenoss@zen3: susrrlocal zenoss/zenossslocal ZenPacks.skillslst.bridgesZenPackssskillsist/bridge> || -

Figure 69: Base directory of ZenPack with new JavaScript-relevant items highlighted

84 © Skills 1st Ltd 22 January 2011

http://apidoc.zope.org/++apidoc++/
http://wiki.zope.org/zope3/WhatAreInterfaces

Note in Figure 69 that the info and interfaces files are Python files so will be compiled
on demand into .pyc files, when required.

info.py (and it should be exactly this filename) contains a Python class definition of
type ComponentInfo for the BridgeInterfacelnfo class. It implements the layout
that is found in the IBridgelnterfacelnfo class found in interfaces.py.

It defines the device attributes that need to be displayed with functions for attributes
that need to use methods to retrieve data; these functions (getRemotelnterfaces and
getRemoteDevice) are in the object file BridgeInterface.py (as they always have been).
The ProxyProperty method shuttles data from the Zope Object Database (ZODB) to
the info object. There is no formatting in the info.py file.

& jane@zen3:~ - Shell - Konsole <4> <, NE P

Session Edit View Bookmarks Seftings Help

class BridgelInterfaceInfo(ComponentInfo): -
implements(interfaces. IBridgeInterfaceInfo)

Port = ProxyProperty("Port")

Remotefiddress = ProxyProperty("RenoteAddress")
RemoteInterface = ProxyProperty(“Remotelnterface™)
RemoteDevice = ProxyProperty(“RemoteDevice")
PortStatus = ProxyProperty(“FortStatus™)

Joroperty
def Remotelnterface(self):
return self. object.getRemoteInterfaces()

Bproperty

def RemoteDevice(self):
return self._object.getRemoteDevice()

"info.py" [Modified1[readonlyl 45 lines ——80x—— 36,5 Bot |4

| shell

Figure 70: info.py

interfaces.py (again, this exact filename) defines the class IBridgeInterfacelnfo of
type IComponentInfo. Chapter 14 of the Developer's Guide suggests that this file can
be a “barebones” interface that does nothing as shown in Figure 71 but this is not good
practise.

85 © Skills 1st Ltd 22 January 2011

] Jane@zen3:~ - Shell - Konsole <4> -

Session Edt iew Bookmarks Seftings Help

ﬂ#ﬂﬂﬁﬂ#ﬂﬂ#ﬂﬂﬂﬂ#ﬂﬂﬂﬂ#ﬂﬂﬂﬂ#ﬂﬂ#ﬂ#ﬂﬂ#ﬂ#ﬂﬂ#ﬂ#ﬂﬂ#ﬂ#ﬂﬂ#ﬂ#ﬂﬂ#ﬂﬂﬂﬂ#ﬂﬂﬂﬂ#ﬂﬂﬂﬂ#ﬂﬂ#ﬂ#ﬂﬂ#ﬂ#ﬂﬂ 3
i

This program is part of the Bridge Zenpack for Zenoss.

Copyright (C) 2010 Jane Curry

it
it
it
This program can be used under the GMU General Public License version 2
You can find full information here: http:- - wuw.zenoss.com/oss

it

L

HHHHEHHHE B B HEE R R RS R R R R R b

_ doc_ interfaces

describes the form field to the user interface.

51d: interfaces.py,v 1.2 2010-12-14 20:46:34 jc Exp 5"
| version_ = "SRevision: 1.4 5"[11:-21

from Products.Zuul.interfaces import ICompomentInfo

from Products.Zuul.form import schema
from Products.Zuul.utils import ZuulMessageFactory as _t

class IBridgelnterfaceInfo(IComponentInfo):

Info adapter for Bridge Interface component

aAsEs
! I

"interfaces.py" [readonlyl 28 lines —3x— 1,5 Aall &

(o | o shel

Figure 71: “barebones” interfaces.py — not recommended

The interfaces file should should provide Zope schema information to help generate
the fields of a form, with appropriate types such as int, string, etc. The fields defined
in interfaces.py are used and populated in the Details dropdown menu from Display.
If a “barebones” interfaces.py is used then the only field in the Details dropdown will
be Status (which is nothing to do with Port Status).

86 © Skills 1st Ltd 22 January 2011

E| Jane@zen3:~ - Shell - Konsole <4>

Session Edit Wiew Bookmarks Seftings Help

ﬂ#ﬂ#ﬂﬂ#ﬂﬂﬂﬂ#ﬂ#ﬂﬂ#ﬂﬂﬂﬂ#ﬂﬂﬂﬂ#ﬂﬂﬂﬂ#ﬂﬂﬂﬂ#ﬂﬂﬂﬂ#ﬂﬂﬂﬂ#ﬂﬂ#ﬂ#ﬂﬂ#ﬂ#ﬂﬂﬂﬂ#ﬂﬂﬂﬂ#ﬂﬂ#ﬂ#ﬂﬂ#ﬂ#ﬂﬂ# =

This program is part of the Bridge Zenpack for Zenoss.
Copyright (C) 2010 Jane Curry

i
i
it
This program can be used under the GMU General Public License versiom 2
You can find full information here: http:--uwuw.zenoss.con-oss

i

it

HHEHEEEE R R R R R R R R B R R R R R R R R R R R R R R R R

_ doc__ interfaces

describes the form field to the user interface.
51d: interfaces.py,v 1.2 2010-12-14 20:46:34 jc Exp """
__version__ = "SRevision: 1.4 $"[11:-21

from Products.Zuul. interfaces import IComponentInfo
from Products.Z2uul.form import schema
from Products.Z2uul.utils import ZuulMessageFactory as _t

class [Bridgelnterfacelnfo(IConponent Infol:

Info adapter for Bridge Interface component

Port = schema.Text(title=u"Port", readonly=True, group="Details’)

RemoteAddress = schema.Text(title=u"Remote MAC", readonly=True, gﬁgup=’Detai13‘)
RemoteInterface = schema.Text(title=u""Remote Interface", readonly=True,group="Details’)
RemoteDevice = schema.Text(title=u"Remote Device”, readonly=True, group="Details’)
PortStatus = schema.Text(title=u"Port Status", readonly=True, group='Details’)

"interfaces.py" [Modifiedllreadonlyl 33 lines —3»— 1,5 All

(|| W shei

Figure 72: interfaces.py following "good practise” with schema information

The adapter stanza in configure.zcml links the info file and interfaces file with the
device component class. In Figure 73:

87

e The factory field must match the class defined in info.py
e The provides field must match the class defined in interfaces.py

e The for field must match the device component class, BridgeInterface, defined
in the file BridgeInterface.py — hence BridgeInterface.BridgeInterface .

© Skills 1st Ltd 22 January 2011

|:| _ié.ne@zenZB:-- - Shell - Konsole <43 r__l-

Session

Edit “iew Bookmarks Settings Help

E7ml version="1.0" encoding="utf-8"7> -
<configure xmlns="http: /- nanespaces.=zope.org zope"

<configure zcml:condition="installed Products.Zuul">

{sconf igure>
{s/conf igure>
"configure.zcnl” [readonlyl 29 lines —3%— I 1,1 Top

[==]| = she

|

le

=

xmlns :browser="http: /s namespaces .zope .org-browser"
xmlns:zcml="http:/ nanespaces.zope.org zcml">

<adapter factory=".info.BridgelInterfacelnfo"
for=".BridgeInterface.BridgeInterface"
prouvides=".interfaces. IBridgeInterfaceInfo
b

<brouser :resourcelirectory
name="bridge"
directory="resources"
¥

<brouwser:vieuwlet
name=" js-bridge"
paths="r++resource++bridge-bridge. js"
weight="10"
manager="Products.ZenlUI3.browser. interfaces. IJavaScriptSrchanager"
class="Products.ZenlI3 brouwser. javascript .JavaScriptSrcBundleVieuwlet"
permission="zopeZ.Public"
>

Figure 73: configure.zcml

The browser:resourceDirectory stanza indicates where to find JavaScript files.

The name (namespace) field must match the last part of the ZenPack name —
bridge

The directory field is the subdirectory from the base directory of the ZenPack -
resources

The browser:viewlet stanza defines:

88

The name (namespace) for this viewlet — js-bridge — where bridge (in this case)
must match the last part of the ZenPack name

The paths field indicates the JavaScript file(s) that define the page layout —
bridge.js in the bridge ZenPack's resource directory ie./
ZenPacks.skills1st.bridge | ZenPacks [skills1st | bridge | resources

The class field should be
Products.ZenUI3.browser.javascript.JavaScriptSrcBundleViewlet if the paths
field has one or more files listed. It must be this where the paths field has
multiple files, space-separated; it could be
Products.ZenUI3.browser.javascript.JavaScriptSrcViewlet for a single path file.

The weight field indicates the order of multiple viewlets where 1 would be at
the top. Although this field seems irrelevant with a single viewlet, removing
the line causes the Bridge Interfaces Component submenu to fail (reverting to

© Skills 1st Ltd 22 January 2011

the default device view — the attributes defined by BaseComponentColModel —

see later).

e The permission field is mandatory

The JavaScript file, bridge.js in the resources subdirectory, bears close comparison
with the old BridgeDeviceDetail.pt page template skins file shown in Figure 57, Figure
58 and Figure 59, starting on page 72.

(function(){

uar ZC = Ext.ns(’Zenoss.conponent’);

function render_link(ob) {
if (ob && ob.uid) £
return Zenoss.render.link(ob.uid):
T else {
return ob:
H
¥

ZC.BridgeInterfacePanel = Ext.extend(ZC.ComponentGridPanel, {
constructor: function(config) {
config = Ext.applylf(configll{, {
componentType: ’BridgeInterface’,
fields: [
iname: ‘uid’¥,
{name: ’namne’ ¥,
{name: ’severity’l,
iname: ’status’’,
{name: ’hasMonitor’},
{name: 'monitor’,
{name: ’Port’},
{name: ’RemoteAddress’’,
iname: ’RemotelInterface’’,
{name: ’RemoteDevice’ ¥,
{name: ’PortStatus’?,
1,
columns: [{
id: ’"severity’,
dataIndex: ’severity’,
header: _t('Events’),
renderer: Zenoss.render.severity, E
width: 60
3.
id: "Port’,
dataIndex: 'Port’,
header: _t('Port’),
sortable: true,
b |
id: ‘Remotefddress’,
dataIndex: 'Remotenddress’,
header: _t('Remote Address’'),
sortable: true
B
"bridge. js" [readonlyl 94 lines —50x— 47,13

Top |+

||) shell

Figure 74: bridge.js JavaScript file defining component table layout (part 1)

The first main line

var ZC = Ext.ns('Zenoss. conponent');

ensures that the ZenPack can associate with standard Zenoss components.

89

© Skills 1st Ltd

22 January 2011

The lines:

ZC. Bridgel nterfacePanel = Ext.extend(ZC Conponent Gri dPanel, {
constructor: function(config) {
config = Ext.applylf(config||{}, {
conponent Type: 'Bridgelnterface',

indicate that this is an extension to the standard ComponentGridPanel to display
the component of type Bridgelnterface — the name must be <component name>Panel.

The “fields” lines indicate the object attributes that are either displayed or are needed
to make decisions as to what to display — more of this later.

The “columns” stanzas then define column headers and layout for each piece of data to
be included in the ComponentGridPanel and can be directly compared with
BridgeDeviceDetail.pt.

|
id: 'Renotelnterface',
dat al ndex: ' Renotel nterface',
header: _t('Renpte Interface'),
sortabl e: true,
wi dt h: 200,

}o{
The id field is a unique identifier and the datalndex field should match the object

attribute to be displayed. The column header will be the quoted text in the header
field. To be able to sort based on a column then sortable must be true, and a width
can be supplied.

90 © Skills 1st Ltd 22 January 2011

f4: ’RemotelInterface’,
datalndex: ’Remotelnterface’,
header: _t(’Remote Interface’)},
sortable: true,
width: 200,
A
id: ’'RemoteDevice’,
dataIndex: 'Remotelevice’,
header: _t('Remote Deuvice’),
sortahle: true,
width: 200,
3.1
id: ’'PortStatusValue’,
datalndex: ’PortStatus’,
header: _t(' Port Status Value’),
width: 80,
sortable: true,
3.1
id: ’'PortStatus’,
dataIndex: ’PortStatus’,
header: _t(’Port Status’),
renderer: function(p3) €
if (p3==3) {
return Zenoss.render.pingStatus(’up’);
T else {
return Zenoss.render.pingStatus(’ down’):
¥
}J
width: 80O,
sortable: true,
3. i
id: ‘name’,
datalndex: ’name’,
header: _t(’Name’),
width: 120, I
sortable: true

11
i3 H
ZC .BridgeInterfacePanel .superclass.constructor call(this, config):

IO H
Ext .reg(’BridgeInterfacePanel’, ZC.BridgelInterfacePanel);

Z2C.registerName (" BridgeInterface’, _t(’Bridge Interface’), _tC Bridge Interfaces’)):
0

"bridge. js" [readonlyl 94 lines —-51x—— 48,17 95

-

-

& el

Figure 75: bridge.js JavaScript file defining component table layout (part 2)

The Zenoss 2 BridgeDeviceDetail.pt included two columns for port status; one was the
numeric value and its textual meaning; the second was a red/green status indicator.
The bottom half of bridge.js shows a similar section presenting the numeric value of
port status under the header Port Status Value and then a red / green indicator,
headed Port Status. It demonstrates using a different renderer to display data. Note

also the severity renderer used for the Events column. Basically they use defined
icons to represent data rather than the standard text renderer.

91

A

HoA

id: 'PortStatusVal ue',

dat al ndex: 'PortStatus',

header: _t('Port Status Value'),
wi dt h: 80,

sortabl e: true,

© Skills 1st Ltd 22 January 2011

id: 'PortStatus',

dat al ndex: ' Port Status',
header: _t('Port Status'),
renderer: function(pS) {

if (pS==3) {
return Zenoss. render. pi ngStatus('up');
} else {
return Zenoss. render. pi ngSt at us(' down');
}
b,
wi dt h: 80,
sortabl e: true,

b
The local function pS tests the value of the datalndex attribute and returns output

dependent on the value (remember that a port status of 3 equates to a “Learned” value
which the ZenPack defines as “active”). Other standard Zenoss renderers can be found
in $ZENHOME |/ Products | ZenUI3 | browser [resources | js | zenoss | Renderers.js.

The last 2 lines

Ext.reg(' Bridgel nterfacePanel', ZC. BridgelnterfacePanel);
ZC.regi sterName(' Bridgelnterface', _t('Bridge Interface'), _t('Bridge Interfaces'));

ensure that this extension to the ComponentGridPanel is registered, with the last line
associating the component Bridgelnterface object with this panel and the Component
submenu being entitled Bridge Interface if there is only one instance of the component
type, or Bridge Interfaces if there are several instances.

Note the “fields” section in Figure 74. There are far more fields there than will
actually be displayed. This is because other code elements in the ComponentPanel
code test for these values and if they are not defined in the “fields” section then the
component grid will revert to the standard (fairly useless) device format. Fields that
are required include:

e uid

e name

e monitor
e severity
e status

e hasMonitor

Having added info.py, interfaces.py, configure.zcml to the base ZenPack directory, and
bridge.js to the resources subdirectory, simply recycle zopectl to see the effect

zopect!| restart
The Bridge Interfaces submenu of Components should now have the correct port
information in the top panel, and a Display dropdown with menus to show port
graphs, the template for those graphs and Modifications. In fact, it also has a

92 © Skills 1st Ltd 22 January 2011

separate, default Graphs menu which has the same effect as the customised Bridge
Interface Graphs menu — more of this later.

To complete the tidying of the Zenoss 3 GUI, the standalone Bridge Interfaces menu
could be removed by simply commenting out the lines that define the Bridge
Interfaces menu, in BridgeDevice.py.

] Jane@zen3:~ - Shell - Konsole <4:

Session Edit Wiew Bookmarks Seftings Help

from Globals import InitializeClass -
from Products.ZenRelations.RelSchema import =

from Products.ZenModel . Device import Device

from Products.ZenModel .Zenoss3ecurity import ZEN_VIEU

from copy import deepcopy

class BridgeDevice(Device):
"A Bridge Device"

_relations = Device._relations + (
(’BridgelInt’, ToManyCont(ToOne,
'ZenPacks.skillslst.bridge.BridgeInterface’, ’BridgeDeuv’)),
)

factory_type_information = deepcopy(Device.factory_type_information)

t factory_type_information[0I[’actions’1 += (

H {'id’ : 'BridgeInt’

t . "name’ : "Bridge Interfaces’
b , 'action’ : "BridgeDeviceDetail’
E , 'pernissions’ : (ZEM_VIEW,) ¥,

0)

def _ init_ (self, =args, ==xkw):
Device._ init_ (self, =args, =xku)
self.buildRelations()

InitializeClass(BridgeDevice)
"BridgeDevice.py"” 36L, 1086C written 28,1 Bot |~

Figure 76: BridgeDevice.py object file with the Bridge Interfaces menu commented out

Both zenhub and zopectl should be recycled after changing the object file before
refreshing the GUI window.

Incidentally, the Zenoss Developer's Guide Chapter 14 suggests adding standalone
left-hand menus for a device, by editing the __init__.py of a ZenPack. The code sample
that they offer on page 114 needs a couple of extra imports and, although this
mechanism works fine, the new menu will be added for all device types, which may
not be the desired effect.

93 © Skills 1st Ltd 22 January 2011

] jane@zen3:~ - Shell - Konsole <4

Session Edt Wiew Bookmarks Seftings Help

rﬂnpurt Globals o
import os.path

#from AccessControl import Permissions as permissions
ttfrom Products.ZenModel.Device import Device

skinsDir = os.path. join(os.path.dirname(_ file_), ’skins’)
from Products.CMFCore.DirectoryView import registerDirectory
if os.path.isdir(skinsDir):

registerDirectory(skinsDir, globals())

#BridgeIntTab = { ’id’ : 'BridgelInt’

it » “mame’ : "Bridge Interfaces standalone tab’
it ,» "actiom’ : 'BridgeDeviceDetail’

1t ,» 'permissions’ : (permissions.view,)

it ¥

i

#Device.factory_type_information[01[’actions’1 += (BridgeIntTab,)

Y_init__.py" [readonlyl 18 lines —5x— 1,1 All =

-

F_iéure 77: __init__.py for ZenPack with commented out lines for extra left-hand menu

Note in Figure 77 the commented out lines to add a standalone left-hand menu. The
two extra import statements are required.

4.3.9.4 Understanding the Component Panel in Zenoss 3

Many ZenPacks extend device component capabilities so understanding the new
component panel in Zenoss 3 is important. The new code that defines it is in
$ZENHOME/Products/ZenUI3/browser/resources/js/zenoss.

94 © Skills 1st Ltd 22 January 2011

=)

Qvarview
Events
4 Components P 2 &
P = FastEthermet!/1; 172.31.100.18 qroup | M0 Zelassexampleon

@ network Routes 2
@ intertaces (25)

¥ Bridge Interfaces (28) 2 0030930A0F5A o oieine met1 1 172.31.100.17
Software
Graphs
Bridge Interfaces
Administration

4 08:4C:92:00:88:89 2 4-08:4C:92:0088:89

group-100-r2.class.example.org 3 up & 2-00:30:93.0A0F5A

3 084CBF.C279F5 3 Up O 3-084CBF.C2T79F5

18 0004:C1:020002 [_ciepetonia group-100-s2 class example org 4 Down @ 18-00:04:C1:02:00:02

: - ‘ 0004:C1.02.00:C4 FastEthe meto/s: group-100-52 class.example.org 4 Down @ 4-00:04:C1.0200C4
Configuration Properties

Bridge_Stp_Topo (N etwork/Switch/Bridgel

Device (/Devices) = Mz"“m °“‘i 2
| h
Bk i |
.ﬂ Pt ”‘L
2011-61-84 18:23:09 2011-81-19 18:23:09
B dotiTpPortOutFrames cur: 1.37k avg: 2.15k max: 4.38k
B dotTpFor tInFrames cur: 5.66k avg: 7.63k nax:14.87k

| [(g — —
ZC.ComponentPanel
Title Bar
ZC.ComponentGridPanel
Zenoss.DetailNavCombo

Zenoss.ContextCardPanel

Figure 78: ComponentPanel diagram

Zenoss" DASHBOARD ~ EVENTS = INFRASTRUCTURE = REPORTS ADVANGCED ur B

m Networks Processes IP Services Windows Services Network Map Manufacturers Page Tips

Medeler Plugins S 0004:C10200C5 - ey etos: group-100-s2.class.example.org 4 Down @ 5-00:04:C1:02:00:.C5
Custom Properties
odiatons
-4 Menitoring Templates ‘ | & = « Stop LY H

Examining ComponentPanel.js (line numbers here are given for Zenoss 3.0.3):

e Zenoss.nav.register from lines 46-122 sets up the default dropdown menus
from the Display DetailNavCombo box — Graphs, Events and Details. This is
why the BridgeMIB ZenPack has a Graphs menu in addition to its own Bridge
Interface Graphs menu.

e ZC.ComponentDetailNav from lines 124 to 183, is concerned with
augmenting the Display dropdown menu and explicitly prohibits menu items
with the names status, events, resetcommunity,pushconfig,
objtemplates,modeldevice and historyevents.

e ZC.ComponentPanel runs from lines 186 to 334. Fundamentally there are
four main areas inside the entire Component Panel (outlined in blue in
Figure 78):

o The Title Bar (tbar) outlined in pink

o The Component Grid Panel with attribute values for each instance of a
component, outlined in red

o The title bar of the bottom half of the window is the text and a
dropdown box to select the data to be seen at the bottom.
This is outlined in . This section prohibits the display of the Graphs
dropdown menu if the monitor attribute is not set for the object. It also

95 © Skills 1st Ltd 22 January 2011

96

filters out any dropdown menu items that match the list given above under
7ZC.ComponentDetailNav.

o The Context Card Panel is the bottom window with graphs, events, details,
etc and is outlined in green.

o ZC.ComponentGridPanel (lines 337 — 412) defines the container for the top

part of the component panel — the Component Grid Panel — and fills it, by
default, with a BaseComponent Store that uses the BaseComponentColModel
attributes, ensuring alternate striping for each row (stripeRows: true)

ZC.BaseComponentStore (lines 337 — 412) defines the default object
attribute fields that will be used to help construct the top panel, unless they are
overridden by custom JavaScript via config.fields. Omitting any of these fields
in custom JavaScript may lead to unpredictable results.

ZC. BaseConponent Store = Ext.extend(Ext.ux.grid.livegrid.Store, {
constructor: function(config) {
var fields = config.fields || [
{nane: 'uid'},
{nane: 'severity'},
{nane: 'nane'},
{nane: 'usesMonitorAttribute'},
{name: 'nonitor'},
{nane: 'nonitored'},
{nane: 'status'}

1
ZC.BaseComponentColModel (lines 467 — 500) define the default attribute
fields that will be displayed in the top ComponentGridPanel — Events, Name,
Monitored and Status. This will be the ComponentGridPanel that is used if
something in custom JavaScript is not able to be interpreted correctly — see
Figure 79.

The remaining definitions ZC.IPInterfacePanel, ZC.WinServicePanel,
ZC.IpRouteEntryPanel, ZC.IpServicePanel, ZC.OSProcessPanel,
ZC.FileSystemPanel and ZC.CPUPanel each define the specific
ComponentGridPanel for the individual, standard component objects. Note that
the code here would be good samples from which to start writing custom
JavaScript for new component objects.

© Skills 1st Ltd 22 January 2011

Z€NOSS DASHBOARD EVENTS INFRASTAUCTURE | REPORTS ADVANGED * jane siGNoUT H
CORE

_ Devices

wp® |

>, group-100-s2.class.example.org | Prodishion
/Network/Switch/BridgeMIB ‘ ‘
172.31.100.21 DEVICE STATUS PRODUCTION STATE
NP Bridgelnterface | i# - | @ |serct- | Q Type o ilter by name
Events Events Name Monitored Status
ccompents e o T T e o
© Network Routes (2) 10-00.04:C102.00:CA Down @
© Interfaces (2 11-00:04:C1:02:00:CB Down @
*_Bridgelnterface (28 12-0004:C10200:CC Down @
SENE 13-0004:C1:0200:CD Down @
i 14-00.04:C1:02:00:CE Down @
15-00:04:C1:02:00:CF Down @
16-00:04:C1:02:00:00 Down @
17-00.04:C1:02,00:01 Down @
Display:| Bridge Interface Graphs al
Itications
4 Monitering Templates Performance Graphs | Rangs| Houry -| Reset’ Linkgiaphs?l¥l -~ 300
Bridge Stp_Topo (Metwork/Switch/BricgeMIE %

Device (/Devices)

Port_traftic = U’Zocm infZoomout| - |

mr
it 2 o M{

2011-981-05 103141 to 2011-81-20 10:31:41
M dotiTpPortoutFr cur: 2.56k avg: 4,28k max: &.53k
@ dotTpPortInFr cur:11.7ok avgils.4ok max: 28,07k

Figure 79: Default ComponentGridPanel (with BaseComponentColModel) attributes

30 k

L M
H \Hrh HHH ’ Mﬂ M HI wnl qs\

When the ZC.ComponentPanel constructor executes, the upper space of the window
(designated by the red border) is left empty. A ZC.ComponentGridPanel is loaded
into this space by the ZC.ComponentPanel.setContext method. The code begins on
line 292 of ComponentPanel.js. One of the parameters passed to this method is type,
which is a string containing the component object class name. The code searches for a
registered component with the name fype + "Panel". So if your component is named
Bridgelnterface, the code searches for a registered object named BridgelnterfacePanel
and uses the code to fill in this upper slot. Note that all the definitions for standard
components at the end of ComponentPanel.js follow this model — IpInterfacePanel,
FileSystemPanel, etc.

The lower panel is a Zenoss.ContextCardPanel (designated by the border).
The code for this class begins on line 65 of ContextCardButtonPanel.js (in the same
directory as ComponentPanel.js). The configuration of this object begins on line 213 of
ComponentPanel.js. Notice that the tbar or top toolbar is defined beginning on line
220. The second item in this toolbar is the Zenoss.DetailNavCombo (designated by
the border). This is the drop-down combo box that lists the different options
available to be displayed in the Zenoss.ContextCardPanel. It is defined beginning
on line 580 of SubselectionPanel js.

Now it gets interesting. The Zenoss.DetailNavCombo.setContext method calls
Zenoss.remote.DetailNavRouter.getDetailNavConfigs.
Zenoss.remote.DetailNavRouter is a python object. Its class definition is in
$ZENHOME/Products/Zuul/routers/nav.py. It appears that this python object is
accessible to the JavaScript ExtJS library code via ZCML "wiring" beginning on line
61 of the $ZENHOME/Products/Zuul/routers/configure.zcml file. I do not fully

97 © Skills 1st Ltd 22 January 2011

understand how the method call to getDetailNavConfigs by the setContext method
works because the arguments don't seem to match. Nevertheless, the
getDetailNavConfigs method accesses the component object and calls the
zentinelTabs method on the object. This, returns the list of dictionaries found in
component.factory_type_information['actions']. These actions are converted to
menu items.

In other words, menu items defined in the factory definitions of objects, and their
associated skins files, from old-style Zenoss 2, are incorporated into the Display
dropdown menu in the Component Panel in Zenoss 3.

ZE€NOSS 0AsHEOARD EVENTS INFRASTRUCTURE | REPORTS ADVANGED ane siaNouT H
Cone

EE™) Neiworks Processes IP Services Windows Services Network Map Manufacturers Pags Tips

=)

Cverview

Events
4 Compenents
& Network Routes (2]

& e © 1 0004:CT0200:CA oy oo Qroup-100-s2 class example org 4 10-00.04 €1 02:00 CA

Za Bridgsiinterces; 2] e 0004:C10200:CB . oy o Qroup-100-s2 class example org 4 Down @ 11-00:04:C1 02200 CB
Software S
Graphs e 2 0004:CTOZO0CC oy o Qroup-100-s2 class exampls org 4 Down @ 12-00:04:C102:00:CC
Bricige Interfaces
A o 13 0004:CT0200:CD oy o Qroup-100-s2¢lass example or 4 Down @ 13-00.04:C1.02:00:CD
Configuration Properti

SRUBLTEICN SISRCrias Q@ 4 G0 G202 00 CERURER R group-100-s2.class.example org 4 Down @ 14-00.04:C1.02:00.CE

Medeler Plugins
Custom Properties

Mardfications \
Graphs : -

4 Monitoring Templates
g Terp o

Bridge Stp_Topo (/N etwork/Switch/BricgeMI|E

| Details
Device (/Devices)

Bridge Interface Graphs
Bridge Interface Template
3 Madifications

_ : w‘_)
. mwwﬁmwmﬂmwwwmwwwwm

—_—

Thy me:en Thu 12: 0

2011-01-85 12:36:39 o 2011-01-20 12:36:39
[dotiTpPortOutFrames cur: 5.37k ava: 4.32k max: 8.53k
B dotTpPortInFrames cur:ls.osk avgils.57k max:2e.77k

| (K1

FEL’;8O: Display drobdown DetailNavCombo for Bridgelnterface with 3 m3nus inherited from Zenoss (’
2 definitions

This is why the Bridgelnterface component panel dropdown includes Bridge Interface
Graphs, Bridge Interface Template and Modifications.

98 © Skills 1st Ltd 22 January 2011

[] jane@zen3:~ - Shell - Konsole <4

Session Edit Wiew Bookmarks Seftings

Help

factory_type_information =

i
"meta_type’
"description’

t

: 'BridgeInterface’,
: 'BridgeInterface’,
: """Bridge Interface info""",

' product’ : "bridge’,

"immediate_view’ : ‘vieuBridgelInterface’,

"actions’ :

(
L U : "status’
. 'name’ : "Bridge Interface Graphs’
. "action’ : "vieuBridgeInterface’
. 'pernissions’ : (ZEN_VIEMW,)
1,
£ords : "perfConf’
, 'name’ : "Bridge Interface Template’
. "action’ : "objTenplates’
. 'pernissions’ : (ZEM_CHANGE_SETTINGS,)
1,
£ords : "vieuwHistory’
, 'name’ : "Modifications’
. "action’ : "viewHistory’
. 'permissions’ : (ZEN_VIEM,)
1,

)

}J
)
"BridgeInterface.py"” [readonlyl 160 lines ——53x— 85,0-1 L o

F-igf-ure 81: factory_type_information menu definitions for Bridgelnterface object

At this point, it is unclear how to selectively affect the options in the DetailNavCombo
dropdown without linking to the old factory definitions and skins files.

The default Details window from the Display dropdown is controlled by the fields in
interfaces.py. Typically they are read-only fields but they could be made read-write by
ensuring that the component object class file contains the isUserCreated method that
returns True — see the top of $ZENHOME/Products/ZenModel/OSComponent.py for
an example. Adding the lines shown in Figure 82 adds SAVE and CANCEL buttons to

the Details dropdown window.

99

© Skills 1st Ltd 22 January 2011

Q Jane r_'E_l_\zen.B-: - Sh.el.l : K’unsule -=:::5-

Session Edit View Bookmarks Seftings Help

(-

£ : ’status’
’ name’ : 'Bridge Interface Graphs’

. 'action’ ! 'viewBridge Interface’
, 'permissions’ : (ZEN_VIEW,)
}J
{’id’ : ' perfConf’
. 'name ! 'Bridge Interface Template’
. 'action : 'objTemplates’
, 'permissions’ : (ZEM_CHANGE_SETTINGS,)
}J
{’id’ : 'viewHistory’
. 'name : 'Modifications’
. 'action ! 'viewHistory’
, 'permissions’ : (ZEN_VIEU,)
3,

)

¥,

def

def

"BridgeInterface.py"” [Modifiedllreadonlyl 168 lines ——54»x——

)

isUserCreatedFlag = True

isUserCreated(self): I
Returns the value of islUserCreated. Hrue adds SAVE & CANCEL buttons to Details menu

return self.isUszerCreatedFlag

viewName(self):
"""Pretty version human readable version of this object"""
if self.Remotefddress == "00:00:00:00:00:00" or self.Port == ’-1":
return “Unknown"
else:
return self.id
return str(self.Port) +

+ self.Remotenddress

-

91,45 50

-

FTgﬁre 82: Bridgelnterface component object file with isUserCreated defined and set to True

The object file Bridgelnterface.py does not need to have an attribute explicitly set to
read-write but the interfaces.py file controls which fields are read-write. See the
added PortComment field in Figure 83. (Note that PortComment also needs adding to
the Bridgelnterface object file and to info.py).

100

© Skills 1st Ltd 22 January 2011

;l Jane(@zen3:~ - Shell - Konsole

Session Edit Wiew Bookmarks Seftings Help

gttt e e e R R T R R T R T R T R T T E
i
This program is part of the Bridge Zenpack for Zenoss.
Copyright (C) 2010 Jane Curry

i
i
i
tt This program can be used under the GNU General Public License version 2
You can find full information here: http:-- www.zenoss.comsoss

i

i

B R R R R B R S R R R R R R R B i

_ doc_ interfaces

describes the form field to the user interface.
5Id: interfaces.py,u 1.2 2010-12-14 20:46:34 jc Exp """
__version__ = "SRevision: 1.4 $"[11:-21

from Products.Zuul.interfaces import ICompomentInfo
from Products.Zuul.form import schema
from Products.Zunl.utils import ZuulMessageFactory as _t

class IBridgeInterfaceInfu(ICumpuneAEInfu):

Info adapter for Bridge Interface component
Port = schema.Text(title=u"Port", readonly=True, group='Details’)
RemoteAddress = schema.Text(title=u"Remote MAC", readonly=True, group='Details’)
RemoteInterface = schema.Text(title=u"Remote Interface", readonly=True,group="Details’)
RemoteDevice = schema.Text(title=u"Remote Device", readonly=True, group='Details’)
PortStatus = schema.Text(title=u"Port Status", readonly=True, group='Details’)
PortComment = schema.Text(title=u"Port Comment", group='Details’)

"interfaces.py"” 34 lines —2»— 1,54 All E

Figure 83: interfaces.py with an extra PortComment field that is read-write

The result is show in Figure 84.

ZenGSS DASHBOARD ~ EVENTS | INFRASTRUCTURE | REPORTS ADVANCED B ur B

Networks ~ Processes IP Services Windows Services NetworkMap Manufacturers Page Tips

Overview

4 Components 00:30E2F7 A C Qroup-100-13 chss exampk org po® 24-0030:E2F72A1C
@ Network Routes (2]
@ Intertaces (26)
v Bridge Interfaces (28) E oS0 EICATESAES S TR e Qroup-100-12 c s exampk org 3 U 2.003093,0A 0F5A
Software d

11: 172.31.100.18

4 08:4C:92:D0:88:89 3 Up ® 4-08:4C:92:D0:88:89

08:4CBF:C2T9FS 3-084€ BF.(279FS
Graphs

18 00:04:CT0200:02 £ ey e Qroup-100-52 cBass exampke org 4 Down @ 18-00:04:C1:02:00:02

Administration
Gonfiguration Propeties
Modeler Plugins

Gustom Properties
Modifieations

4 Monitoring Templates 2

Bridge_Stp_Topo (Network/Switsh/Bridge M|

Device (/Devices)

Remote MAC: -
00:30:93:0A:0F:5A

Remote Interface:
FastEthemet1/1: 172.31.100.17
Remote Device:

group-100-r2.class.example org

Port Status:
3

Port Comment;

‘This is a new comment by Jang|

[sve |
Figure 84: Details dropdown window for a component with editable Port Comment field

101 © Skills 1st Ltd 22 January 2011

4.3.10 Linking development mode elements with source mode elements

At this stage we have:

A new device class, BridgeMIB, a subclass of /Devices/Network/Switch, created
via the GUI and added to the ZenPack in Development mode

Some MIBs added to the ZenPack in Development mode

Two new object class files, BridgeDevice.py and Bridgelnterface.py in the base
directory of the ZenPack, created in source mode

Two modeler plugins, BridgelnterfaceMib.py and BridgeDevice.py in the
modeler/plugins subdirectory of the base ZenPack directory, created in source
mode

Two skins files, BridgeDeviceDetail.pt and viewBridgelnterface.pt in the
skins/ZenPacks.skills-1st.bridge subdirectory of the base ZenPack directory,
created in source mode. Both are necessary for Zenoss 2; BridgeDeviceDetail.pt
is redundant for Zenoss 3 unless a standalone Bridge Interfaces left-hand menu
is required. viewBridgelnterface.pt is required for Zenoss 3 to provide Bridge
Interface Graphs from the Display dropdown menu.

An info.py, interfaces.py and configure.zcml in the base ZenPack directory and a
resources subdirectory containing bridge.js to provide a custom device
component panel for Zenoss 3, created in source mode

Nothing yet links the new device class with the object classes and their associated
modelers. This is achieved using the GUI.

102

© Skills 1st Ltd 22 January 2011

ZenOss’

DASHBOARD EVENTS

Prbusﬂsas

[pevices BRI

BridgeMIB @ zlccallnterfaceNames
zLe
pevess) zMaxOIDPerRequest
Events
i i i MySqlP: rd
Configuration Properties zMySqlPasswol

Overridden Objects zMySglUsemame

Custom Schema zNmapPortscanOptions

Administration 5 :
zPingMeonitorlgnore
Modeler Plugins

Madifications zProdStateThreshold
4 Monitoring Templates
Bridge_Stp_Topo (/Network/Switch/BridgeMIE

Device (/Devices)

zPythonClass

zRouteMapCollectOnlylndirect
zRouteMapCollectOnlyLocal
zRouteMapMaxRoutes
zSnmpAuthPassword

zSnmpAuthType

zSnmpCommunities

zSnmpCommunity

zSnmpMonitorignore

INFRASTRUCTURE

"'T el '

REPORTS ADVANCED

Man_tﬂa_durers

I_Iu\'\/mnet

pr27r0N0P69\ 2541224

Jao

[zenoss

|—p 1-1024 -sT —open -0G - ${here/managelp}

False j

[200

|ZenDacks‘skiHs1 st.bridge.BridgeDevice

False
False

Ef

“ jane siGnouT H

string i

string T

int /

password

string 1

string /

boclean /

int /

it jggiquSwilch [
ridgeMIB

boclean 7

boclean /

int

password |

string 13

public
private

[public

False j

lines /

string /

boclean /

+lalo-l

(4]

Figure 85: Linking a device class with the object class file that describes its unique properties

To associate the device class, BridgeMIB, with the object class BridgeDevice, simply
modify the zProperty zPythonClass, either for an individual device or for a subclass
of devices. For a device class, you need to click the DETAILS link at the top of the
left-hand menu to access the Configuration Properties. Remember to save the
modifications. The zPythonClass should be the fully-qualified object name. In this
case, the object is defined in this ZenPack so the zPythonClass is
ZenPacks.skills1st.bridge.BridgeDevice (no .py on the end). There is no direct
association here with the BridgeInterface class as that is a contained component object
class of BridgeDevice.

The second link required, is between the device class and the modeler plugins to be
deployed for that class. This is done from the More -> Collector Plugins menu of either
an individual device or a device class, for Zenoss 2, or in Zenoss 3 from the same

DETAILS link for a device class, or from a device's Configuration Properties menu. If

the plugin source code is valid then the name of the plugin should automatically
appear in the Add Fields list. Required plugins are dragged to the selected area and
can be reordered simply by dragging them around. Again, don't forget the Save

button.

103

© Skills 1st Ltd

22 January 2011

Z8N0OSS DASHEOARD EVENTS | INFRASTRUCTUR REPORTS ADVANGED
CORE

Devices Networks Processes IP Services Windows Services Network Map Manufacturers

o T

Overview
Events
4 Components
(v] Bridge Interfaces (25)
@ Network Routes (2) Plugins (drag to change order) G Available Tields (drag to other list to add)
0 inieriacedt | * zenoss.snmp.NewDeviceMap x B + BSUData W
SR * zenoss.snmp.DeviceMap ® « BridgeMib
Graphs * zenoss.snmp.InterfaceMap X * LinkRadio
TR * zenoss.snmp.RouteMap ® * MeshAP
Configuration Properties « BridgelntertaceMib X « MeshPoHal
Custom Properties * PackageProcessesMap =
Medifications « SUstandaloneModeler
4 Monitoring Templates * VirualMachines
Bridge_Stp_Topo (/Network/Switch/BridgeMIE * WinSerNo
Device (/Devices) * WmiSerNo
* community.wmi.DeviceMap
¢ community.wmi.DiskDriveMap
I iiii I

Cecees=>m |

Figure 86: Associating a device with a set of modeler plugins

To propagate these associations to the ZenPack, navigate to ADVANCED -> Settings -
> ZenPacks, select the ZenPack, and use the Action icon at the bottom of the left-hand
menu to Export ZenPack. In addition to creating the egg file (
ZenPacks.skills1st.bridge-1.0.4-py2.6.egg) for the ZenPack in $ZENHOME /export,
exporting also updates the object.xml file in the objects subdirectory of the ZenPack.

£ jane@zen241:~ - Shell - Konsole

Session Edt View Bookmarks Seftings Help

[§7xml version="1.0"7> =

<t— ('', ’zport’, 'dnd’, 'Devices’, ’'Network’, ’Switch’, ’'BridgeMIB’) ——>

<ob ject id="rzportsdmd-Devices/Netuwork Suitch/BridgeMIB’ module='Products.ZenModel .DeviceClass’ class='DeviceClass’>

<property visible="True" type="string" id="zPythonClass" >

ZenPacks.skillsist.bridge.BridgeDevice

</property>

<property visible="True" type="lines" id="zCollectorPlugins" >

[’ zenoss.snmp .NewDeviceMap’ , ’zenoss.snmp.DeviceMap’, ’zenoss.snmp.InterfaceMap’, '=zenoss.snmp.RouteMap’, ’BridgeInterfaceMib’, 'BridgeDeviceMib’1
</property>

"ob jects.xml"” [readonlyl 6870 lines —O¥— 1.1 Top E

i) shen E
Figure 87: Start of objects.xml showing zPythonClass and zCollectorPlugins

The egg file is created by first copying the directory hierarchy to the build/lib
subdirectory. For example, if the ZenPack code is in /jane/ZenPacks.skills1st.bridge
then the subdirectory hierarchy starts with the ZenPacks directory. At the same level,
under /jane/ZenPacks.skills1st.bridge, a build directory will be created or updated in
which is a [ib directory and the hierarchy starting from the ZenPacks directory is
copied here - /jane/ZenPacks.skills1st.bridge /build /lib/ZenPacks. The egg file is
actually constructed from this build subtree.

Note that with Zenoss 3.0.3, there is currently a bug whereby the build /lib
subdirectory is not cleaned out before export. This means that existing files will be

104 © Skills 1st Ltd 22 January 2011

updated, new files will be added but if old files have been deleted then they will still
exist in the build/lib subdirectory and hence, in the new egg file. This is documented
in ticket 7324 (http:/dev.zenoss.com/trac/ticket/7324). If files have been deleted from
ZenPack sources, ensure that everything under the build/lib subdirectory is removed
before exporting the ZenPack.

Once an egg file has been created in the export subdirectory, it can be moved to a
different system and loaded there.

5 Gathering Performance Data

Performance data is gathered, usually by either the zenperfsnmp daemon (for SNMP
data), or by the zencommand daemon (for ssh data). Other performance data
collectors may be made available by other ZenPacks.

By default, zenperfsnmp runs every 5 minutes; for ssh-collected data, the performance
template allows you to specify a collection interval although zencommand only runs
every minute, by default. With Zenoss Core, a single zenperfsnmp daemon is
available (although it is possible to deploy others); with Zenoss Enterprise, multiple
data collectors can be configured fairly easily. This means in a typical Zenoss Core
installation, that there really is only one polling interval configuration to collect
SNMP performance data. The default of 5 minutes can be changed easily using the
ADVANCED -> Collectors -> localhost -> Edit menu, but there is still only one collector
(or monitor, as it used to be called).

To specify performance data for collection, Zenoss templates need to be created and
bound to a device or device class. A template defines:

e One or more data sources
e One or more data points
e Threshold values, if required

e Graph definitions, if required

5.1 Performance templates for devices

For the Bridge MIB ZenPack, some data may be required pertinent to the whole
device; other data will be per-port. Device-wide data can be gathered in the usual
manner and will be displayed under the standard Perf tab for Zenoss 2 or the left-
hand Graphs menu for Zenoss 3.

For example, the Bridge MIB provides values out of the Spanning Tree Protocol (Stp)
subtree of the MIB which gives:

e dot1dStpTimeSinceTopologyChange (TimeTicks) .1.3.6.1.2.1.17.2.3.0
e dotldStpTopChanges (Counter32) .1.3.6.1.2.1.17.2.4.0

105 © Skills 1st Ltd 22 January 2011

http://dev.zenoss.com/trac/ticket/7324

These values give a measure of the number of centi-seconds since the last Stp topology
change and the number of topology changes since the last initialise or reboot of the
device. Note that both have .0 on the end — they are scalar MIB values ie. there is
only one value for the whole device. A Zenoss template can be configured to collect
and graph these values.

I Zenos;E DASHBOARD EVENTS | INFRASTRUCTURE | REPORTS ADVANCED jane SIGN OUT

Networks Processes IP Services Windows Services Network Map Manufacturers Page Tips

Data Sources Thresholds

BridgeMIB

Devices (3)

I> dot1dStpTimeSinceTopologyChange 1.3.6.1.21.17.2.3.0
> dot1dStpTopChanges 1.3.6.1.21.17.24.0

Events

Configuration Properties
Overridden Objects
Custom Schema
Administration

Modeler Plugins

Modifications

4 Monitoring Templates

Bridge Stp_Topo (Network/Switch/BridgeMIE Graph Definitions

Device (/Devices)

dot1dStpTopChanges
dot1dStpTimeSinceTopologyChange

I T D £l I T+

Figure 88: Zenoss performance template to gather Bridge Stp topology change data for the BridgeMIB
device class

Templates is an area where Zenoss 3 has made great improvements in the clarity of
the GUI. With Zenoss 2, it was not always easy to see whether a template was bound

to a device or device class; with Zenoss 3, a device class has a Monitoring Templates
left-hand menu from its DETAILS link (as seen in Figure 88). The submenus show
each bound template. Similarly, a device also has a Monitoring Templates menu.

To activate the template, it must be bound either to a device class or to a specific
device. Use the Bind Templates menu from the Action icon to bind a template to a
specific device.

106 © Skills 1st Ltd 22 January 2011

Zen OSS™ oasueomR

Networks Processes

=)

Qverview

Events
4 Components
@ Network Routes (2)
@ Interfaces (26)
¥ Bridge Interfaces (28)
Software
Graphs
Admini

D

EVENTS INFRASTRUCTURE REPORTS ADVANCED sienour H

IP Services Windows Services Network Map Manufacturers Page Tips

Confi Bind Templates
Mocle Add Local Template

Cust Remove Local Template
Mociif
Reset Bindings
< Monit
B Override Template Here
D

Reset/Change IP Address...
Push Changes.

Medel Device.

Rename Device...

Clear Heartbeats. .

Leck.

Delete Device.

8 e

icgeMIE

| E’Em Q; Type to filter by name
I 1 T .

00:04:C1:02:00:C1 FastEthemetoi1 group-100-s2.class. example.org

00:04:C1:02:00:CA FastEthemet0/10: aroup-100-s2.class. example.org 4 10-00:04:C1:0:

1 00:04:CT:0200:CB 1o or o ooy aroup-100-s2.class. example.omg 4 Down @& 11-00:04:C1:0;,

12 00:04:€1:02:00:CC FastEthernet0i12: droup-100-s2.class. example.org. 4 Dawn @ 12-00:04:C1:0c}

13 00:04:C1:02:00:CD FastEtherneto/13: group-100-s2.class. example.org. 4 Down @ 13-00:04:C1:0c}

00:04:C1:02:00:CE [ciFthemeto/14: group-100-s2.class. example.org. 4 Down & 14-00:04:C1.:0C

Figure 89: Bind Templates menu from Action icon for a specific device

To create templates, use the ADVANCED -> Monitoring Templates option and use the
“+” icon at the bottom of the left-hand menu to Add a Monitoring Template; you will be
prompted for the name, and the device class in the Template Path field.

The Monitoring Templates dialog can display existing templates either by Template or
by Device Class and also indicates with an icon whether a template is a component
template and whether it is bound to a particular device class. The bound status of a
device class template can be “toggled” from the Action icon Toggle Template Binding

menu.

107

© Skills 1st Ltd 22 January 2011

Monitoring Templates

1.36.1.2.1.17.2.3.0 truy

13612117240

Add Template

Name:

Bridge_Stp_Topo

Router Template Path:
4 Switch ‘

4 BridgeMIB PPICETOIT T eV
System in Devices/Service
Service in Devices
Desas)

BridgeMIB in Devices/Network/Switch
Server in Devices

Laser in Devices/Printer
InkJet in Devices/Printer
Printer in Devices

APC in Devices/Power/UPS
UPS in Devices/Power

= Power in Devices
- S v KVM in Devices
& || S| - || Group By. Tsmp:aeeﬁmu,v Class| | Bound: 4 Component x

Figure 90: Add template menu highlighting template "Group by” and template type

Once a template has been created and bound, you should then see graph outlines
under the Perf tab (Zenoss 2) or Graphs menu (Zenoss 3) on the device's detailed page;
however it will typically be two zenperfsnmp collection intervals before you start to
see data.

Note that since dot1dStpTimeSinceTopologyChange is in units of centi-seconds the
graph point has been modified with a Reverse Polish Notation (RPN) expression to
divide by 100 (100,/) to convert it to seconds and the Units field of the graph
definition has been set to secs.

Also note with Zenoss 3.0.3 there is a small bug whereby when editing graph points
the data source name is omitted from the dialog and no changes can be saved until the
name is re-added. This is documented in ticket 7597 (http://dev.zenoss.org/trac/ticket/
7597).

Also note that, although on the Graph Definition the Has Summary box is ticked by
default, you may not see cur, avg and max values for the data at the bottom of the
graph. This is a known issue with Zenoss 3.0.2 / 3 and Firefox whereby this field keeps
resetting to being unticked when the Manage Graph Points -> Edit Graph Point menu
sequence has been used. It is documented as ticket 7404 , with a workaround using
the Zope Management Interface (ZMI), at http://dev.zenoss.com/trac/ticket/7404 and a
patch is now available.

108 © Skills 1st Ltd 22 January 2011

http://dev.zenoss.com/trac/ticket/7404
http://dev.zenoss.org/trac/ticket/7597
http://dev.zenoss.org/trac/ticket/7597

Edit Graph Point

Name:

dot1dStpTimeSinceTopologyChange :1

1dStpTimeSinceTopology(

Manage Graph Points

CANCEL

Figure 91: dotld Stp template showing Reverse Polish Notation (RPN) to change data units

The resultant graph is shown in Figure 92.

109 © Skills 1st Ltd 22 January 2011

DASHBOARD EVENTS INFRASTRUCTURE REPORTS ADVANCED

Devices Networks Processes IP Services Windows Services Network Map Manufacturers

o\ ‘ A
/

Qverview

Events
4 Components < Zoom Out =

@ Network Routes (2)
@ Interfaces (26)]
@ Bridge Interfaces (25) o.8

Software oL

I EaEan s

Administration 22

Configuration Properties e - ETTRTICT 1 oo on

Modeler Plugins B dotldstpTopChandes €ur: o.ee awg: @.08 max: 9.8

Custom Properties

ke 2

4 Monitoring Templates
Bridge_Stp_Topo (/Network/Switch/BridgeMIE 1.8k ot po
Device (/Devices)

Tk

secs

18k

1.5 k+
Thu oo 00 Thu 12: 60 Fri am:on

| dotidstpTimesinceTopolegyChanas cur: 1.7sk avg: 1.79K

max: 1.75k

[#-]0 [eommar |

Figure 92: Performance graph for switch showing dotld Stp data

Templates to be included with the ZenPack should be added using the Add to ZenPack

menu from the Action icon, as shown in Figure 93.

110 © Skills 1st Ltd

22 January 2011

ZeNOSS™ DASHBOARD EVENTS INFRASTRUGTURE ~ REPORTS | ADVA! jane siGNOUT H
CORE

S L ERETERE Monitoring Templates s Page Tips

Q

4 Devices
r CIM

I Discovered
» HTTP 1 dot1dStpTopChanges 1.3.6.1.2.1.17.2.4.0 tru

I> dot1dStpTimeSinceTopologyChange 1.36.1.2117.230

r KVM
4 Network
I Access Point
i Link Radio
- Router |
4 Switch
4 BridgeMIB

v Bridge_Stp_Topo (Locally

Bridgelnterface (Locally D

e oo
) sthernstCsmacd (Locally Defi -

i Ping
I Power
I Printer

dot1dStpTopChanges

I- Server
I Service

dot1 dStpTimeSinceTopologyChange

[snmp; View and Edit Details
De

O wi
e otf Add to ZenPack

Ovenide Template

Toggle Template Binding 13

I
(1 SIG] s o0 s s

Figure 93: Adding Zenoss performance Template to a ZenPack

Re-exporting the ZenPack will also update the definition of the BridgeMIB device class
in objects /objects.xml, including the zDeviceTemplates zProperty, if you have bound
the template to that device class.

5.2 Performance templates for contained devices

To get performance information for the switch ports that are supported by the
ZenPack, there are two important factors:

e A Zenoss Template with exactly the same name as a contained,
component class object, will automatically be bound to instances of that
object. The object class representing a switch port is BridgeInterface; thus a
template called BridgeInterface will automatically be bound to such objects.

e When specifying a template for SNMP performance data to be collected, unless
the data is a scalar, you do not specify the instance to be collected. The
instances are taken from the object class (BridgeInterface) snmpindex
attribute.

Remember when the BridgeInterfaceMib modeler plugin was created, it populated not
only the unique attributes of the BridgeInterface object class, but also populated the
inherited attributes of:

e id

111 © Skills 1st Ltd 22 January 2011

e snmpindex

Since most of the useful performance data from the BRIDGE MIB is indexed by the
Port value, the snmpindex attribute was set to this value, having first converted the
raw data to an integer type. Thus for a Catalyst 2900, the Port values, and hence the
snmpindex values, run from 13 to 38.

The Zenoss zendmd utility is useful to see the values of objects — see Figure 94 for the
code and Figure 95 for an output fragment.

] jane@zen3:~ - Shell - Konsole <3> .=

Session Edit Wiew Bookmarks Settings Help

>>> =
>>>
>
>
>
el
>>> dev=find (' group—100—s2.class .example.org’)
>»>> for i in dev.BridgelInt():
. for key,wvalue in i.__dict_ .items():
print key,value
>>>
>>>
>>>
>>> =

|| (- spen

Figure 94: Using zendmd to see values of the attributes of a Bridgelnterface object

-

Note in Figure 94 that you start with a device and then print information for the
Bridgelnt relationship for that device.

112 © Skills 1st Ltd 22 January 2011

2] jane@zen3:~ - Shell - Konsol

Session Edit View Bookmarks Seftings Help

snmp index 10

Remotefiddress 00:04:C1:02:00:CA

id 10_00_04 C1_0Z2_00_Ch

__primary_parent__ {ToManyContRelationship at Bridgelnt>
_propertyValues {¥

PortIfIndex 10

createdTine 2010-09-20 19:36:43.986172 GMT+1

_objects ({'meta_type’: 'ToOneRelationship’, 'id’: 'BridgeDeuv’},)
Fort 10

BridgeDev <{ToOneRelationship at BridgeDeu>

Fortitatus 4

snmpindex 11

Remotenddress 00:04:C1:02:00:CB

id 11 00_04 C1 0Z2_00_CB

__primary_parent__ {ToManyContRelationship at BridgelInt>
_propertyValues {¥

PortIfIndex 11

createdTine Z010-09-20 19:36:44.166660 GHT+1

_objects ({'meta_type’: ’'ToOneRelationship’, 'id’: 'BridgeDeu’},)
Fort 11

BridgeDev <ToOneRelationship at BridgeDeu>

Remotenddress 00:04:C1:02:00:CC

id 12 00_04 C1 02_00_CC T
__primary_parent__ <{ToManyContRelationship at BridgelInt>

_propertyValues {¥

FortIfIndex 12

createdTine 2010-09-20 19:36:44.428884 GMT+1

_objects ({'meta_type’: ’'ToOneRelationship’, 'id’: 'BridgeDeu’},)

Port 12

BridgeDeuv <{ToOneRelationship at BridgeDeu>

Port3tatus 4

snmp index 13

Remotefddress 00:04:C1:0Z:00:CD

id 13 _00_04 C1 02_00_CD

__primary_parent__ <{ToManyContRelationship at Bridgelnt>

_propertyValues {¥

PortIfIndex 13

createdTine 2010-09-20 19:36:44.682280 GMT+1

_objects ({'meta_type’: 'ToOneRelationship’, 'id’: 'BridgeDeuv’},) -

& shel |

F’igure 95: Output of the zendmd code to view attributes of a BridgeInterfa(-:e. object

The BridgeInterfaceMib modeler plugin set the id attribute of a Bridgelnterface object
by concatenating the Port number, an underscore and the RemoteAddress. The

Python prepld function was applied to ensure uniqueness. An example would be
10_00_04_C1_02_00_CA.

The BRIDGE MIB provides values for:
e dot1TpPortInFrames (Counter32) .1.3.6.1.2.1.17.4.4.1.3
e dotlTpPortInFrames (Counter32) 1.3.6.1.2.1.17.44.14

These are performance counters for traffic seen on a transparent bridge port and they
are indexed by port number. To be able to graph these values per-port, when an
individual port is clicked on in the GUI, create a template with the name
Bridgelnterface for the /Devices/Network/Switch/BridgeMIB device class.

113 © Skills 1st Ltd 22 January 2011

Zen oss

DASHBOARD

Settings Collectors

q

4 All Events
/Server

- AP

I+ Availability

I Bridge_Stp_Topo

4 Bridgelnterface

/Network/Switch/BridgeMIB
- Device

I+ Device Events

- DeviceCpuMemlo
I+ ethernetCsmacd

- ethernetCsmacd 64
I~ FileSystem

- HardDisk

I hrPageSpace

I HttpMonitor -
I IpService

- JC_Sig_Strength
i LDAPServer

- MeshAPDevice
- MeshAPs_Clients
o MySaL

I NumSUs

- OSProcess

4 dotTpPortinFrames

INFRASTRUCTURE

Monitoring Templates MIBs

& Data Sources
' Dat

4 dot1TpPortCutFrames

dot1TpPortCutFrames

dotTpPortinFrames

13612.1.17.44.14

136121174413

Thresholds

[+]e]e]

SNMP

COUNTER
true SNMP
COUNTER

T H

Page Tips

+

Port_traffic

i RSSI = gl

Figure 96: Bridgelnterface template

There is no need to bind this template to any device or device class. To see

performance data for a device, simply click on a port under the Components submenu
for Bridge Interfaces and select either the Graphs or Bridge Interface Graphs Display
dropdown (remembering that it will generally take two SNMP polling intervals before

data is displayed).

Devices etwo ocesse

o

Cverview
Events
4 Components
& Network Routes (2)
@ Interfaces (26)

Software

Graphs

Administration

Configuration Properties

Modeler Plugins

Custom Properties

Moediifications

4 Monitoring Templates

Bridge Stp_Topo (/Networl/Switch/BridgeM||
Device (/Devices)

o o
O - | © | setect-
0
i
o 4 08:4C:92:00:88:89
[] 2 00:30:93:0A0F5A Lo bthemeti/t: 172.31.100.17 group-100-r2.class. example. org
o 3 08:4C:BF:.C2:79:F5
e 18 00:04:€1:02:00:D2 FastEthermeta/1 8: group-100-s2.class. example. org
[] 4 00:04:C1:02:00:C4 iy imia group-100-s2.class. example. org
Bridge Interface Graphs|
Graphs
H ~|
Events 2y,
Details
Bridge Interface Graphs < Zoom Out >
Bridge Interface Template
2| Modifications
18 k
10 k
5k 5
Thu 12:00 Fri oo: oo Fri 12:08
Wl dotiTpPortoutFrames cur: 1,41k avg: 2. 31k max: 4. 28K

Figure 97: Performance graph for a specific switch port

114

© Skills 1st Ltd

Reset

>
Q Type to filter by name
up @ 4-08:4C:92:00
up® 2-00:30:93:04
up @& 3-08:4C:BF:C2
Down @ 18-00:04:C1:0:
Down @ 4-00:04:C1:02: [~
v .. 300

22 January 2011

The bottom three options on the Display menu shown in Figure 97 were defined in the
object class file Bridgelnterface.py as shown in Figure 34 on page 46. The skins file to
display performance graphs for a port is in skins/ZenPacks.skills-

1st.bridge / viewBridgelnterface.pt shown in Figure 53 on page 69.

Remember to add the BridgeInterface performance template to the ZenPack when it is
complete and to re-export the ZenPack.

6 Testing and debugging ZenPacks

The chances of getting a ZenPack with new source code, correct first time, is not high.
This section offers some testing and debugging hints.

6.1 Testing

There may be four main areas where you have added code; object class files, modeler
plugins, skins and JavaScript files.

6.1.1 Testing new object class files

If you have created or changed object class files, you should always delete any
discovered instances that use those files and rediscover them to ensure that any
relationship changes are established correctly. You should certainly recycle zenhub
and zopectl with:

e zenhub restart
e zopectl restart

Typically you will be doing initial testing with a single device so delete the device and
use the Add Device menu to re-add it, ensuring that you specify your new device class
in the Device Class dropdown. Adding the device runs zendisc which calls zenmodeler.
You may see error messages in the discovery GUI. Usually they are quite good at
pinpointing the problem to a particular line in a particular file. Watch out especially
for syntax errors in your code such as missing closing brackets, missing quotes or
missing colons (:).

Another way to start testing object class files is to use the Zope ZMI interface to
navigate to http:/ /zen3.class.example.org:8080/zport /dmd /manage and then
navigate down Devices/Network/Switch/BridgeMib/devices/<a specific device> and
check that the Bridgelnt relationship exists.

A classic error to make in Python files is to get white space indentation wrong.
Python uses indentation to structure if, while, for and other constructs; you must be
consistent with the number of spaces used at each level of indentation.

115 © Skills 1st Ltd 22 January 2011

6.1.2 Testing modeler plugins

If you have created or changed a modeler plugin, you need to restart zenhub and
zopectl; typically you do not need to delete your test device and re-add it. It should
be sufficient to simply use the Model Device menu from the Action icon and watch the
output (note that you do need Zenoss 3.0.3 or you may find a bug causes the modeler
output to be invisible!).

Note the dialogue particularly to ensure that your modeler does at least attempt to
run — the output will show what plugins are to be run. You may need to uncheck the
Autoscroll box at the bottom-right to be able to scroll back up the window.

ZeN0SS™ ashreinn mumsme | mrmscrouemine | nenanTe amvansen
CORE

Model Device

—
\ Devices Network:

- group-100-s2.
 /Network/Switch/Brid
A 172.31.100.21

1
1
1
1
Overview 1
Events 1 0
1 IMP n d
2E1L-01-21: 15: 29,416 INFO zen.ZenModele plugins: zenoss.snmp.hNewDeviceMap, zenoss.snmp.DeviceMap, zenoss.snmp.InterfaceMap,
zenoss.snmp.RouteMap, BridgelnterfaceMib, BridgeDeviceMib

< Components
& Network Routes (2

Software
Graphs
Administration

Confi Bind Templates
Mocle Add Lecal Template
Gustc
Modif

4 Monit
Br Override Template Here

Remove Laoal Template

Reset Bindings

Di Reset/Change IP Address...

Push Changes..
Model Device.

Rename Device.
Clear Heartbeats

Lock.

Delete Device.

IEE e
Figure 98: Output from Model Device highlighting the plugins to be run

If your modeler doesn't appear on the plugins list it is probably a compilation error.
Remember that you have created python source files (ending in .py); Zenoss will
compile-on-demand to generate .pyc files. A good check is always to inspect the base
Zenoss directory and the modeler/plugins directory to ensure that you have
matching .pyc files for each of your .py files.

A good way to test for compilation errors is to use the zendmd utility to import the file
in question.

116 © Skills 1st Ltd 22 January 2011

Zenossezensddl: > zendmd
Uelcome to the Zenoss dmd command shellt
‘dmd’ is bound to the DataRoot. “zhelp()’ to get a list of commands.
>>> from ZenPacks.skillslst.bridge.modeler.plugins import BridgeDeviceMib
»»>» from ZenPacks.skillslst.bridge.modeler.plugins import BridgeDeviceMib
>3
zenoss@zenZ41: 7> zendnd
Welcome to the Zenoss dmd command shell?
‘dmd’ is bound to the DataRoot. 'zhelp()’ to get a list of commands.
>>> from ZenPacks.skillslst.bridge.modeler.plugins import BridgeDeviceMib
Traceback (most recent call last):

File “<console>", line 1, in 7

File “~usrslocalszenossszenoss-locals janesZenPacks.skillslst .bridge-ZenPackssskillslist bridgesm
odeler/plugins/BridgeDeviceMib.py"”, line 32

)

~

SyntaxError: invalid syntax
»»> |

Figure 99: zendmd dialogue showing successful compilation and unsuccessful compilation

The figure above shows a successful import (in fact, two of them!) — you simply receive
a command prompt back. Note that you need to specify an object path to the Python
source file, not a file path. The second zendmd dialogue shows a failed compilation (I
removed a closing bracket from line 32).

Note that, for some Python files you might also test compilation simply with:
pyt hon Bri dgeM b. py

however, you may get different compilation errors from this test as python on its own
has no concept of the Zenoss environment or libraries whereas zendmd has, and
python compilation may fail with unknown imports.

If the modeler runs but fails then hopefully you get a message in the GUI showing the
modeler output. If there are insufficient clues here, try running zenmodeler
standalone with full debugging turned on (-v 10):

zennodel er run -v10 -d group-100-s2. cl ass. exanpl e. org

If you still can't see the problem, try putting log statements in the modeler plugin code
to output intermediate data stages. Figure 100 highlights log.warn statements that
output the results of the SNMP getdata and tabledata structures.

117 © Skills 1st Ltd 22 January 2011

) jane@zen241....del/skins/zenmodel - Shell - Konsole <)

Session Edit View Bookmarks Seftings Help

| def process(self, device, results, log): -
""eollect somp information from this device"""
log.info(’ processing #s for device xs', self.name(), device.id)
#Collect Physical Port Forwarding Table
getdata, tabledata = results

#t Uncomment next 2 lines for debugging when modeling
log.warn(“"Get Data= »xs", getdata)
log.warn("Table Data= xs", tabledata)

BaseTable = tabledata.get("dotldBasePortEntry')

#t If no data returned then simply return
if not BaseTable:
log.warn("No SHMP response from ¥s for the #s plugin’, device.id, self.name())
log.warn(“Data= »xs", getdata)
log .warn("Columns= »s", self.basecolumms)
return

PortTable = tabledata.get(“"dotldTpFdbEntry')

If no data returned then simply return
if not PortTable:
log.warn("No SHMP response from xs for the #s plugin’, device.id, self.name())
log .warn("Data= xs", getdata)
log .warn("Columns= »s", self.portcolumns)
return

"Bridge InterfaceMib.py"” [readonlyl 114 lines ——42x— 18,1 54

Figure 100: BridgelnterfaceMib.py code highlighting debugging logging

If you get really desperate, try the logging lines highlighted in Figure 101 to output all
the attributes for an object instance; do not leave these lines uncommented once the
problem is resolved.

118 © Skills 1st Ltd 22 January 2011

] jane@zen3:~ - Shell - Konsole -

Session Edit VWiew Bookmarks Seftings Help

om.RemoteAddress = self.asmac(om.RemoteAddress) -
om.snmpindex = int(om.Port)

The BasePortIfIndex is found from the BaseTable where the Port number from

dot1dTpFdbEntry table matches the Port number from the dotldBasePortEntry

om.PortIfIndex = -1
for boid,bdata in BaseTable.items():
if bdatal’BasePort’] == om.Port:
on.PortIfIndex = bdatal’BasePortIfIndex’]

Unigque id attribute is <{local port>_<remote MAC address>
prepld function ensures that results are all wnigue — will add _1, _2 etc to achieve this
on.id = self.prepld(“xs_xs" » (om.Port, om.RemoteAddress))

For lots of debugging, uncomment next 2 lines
for key,value in om._ dict__ .items():
it log.warn("om key = xs, om value = xs", key,value)

rm.append (on)
return rm

"BridgeInterfaceMib.py" [readonlyl 120 lines —100x— 120,0-1 Bot |+

Figure 101: BridgelnterfaceMib .py highlighting debugging logging to output all the final object
attributes

6.1.3 Testing skins files and JavaScript files

If skins or JavaScript files have been created or changed, you generally only need to
restart zopectl and then refresh the web page in the Zenoss GUI. If the code is
incorrect a standard error page is shown and you can get more information by clicking
the View Error Details link.

ZenOss Core

% jane Preferences Logout Help

Zenoss server time: 20:30:

LMW A Zenoss error has occurred

View Error Details
An error was encountered while publishing this resource. Please use the form below to submit details of this error to Zenoss. Inc. This information helps us identify
and fix issues with the software, though we are unable to respond individually to all submissions
The Zenoss community forums are very active and a good resource for solving problems and answering questions. Zenoss also provides commercial services and
support packages.
The following fields are optional. This information will only be used to contact you if further information is needed regarding this error.
Your name:

Your email address:

Additional info you would like to provide:

Click this button to send the above information to Zenoss, Inc

Send Error Details
Figure 102: Standard error message for a faulty web page definition

119 © Skills 1st Ltd 22 January 2011

Logout Help

Zen E)SS Core

Zenoss semver time: 20:32:(

Main Views A Zenoss error has occurred
View Error Details
Type: PTRuntimeError
Value: Page Template BridgeDeviceDetail has errors: [Compilation failed”, "TAL.TAL Defs.TALError: TAL attributes on <tr> require explicit <tr>, at line 21, column 57
Traceback (innermost |ast):
Classes

« Module ZPublisher Publish, line 114, in publish

E o Module ZPublisher.mapply. line 88, in mapply

& Module ZPublisher Publish, line 40, in call_object

» Module Shared.DC.Scripts.Bindings, line 317, in __call__

e Module Shared DC Scripts Bindings, line 348, in _bindAndExec

» Module Products.CMFCore. FSPageTemplate, line 195, in_exec

o Module Products CWFCore.FSPageTemplate. line 134. in pi_render

e« Module Products PageTemplates PageTemplate, line 95, in pt_render
<FSPageTemplate at /zportBridgeDeviceDetail used for ;zport/dmd/Devices NetworliSwitch/BridgeMIBidevices/switch.skills-1st.co.ulc
Warning: Compilation failed

Browse By Warning: TAL.TALDefs. TALErmor: TAL attributes on <tr> require explicit <tr>, at line 21, column 5

PTRuntimeEror: Page Temnplate BridgeDeviceDetail has errors: [Compilation failed, TAL.TALD efs TALError: TAL attributes on <t require explicit</Ar=, at line 21, column 51

An error was encountered while publishing this resource. Please use the form below to submit details of this error to Zeness, Inc. This information helps us identify
and fix issues with the software, though we are unable to respond individually to all submissions

The Zenoss community forums are very active and a good resource for solving problems and answering questions. Zenoss also provides commercial services and
support packages.

The following fields are optional. This information will enly be used to contact you if further information is needed regarding this error

Your name

Your email address:

Additional info you would |ike to provide:

er

Figure 103: View Error Details for a faulty web page definition

Figure 103 shows the detailed error output. The file and line number at fault are
documented (I had indeed commented out a closing </tr> at line 21 of the
BridgeDeviceDetail.pt file). Simply fix the file, issue zopectl restart and refresh the
web page.

Sometimes the web View Error Details page suggests something is wrong that is
nowhere near anything you have recently changed. If this happens, try restarting the
whole Zenoss system with:

zenoss stop
zenoss start

If you suspect issues with JavaScript you could run a Firefox Error Console to see the
JavaScript errors - “There will be tons of CSS issues coming from different CSS pages
(it's annoying, but not fatal), and you can safely ignore them”, says the debugging
section 13.8 of the Zenoss Developer's Guide! If you filter out Warning severity
messages from the Firefox Error Console, it may help you spot real issues.

Section 13.8 also has the following advice with regard to JavaScript:

“The Firefox Error Console will not tell you if Firefox wasn't able to find or load a
JavaScript file (if the path you've specified in your Web page to get to the JavaScript
file is incorrect). In order to determine if Zope was given a path to a filename that it
couldn't find, you'll need to go into Zope's ZMI, go to the error log
(http://yourzenossserver:8080/error_log/manage) and remove all of the error log filters.

120 © Skills 1st Ltd 22 January 2011

After you do that, retry the operation and you can see what files Zope wasn't able to
find and fix the paths in your page.”

6.1.4 Debugging problems with performance data

There are several ways that performance data collection can fail:

e A template is created but not bound to a device. In this case, no attempt will
be made to collect data. Go to the device's details page and check the
Monitoring Templates listed there (remember that component templates,
matching the component object class name, do not need binding — this happens
automatically — and the component template will not be listed for the device).

e You could also check the zDeviceTemplates property from the Configuration
Properties menu to ensure the correct templates are bound.

e Scalar MIB values need the trailing .0; otherwise no data will be collected.

e If SNMP community names configured in Zenoss do not match those in the
target agents then you will get no SNMP data. Test with a simple snmpwalk
command from a command line; for example:

snmpwal k -v 1 -c public switch.skills-1st.co.uk system

e If atemplate is correctly configured and bound but there are only one or two
data values collected (counter values need at least two values before a point can
be plotted as it is a rate-of-change measurement), you will see a graph with no
data and the cur, avg and max values will have the value nan. This simply
means graph points are not yet available; another snmp polling interval usually
fixes this issue.

e For component device templates collecting tables of SNMP data, the instance
may be the issue. Increasing the logging level for zenperfsnmp may help
diagnose this.

Templates collect data into Round Robin Database (rrd) files, held under $ZENHOME/
perf/Devices with a separate subdirectory for each device and each device may have
subdirectories for components such as os or Bridgelnt (ie. the relationship name of
the contained device); there may be further subdirectories for each instance (ie each
port for the BridgeMIB ZenPack), where the subdirectory name is the id of the port,
for example, 24_00_30_E2_F7_2A_1C.

Always check that rrd files exist. Templates for devices have the format:

<dat asour ce name>_<dat apoi nt nanme>.rrd

121 © Skills 1st Ltd 22 January 2011

E;l Jane @zen241:...deliskins/izenmodel - Shell - Konsole

Session Edit View Bookmarks Settings Help

-ru-r-—r—— 1 zenoss zenoss 35296 Z003-08-13 10:04 sysUpTime_sysUpTine.rrd [E
zenoss@zen4l: usrslocal- zenoss/zenoss/perf-Devices>
zenoss@zen4l :rusrrslocalszenoss/zenoss/perf-Devices>
zenoss@zen4l : susr/localszenoss/zenoss/perf-Devices>

zenoss@zen4l : susr/locals/zenoss/zenoss/perf-Devices> ls -1

total 60O

druxr-x-—— 3 zenoss zenoss 4096 2009-05-28 15:16 adslZ.skills-1st.co.uk

druxr-x-—— 3 zenoss zenoss 4096 2009-06-30 17:14 bino.skills-1st.co.uk

druxr-x-—— 3 zenoss zenoss 4096 Z2009-08-06 05:17 deodar.skills-1st.co.uk

druxr-x-—— 3 zenoss zenoss 4096 2009-06-22 16:12 group-100-linuwx.class.examnple.org

druxr-x-—— 3 zenoss zenoss 4096 2009-06-30 15:46 group-100-rl.class.example.org

druxr-x-—— 3 zenoss zenoss 4096 2009-06-2Z22 13:27 group-100-rZ.class.example.org

druxr-x-—— 3 zenoss zenoss 4096 2009-06-2Z22 13:32 group-100-r3.class.example.org

druxr-x-—— 4 zenoss zenoss 4096 2009-08-04 12:05 group-100-sl.class.example.org

druxr-x-—— 4 zenoss zenoss 4096 2009-08-12 09:46 group-100-sZ.class.example.org

druxr-x-—— 3 zenoss zenoss 4096 2009-05-28 15:16 hp?410.skills-1st.co.uk

druxr-x-—— 3 zenoss zenoss 4096 2009-06-30 15:36 server.class.example.org

drwxr-x-—— 4 zenoss zenoss 4096 2009-08-12 09:41 suwitch.skills-1st.co.uk

drwxr-x-—— 3 zenoss zenoss 4096 2009-08-12 19:16 taplow—20.skills-1st.co.uk

druxr-x-—— 3 zenoss zenoss 4096 2009-08-12 18:17 teamlitm.class.example.org

druxr-x-—— 3 zenoss zenoss 4096 Z2009-07-06 10:46 zenZ4l.class.example.org

zenoss@zen4l: /usr/local/zenoss/zenoss/perf-Devices> ls -1 switch.skills-1st.co.uks

total 116

druxr-x-—— 9 zenoss zenoss 4096 2009-07-30 21:04 Bridgelnt

—rw-r-—r—— 1 zenoss zenoss 35296 2009-08-13 10:04 dotl1ldStpTimeSinceTopologyChange_dot1dStpTimeSinceTopologyChange.rrd
—ru-r-—r—— 1 zenoss zenoss 35£96 Z009-08-13 10:04 dotld3tpTopChanges_dot1dStpTopChanges.rrd

druxr-x-—— 3 zenoss zenoss 4096 2009-07-09 12:08 os

~ru-r-—r—— 1 zenoss zenoss 35296 2009-08-13 10:04 sysUpTime_sysUpTine.rrd =
zenoss@zen4l: usrslocal zenoss/zenoss/perf-Devices> I =

o) @ shen

Figure 104: Directories for performance files for devices

If you see graphs that have no data at all, this generally means that a template is
bound but there is no rrd file, as shown in Figure 105.

[} Zope on http:#zen241.clas... C Zenoss: switch.skills-1st.c...

© Zenoss: group-100-s1.cla... C Zenoss: switch.skills-1s... @
Doy o e —

Eac

dot] dStp TopChanges
Metwaork

2,
@,
Classes o
[}
o

0.0

Wed @o: 00 Wed 12:00 Thu oo: oo Q
2000-08-11 22:20:42 to 2000-08-13 10:20:42
W dotidstpTopchanges cur: 0.80 avg: 8.08 max: 8.00

dot1 d Stp Time Since Topology Change

1000

A
secs

5 @ @
@ @ o
& @ o
v

wed ©: o0 wed 12100 Thu oo:oe Q
2009-08-11 22:20:42 to 2009-08-13 10:29:42
W dotldstpTimeSinceTopologyChange cur:91z.27 avg:510.84 max:912.27

Bridge StpPriority

Y

Figure 105: The empty graph at the bottom suggests that a template is bound but no data has been
collected

122 © Skills 1st Ltd 22 January 2011

Note that when you configure data sources in a template, there is a test button that
you can use to specify a device known to Zenoss; however, the test that is run, strictly,
is an snmpwalk whereas the zenperfsnmp daemon is more likely to issue an snmpget,
so the test button can disguise problems with instances.

S Test Data Source

group-100-s2.class.example.org
Network/Switch/BridgeMIB
172.31.100.21

Overview
Events +| S {:",
4 Components Data Pcints by Data Scurce Source
Network Routes a 1.36.1.21.17.230

Interfaces dot1dStpTimeSinceTopologyChange

Bridge Interfaces dot1dStpTop!

136.1.21.17.24.0

Edit Data Source

NETES Type:

il dot1dStpTimeSinceTopologyChange SNMP

OID:

13612117230

Enabled

Test Against a Device
Device Name:

-100-s2.class.example.org

TEST

o - | £} - | Commands -
Figure 106: Using the TEST button from the Edit Data Source configuration dialogue

6.1.5 General testing and debugging hints and tips

A common issue with some environments and browsers is to see a blank screen in the
Zenoss GUIL. This is usually resolved simply by resizing fonts in the browser using
Ctrl - .

There are two general areas for debugging help. Zenoss logfiles are all held under
$ZENHOME /log. By default they have an Info level of logging but this can be
increased to Debug to provide lots more data. When the problem is resolved, the
original logging level should be restored.

Daemon log files and their configuration can be inspected from the ADVANCED ->
Settings -> Daemons menu. To increase the debug level, change the logseverity to
Debug. If you check the configuration file for this daemon in $ZENHOME /etc you will

see a line:

| ogseverity 10

Any changes to a daemon's configuration file requires a restart of the daemon, either
through the GUI or using <daemon> restart from a command line.

123 © Skills 1st Ltd 22 January 2011

In addition to checking specific Zenoss daemon files like zenmodeler.log or
zenperfsnmp.log, it is always worth also checking zenhub.log and event.log.

The second general debugging tool is zendmd. This is a Python interpretive
environment provided by Zenoss that already understands some of the Zenoss object
hierarchy. It is an excellent “sandpit” to test out bits of Python and to query Zenoss
objects and their attributes and methods. Several examples have already been
demonstrated throughout this document.

When weird things happen that really make no sense at all, try recycling the whole
Zenoss system with a:

zenoss stop
zenoss start

7 Conclusions

ZenPacks are a powerful and flexible way to extend core Zenoss capability.
Development mode provides a simple method to achieve simple ZenPacks. Source
mode ZenPacks require more understanding of Zenoss internals, SNMP, Python and
of JavaScript, but anything is possible.

The Bridge MIB ZenPack will be available from the Zenoss ZenPacks website - http:/
WWW.zenoss.com/community/projects/zenpacks/ . The source code for the ZenPack is
available, with this document, at http:/www.skills-1st.co.uk/papers/jane/zenpacks/

124 © Skills 1st Ltd 22 January 2011

http://www.skills-1st.co.uk/papers/jane/zenpacks/
http://www.zenoss.com/community/projects/zenpacks/
http://www.zenoss.com/community/projects/zenpacks/

References
1. Zenoss Developer's Guide 3 -
http:/community.zenoss.org/community/documentation
2. Zenoss Administration Guide 3 -
http:/community.zenoss.org/community/documentation

3. Zenoss Extended Monitoring Guide 3 for documentation on Core and Enterprise
ZenPacks - http:/community.zenoss.org/community/documentation

4. Zenoss FAQ at http:/community.zenoss.org/docs/DOC-2446 and
http:/community.zenoss.org/docs/DOC-4724

5. Zenoss ZenPacks site at http:/community.zenoss.org/community/zenpacks

6. Zenoss-ZenPacks forum at
http://community.zenoss.org/community/forums/zenoss-zenpacks

7. Zenoss community developer site wiki at
http:/community.zenoss.org/docs/DOC-2350 , “Diving into the device model”.

8. “Custom ZenPacks rough guide” contributed by blacks to the Zenoss forum at
http:/community.zenoss.org/docs/DOC-2358

9. Zenoss download site - http:/community.zenoss.org/community/download
10.net-SNMP SNMP agent from http:./www.net-snmp.org/

11.BRIDGE MIB, RFC 1493 - http://www.ietf.org/rfc/rfc1493.txt

12. oidview online website for viewing MIBs such as the BRIDGE MIB -
http://www.oidview.com/mibs/0/BRIDGE-MIB.html

13.“Learning Python” by Mark Lutz, published by O'Reilly

14. Zope web application server information from http:/www.zope.org/WhatlsZope

15.“The Zope2 Book” from http://docs.zope.org/zope2/zope2book/

16.Zope Page Templates Reference -
http://docs.zope.org/zope2/zope2book/AppendixC.html

17.Zope Configuration Markup Language (ZCML) reference -
http://apidoc.zope.org/++apidoc++/ - and follow the ZCML link

18.Zope 3 Interfaces reference - http://wiki.zope.org/zope3/WhatAreInterfaces

19.“ZenPack Development Procedures” document for working with ZenPacks on
Zenoss's ZenPack site, written by David Buler (“phonegi”) -
http://community.zenoss.org/docs/DOC-10223

125 © Skills 1st Ltd 22 January 2011

http://docs.zope.org/zope2/zope2book/
http://community.zenoss.org/docs/DOC-2358
http://community.zenoss.org/docs/DOC-2350
http://community.zenoss.org/docs/DOC-10223
http://community.zenoss.org/community/download
http://community.zenoss.org/community/forums/zenoss-zenpacks
http://community.zenoss.org/community/zenpacks
http://community.zenoss.org/community/documentation
http://community.zenoss.org/community/documentation
http://community.zenoss.org/community/documentation
http://community.zenoss.org/docs/DOC-4724
http://community.zenoss.org/docs/DOC-2446
http://wiki.zope.org/zope3/WhatAreInterfaces
http://apidoc.zope.org/++apidoc++/
http://docs.zope.org/zope2/zope2book/AppendixC.html
http://www.zope.org/WhatIsZope
http://www.oidview.com/mibs/0/BRIDGE-MIB.html
http://www.ietf.org/rfc/rfc1493.txt
http://www.net-snmp.org/

Acknowledgements

Several people have contributed either actively or passively to this paper:

e “blacks” on the Zenoss forum for his Custom ZenPack Rough Guide that got me
started. The original work for this was submitted by Zach Davis.

e Danny Deng who sent me his ZenPack samples and explanations
e George Fakhri for his blog post on “How to create a ZenPack..”

e “bigegor” on the Zenoss forum for his excellent ZenPacks used extensively as
examples, and for his responses to questions

e David Buler (“phonegi”) contributed hugely by doing the “detective work” on the
mechanics of the new component panel code

126 © Skills 1st Ltd 22 January 2011

	1 What are ZenPacks?
	2 The process of building a ZenPack
	2.1 ZenPack creation
	2.2 Exporting and installing ZenPacks

	3 “Simple” ZenPacks
	4 Designing complex ZenPacks
	4.1 Basic principles
	4.1.1 Configuration data and performance data
	4.1.2 The Zope Object Database (ZODB)
	4.1.3 Coding techniques and terminology
	4.1.4 Databases, Daemons and Directories

	4.2 Requirements for the sample ZenPack
	4.3 Creating the sample ZenPack
	4.3.1 Elements required and their names
	4.3.2 SNMP data required
	4.3.3 Creating the ZenPack
	4.3.4 Adding elements to the ZenPack using Development mode
	4.3.5 Creating the object class files
	4.3.6 Testing with the zendmd utility
	4.3.7 Creating the modeler plugin files
	4.3.8 Displaying data for the ZenPack with Zenoss 2
	4.3.9 Displaying data for the ZenPack with Zenoss 3
	4.3.9.1 What needs changing between Zenoss 2 and Zenoss 3?
	4.3.9.2 BridgeMIB ZenPack without any changes to presentation code
	4.3.9.3 Improving Bridge Interface information with JavaScript additions
	4.3.9.4 Understanding the Component Panel in Zenoss 3

	4.3.10 Linking development mode elements with source mode elements

	5 Gathering Performance Data
	5.1 Performance templates for devices
	5.2 Performance templates for contained devices

	6 Testing and debugging ZenPacks
	6.1 Testing
	6.1.1 Testing new object class files
	6.1.2 Testing modeler plugins
	6.1.3 Testing skins files and JavaScript files
	6.1.4 Debugging problems with performance data
	6.1.5 General testing and debugging hints and tips

	7 Conclusions
	References
	Acknowledgements

