Zenoss

ZenPack Developers' Guide

Version 1.0.1

Revision Date: September 20, 2016

This work is copyright © 2016

Oct 13, 2016 ZenPack Developers' Guide

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported
License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/ or
send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California,

[@Noe

DISCLAIMER: The Development Guide provided by Zenoss, Inc. is provided “AS IS” and
“WHERE IS”. The Community and Customers assumes all risk of using the Development
Guide and Zenoss, Inc. does not warrant the Development Guide or its fitness for a particular
purpose in any use. The Community and Customers agrees that any efforts by Zenoss to
modify the Development Guide at the request of the Community or Customer shall not be
deemed a waiver of these limitations. Community and Customer further agree that Zenoss
shall not be liable to any Customer or any of its affiliates or customers of the Customer for
any loss of profits, loss of use, interruption of business, or any direct, indirect, incidental,
special or consequential damages of any kind whether under the use of the Development
Guide or otherwise, even if Zenoss was advised of the possibility of such damages.

Except for collection of information and materials, Zenoss disclaims all liabilities under this
Development Guide offering and the sole reason for Zenoss being a party to this Development
Guide offering is to facilitate the collection of information between the Community. Zenoss
provides no warranty and disclaims all liability for the Development Guide offering and its
contents.

il ZenPack Developers' Guide Oct 13, 2016

http://creativecommons.org/licenses/by-sa/3.0/

<]

Synopsis

Zenoss is the global leader in hybrid IT monitoring and analytics software, providing complete
visibility for cloud, virtual and physical IT environments for more than 40,000 global
organizations.

ZenPacks are the extension mechanism provided by Zenoss to build new functionality and
also to easily port customization from one Zenoss server to another. This document provides
detailed ZenPack design practices, coding techniques and debugging hints, based around a
number of sample ZenPacks.

The sample ZenPacks explore:
e Zenoss architecture
e ZenPack architecture
e Creating new object classes and relationships
e The zenpacklib tool
e Creating new collector modeler plugins to populate the new classes with data
e Converting old, non-zenpacklib ZenPacks to use zenpacklib
e Creating code for web pages for new types of objects, both JavaScript and TAL
e Creating new performance datasources and data templates
e Converting COMMAND-based ZenPacks to use the PythonCollector
e Incorporating new event classes, triggers and notifications in ZenPacks
e Creating and extending menus
e Extending functionality using routers and facades
e Logging and debugging
e The process of ZenPack creation, GitHub and ZenPack submission to Zenoss

Another objective of the document is to provide examples of good practice. These tips are
highlighted throughout the document with a green tick symbol.

The final main objective is to offer deeper insights into the architecture and functionality
provided in the standard Zenoss code, especially with reference to how the ZenPack developer
uses and extends this code. These sections should probably be skipped initially by someone
first starting out with ZenPacks. There are a number of complete sections and they are
prefaced with * . Smaller, in-depth points throughout the paper are highlighted with a yellow
asterisk.

At the time of writing (Spring 2016) Zenoss 4.2.5 is the main Zenoss production platform.
Many Zenoss 3 implementations are still in use and Zenoss 5.x is emerging among early
adopters. The document will major on 4.2.5 practices but will also cover differences for
Zenoss 3 and Zenoss 5.

It is assumed that the reader is familiar with basic SNMP and Linux concepts and with
standard Zenoss configuration techniques.

Oct 13, 2016 ZenPack Developers' Guide iii

This document is based mainly on Zenoss 4.2.5 with zenup fix 457, on a CentOS 6.3 platform.
The hostname of the Zenoss 4 server is zen42.class.example.org. There are examples
specifically for Zenoss 5 (5.0.7), where the Zenoss 5 server is zen50.class.example.org.

The Zenoss open source community is fundamental to Zenoss. Jane Curry, an open source
community advocate, is the author of this document and we actively invite and encourage
collaboration and feedback moving forward. The document will never be “finished”; always a
“work-in-progress” as the product and knowledge of the product expands.

Notations
Throughout this document:

Text to be typed, file names and menu options, are highlighted by italics.
Important points to take note of are shown in bold.

Points of particular note are highlighted by an icon. n

Points of good practice are highlighted with a tick icon b4

Subtle or more advanced points are denoted with a star icon.

Comments to be examined are prefaced with TODO:

ZenPack samples

All the ZenPack samples can be found on GitHub at https:/github.com/ZenossDevGuide

iv ZenPack Developers' Guide Oct 13, 2016

https://github.com/ZenossDevGuide

Table of Contents

1.0 ZIENOSS COMCEPES.cevrrrriiuunuiiiiieeeeeeeeeeeteeeettrtetteeeeaeeaaaaeaaeeeeeeseeeserssssssnsssnnssaaassassessessesssssssssssnnesrsen 1
1.1 BAckground t0 ZeNn0SS......cccceeiiiiiieieeeiiiiiiiteee e e e e e e e e e e e e e e e e e et araaaaeeeeaeeeeaeesaraaaaaaaaaeeaes 1
1.2 Devices, components, object classes and device classes.......cccvvveeeeeeeeeiieeiiiiiiiiiiieee e, 1

1.2.1 Zenoss monitoring functionality.........ccccccooeieiiiiiiiiiiiiiiiieeeeeeeeeeeeee e 3
1.2.2 Standard conventions for Zenoss code and ZenPacks.............cccceeeniiriiiiiiieeeiiiinnnnnnn. 5
1.3 Z:en088 DABINONIS....coiiiiiiiiiiiiiiiiiieeeeeeeeee ettt e ettt e e e e e e e e e e e e e s st eeeeeees 5
1.4 Zenoss 5 docker architeCture.........coooouviiiiiiiiiiiiiee e 8
1.5 Extending Zenoss out-of-the-box functionality.............ccccooeiiiiiiiiiiiiiiiiieee e, 8

2.0 What are ZenPacks?...........oooiiiiiiiiiiiiiee et e e e e e e e e e e e e e aaaaaas 8

2.1 Sources for ZenPacks........cc.uuiiiiiiiiiiiiee e 8
2.1.1 Free ZenPacks developed DY Zenoss............uuuuiiiiiiieieeieiiieeeeecciiiieeeeeeeeaeeeeeeeeeeeaaees 8
2.1.2 Community developed ZenPacks.............cooeeeiiiiiiiiiiiiieeeeeeeee e 9
2.1.3 Chargeable Zenoss ZenPacks.............cooooiiiiiiiiiiiiieeeee e 9
2.1.4 Write your own ZenPack!.............ccuiiiiiiiiiiiie e 9

2.2 Z:8NPACK DASICS....uuviiiiiiiiiiiiiee ettt ettt e e e ettt e e e e et e e e e ettt e e e e e ettt bt ittt naannaannaannan 9

2.3 Existing ZenPack documentation.............coooeiiiiiiiiiiiiiciieeeeee e 10
2.3.1 High-level documentation............cccccoeiiiiiiiiiiiiiiiiiieeeee e e e e 10
2.3.2 zenpacklib documentation.............cccociiiiiiiiiiiiiiiieeeee e 11
2.3.3 Standard Zenoss documentation..........oecueeiieiiiriiiiieeeinriiieee e e e e e e e 12
2.3.4 Community ZenPack documentation..............cccccuvveiiiiiiiiiiiiiiiiiecciieeeee e 13

3.0 The mechanics of building a ZenPacK...............cccooiiiiiiiiiiiiiieeeeeeceeeeeereee e e e 13

3.1 ZenPack development environment...............cc.ueeviiieiiieeeeieeiececcceeee e 13
3.1.1 ZenoSs 4 and EATLIET.......c.uviiiieiiiiiiiiiee ettt e e e et e e e s et e e e s s araeeeseenanaees 13
B.1.2 ZIBNIOSS Dttt ettt et e e e e e e e e e sttt ettt e e e e e e e e e e e e e e e a e as 14

3.1.2.1 ZETIOSS TSET .. .ceeeeiiiiiitiiiiiieeeee e e e eeeeeee et ttttttataaa e e e e e eeeeeeeeeeatena e eatanaeeresaaeeeeenaans 15
3.1.2.2 Common directory between containers and the base host - /z.......................... 16
3.1.2.3 Configuring the service for a development minimum...........cccuvvvuiiiiiiiiiinnnnnn. 17
3.1.2.4 Useful references for managing a Zenoss 5 environment.................cccceeeeeeeeenns 18

3.2 Z:eNPACK CrEatioN.....cccoiiiiiiiiiiieiiiicee ettt e et e e e et e e e s s abbae e e e e esabaaebabaaanaae 19
3.2.1 What's N @ NAIMIE?.....ccoiiiiiiiiiieeeiiiiieee ettt ee e e e eitte e e e s sttt eeesesseabaaaeesssnssnraeeessnsnsens 19
3.2.2 ZenPack directory hierarchy.............cccoooiiiiiiiiiiiiiiiiieeeceececceeee e e e e e 20
3.2.3 ZenPack creation for Zenoss 4 and earlier...........cccccceeeeeieieeeiiiiiiiiiie e 23
3.2.4 Zenoss 5 ZenPack Creation.........ccooeouuiiieiiiiiiiiiieeieniiieee et e e e 24
3.2.5 ZenPack creation using zenpacklib.............ccccviiiiiiiiiiiiiiiiie e 25

3.3 EXPOrting ZenPacCKs...........uuuiiiiiiiiiiieiiiiie ettt e e e e e e e e e e e e e e e aaa s 25
3.3.1 Exporting Xml data.........cccccuuiiiiiiiiiiiiiieee e e e e e e 25
3.3.2 Creating the .egg from the command line..............cccevveeiiiiiiiiiiiiiiii e, 26

3.4 InStalling ZenPacKs..........uuuiiiiiiiiiiie e e e a e e e e e e e e e e e e e s 26
3.4.1 Installing ZenPacks 0N Zen0SS 4.........cceeieiiieeeieieeccciiiieeeeeeeeeeeeeeeeeeeeeeeeeaaaeeeeaeees 28
3.4.2 Installing ZenPacks 0N ZenoSss 5.........cceiiiiiiiiiiiiiiiciieiieeeeee e e e e e e e e e e e 28

3.5 RemoVINg ZeNPaCKS.........ccuiiiiiiiiiiieieeeeece e e e e e e e e e e e e e e e aaa s 28

4.0 SIMPIe ZeNPaCKS........ccci it e e e e e e e e e e e e e e e e e anaaaa———araaaaaaaaaaaaanaas 29
4.1 Adding performance templates to a simple ZenPacK...........ccccccceeevieeiiiiiiiiiiiiiiiiene e, 29

4.1.1 Adding SNMP performance templates to a ZenPacK................cccceeenniirrniiiierinnnnnn... 30
4.1.2 Adding zencommand performance templates to a ZenPack...........cccccceeervrnnninnnn.n. 31

Oct 13, 2016 ZenPack Developers' Guide v

4.2 Adding SNMP MIBs and event classes to a simple ZenPack.............cccccvvvvviceennnnennnnnn.. 32

4.3 Adding device classes to a simple ZenPacK..........ccccoeeeeiiiiiiiiiiiiiiiicireeee e 35
4.4 * Adding services and processes to simple ZenPacks..............ccooovrriiiiiiiciiiiiin e, 36
4.4.1 Adding IP services to a ZenPacK........ccccooooiiiiiiiiiiiiiiiicccieee e 36
4.4.2 Adding Windows Services to a ZenPacK........ccccoeoeiiiiiiiiiiiiiiiiiiccciieee e 39
4.4.3 Adding Processes to a ZenPacK............ccoiieeeiiiiiiiiiiiierreee e 40
5.0 Understanding core Zenoss 0DJECES......ccccueeiiiiiiiiiiiiiiiiiiccciiee e e e e eeee et e eeeare e e 42
S B D 13 1T o U UPPPURPNt 43
5.1.1 Object attribUteS....uuuueiiieee e e e e e e e e e e e e e e e et e e aaaas 44
5.1.2 Object 1elationsShips........ccoviiiiiiiiiiiiiiieee e e e e e e e e e e e e e e e e e eeeaeaera e e eaaas 46
5.1.3 Object Methods......cooveiiiiiiiiccieee e e e e e e e e e e e e e e et e e e et e e e raa e eaaen 48
5.2 DeviceCOmMPONENT. PY....ciiieeeiiiiiiieeeieeiiicceee e e e e e e e e e e eeeeeeeettraer i aaeaeeeaaeaaaearrerertarrrrananes 50
5.3 * Example object class hierarchy for Fan DeviceComponent..............cccccevvvveiceeneeneennnnn.. 51
5.4 * Example component class relationships for IpInterface..........cccccooeeeeeeiieeniiiiiinnnninnnnnnnn. 58
5.5 zendmd and the ZMI as tools to understand objects............ccueeiiieeiiiiiiiiiiiineiee e, 61
5.5.1 The Zope Management Interface (ZMI)..............oovvrriiiiiiiiiiieee e 61
5.5.2 ZENAIMIA. ..ot e e e e e e e e e e e e e sttt e et e e e eeaees 64
6.0 Developing complex ZenPacks.............ouuiiiiiiiiiiiiiiiiic et ea e e e 68
6.1 Planning considerations............couuiiiiiiiiiiiiiiiee e e eeeeeeeeeeeerrreee e e e e e e e e e e e e e e e e e rearrer s 68
6.1.1 Names and naming CONVENTION..........uuuiiiieeeeeeeeeeeeiieeeieiiiiiiiriieeeeeeeeeeeeeeeeeresnaaesseens 68
6.1.2 ZenPack prerequisites and other considerations...........cccceeeeeeeeiiiiiiiiiiniiiiiiineceeies 68
6.2 ZENPACKIID......eee e e e e e e e e e e e e e e e e e aranaaaa 69
6.3 Developing Python Code.......coouoiiiiiiiiiiiiiceee et e e e e et e e e san e e 70
LTS T B o) F= Y T T U PP 70

(G2 T2 o T3 o1« TR 71
6.4 Developing GUI COAe..... ...t e e et rae e e e e e e eaaaeeaesasenaaes 71
6.5 Useful tricks for ZenPack developers.............uuuuuiiiiiiieiiiiiiiieeeeeeeeeecriee e 71
7.0 Anatomy of @ ZenPackK............ooooiiiiiiiiiiicciieee e e e e e e e e e e e e e e e e ra e 72
O 2 F: 1 T o) o Ter T o) =Y TR USSPt 72
7.1.1 Configuration data, modeler plugins and the zenmodeler daemon.......................... 72
7.1.2 Performance data and monitoring templates...........cccceeeiiieeeiiiiiiiiiee e, 76
7.2 New objects in ZenPacks...........ouuviiiiiiiiiiiii et e e e e e e e e e e e e e e e e e e e 77
T3 GUI COUE...cceiiiiii ettt et e e e e e e e e e e e s s s s abbbataeeasaaneeeeeeenesnnnn 79
7.3.1 Page Template files and skins directories in older Zenoss............cccceeeeeeervvrnneeennnnn.. 79
7.3.2 JavaScript code to define GUI elements.........cccceeeeeeeiiiiiiiiiiiiiiiicccceeee e, 79
7.3.3 configure.zeml, infos and interfaces...........ccveeeeiiiieeeiieiiiieeeeeeee e 80
7.4 Other elements of @ ZeNPacK............euuiiiiiiiiiiiiiiiiiie e 83
8.0 zenpacklib UserGroup sample ZenPacK.........ccccoeeeeeeiiiiiiiiiiiiiiiciieeee e 85
8.1 Requirements SpecifiCation...........cooooiiiiiiiiiiiiiiiiiiee e e e e e e e e e e e e e e e e e e 85
8.1.1 bash commands to access user and group information............cccceeeveeeeiiiiiiiniiiinin. 85
8.2 ZenPack SPeCifiCation.......cccceeeiiiiiiiiiiiiiiiiicccieee e e e e e e e e e e e e e e e e aa e eeas 86
8.3 Installing zenpPacklib...........ceiiiiiiiiiiiicceeeecrrr e e e e e e e e e e e rar e 87
BB L PYYAML...ooiiiiiiiiiiiiiiieeee ettt et e e ettt e et e e e e e e e e e e e s e e e e e aaaaes 87
8.3.2 Installing zenpacklib.............coooiiiiiiiiiiiiee e 88
8.4 Creating the ZenPacK...........oc oot e e et e e e e et e e e saaaaeees 89
8.5 ZeNPACK.YAML.......uoiiiiei e e e e e e e e e e e e e e e e e eaa———————————aaanaaaaa 91
R T WA o o 013 L= J U 91
8.5.2 Z,6N0SS dEVICE CLASSES....uuviiiiiiiiiiiieiieiieieiectete ettt e e e e e e e e e e e e s s abbbbaeeeaeaneeeeeaeees 92

vi ZenPack Developers' Guide Oct 13, 2016

R T A 0] o) Tt Al F= T TP UUPPU PPN 93

8.5.4 RelationSIiPs....ccceeiiiiiiieeeeeeeeecriee e e e e e e e e e e et e e e rab e e aaraaaee 97
8.6 Deploying and testing the ZenPackK...............coooiiiiiiiiiiiiiiccceeeee e 100
8.7 Modeler PIUZIN......oouiiiiiiiiiieee et erree e e e e e e e e eeeeeeeeeeeatabe e aaaeeeaaaaaeessessssessrnnnnen 102

8.7.1 Design detailS.....cccoeeeiiiiiiieeieeeeeetee e et e e e et e e e ran e aes 102

8.7.2 UserGroupMap modeler plugin code.............ccooviiriiiiiiiiiiiiiiiiieee e 103

8.7.2.1 Creating the directory hierarchy...........c.ccccovimiiiiiiiiiiei e 103
8.7.2.2 Imports from other Python modules..............coovviiiiiiiiiii e 103
8.7.2.3 Base class for the UserGroupMap modeler plugin............ccccccvvvieeireerinnnnnnn. 104
8.7.2.4 Using zProperties in the modeler plugin............ccccuvevieiiieeiiiiiiie e, 105
8.7.2.5 CommandPlugin command................oouuiiiiiiiiiiiiiniee e e 106
8.7.2.6 The process method of the modeler plugin............ccooovviiiieiiiiiiiiiiiiiie e, 107

8.7.3 Testing the Modeler..........cccooeiiiiiiiiiiiieecrrree e e e e e e e e e eae 114

8.7.4 Where do things go wrong with modelers?..............ccoovvriiiiiiiiiiiiciiiiee e, 115
8.8 H REIABTETS. ...eeeeiiiiiiiiiiieiie ettt e e e e e e e e e e e e ettt ettt et eeeeeeeeeeeessssaaassassesnannees 117
8.9 Templates and zenpPacKklib...........uuuuuiiiiiiiiiiiiicceeeeeeecrrree e e e e e e e ae e eeae 119

8.9.1 Creating a User component template with the GUI...............cccoeeeiiiiiiiiiiiiininnnnnn.l. 120

8.9.2 Exporting templates with zenpacKklib...........ccccoeeeiieeiiiiiiiiiiicee e, 122
8.10 * Creating object methods with zenpacklib............ccccccciiiiiiiiii e, 125

8.10.1 Writing methods for objects.......cccoeeiiiiiiiiiiiiiiccceee e 126
8.11 *Creating new components directly on Device object class...........ccceevvvviiviiiiinieniinnns 128

8.11.1 * zenpack.yaml modifications........ccccoeeeeiiiiiiiiiiiiiiiicceeee e 128

8.11.2 * Other modifications........ccuiiiiiiiiiiiiiiiieeeeee e e e e e e eeee 129

8.11.3 * Testing the changes.............ooooriiiiiiiiccee e et 130

8.11.4 * Binding device templates in __init_ . pY...cccceeeeiiiiiiiiiiiiiiiicee e 131
8.12 *Creating new components inherited from existing components..............ccccceeevvnennn.es 134

8.12.1 zenpack.yaml modifications..............coovviiiiiiiiiiiiei e 135

8.12.2 Other modificationsS.........coviiiiiiiiiiiiiiiieceeeeee e e e et eeeees 135

8.12.3 Testing the Changes...........uuicieiieei i e e e e e e e eareeeeeees 136

9.0 SNMP LogMatch sample ZenPacK.............uueiiiieeiiiiiiiiiiiieeeeeeiiiccrieee e e e e e e e eeeeeeearaen e 138
9.1 Using smidump to get MIB information..........cccccooeeiiiiiiiiiiiiiiiiiicicceeee e, 138
9.2 Requirements Specification...............uuuiiiiiiiiiiiie e 139
9.3 ZenPack Specification...........ooooiiiiiiiiiiiiiiiiiee e e aaeas 145
9.4 Creating the ZenPackK.............oooo i e e e e e e e e e e e e e e e ea e aans 146
9.5 Creating device and component object classes.........c.coeeviiiiiiiiiiiiiiiciiiccieeee e, 147

9.5.1 Checking the device attributes and relationship............ccccvvviiieiiiiiin i, 149
9.6 Creating the component modeler..............cceeeeiieiiiiiiiiiiiiirceeee e 150

9.6.1 * SNMP modeler code in COre ZenoSS.......cceueeeeeieereeririiiiiiiiiiiiiieeeeeeeeeeeeeeseessssnennenes 151

9.6.2 The LogMatchMap modeler plugin for component data............ccccceeeeeeeiiiiieninnnnnn.. 153

9.6.3 Testing the Modeler..........cccooeiiiiiiiiiieeeecrreee e e e e eaae e e e eae 158

9.6.4 The LogMatchDeviceMap modeler for the device.............couvvveiieeeiiiiiiiniiiiiieeeeenennen. 160

9.6.5 Where do things go wrong with SNMP modelers?...........cccooovvviiiiiiiieniiriiieeeeeeennnn. 161
9.7 GUI diSPlay COUE.....ccoeiiiiiiiiiiiiiieee e e e ettt rrre e e e e e e e e eeeeeeeeeeeaaaaeea e e sasanaeesssaneeanseen 162

9.7.1 JavaScript for Nnew COmPONENtS............uuuiiiiiiiiiiieeeee e e eeaan 163

S I 02 1 4N {0 35) S UPPPUP RPNt 167

LS I T <Y = Yo=Y o) U U PP PUUPRRNt 168

9.7.4 coNfIGUTE.ZCIML.......coieei it e e re e e e e e e e e e e e et e e eaanaaaes 169

9.7.5 Where do things go wrong with GUI display code?.............cevvveiieieiieeeiieeiiieereennnnnn. 171

Oct 13, 2016 ZenPack Developers' Guide vii

9.7.6 * Architecture of the ComponentPanel................c.oovvueiiiiieiiiiiie e, 171

9.8 Adding component performance templates..........ccccuuuiieeeiiieiiiiiiii e, 173
9.9 Adding other ZenPack elements through the GUI................ooviiiiiiiiiiiiie e, 175
9.10 Finalising the ZenPacK.........cccooeiiiiiiiiiiiieeecciree e e et e e e st e e eeaeas 175
9.11 Extending the ZenPack to modify the device OVerview.........ccccceeeeereiiiiieneiriiieeeeeiinnns 176
9.11.1 cUStOM-OVErVIEW-AEVICE.JS..cceireriririiiiiiiiiiieeeeeeeeeeeeeeeeereeerraeeeeaaaeeeeesatnneesrrnneaeseranns 177
9.11.2 browser/configure.zcml................oouiiiiiiiiiiiiiee e e 177

e S I 1 01 (015 0 2SR 178
.10, 4 TN T ACES. PY e uuneiiieee e ee et creeee e e e e e e e e e e e e e e e e e e aaaaaaaeeaaeeeereaata————————————_. 178
9.11.5 Top-level configure.zcml..............ooooiiiiiiiiiiiieiieee e e e s 179
9.11.6 Testing the New changes.............ouuiiiiiiiiiiiei e eaaans 179
9.12 Modifying the ZenPack to remove LogMatchDevice............ccccovvvvvvviiiiceiieeeeeeeeeeeeeeeen, 180
9.12.1 monkeypatching standard objects in __init_ .py.....cccccovviviiiiiieriiiiiieeeeee e, 180

1S I D2 oY=\ U e o o USSP 182
9.12.3 browser/configure.zcml................oouiiiiiiiiiiiii e 183
9.12.4 LogMatchMap modeler plugin.........ccccceeiiiiiiiiiiiiiiiiccceeee e e 183
9.12.5 Remove / install ZenPack..............ouuiiiiiiiiiiiiiiiiiieeeeeeeeeeeee e 184
10.0 Rewriting the LogMatch ZenPack with zenpacklib.........c.ccc.oooiiiiiiiiiiiiiiiicicieeeee e 186
10.1 Creating ZenPacks with zenpacklib...............oouuimiiiiiiiiiiiiiieeee e 186
10.2 zenpacKklib capabilities.......cccoieeeiiiiiiiieeceeeeccrree e et eaaaans 187
10.3 Converting the logmatch ZenPack for zenpacklib...............ceeeeeeiieiiiiiiiiiiiiiineeieieeees 187
10.3.1 zenpacklib benefits - items no longer required.................cooerrrrririiiiiciiiiiieee e 187
10.3.2 zenpPack.YamMl........ooooiiiiiiiiiiiiei e e e e et e eaaaan s 188
10.3.3 zenpack.yaml elements in modeler plugins............ccoevvvviiiiiiiiiiiiieeeeee e 191
10.3.4 Completing the ZenPack.............coooviiiiiiiiiiiiiiiee e ea e 191
10.3.5 JavaScript to modify the device Overview panel...........cccccoeeeeeiiiiiiiiiiiiiiniiiiiee 192
10.3.6 Performance data as a component configuration attribute.................................. 193
11.0 COMMAND DirFile sample ZenPacK..........cccoeeeeeiiiiiiiiiiieeeeeiiciiieee et e e 194
11.1 Requirements SPeCification..........cccceeeeeeeeiiiiiiiiiieiieiccce e e e e e 195
11.2 ZenPack specification.............uuuuiiiiiiiiieeii it e e e e e e a s 196
11.3 Creating the ZenPack..............ooooviiiiiiiiiiiie e e e 196
11.4 zenpack.Yaml........oooiiiiiiiiiiiiee e e e e aaeaaesata e eeaaanns 197
11.5 DirFileMap modeler plugin.......ccccoeeiiiiiiiiiiiiiiieccciee e e e e e e e e 202
11.5.1 * CommandPlugin code in COre ZENOSS...........ccevvvurruuuieiieeeeeeeeeeeeeeerrereasneessenaaaenes 202
11.5.2 Using zProperties in the modeler plugin...........cccccceeeeeieieeeiiiiiiceeeeeee e 205
11.5.3 CommandPlugin command................ceeiieeeriieiiiiiiiiieiiceeeee e e e e et e e e et e e eaae s 206
11.5.4 The process method of the modeler plugin.............c.oovvviiiiiiiieeeiiii e 207
11.5.5 * What's in an object map?..........ueiiieeiiiiiiiiiceeeeeerieee e e 211
11.5.6 zenpacklib and the modeler plugin............ccoooviiiiiiiiiiiiiiee e 213
11.5.7 Testing the DirFileMap modeler................ccoooiriiiiiiiiiiiiiiceee e 213
11.5.7.1 * Analysing the zenmodeler 10g...............ooovviiiiiiiiiiiieei e 214

11.6 *monkeypatching so command modeler uses zProperties........c....ccceevviveiiiiiiiiiiiinenenns 217
11.6.1 * Modifying _ NIt DY ..cccciiiiiieiieiiiicicieee et reee e e e e e e e e e e e e e eearaa s 218
11.6.2 * Modifying the modeler plugin code...........ccuueeiiiiiiiiiiiiiiieee e 220
11.6.3 * Testing the NeW COAe........ciiiiiiiiiiiiiiieeeeeerreee e e e e e e e e e e e e aeeees 223
B O |- | /PP PPPPPUPPRIN 223
12.0 Collecting performance data...........cc.uuvuuiiiieeeiiieiieeecceeeeeeerrreee e e e e e e e e e e e e e e e e s 223
12.1 Testing environment for the ZenPacK.........ccccooooiiiiiiiiiiiiiiiiicciieee e 223

viii ZenPack Developers' Guide Oct 13, 2016

12.2 Collecting device performance data..........cccceeeeeeeeeeeeiiiiiiieeeieeeccre e 224

12.2.1 * Analysing the zencommand debug log.............ooovviiiiiiiiiiiieiie e 227
12.3 Collecting component performance data................coeviiiiiiiiiiiiiiiiiieee e 228
12.3.1 Specific component command; single value returned...............cccceeeeviviiiiininnnnnn. 229
12.3.2 Specific component command; multiple values returned...................cc.coovvnenn. 230
12.3.3 Generic component command with parser.........cccccooeeeeiiiiiiiiiiiiiiiiee e 234
12.3.4 customized datasource to pass customized key values........cccceeeeeeeeiviiieiiiinnneennnn. 238
12.3.4.1 getDescription method.........cccooeeiiiiiiiiiiiiiiicccceee e e 242
12.3.4.2 useZenCommand method...............coeiiiiiiiiiiiiiiiiiiiiiieeeeee e 242
12.3.4.3 getCommand method...............oooiiiiiiiiiiii e 242
12.3.4.4 addDataPoints method...........ccccoiiiiiiiiiiiiiii e 243
12.3.4.5 Infos, Interfaces and configure.zeml...............ccoooeiiiiiiiiiiiiiieee e, 243
12.3.4.6 Testing the new datasource............cccooevviiiiiiiiiiiiiieieee e 246
12.4 Performance templates and zenpacklib.........ccccooeiiiiiiiiiiiiiiiiiiiee e, 248
12.4.1 Where do things S0 WIONZ?.......cooeviiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeet e e e erteeeeeaaeessanaaaees 250
12.4.1.1 Issues with custom datasources and templates in zenpack.yaml................. 250
13.0 Converting COMMAND ZenPacks to PythonCollector.............cccoooviiiiiiiiiiiiiiiiiieeeeiieeeees 251
13.1 ZenPacks.zenoss. PythonCollector................ooviiiiiiiiiiiiieiee e 252
13.1.1 Using the PythonCollector ZenPack................uuuuieiiiiiiiiiiiiiiiiiieeee e 253
13.1.2 * Anatomy of a PythonDataSourcePlugin...............ccooovviiiiiiiiniiiiiiee e 255
13,2 TWISEEA. ...eveieeeeeeiiieee ettt e e et e e e e ettt e e e e saataaeeeeeessnbaeeeeeaaaaaeaeeeeeeeeeeeneenrenes 257
13.3 Creating Python datasources..............uuuuuiiiiiiiiiiieii i e e e e e e e e eeeaeaaaa s 258
13.3.1 Collecting device performance data...........ccccceeeeeeeiiiiiiiiiiiiiicce e 260
13.3.1.1 Imports for the PythonDataSourcePlugin...............cccoceeeieeeeiieiiiiieiiieeeeeeeieee, 261
13.3.1.2 proxy_attributes and config_key method for the PythonDataSourcePlugin......
261
13.3.1.3 collect method for the PythonDataSourcePlugin.............ccccceeeeeeeieiiinninnnnne. 264
13.3.1.4 onResult method for the PythonDataSourcePlugin..............ccccceeeeeeeeennnnnnne. 267
13.3.1.5 onSuccess method for the PythonDataSourcePlugin.............ccccceeeeeeeenennnnne. 268
13.3.1.6 onError method for the PythonDataSourcePlugin............cccccccovvviiinnnnnnnennne. 268
13.3.1.7 Testing the new PythonDataSourcePlugin..........ccccooooiiiiiiiiiiiieniiiiieeneen. 269
13.3.1.8 Performance template to drive the PythonDataSourcePlugin...................... 269
13.3.2 * Blocking and non-blocking in Twisted.............coovviiiiiiiiiiiieee e 271
13.3.2.1 * Comparing blocking and non-blocking collect methods.............................. 273
13.3.3 Collecting component performance data; specific component command; single
ValUE TEEUITIEA.ceeeeiiiiee ettt et e e e e e e e e e s e s ssas s e e e e eeeeaaaaaaeeseeeaasennns 274
13.3.3.1 Using a dsplugins directory............ccoovrriiiiiiiiiiiiiiceieeeee e e e 275
13.3.3.2 Imports, proxy_attributes, config_key and params...........ccccceeeeeeereerrrennnnnne. 275
13.3.3.3 * A closer look at the usage of config_Keys.........ccccvvvvviiiiieeeieeeiiiieieeeeeeeee, 276
13.3.3.4 collect MeEthod.......ccooiiiiiiiii e 279
13.3.3.5 onResult, onSuccess and onError methods............cooovvvieeiiiiiiiiiiieiiiiiiiciiin, 280
13.3.3.6 Performance template to drive the PythonDataSourcePlugin...................... 281
13.3.4 Collecting component performance data; specific component command; multiple
values returned. Nagios plugin CONVErSION.............cceeiiiiiiiiiiiiiiiiiiiieeeeeeeiieeeeetieeeeeraeaeans 282
13.3.4.1 Imports, proxy_attributes, config_key and params...........ccccceeeeeeereerrvnnnennne. 283
13.3.4.2 collect MeEthod.......ccooiiiiiiiiii e 283
13.3.4.3 onResult, onSuccess and onError methods............cooovvveeeiiiiiiiiiiieiiiiiiieiii. 284
13.3.4.4 Performance template to drive the PythonDataSourcePlugin...................... 286

Oct 13, 2016 ZenPack Developers' Guide ix

13.3.5 Collecting component performance data; generic component command with parser

.. 287
13.3.5.1 Imports, proxy_attributes, config_key and params...........ccccceeeeeeeeeerernnnennne. 288
13.3.5.2 onSuccess MEthod........coooiiiiiiiiiiiiiiieeeeeee e aeee 289
13.3.5.3 Performance template to drive the PythonDataSourcePlugin...................... 290

13.3.6 Collecting component performance data; customized datasource to pass

customized KeY VAIUECS........coviiiiiiiiiciiieee aa e e e s et e eeaaans 291
13.3.6.1 Building the Python datasource..............ccccoovvviiiiiiiiiiiciicieeeee e, 292
13.3.6.2 Deploying the new datasource.........cccoeeeeiiiiiiiiiiiiiiiiiicccicee e 296

13.4 Converting the modeler to use the PythonCollector ZenPack..............cccccoevvvvvvrnnnnnnnnn. 297

S TR T ' o Yo =TSSP 297

13.4.2 Creating a dirRegex directory from zProperties............cccccvvvviiiiieeeiiieiiiieiieeeeeeees 298

13.4.3 DirFilePythonMap class attributes.......ccccceeeeiiieeeiiiiiiie e 299

13.4.4 collect MEthod......cccoiiiiiiiiiiii et e e e e e 300

13.4.5 process Method..........oooiiiiiiiiiiiiiieee e e e 302

13.4.6 Testing the new modeler..........ccooooeiiiiiiiiiiieiiicccreee e e e e 303

13.5 Combining performance data and modeler data..............cccoeeeeiiiiiiiiiiiiiiiiiiccceeees 304
14.0 Events in ZenPacks.......ooooiiiiiiiiiieieeeeee ettt e e e e 307
14.1 Detecting duplicate EVENTS...........coooiiiiiiiiiiiiiciiiiee e e e e e e e e e e e e e e e e eaaae s 307
14.2 Event auto-clearing mechaniSm.................oooiiiiiiiiiiiiiiciiieeee e 308
14.3 Exploring the use of event class attributes..........ccccuuiiieeeiiiiiiice 308
14.3.1 Detecting “repeat” @VeNtS...........uuuiiiiiiiiiiee i eeeeeeeeeeeerrrree e e e e e e e e e e et eeeeaa e 311
14.3.2 Auto-Clearing EVENTS.........ccooeiiiiiiiiiiiiiiiiee e e e e e e eee et e e e e e e e e e e e e e e eabe e e eeanannas 312

14.4 Adding transforms to Event Classes...........uuuuuiiiiiieeiiieiiieeeceeeeeeeeree e e 314
14.5 Providing event details in a ZenPacK...............oooiiiiiiiiiiiiiiiccccceeee e, 316
14.6 Providing triggers and notifications in a ZenPack.................oovviieiiiiiiiiiiiiiiie e, 318

14.6.1 * Trigger and notification architecture...............ccccooirriiiiiiiiiiiiiiiie e 319
14.6.1.1 Finding trigger details...........ccooovriiiiiiiiiiiiiiieee e 319
14.6.1.2 Finding notification details.............cooovviiiiiiiiiiiiiieee e 322
14.6.1.3 Dumping trigger and notification details...............ccooovriiiiiiiiiiiiiiieeeee e, 323

14.6.2 ZenPack file for triggers and notifications..............cccvvvvviiiiiieniiiiiiee e 324

14.7 Resolving issues with triggers and notifications............ccccooeeeeiiiieniiiiiiinice e, 325
14.8 Known issues with event fields, notifications and triggers.............ccccoovvvvviiiciiiennennn. 325
15.0 Creating menus in ZenPacks.............oouuiiiiiiiiiieiie e e e e ee s 326
ST B N T o1 (03 s SRR 326
15.1.1 Zenoss 2 (some of which is still relevant!)..........cccccooiiiiiiiiiiii e 326
15.1.2 ZIENO0SS 3/ 4/ Bttt e e e e e e e ettt e e e e e e aaaaans 328

15.2 Extending Command menus with the GUI...............ccoiiiiiiiiiiicie s 328
15.3 ZenPacks.community. MenuExamples............ccoovviiiiiiiiiiiieeeie e 330

15.3.1 New device class, device object class and component class............ccceeeervvvnnnnnne. 331

15.3.2 Menu defined in __ iNit_ . PY.....ccoiiiiiiiiiiiiiiicciiee e e e e e e e aa e 332

15.3.3 Old and new options for page templates for menus.............cooevviiiiieciiniininnnnnn. 333

15.3.4 New-style menus limited to specific device types.....cccceeeeeeeieeeeeriiiiiieiiiee e 338

15.3.5 Dropdown menus shipped in objects.xml..............oooiiiiiiiiiiiieiniiiee e 339

15.3.6 Adding items to the Display dropdown for a component................coevvveeiiiinn. 345

15.3.7 Menu on INFRASTRUCTURE -> Devices to add new device type...................... 347
15.3.7.1 Routers and facades........coooeouiiiiiiiiiiiiiieeeeeeeeeeeeeeeeee e 351

15.3.8 New items for left-hand DeviceClass Action menu........ccccceeevvviveiiiiiiiiiiiiieneeeees 353

X ZenPack Developers' Guide Oct 13, 2016

15.3.9 Adding new items to a device's Action MeNU.......ccceeeeeeiieiiiiiiiiiiiiiiiciceeeee e, 356

15.3.10 Adding a new menu to the Footer bar................oooiiiiiiiiiiiie e 359

16.0 Testing and debugging ZenPacks..............ooooviiiiiiiiiiiiiieee e e e 365
16.1 Log files and 10ggIng..........oooviiiiiiiiiiiiiiee et e e e e e e e e e e e e e e e e e e e aeeeeaeaas 365
16.1.1 Log messages and their likely meanings...........ccccceeeeeeiiieeeiiiiiiieiiieeeiiee e 366

16.2 General hints and tiPS.......cceeeeeeeeiiiiiicceerree e et e e e e eaa s 367
16.3 Testing and debugging new object class files.............cooeriiriiiiiiiciiciiieee e 368
16.3.1 New components do not appear in left-hand menu..................ccccvviiiiceeen . 368

16.4 Testing and debugging modeler plugins..............uuuueiiiieeiieeiiiieeeeeeeeeeerree e e e eeees 368
16.4.1 Compilation @ITOTS......ccccoeiiiiiiieeeeeeeeeieccieee e e e e e e e e e e e e e e e e ee e reeaeaeeeeeeaaaeessneannnaes 369
16.4.2 General modeler debugging hints...............coooiiiiiiiiiiiiiieee e 370
16.4.3 Attributes or relationships are not populated...............ccooovriiiiiiiiiiiiieen e 371
16.4.4 Modeler issues related to using zenpacklib.........ccccooeeeiiiiiiiiiiiiiiiiiicccee e 373

16.5 Testing and debugging problems with performance data..............cccccoeeeeviviiiiinnnnn. 374
16.5.1 General performance iSSUES.......uuuuuciiieeeieeeeeeeeeeeeeeeeeeriee e e e e e e e eeeeeeeeaaeeesranaeaees 374
16.5.2 Configuration 1SSUES.........ccevviiiiiiiiiiiiiiieeeeeeeeeeeeeeeeereeeta e rreeeeeeeeaeeeeeesasanaaeassannnaees 374
16.5.3 Checking for collected performance data...............ooovvvviiiciiieeeeeeeiiiieeeeee 375
16.5.4 Test buttons in datasoUTrCeS.......cccuuiiiiiiiiiiiiiieeee e 377
16.5.5 Issues with datasource plugins............ccovriiiiiiiiiiciiiiiiee e 378
16.5.6 Issues With datasources.........covviiiiiiiiiiiiiiiieee e 378
16.5.7 Performance collection issues related to using zenpacklib...........ccccceeeeerrinnnnnnnnn. 379

16.6 Testing skins files and JavaScript files...........oooiiiiiiiiiiiiiiii e 379
16.6.1 General failure Errors...........ciiiiiiiiiiiiiiiiiiieeee e e e e e e e 379
16.6.2 Problems displaying components................uuuuuiiiieeeieeeeieeeieeeeeeeeiiiiccieeeeeeeeaeeeens 381
16.6.3 Issues with Info and Interface definitions and configure.zcml............................. 381
16.6.4 GUI issues when using zenpacklib..............ccovviiiiiiiiiiiiie e 383

16.7 Testing and debugging problems with event elements.............ccccceeeviiiiiiiiiiiiiiiiiiennn, 383
16.8 Problems with installing / removing ZenPacks..........cccceeeeeeiiiiiiiiiiiiiiiiiicccieeee e 383
17.0 Developing a ZenPack and making it publicly available..........cccccceeeeiiiiiiiiiiiiiiiiniiiiien, 384
17.1 Simple procedure for git development.........ccccoeeeeiiiiiiiiiiiiiiiiicccereeee e 384
17.2 Working with GitHUD..........ouuiiiiiiii e e e e e eean s 387
17.2.1 Using ssh authentication with GitHub............ccccoceiiiiiiiiiiiiiceeee 388
17.2.2 Creating the GitHub repository.......cccccciieeeiiieiiiieieeeeeccreee e 389

RS T Tl o3 1 1) o U= TP 390
17.4 Cloning from GitHub to a local machine............ccccoeeeeieiiiiiiiiiiiicccceee e 390
17.5 Other ways to use GitHUD...........oooiiiiiiiiiee e e e s 391
17.6 ZenPacks on the ZenoSs Wiki..........uuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeee e e e e e e eeesssen e e s e eeeaeennns 391
) (3 3 1 1< TP PUPPPPPR P PPPPPPRPIRt 396
ZeNPacCk REETEINCE.cceiiiiiiiiiiiiiiiei ettt et e e e e e e e e e e e s s s aeabbaaaaaas 400
ADOUL the QULROT........eeiiiiiii e e e e e e e e e e e e e en e e e eaees 402

Oct 13, 2016 ZenPack Developers' Guide X1

Document history

April 13 2016 Original draft 1.0

April 23 2016 Draft 1.0.3 printed for GalaxZ 2016

June 30 2016 Version 1.0.0. First published version with updates from Zenoss and
community.

September 20 2016 Version 1.0.1. Left/right page formatting corrected. Document history
added.

Xii ZenPack Developers' Guide Oct 13, 2016

1.0 Zenoss concepts

1.1 Background to Zenoss

Zenoss Core first appeared in 2006 as the brainchild of Erik Dahl; an Open Source package
for systems and network management to compete with IBM Tivoli, HP OpenView, BMC
Patrol and CA UniCenter.

Written largely in Python, Zenoss has an object model at it's heart that encapsulates all the
manageable entities such as devices and their components, users, events and monitoring
configurations. Zenoss offers:

e Device and component discovery

e Availability monitoring

e Performance data collection, thresholding and graphing

e Collection of events and generation of alerts and corrective automation
e Reporting

e Central dashboard

From the outset, Zenoss has been unashamedly an agentless technology. This has strengths
and weaknesses but the removal of the requirement to acquire, distribute, update and test
agents is very powerful. This means that Zenoss leverages operating system built-in “agents”
such as Simple Network Management Protocol (SNMP) agents, Secure Shell (ssh), Windows
Management Instrumentation (WMI) and latterly Windows Remote Management (WinRM).
Common Zenoss add-ons increase this list with http, JMX, the Python Twisted asynchronous
communications library, SQL, Lightweight Directory Access Protocol (LDAP) and various
Application Programming Interfaces (APIs) such as Amazon and VMware.

The Graphical User Interface (GUI) for Zenoss is built on the Zope web application
environment.

A chargeable version of Zenoss appeared around 2008, known as Zenoss Enterprise. Initially
this offering was largely a way of providing support to Zenoss Core users. Latterly extra
functionality has been built in to the chargeable version and it has been renamed to Zenoss
Service Dynamics, with the central product being Zenoss Resource Manager.

1.2 Devices, components, object classes and device classes

Zenoss discovers and monitors various entities:

e Devices - typically physical or logical hardware with an IP address; examples are
Linux and Windows servers, network routers, switches and firewalls, printers and power
supplies. Devices may also be application-like, such as HTTP websites.

e Components - many devices have components. Most have one or more interfaces.
Servers have file systems and CPUs; network devices have routing tables and some have
VLAN components. Components may be more application-like, for example a server might
have an Operating System process as a component.

All devices and components are represented in the Zenoss Object Database (ZODB) as
objects, with various attributes such as id and IP address, and can have one or more relations

Oct 13, 2016 ZenPack Developers' Guide 1

(note that the terms relations and relationships are used interchangeably throughout Zenoss
documentation). For example, most devices have a relation that associates them with their
interface component objects and each interface component object has a relationship back to its
parent device.

Different device and component types are implemented as python object classes. The file
Device.py contains the definition of the Device object class that defines the fundamental
attributes, relations and methods that all devices have. A method is a piece of Python code
that “does something” to an object; for example, set the managelp attribute to a new value.

An object class provides a template for each item and an instance is a manifestation of the
class. The Device object class specifies attributes such as managelp, title, snmpSysName. The
device instance zen50.class.example.org is an example of that class where the attributes are
populated with discovered values.

Object classes are typically hierarchical. IpInterface.py defines the IpInterface component
class, which inherits attributes, relations and methods from its parent OSComponent class,
which inherits from two parent classes, DeviceComponent and ManagedEntity. An object
becomes more specialized the further down the object tree it is. A class can define new
attributes, relations and methods and can also redefine inherited characteristics. For example
the DeviceComponent class defines a method manage_deleteComponent this is redefined in
the OSComponent class and redefined again in the IpInterface class.

Each device has a zProperty, zPythonClass, which specifies the Python object class that
defines this device instance. The default is the fundamental Device, shipped as standard with
the Zenoss code. ZenPacks often create new device object classes and then reassign
zPythonClass to match.

Devices are organized in a Device Class hierarchy. Fundamentally, a device can only be
associated with a single Device Class. For example, /Network /Router/Cisco or
[Server [Microsoft | Windows.

DeviceClasses are used to house the monitoring configuration for the Devices that are
contained in the hierarchy below it. Monitoring configuration such as MonitoringTemplate
definitions, MonitoringTemplate bindings, modeler plugin selection, configuration property
values (zProperties and cProperties) can all be set at the DeviceClass level and will apply to all
Devices below the DeviceClass where they are set, recursively through sub-DeviceClasses,
unless overridden.

2 ZenPack Developers' Guide Oct 13, 2016

\(- & https://zenosss.zens0/zport/dmdjitinfrastructure #devices: zport.dmd.Devices Server.Linux.Dirfile v e ‘E’v Google “! wB ¥ & =

DASHBCARD EVENTS INFRASTRUCTURE REPORTS ADVANCED Q v * zenoss SIGN OUT

''''''

Processes IP Services ~ Windows Services Network Map Manufacturers Page Tips

Q (@0 | (@~ [@][setect [ortigure - | Expert - [© Retreen -] actons - [commanda-~

@piscovered (0)

4 Woevices @ * Dovea + PAddess Dowallass Prodiionswe Ewms

GutTe (©) taplow-11.skills-1st.co.uk 10.0.0.11 ‘Server/Linux/DirFil... Production
@kvm (o)
@ Network (1)
@Ping (0)
°Power(0)
OPrimer(O)
4 '/ Server (3)
@cmd (0)
@Darwin (0)
4 JLinux(3)
@ simpleTest (0)
@Microsott (0)
@Remote (0)

@scan (0) - DISPLAYING 1-1of 1 ROWS

+[e]le-]! “ ——

Figure 1: Device class hierarchy

The device class hierarchy is a specialized implementation of an Organizer hierarchy, that
provides file system like paths such as /Devices/Servers. Device Organizers have a
containment relation called children to access its members. Figure 1 demonstrates the
DeviceClass hierarchy where each device class “child” is shown indented one level from its
“parent”; the main part of the window displays the members of the currently highlighted
device class, including any children of the highlighted class; thus highlighting /Server/Linux
will show all devices under /Server/Linux, /Server/linux/DirFile and
/Server/Linux/SimpleTest.

Zenoss Systems, Groups and Locations are also examples of Organizer hierarchies that
Devices can belong to although they are not used to house monitoring configuration and only
provide additional context for the Devices and the events they generate.

1.2.1 Zenoss monitoring functionality
Zenoss delivers the following:
Discovery of devices

e Performed by the zendisc daemon either on demand or periodically by using a script
(possibly run through the cron scheduler). Typically ping is the initial discovery
mechanism, although other mechanisms can be used. Devices are inserted into the ZODB
database with an initial Device Class and the characteristics that are implied by that
DeviceClass.

Modeling

e Configuration polling of previously discovered devices. This can include attributes
(such as amount of memory on a Server type device) and will often encompass the
discovery / updating of a device's components. Attributes, relations and instances of
relations are added / updated in the ZODB object model. This is performed by one or more
modeler plugins, run by the zenmodeler daemon, either on a periodic basis or on
demand. By default, zenmodeler runs every 12 hours from when the daemon is started.

Oct 13, 2016 ZenPack Developers' Guide 3

e Configuration properties, also known as zProperties, can be used to configure the
way the data is collected. Examples include the SNMP community name, the username for
access through ssh or a Windows protocol, and interfaces to ignore, for example loopback.

Configuration inheritance

e The object-oriented inheritance paradigm enables child objects (Devices) to inherit or
acquire attributes from their "parents". For example the DeviceClass that contains the
Device. This applies to all monitoring configuration so a modeler plugin configured for
DeviceClass /Server will, by default, be inherited by the DeviceClass /Server/Linux and
all its children. This also includes the list of performance templates to be applied to a
device. Any attribute can be overridden at a lower level down the hierarchy.

Device availability

e Typically this is achieved by the zenping daemon pinging every device (every 1
minute, by default).

Monitoring

e Monitoring can be applied to devices and components of devices. This is performance
monitoring and typically takes place every 5 minutes. Monitoring Templates specify
what metrics to monitor, how to retrieve the data, and how frequently to poll for the data.
Threshold values can be specified for a metric and graphs can be configured to display
combinations of the metrics.

e Performance monitoring is performed by various daemons, for example:
s SNMP data by zenperfsnmp
s ssh data by zencommand
s zenpython retrieves data using python programs

s zenprocess checks for the availability of discovered processes, by default every 3
minutes.

s Many ZenPacks extend these standard daemons and can create additional
collection daemons.

Collectors

e A collector is the logical collection of Zenoss daemons that gathers information from a
specified group of target Devices to populate the central Zenoss databases. For example,
zenping, zenperfsnmp, and zenpython.

e A typical Zenoss Core installation has hub functionality and a single “localhost”
collector on the Zenoss server. Extra collectors can be deployed on separate servers.

e Zenoss Service Dynamics can have multiple hubs and multiple collectors on different
machines.

e While distributing performance monitoring load is one reason for deploying extra
collectors, sometimes network performance or firewall constraints will require that
collector be deployed closer (in a networking sense) to the devices it monitors.

Events

4 ZenPack Developers' Guide Oct 13, 2016

o These are typically a record of a change of status of an object. Often events indicate
problems with the Devices or their environment(s). For example, a performance
Monitoring Template can set a threshold on disk space at 80% used, generating an event
when the threshold is exceeded. A clear event will be generated when the disk space
metric returns to less than 80% used.

Notifications

e A message, typically to a user, that an event has occurred. Several methods of sending
notifications are available in the product. Although email is the most commonly used,
paging, automation commands and SNMP TRAPs are also supported. Fields from the
causal event can be used to generate the body of the notification.

e In Zenoss 4 and 5 a Notification is driven by a Trigger that is a set of criteria that
determines when to send the notification. The trigger is a combination of required values
for different fields of an event; for example Device Production Status = Production AND
severity greater than Warning AND status = New AND EventClass startswith '/ DirFile’.

e In Zenoss 3, Notifications and Triggers were implemented by user-specific Alerting
Rules.

1.2.2 Standard conventions for Zenoss code and ZenPacks

By default, recent versions of Zenoss are installed under /opt/zenoss. The installation
directory is known as $ZENHOME and this environment variable should be made available

to the zenoss user.

1.3 Zenoss Daemons

Zenoss uses many daemons, grouped into four areas:
e Daemons to present the Graphical User Interface (blue in Figure 2)
e Central hub daemons (red in the Figure 2)
e Daemons to manage the flow of events (green in the Figure 2)

e Data collection daemons (purple in the Figure 2)

Oct 13, 2016 ZenPack Developers' Guide

Zenoss Architecture
[zopectl (Core)] [zenwebserver (Service Dynamics)]
[Zope based web application |
Q____ O
Q_____ O
zenhub MySQL / mariadb databases

[zenhub | Z— My =

D__ N p 2 zeneventserver

o wn "
r— % § zodbzosc::bssion § S
[zenjobs | 3] g E zeneventd

N — & zenactiond
\—-—/
RabbitMQ
queues
Configuration Availability Performance data Event data
daemons daemons collection daemons collection daemons
[zendisc] [zenping][zredis] [zenrrdcached][m] [zentrap]
[zenpython] [zencommand] [Wg]
Figure 2: Zenoss daemon architecture

Note that Zenoss Service Dynamics replaces Core's zopectl daemon with zenwebserver
(simply webserver in Zenoss SD 5.x). It manages Zope instances and controls the NGINX
load balancer managing traffic to and from the Zope instance(s). Service Dynamics has an
extra zencatalogservice daemon that maintains the Lucene index into the ZODB database
to provide enhanced performance.

zenhub is the central daemon that brokers communication between collection daemons and
other Zenoss processes. It can have assistant zenhubworker processes to increase
performance.

zenrrdcached and zenrender will not exist in Zenoss 5 implementations as performance
data is saved in an OpenTSDB database instead of Round Robin Database (rrd) files.

The zredis daemon provides a shared repository for all zenping daemons and facilitates
correlation of Ping Down events.

In Figure 2, the daemons shown in purple are typically those that are active on a Zenoss
collector.

A database system is required to store configuration and event data. In Zenoss Service
Dynamics, this is an SQL database, known as zends. In Zenoss 5, this function is provided by
a pair of mariadb databases.

6 ZenPack Developers' Guide Oct 13, 2016

From Zenoss 4 onward, RabbitMQ is used to provide Message Queueing technology for data to
pass between various daemons, largely in the events subsystem:

Description Between daemons
celery zenhub and zenjobs
rawevents zenhub and zeneventd
zenevents zeneventd and zeneventserver
archive zeneventserver and the zenoss_zep
databases
migrated zeneventserver and the zenoss_zep
databases
heartbeat zenhub and zeneventserver
modelchange zenhub and zeneventserver
signal zeneventserver and zenactiond

The relationship between the queues, databases and the event processing subsystem is shown

in Figure 3.

Collecting Dasmons

zenping
zensyslog
zenstatus
zentrap
zenmodeler
zenperfsnmp
zencommand
Zenprocess
Zenwin
zeneventiog
zenwinperf

Other key
processes;
2en jobs

GF Reich
20121031

J Curry
20121207

Figure 3: Event architecture showing daemons, queues and databases. With thanks to Georges Reichs.

Menit@red
Devige

Caollecting
Daemans

AW quenes arein |,
rabhit MQ

heartbeat

 AEGEND— —— — ——— A e ~
——heartheate—p

rawevents .

—

2en hub

zen eveni!:

&

Databases
in MySaL
5

h 4

> zen acf.iong

wia email, S

¥

Oct 13, 2016

ZenPack Developers' Guide

1.4 Zenoss 5 docker architecture

Zenoss 5 architecture includes new functionality that is provided by docker and
containerization. The following documents provide additional information:

® Zenoss Documentation Guides at https:/www.zenoss.com/resources/documentation
that include:

o Resource Manager Installation Guide

o Resource Manager Upgrade Guide

o Resource Manager Planning Guide

o Resource Manager Administration Guide

® Zenoss Service Dynamics Architecture Overview — a technical white paper available
by request from http:/pages.zenoss.com/WCZSD-WP.html

® Useful documents from the Zenoss KB repository:

o Virtualization and Docker Containerization for Poets
(https://support.zenoss.com/hc/en-us/articles/202254069)

o Introduction to Zenoss Control Center
(https://support.zenoss.com/he/en-us/articles/206278353)

TODO: This needs extending.

1.5 Extending Zenoss out-of-the-box functionality

Although Zenoss ships with a rich set of functionality, there are always additional devices
and applications required by various users. ZenPacks are a method to build add-on
functionality to the core Zenoss offering.

ZenPacks might contain extra objects for the ZODB database; new event classes, SNMP MIBs
or customized performance templates. Such ZenPacks can be created entirely through the
GUI and require no programming expertise.

Alternatively, a ZenPack can deliver management for new types of devices, with new types of
components, and provide new menus to help manage those devices with new methods of
collecting and displaying the data. Such ZenPacks require some Python programming skills
and an underlying knowledge of the Zenoss architecture.

2.0 What are ZenPacks?

ZenPacks are the method of extending standard Zenoss functionality. There are four different
sources of ZenPacks. The http://wiki.zenoss.org/ZenPack Catalog provides a list of available
ZenPacks for download.

2.1 Sources for ZenPacks

2.1.1 Free ZenPacks developed by Zenoss

These are developed and maintained by Zenoss and are available to both Zenoss Core and
Zenoss Service Dynamics users.

8 ZenPack Developers' Guide Oct 13, 2016

http://wiki.zenoss.org/ZenPack_Catalog
https://support.zenoss.com/hc/en-us/articles/206278353
https://support.zenoss.com/hc/en-us/articles/202254069
http://pages.zenoss.com/WCZSD-WP.html
https://www.zenoss.com/resources/documentation

With Zenoss 5 and some deployments of Zenoss 4, various core ZenPacks are installed by
default when Zenoss is installed. The following is an example list of ZenPacks for a new
Zenoss Core 5.0.7 installation:

ZenPacks.zenoss.ApacheMonitor ZenPacks.zenoss.Dashboard
ZenPacks.zenoss.DellMonitor ZenPacks.zenoss.DeviceSearch
ZenPacks.zenoss.DigMonitor ZenPacks.zenoss.DnsMonitor
ZenPacks.zenoss.FtpMonitor ZenPacks.zenoss.HPMonitor
ZenPacks.zenoss.HttpMonitor ZenPacks.zenoss.LDAPMonitor
ZenPacks.zenoss.LinuxMonitor ZenPacks.zenoss.Microsoft. Windows
ZenPacks.zenoss.MySqlMonitor ZenPacks.zenoss.NtpMonitor
ZenPacks.zenoss.PythonCollector ZenPacks.zenoss.ZendMX
ZenPacks.zenoss.ZenMail

There are additional free, Zenoss-developed ZenPacks available at

http://wiki.zenoss.org/Free ZenPacks by Zenoss, some of which are good examples of writing
ZenPacks, such as ZenPacks.zenoss. AWS, ZenPacks.zenoss.RabbitM@ and the two OpenStack
ZenPacks.

2.1.2 Community developed ZenPacks

There are a vast number of ZenPacks developed by the community and made freely available.
Although support for such offerings will vary, as open source developments, anyone has the
potential to correct, update and maintain them. Start here -
http://wiki.zenoss.org/Community ZenPacks - for community ZenPacks. Be aware that some
of these ZenPacks are old and may not function correctly with later versions of Zenoss - check
documentation carefully.

2.1.3 Chargeable Zenoss ZenPacks

Zenoss have some ZenPacks that they only make available to Service Dynamics customers.
Information can be found at http.//wiki.zenoss.org/Commercial ZenPacks by Zenoss but,
unlike the other categories, you cannot download code from here.

2.1.4 Write your own ZenPack!

If you need to extend Zenoss in a way that has not yet been done, you can write your own
ZenPack and contribute it back to the collection of community ZenPacks. The rest of this
document provides guidance.

Alternatively, Zenoss Professional Services offer consultancy to customers to implement new
ZenPacks.

2.2 ZenPack basics

ZenPacks are packaged as Python eggs. This is a standard Python mechanism consisting of a
zipped file containing all the files that make up the package. To see what a .egg file contains,
unzip it.

Oct 13, 2016 ZenPack Developers' Guide 9

http://wiki.zenoss.org/Commercial_ZenPacks_by_Zenoss
http://wiki.zenoss.org/Community_ZenPacks
http://wiki.zenoss.org/Free_ZenPacks_by_Zenoss

This ZenPack packaging is performed automatically for you and you don't need to get into the
details of eggs.

Typically ZenPacks are stored on GitHub in repositories owned by developers. Zenoss
repositories are at https:/github.com/zenoss. A community ZenPack can be under the
developers name, for example https:/github.com/jcurry .

ZenPacks are often used for three main reasons:
e Adding monitoring support for new types of devices and components
e Porting Zenoss configuration from one Zenoss server to another (with care)
e Modifying or extending the Graphical User Interface

Many of the standard Zenoss Graphical User Interface (GUI) menus have an Add to ZenPack
option; thus event classes, event commands, user commands, device classes, service classes,
process classes, reports and product definitions as well as the data sources, graphs and
thresholds of performance templates, can be simply added to a ZenPack using the GUI (a
simple ZenPack).

A ZenPack can also add daemons, new device types and user interface features such as menus
but this requires programming effort (a complex ZenPack). A complex ZenPack generally
requires some Python code and might require JavaScript, HTML / XML and bash skills.

With Zenoss 4.2 and Zenoss 5 the zenpacklib utility (sometimes abbreviated to ZPL),
provided by Zenoss, can dramatically reduce the amount of formal code that needs to be
developed.

Consult the Zenoss 4 Administration Guide or Zenoss 5 Administration Guide for a short
introduction to ZenPacks.

The Zenoss GUI provides a way to create, examine, export and delete ZenPacks from the
ADVANCED -> Settings -> ZenPacks menu (provided you have at least ZenManager
authority). Note that Zenoss 5 no longer allows ZenPack creation or deletion through the GUI.

However trivial the ZenPack is, it should always have a README.rst, a documentation file in
reStructuredText format; see http://docutils.sourceforge.net/rst.html . This file should be in
the top-level directory of the ZenPack.

2.3 Existing ZenPack documentation

Documentation for ZenPacks exists in many places, in many forms and with varying degrees
of currency, accuracy and detail.

2.3.1 High-level documentation

Some ZenPack documentation is made available by Zenoss. The site
https://zenosslabs.readthedocs.org/en/latest/ offers guidance on ZenPack documentation and
taxonomy. It is also available in pdf format at
http://media.readthedocs.org/pdf/zenosslabs/latest/zenosslabs.pdf .

The documentation section starts with a mandate that every ZenPack should have a
README.rst (in reStructuredText format) in the top-level directory, and documents the
proposed layout of that file.

10 ZenPack Developers' Guide Oct 13, 2016

http://media.readthedocs.org/pdf/zenosslabs/latest/zenosslabs.pdf
https://zenosslabs.readthedocs.org/en/latest/
http://docutils.sourceforge.net/rst.html
https://github.com/jcurry
https://github.com/zenoss

The taxonomy section offers some interesting insights into ZenPack complexity on a scale of
1 - 10 where 1 is a ZenPack requiring no coding and 10 is fundamentally extending the Zenoss
platform . This section also documents the skills required to develop the different elements of
a ZenPack, such as Zenoss knowledge, Python, scripting, Twisted libraries, JavaScript,
ZCML, etc.

The last part of this document gives example ZenPack classifications (many of which are only
available to Service Dynamics customers) but which are still interesting as a way of
understanding complexity.

There is a useful page on the Zenoss wiki at
http://wiki.zenoss.org/ZenPack Development Guide including links to excellent, publicly-
available sample ZenPacks. There is also a link to ZenPack web-based training.

http://wiki.zenoss.org/ZenPack Development Guide/Development Environment provides
Zenoss wiki tips for creating a ZenPack development environment.

2.3.2 zenpacklib documentation

The “readthedocs” page has a link to http://zenpacklib.zenoss.com/en/latest/ . zenpacklib
emerged during 2015 as a library designed to simplify the coding of ZenPacks. Its
documentation pages change earlier, more specific documentation that used some excellent
examples written by Zenoss's Chet Luther.

Oct 13, 2016 ZenPack Developers' Guide 11

http://zenpacklib.zenoss.com/en/latest/
http://wiki.zenoss.org/ZenPack_Development_Guide/Development_Environment
http://wiki.zenoss.org/ZenPack_Development_Guide

[e Monitoring an SNMP Device — zenpacklib 1.0.3 documentation - Mozilla Firefox
File Edit View History Bookmarks Tools Help

—

<'u /1. Problem... | O Getting ... |f Contra .. HH http:...istro | All aboutour... |O monitari... | ¢ Zenoss... | ZenPackDe... | Providing Tri... |Oqurr\r(J... | 2 Zeno

€ | @ zenpacklib.zenoss.comienflatestitutarial-snmp-device/index.html v @| | Q search

-—
Zenoss Docs » Monitoring an SNMP Device ©) Edit on GitHub

zenpacklib

Monitoring an SNMP Device

The following sections will describe a common approach to monitoring an SNMP- enabled device.
Welll start with the basics that can be done without writing a line of code, and then move on to more
sophisticated capabilities.

For purposes of this guide we'll be building a ZenPack to support a NetBotz environmental sensor

Tutorials /Monitoring an SNMP Device device. This device has a variety of sensors that monitor temperature, humidity, dew point, audio

levels and air flow.

SNMP Tools
Device Monitoring * SNMP Tools
Device Modeling o Using SNMPoster
o Usings
Component Modeling LR s mewalk
o Default Net-SNMP Options
Component Monitoring

o Decoding and Encoding OIDs
SNMP Traps * Device Monitoring
o Create a Device Class
o Configure Monitoring Templates
o Test Monitoring Template
® Device Modeling
o Create the NetBotzDevice Class
o Find Temperature Sensor Count
o Create a Modeler Plugin
o Change the Device Overview
¢ Component Modeling
¢ Find Temperature Sensor Attributes
o Create a Component Subclass
© Update the Modeler Plugin
¢ Component Monitoring
© Find the SNMP OID
o Add a Monitoring Template
¢ SNMP Traps

Figure 4: zenpacklib documentation

zenpacklib does not address all issues. For example, it does not simplify writing modeler
plugins or custom datasources. This means it is necessary to thoroughly understand the
constructs that zenpacklib simplifies for you.

2.3.3 Standard Zenoss documentation

Each version of the Zenoss product Administration Guide, including Zenoss 5, contains basic
ZenPack information. For official Zenoss documentation, visit : https:/www.zenoss.com/ and
navigate to:

Support > Documentation.

Zenoss 3 provided a Zenoss Developer's Guide, published in 2010, with much more in-depth
information about coding ZenPacks but, although much of this information is still relevant,
much is also out of date. This document appears to have disappeared from Zenoss's own
websites but I found it in October 2015 at

http://docs.huihoo.com/zenoss/3/Zenoss Developers Guide 08-102010-3.0-v01.pdf .

12 ZenPack Developers' Guide Oct 13, 2016

http://docs.huihoo.com/zenoss/3/Zenoss_Developers_Guide_08-102010-3.0-v01.pdf
https://www.zenoss.com/

2.3.4 Community ZenPack documentation

The wiki site has a complete category for ZenPacks, with documentation and download links.
See http://wiki.zenoss.org/Category:ZenPacks .

ZenPacks are typically stored on GitHub where the associated README.rst should be the
best specific documentation. The Zenoss area is reached at https:/github.com/zenoss . As an
example of community GitHub ZenPacks, my github home is https:/github.com/jcurry .

There is a large paper on “Creating Zenoss ZenPacks” at http:/www.skills-
1st.co.uk/papers/jane/zenpacks/ and a more specific paper on “Zenoss Datasources through
the eyes of the Python Collector ZenPack” at http:/www.skills-
1st.co.uk/papers/jane/PythonZenPacks.pdf .

David Buler wrote an excellent ZenPack Development Procedures guide in 2010 that is very useful as an
introduction to using GitHub to store and share ZenPacks.

3.0 The mechanics of building a ZenPack

3.1 ZenPack development environment

Use of developed ZenPacks can be dangerous! Even a trivial ZenPack developed entirely
through the GUI, can cause unexpected issues, especially if exported to a different system.
For this reason an organization should always have a test environment.

ZenPack work should always be performed as the zenoss user with all ZenPack directories
and files owned by user zenoss and, typically, group zenoss. File permissions vary slightly
depending on the ZenPack creation mechanism but either :

-rw-rw-r-—- 1 zenoss zenoss 2418 Oct 14 2014 HPCPUMap.py or
-rw-r--r-—- 1 zenoss zenoss 2418 Oct 14 2014 HPCPUMap.py

is acceptable (zenpacklib defaults to -rw-rw-r-- and other creation methods default to -rw-r--
r--). Note that files in any libexec directory should also be executable by the zenoss user.

3.1.1 Zenoss 4 and earlier
For simple ZenPack development through the GUI, no special environment is required.

When developing a complex ZenPack that involves writing code, it is recommended as a best
practice to restart all Zenoss daemons whenever the ZenPack is removed/installed/updated.

NOTE: While it is possible that some daemons may not be affected by changes made in
ZenPack development, until the implications of the changes are fully understood and the
daemons that are affected, restart all daemons.

Often only a small set of daemons is required for development and testing. For example , the
zenjmx daemon isn't required to test a ZenPack that doesn't involve java/jmx.

Two files are required to specify a minimal set of Zenoss daemons in ZENHOME / etc:
e DAEMONS_TXT ONLY must exist, probably zero-length
e daemons.txt one daemon per line

Typically, DAEMONS_TXT ONLY (note all in capitals) is created with the touch command.

Oct 13, 2016 ZenPack Developers' Guide 13

http://www.skills-1st.co.uk/papers/jane/PythonZenPacks.pdf
http://www.skills-1st.co.uk/papers/jane/PythonZenPacks.pdf
http://www.skills-1st.co.uk/papers/jane/zenpacks/
http://www.skills-1st.co.uk/papers/jane/zenpacks/
https://github.com/jcurry
https://github.com/zenoss
http://wiki.zenoss.org/Category:ZenPacks

The daemons.txt file has one daemon per line for each daemon to be activated. A minimal list
of daemons for Zenoss Core is:

e zeneventserver

e zopectl

e zeneventd

e zenhub

e zenjobs
Zenoss Service Dynamics also requires zencatalogservice.
Lines can be commented out with #.

NOTE: To make this file unavailable and revert to all daemons operational, rename the file
to hide_ DAEMONS_TXT _ONLY. Do not rename it by adding a suffix to the file name
because some versions of Zenoss will find and use a file with a suffix, such as
DAEMONS_TXT ONLY_hide.

Note that daemons.txt is used for all zenoss commands - zenoss start, zenoss stop, zenoss
status.

For additional debugging, the core daemons can be run in the foreground, leaving just
zeneventserver in daemons.txt to run as a daemon. Start the daemons in separate command
windows with the following commands:

zopectl fg

zeneventd run -v10

zenhub run -v10 --workers=0
zenjobs run -v10 --cycle

The “-v10” provides full debugging output to stdout and will create very verbose logs.

3.1.2 Zenoss 5

See http://zenpacklib.zenoss.com/en/latest/development-environment-5.html for excellent
advice on developing ZenPacks in a Zenoss 5 environment.

Because Zenoss 5 is built on top of Control Center, a docker implementation, extra steps
must be taken to attach to each isolated container. The Zenoss environment consists of many
docker containers which run one or more processes; each Zenoss daemon has its own
isolated container.

Control Center provides a snapshot mechanism to provide a snapshot backup facility before
performing ZenPack installation. The procedure is outlined here; see the Zenoss Resource
Manager Administration Guide for additional information on performing snapshots.

1. Login to the Control Center browser interface.

2. In the Applications table, click on the name of the Zenoss Core instance to modify.
3. Stop the Zenoss service, and then verify its subservices are stopped.

4. Create a snapshot.

a. Log in to the Control Center base host as a user with Control Center CLI privileges
(typically the zenoss user).

14 ZenPack Developers' Guide Oct 13, 2016

http://zenpacklib.zenoss.com/en/latest/development-environment-5.html

b. Create a snapshot

serviced service snapshot Zenoss.core

c. The serviced command returns the ID of the new snapshot on completion.

5. Restart the Zenoss service.

TODO: Do we actually need to stop the Zenoss service before taking the snapshot?

3.1.2.1 zenoss user

ZenPack development should be performed as the zenoss user, which exists in various
containers but does not typically exist on the Zenoss server base host. It will become
necessary to share files between the base host and containers so standardizing the zenoss
user throughout is useful.

To create a zenoss user on the base host, you will probably need root privilege. You should
also create a zenoss user group.

groupadd --gid=1206 zenoss
adduser --uid=1337 --gid=1206 zenoss

It is essential that the gid and uid are the same as in the containers. The numbers given
here are the usual defaults from a standard Zenoss installation.

The zenoss user will need to be able to run sudo commands and docker commands so should
be added to the wheel and docker user groups.

usermod -a -G wheel zenoss
usermod -a -G docker zenoss

The zenpack command must be run from within the Zope container. Other commands need
to be run from other containers. It is extremely tedious to attach to a container, switch user,
run a command and exit the container. The zenoss user's .bashrc file (run whenever the user
logs in) can be used to create aliases that make this process much more streamlined. Add the
following to the end of /home/zenoss/.bashrc on the base host (note the leading dot on
bashrec):

alias zope='serviced service attach zope su zenoss -1'
alias zenhub='serviced service attach zenhub su zenoss -1'

z () { serviced service attach zope su zenoss -1 -c "cd /z;$*"; }
zp () { serviced service attach zope su zenoss -1 -c "cd /z/zenpacks;$*"; }
zenbatchload () { z zenbatchload $*; }

zendisc () { z zendisc S$*; }

zendmd () { z zendmd S$*; }

zenmib () { z zenmib $*; }

zenmodeler () { z zenmodeler $*; }

zenpack () { zp zenpack $*; }

zenpacklib () { zp ./zenpacklib.py $*; }

zenpython () { z zenpython $*; }

zencommand () { z zencommand $*; }

zenperfsnmp () { z zenperfsnmp $*; }

zenactiond () { z zenactiond $*; }

zeneventd () { z zeneventd $*; }

Oct 13, 2016 ZenPack Developers' Guide 15

zeneventserver () { z zeneventserver $*; }

The zenoss user will need to relogin before these aliases become active. These are the
common daemons; it may be useful to add others, depending on your environment and the
ZenPacks that are installed.

e The first two lines attach to the running zope and zenhub containers, respectively.
Further commands can then be run from that container environment.

e The “z” line provides:
s A function to attach to the zope container as the zenoss user

s Change directory to /z (a directory shared between containers and the base host -
see later)

s Run the command name, passing any parameters that were provided
s Exit back to the base host

e The “zp” line is similar to z but changes directory to /z/zenpacks. This assumes that
ZenPack development work will be performed under /z/zenpacks.

® The rest of the lines define commands that can now be executed from the base host, to
be implemented in the zope container, in the context of the current directory being /z or
/z/zenpacks, as appropriate.

The zenoss user is configured, by default, as an account that cannot be directly logged in to
(and always has been from very early versions of Zenoss); the zenoss account was accessed
using su - zenoss. With Zenoss 5, it is advantageous to change that, simply by setting a
password for the zenoss user (for which you will probably require root or sudo privilege):

passwd zenoss

Note that the zenoss user on the base host does not share the same home directory as that in
the containers. This includes differing .bashrc scripts and differing .ssh directories. A
consequence is that any direct ssh communications tests that will update the zenoss user's
.ssh [known_hosts file must be conducted from within a container.

3.1.2.2 Common directory between containers and the base host - /z

Moving data between the base host and containers is non-trivial. To create a common
directory, /z, on the base host, as the root user, run:

mkdir -p /z
chown -R zenoss:zenoss /z

The /z directory is now owned by the zenoss user, zenoss group.

To make /z available to all containers as well as the base host, configure the Control Center's
serviced daemon by editing /lib/systemd [system [serviced.service on the base host adding a
mount argument to the end of the ExecStart line:

ExecStart=/opt/serviced/bin/serviced --mount *,/z,/z

The configuration must be reloaded and the service restarted:

16 ZenPack Developers' Guide Oct 13, 2016

systemctl daemon-reload
systemctl restart serviced

Once /z has been created and made universally available, further subdirectories can be
created following a local convention; for example:

/z/zenpacks for ZenPack development
/z/packages for Operating System packages
/z/scripts for local scripts

To test that both the host and containers can read and write files in /z, use the following on
the base host:

Su - zenoss # becomes zenoss user on host

touch /z/host

serviced service attach zenhub # attach to a container

su - zenoss # becomes zenoss user 1in container

rm /z/host

touch /z/container

exit # back to container root user

exit # back to host zenoss user

rm /z/container

exit # back to host root user

3.1.2.3 Configuring the service for a development minimum

Out of the box, at least in Zenoss.resmgr, Zope is configured to run a minimum of two
instances. This is problematic when you insert a breakpoint (pdb.set_trace()) in code run by
Zope because you can’t be sure the breakpoint will occur in the instance of Zope you happen to
be running in the foreground.

Run the following command to edit the Zope service definition. This will open vi with Zope’s
JSON service definition.

serviced service edit Zope

Search this file for “Instances” (with the quotes). You should see a section that looks
something like the following. Change Instances, Min, and Default to 1. Then save and quit.

"Instances": 6,
"InstancelLimits": {
"Min": 2,

"Max": O,

"Default": 6
b
Restart Zope with:

serviced service restart Zope

As with earlier versions of Zenoss, a development environment probably does not need all the
standard Zenoss daemons running. To prevent running unwanted daemons in unwanted
serviced containers, edit the appropriate service definition file; for example:

serviced service edit zenping

Search this file for “Launch” (with the quotes). You should see a section that looks like the
following. Change auto to manual. Then save and quit.

Oct 13, 2016 ZenPack Developers' Guide 17

"Launch": "auto",

This won’t stop zenping if it was already running, but it will prevent it from starting up next
time you start Zenoss.core or Zenoss.resmgr.
Good candidates for setting to manual launch are:

e zencommand

® zenjmx

e zenmail (defaults to manual)

e zenmodeler

e zenperfsnmp

® zenping

e zenpop3 (defaults to manual)

® zenprocess

e zenpython

e zenstatus

e zensyslog

e zentrap

The Enterprise Resource Manager product has extra daemons. The following may usefully be
set to manual mode:

® zenjserver

e zenpropertymonitor
e zenucsevents

e zenvsphere

The actual services on the system will depend on what ZenPacks are installed. The rule of
thumb should be that any services under the Collection tree can be set to manual except for
zenhub, MetricShipper, collectorredis, and zminion.

3.1.2.4 Useful references for managing a Zenoss 5 environment

Zenoss 5 is a very different environment from previous versions given its use of docker
containers. This provides some new challenges, especially for those who are already familiar
with Zenoss 4.

Some useful Knowledge Base articles are emerging which provide assistance:

o “Virtualization and Docker Containerization for Poets” -
https://support.zenoss.com/hc/en-us/articles/202254069-Virtualization-and-Docker-
Containerization-for-Poets

e “How to troubleshoot Resource Manager 5.x services that fail to start” -
https://support.zenoss.com/hc/en-us/articles/207348996-How-to-troubleshoot-Resource-
Manager-5-x-services-that-fail-to-start

18 ZenPack Developers' Guide Oct 13, 2016

https://support.zenoss.com/hc/en-us/articles/207348996-How-to-troubleshoot-Resource-Manager-5-x-services-that-fail-to-start
https://support.zenoss.com/hc/en-us/articles/207348996-How-to-troubleshoot-Resource-Manager-5-x-services-that-fail-to-start
https://support.zenoss.com/hc/en-us/articles/202254069-Virtualization-and-Docker-Containerization-for-Poets
https://support.zenoss.com/hc/en-us/articles/202254069-Virtualization-and-Docker-Containerization-for-Poets

o “How to Recover Control Center from Hardware Failure” -

https:/support.zenoss.com/hc/en-us/articles/204643769-How-to-Recover-Control-Center-
from-Hardware-Failure

e “How to add tools or scripts into a Resource Manager 5.x Docker Container” -
https:/support.zenoss.com/hc/en-us/articles/207610516-How-to-add-tools-or-scripts-into-a-

Resource-Manager-5-x-Docker-Container

o “Introduction to Zenoss Control Center” - https:/support.zenoss.com/hc/en-
us/articles/206278353-Introduction-to-Zenoss-Control-Center

3.2 ZenPack creation

The method for creating a ZenPack varies depending on the Zenoss version. Although Zenoss
4 and earlier provides a GUI menu but no command-line method and Zenoss 5 offers a
command-line interface but no GUI, the zenpacklib tool provides a common method for both.

3.2.1 What's in a name?

When creating a new ZenPack, the first thing to decide is the ZenPack name. ZenPack names
are a sequence of, typically, three package names separated by periods. The first part of the
name is always ZenPacks. The second part usually identifies the person or organization
responsible for the ZenPack. The last part of the name usually identifies the function of the
ZenPack.

Zenoss5.0.7: ZenPacks - Mozilla Firefox Y &
Fle Edit View History Bookmarks Ieols Help
T ——————
@ control Center o /o Zenoss5.0.7: ZenPacks x | &

€ | & hitps:/jzenosss.zens0/zport/dmdjZ enPackManagerjviewZenPacks v &|[Bv ceogle ® N E 8 A=

-
zZen ss DASHBOARD EVENTS INFRASTRUCTURE REPORTSQ zonoss SIGNOUT [E

CORE

C€IPY Control Center Monitoring Templates ~ Jobs ~ MIBs Page Tips

Settings ck m
Commands
Wezrs ZenPacks.ShaneScottipSLA ShaneScott Shane William Scott
ZenPacks o " o q
ZenPacks.SymbioticSystemDesign.BaseMIBs SymbioticSystemDesign Manuel Deschambault
Portlets
. . ZenPacks.community.DirFile community Jane Curry - jane.curry@skills-1st.co.uk 1.02 Yes
Versions
Elan . ZenPacks.community.l ogMatch community Jane Curry - jane.curry@skills-1st.co.uk 1.0.1 Yes
User Interface . ZenPacks.community.dummy community Jane Curry 1.00 Yes
. ZenPacks.zenoss.ApacheMonitor zenoss Zenoss 214 Yes
. ZenPacks.zenoss.Dashboard zenoss Zenoss 1.06 Yes
. ZenPacks.zenoss.DellMonitor zenoss Zenoss 220 Yes
. ZenPacks.zenoss.DeviceSearch zenoss Zenoss 121 Yes
. ZenPacks.zenoss.DigMonitor zenoss Zenoss 110 Yes
. ZenPacks.zenoss.DnsMonitor zenoss Zenoss 21.0 Yes
7enParcks zennss FinManitar zennss 7ennss 110 Yes °

Figure 5: ZenPack page from Zenoss 5 - note the structure of ZenPack names

It is possible to have names with more than three segments, for example:
ZenPacks.zenoss. Microsoft. Windows

Oct 13, 2016 ZenPack Developers' Guide 19

https://support.zenoss.com/hc/en-us/articles/206278353-Introduction-to-Zenoss-Control-Center
https://support.zenoss.com/hc/en-us/articles/206278353-Introduction-to-Zenoss-Control-Center
https://support.zenoss.com/hc/en-us/articles/207610516-How-to-add-tools-or-scripts-into-a-Resource-Manager-5-x-Docker-Container
https://support.zenoss.com/hc/en-us/articles/207610516-How-to-add-tools-or-scripts-into-a-Resource-Manager-5-x-Docker-Container
https://support.zenoss.com/hc/en-us/articles/204643769-How-to-Recover-Control-Center-from-Hardware-Failure
https://support.zenoss.com/hc/en-us/articles/204643769-How-to-Recover-Control-Center-from-Hardware-Failure

ZenPack names must be unique.

ZenPack names must not overlap. For example, if ZenPacks.zenoss.Microsoft. Windows exists,
then ZenPacks.zenoss.Microsoft is illegal.

3.2.2 ZenPack directory hierarchy

When creating a new ZenPack, the only initial requirement is the name. After creation, you
can then specify other parameters, such as the Zenoss version dependency or other co-
requisite ZenPacks. You should also specify an author, a version and a license for the
ZenPack. It is good practice to supply contact details in the author field; for example Joe User
- joe.user@amazingzenosstech.com. These details are configured using the GUI.

‘-ﬁl' DASHBOCARD EVENTS INFRASTRUCTURE REPORTS ADVANC . jane siGNOUT H

m Collectors Monitoring Templates Jobs MIBs Page Tips

ZenPackManager > ZenPacks.community.dumm
Detall : i

Name ZenPacks.community.dummy
Version |1.().O
Author |Jane Curry - jane.curry@skills-1st.co.uk (ZenossDev
License GPLv2 ™
Save
Required? Name Versian(s)
Zenoss |>:3.2
(] ZenPacks.Eseye ActiveMQ [
m} ZenPacks.Markit. MarkitDatabase |
O ZenPacks.Markit RigHost [
o ZenPacks.Nova.lbmDb2 [
m] ZenPacks.Nova.winServiceSNMP |
O ZenPacks.Nova.Windows.SNMPPerfMonitor |
O ZenPacks.SCC.ShowGraphPortlet [
O ZenPacks.ShaneScott.ipSLA |
O ZenPacks.SteelHouseL abs.EventForwarder [

Figure 6: Creation details for a ZenPack

When a ZenPack is created, a directory hierarchy is automatically created under
$ZENHOME | ZenPacks. For the example ZenPacks.community.dummy under
$ZENHOME | ZenPacks, the hierarchy is:

o ZenPacks.community.dummy

o ZenPacks.community.dummy [ZenPacks

o ZenPacks.community.dummy [ZenPacks | community

o ZenPacks.community.dummy [ZenPacks /community /| dummy

In this document, ZenPacks.community.dummy |/ ZenPacks [community [dummy is referred to
as the base directory for the ZenPack. This is where the files and directories that actually
do the work of the ZenPack, are placed.

There will also be a ZenPacks.community.dummy.egg-link file under $ZENHOME |/ ZenPacks;
this file simply contains the name of the top-level directory where the code actually resides;
in this case, /opt/zenoss / ZenPacks | ZenPacks.community.dummy.

In Zenoss 5, the egg-link file is in /var/zenoss/ZenPacks in the Zope container.

20 ZenPack Developers' Guide Oct 13, 2016

This top-level directory has a setup.py file containing the name, author, prerequisite and
license information entered on the GUI.

Zenoss@zen42:/opt/zenoss/ZenPacks/ZenPacks.community.dummy

File Edit View Search Terminal Help
[zenoss@zend2 ZenPacks.community.dummy]$ pwd [~]
/opt/zenoss/ZenPacks/ZenPacks.community.dummy
[zenoss@zend? ZenPacks.community.dummy]$ cat setup.py
S
These variables are overwritten by Zenoss when the ZenPack is exported
or saved. Do not modify them directly here.
NB: PACKAGES is deprecated
NAME = "ZenPacks.community.dummy"
VERSION = "1.0.0"
AUTHOR = "Jane Curry"
LICENSE = "GPLv2"
NAMESPACE_PACKAGES = ['ZenPacks', 'ZenPacks.community']
PACKAGES = ['ZenPacks', 'ZenPacks.community', 'ZenPacks.community.dummy']
INSTALL REQUIRES = []
COMPAT_ZENOSS_VERS = "==3.2"
PREV_ZENPACK_NAME = ""
STOP_REPLACEMENTS
Zenoss will not overwrite any changes you make below here.
import os
from subprocess import Popen, PIPE
from setuptools import setup, find packages
Run "make build" if a GNUmakefile is present.
if os.path.isfile('GNUmakefile"):
print 'GNUmakefile found. Running "make build" ..°*
p = Popen('make build', stdout=PIPE, stderr=PIPE, shell=True)
print p.communicate()[0]
if p.returncode != 0:
raise Exception('"make build" exited with an error: %s' % p.returncode)
setup(
This ZenPack metadata should usually be edited with the Zenoss =
ZenPack edit page. Whenever the edit page is submitted it will
overwrite the values below (the ones it knows about) with new values.
name=NAME,
version=VERSION,
author=AUTHOR, [~

Figure 7: setup.py in the top-level directory of a ZenPack

Each of the directories, other than the top-level, has a sparsely populated file called
__init__.py that is required. It does not require modification for simple ZenPacks.

NOTE: It is essential that all directories and subdirectories below the top-level that are
part of the path to a python source file, have an __init_ .py file, even if it is a zero-length file.

Provided the ZenPack is not created using the zenpacklib command, the base directory has
several example files plus a directory hierarchy for creating the various elements of a
ZenPack.

Points to consider:

m Some of these files and directories may be redundant and should ideally be
removed if not required.

m Other directories may be desirable, for example facades, routers, parsers.
= Don't change or invent directory names.
m Most default files contain helpful comments that describe their function.

m At creation time, these sample files are generally harmless and items can be added
to the ZenPack using the GUI; however it is good practice to remove any unwanted
sample files.

Oct 13, 2016 ZenPack Developers' Guide 21

s ZenPacks can be built by a combination of adding objects using the GUI and

writing code.

Consult the guide at
https://zenosslabs.readthedocs.org/en/latest/zenpack standards guide.html for a good

overview of standard ZenPack files, directories and best practices.

zenoss@zend2:/opt/zenoss/ZenPacks/ZenPacks.community.dummy/Ze

iEile Edit View Search Terminal

[zenoss@zend? dummy]$ pwd

[zenoss@zend2 dummy]$ 1s
ltotal 124

-rw-r--r-- 1 Zenoss zZenoss
drwxr-xr-x 2 Zenoss Zenoss
drwxr-xr-x 3 Zenoss Zenoss
-rw-r--r-- 1 zZenoss Zenoss
drwxr-xr-x 2 Zenoss Zenoss
drwxr-xr-x 2 Zenoss Zenoss
-rw-r--r-- 1 zenoss zenoss
-rw-r--r-- 1 Zenoss Zenoss
-rw-r--r-- 1 Zenoss zZenoss
{-rw-r--r-- 1 zenoss Zenoss
-rw-r--r-- 1 Zenoss zZenoss
-rw-r--r-- 1 Zenoss Zenoss
l-rw-r--r-- 1 zZenoss Zenoss
l-rw-r--r-- 1 Zenoss Zenoss
-rw-r--r-- 1 Zenoss zZenoss
drwxr-xr-x 2 Zenoss Zenoss
|drwxr-xr-x 2 zenoss zenoss
{-rw-r--r-- 1 zZenoss Zenoss
drwxr-xr-x 2 Zenoss Zenoss
drwxr-xr-x 3 Zenoss Zenoss
drwxr-xr-x 2 Zenoss Zenoss
drwxr-xr-x 4 zZenoss Zenoss
drwxr-xr-x 2 Zenoss Zenoss
drwxr-xr-x 2 Zenoss Zenoss
-rw-r--r-- 1 Zenoss zZenoss
drwxr-xr-x 2 Zenoss Zenoss

[7enoss@zend? dummv]g

Help

843
4096
4096
7111
4096
4096
1327

692
1354
1070
3665
1956
1764

169
1837
4096
4096

18092
4096
4096
4096
4096
4096
4096
3629
4096

Mar
Oct
Oct
Mar
Oct
Oct
Mar
Mar
Mar
Mar
Mar
Mar
Mar
Oct
Mar
Oct
Oct
Oct
Oct
Oct
Oct
Mar
Oct
Oct
Mar
Oct

ffoptfzenosszenPackszenPacks.community
-1

11
14
23
11
14
14
11
11
11
11
11
11
11
23
11
14
14
23
23
14
14
11
14
14
11
14

.dummy/ZenPacks/community/dummy

2014
2014
09:18
2014
2014
2014
2014
2014
2014
2014
2014
2014
2014
09:18
2014
2014
2014
09:18
09:18
2014
2014
2014
2014
2014
2014
2014

analytics.py

bin

browser
configure.zcml
daemons
datasources
dynamicview.py
events.py
ExampleComponent.py
ExampleDevice.py
impact.py
info.py

__init .py
_init .pyc

interfaces.py
lib

libexec
LICENSE.txt
migrate
modeler
objects
reports
services
tests
zenexample.py
Zep

Figure 8: Default files and subdirectories in ZenPack base directory

In the following list, the color-highlighted items are directories.

22

Name
analytics.py
bin

browser

Description

ZenPack Developers' Guide

For integration with Service Dynamics Analytics
Any binaries the ZenPack creates

Code for driving the GUI

Oct 13, 2016

https://zenosslabs.readthedocs.org/en/latest/zenpack_standards_guide.html

Name
configure.zecml
daemons
datasources
dynamicview.py
events.py
ExampleComponent.py
ExampleDevice.py
info.py

__init__.py
interfaces.py
lib

libexec
LICENSE.txt
migrate
modeler

objects

reports
services

tests
zenexample.py

zep

Description
“Glue” code to link info & interface information to GUI code
If the ZenPack creates a new daemon, code goes here
For new datasource code
For integration with Service Dynamics dynamic views
For integration wit Service Dynamics Impact
Sample code for a new component
Sample code for a new device object class

Defines mapping between object attributes and interface
classes for display in the GUI

Mandatory. Can modify almost anything - or nothing!
Defines what attributes should be displayed in GUI & how
For new libraries required by the ZenPack

For scripts delivered and used by the ZenPack

The text of the selected license

Code to help migration between Zenoss versions

Directory hierarchy for modeler plugins

Contains objects.xml - objects added to ZenPack from the
GUI and possibly other objects

For reports created by the ZenPack

Provides configuration services for custom daemons
test scripts

Sample daemon code

To provide custom triggers, notifications &event fields

Zenoss 5 also has a service_definition directory which holds files to register new ZenPack

services with Control Center.

When the ZenPack is created through the GUI or command line, it is in development mode,
also known as link-installed mode. This means that objects can be added to it from the
GUI. In contrast, installing a ZenPack from a pre-packaged egg file will result in a read-only
ZenPack. No changes through the GUI are possible, although it is possible to add / modify
files and directories in the code.

3.2.3 ZenPack creation for Zenoss 4 and earlier

Versions of Zenoss prior to 5 do not provide a zenpack command option to create a new
ZenPack; a new ZenPack is generally created through the GUI.

As a Zenoss user with at least the ZenManager role, use the top-level ADVANCED -> Settings
option and select ZenPacks from the left-hand menu.

Oct 13, 2016 ZenPack Developers' Guide 23

(Zenoss: ZenPacks # | € jeurry/ZenPacks.community.... ¢ | ¢ | ~

ﬁ [(3 example.org | https://zen42.class.example.org/zport/dmd/ZenPackManager/viewZenPacks v @] [-‘]v @J ‘ @
‘-ﬂ 1st DASHBOARD EVENTS INFRASTRUCTURE REPORTS ADVANCED jane SIGNoOUT H
— . 60“'95(6;5: r 'Maniﬁrinéj'énﬁatég y JObs , WBS R A B i A e i A i G S L A A A i S A A A A A A A A A A A Pags Ti:s
Settings LoudadZenPack:
Commands Eiﬁ) " Pack: Auth |‘ﬁ ﬁﬁ n 0 | C
Users ﬁ ZenPacks.Eseye.Act preate & zenfeck:: $ ma\vaﬂerra 0.7.3 f,
[ZenPacks.Markit.Mai Install ZenPack... Markit Jane Curry - jane.curry@skills-1st.co.uk 11441 Yes
Portlets [ZenPacks.Markit.Rig Delete ZenPack... Markit Jane Curry jane.curry@skills-1st.co.uk 1.041 Yes
DHE"N)"S [J ZenPacks.Nova.lomDb2 Nova Jane Curry / Ryan Matte 1.0.0 Yes
et [ZenPacks.Nova.WinServiceSNMP Nova Ryan Matte 1.1.0 Yes
E:z:sps | O ZenPacks Nova Windows.SNMPPeriMonitor Nova Ryan Maite 1.7 Yes
Usariniarace [J ZenPacks.SCC.ShowGraphPortlet SCC Anton Menshutin 1.03 Yes
[ZenPacks.ShaneScott.ipSLA ShaneScott Shane Wiliam Scott 3.54 Yes
[ZenPacks.SteelHouseLabs. EventForwarder SteelHouselabs Shane Wiliam Scott 1.0.0 Yes
| [ZenPacks.SteelHouseLabs.ZenossForwarder SteelHouselabs Shane Wiliam Scott 1.00 Yes
[J ZenPacks. Tunein.Solr Tunein Jane Curry jane.curry@skills-1st.co.uk 1.0.0 Yes
[ZenPacks. TwaNMS PrinterMIB TwoNMS 2NMS - Maarten Wallraf / Modified for Zenoss 4 by Jane Gurry 1.1 Yes
[J ZenPacks.ZenSystems.ApcAts ZenSystems Jane Curry 2.0 Yes o
o R SN VUGN TN SUONP"SUY S-S — n o)

Figure 9: ZenPacks option fronrlwt.ﬁ;ADVAN CED -> Settings mer;u

The Action icon (the “gear” icon at the top of the main panel) then offers the following options:
e Create a ZenPack
e Install ZenPack
e Delete ZenPack

3.2.4 Zenoss 5 ZenPack creation

Zenoss 5 has removed the ability to create a ZenPack through the GUI. The command line is
mandatory. The rest of this document assumes that the Zenoss 5 development environment
documented in section 3.1.2, has been implemented.

TODO: More information required on filesystems (base host, container, DFS) - probably in
architecture section. <<StevePC:This development environment also assumes that NFS is working to sync
the DFS with all v5 pool hosts, including remote collectors, which is not often the case >>

In Zenoss 5.0.x, logon to the base host as the zenoss user and create the
ZenPacks.community.dummy ZenPack with:

zenpack --create ZenPacks.community.dummy

The directory hierarchy is created, including the extra service_definition directory which
holds files to register new ZenPack services with Control Center. No containers or daemons
need to be started.

The ZenPack directory hierarchy can be inspected by accessing the zope container:

zope
cd /opt/zenoss/ZenPacks
1s -1

In Zenoss 5.1, the zenpack command is partially replaced by zenpack-manager.

TODO: More info required on zenpack-manager - see Chet foils from GalaxZ.

24 ZenPack Developers' Guide Oct 13, 2016

3.2.5 ZenPack creation using zenpacklib

An alternative method for creating ZenPacks, common to Zenoss 4 and 5, is to use the
zenpacklib command.

./zenpacklib.py create ZenPacks.community.dummy

See the Zenoss documentation at http:/zenpacklib.zenoss.com/en/latest/getting-started-5.html
and sections 8.3 and 8.4 for more information.

This method results in a minimal (basic) directory hierarchy, only created down to the base
directory,

[opt /zenoss [ZenPacks [ZenPacks.community.dummy [ZenPacks [community | dummy. No
subdirectories or sample files are created. There are good reasons to start with a minimal
structure:

o Provides a reference structure for the new developer
o Makes it unnecessary to manually remove example code created by the Ul

e It is easier to add in new functionality as required

3.3 Exporting ZenPacks

When a ZenPack is ready to be tested on a different system or to be packaged for inclusion on
the Zenoss Wiki site, it needs to be converted into a Python egg file.

3.3.1 Exporting xml data

The GUI export process creates the objects/objects.xml file from the objects associated with
the ZenPack in the GUI.

NOTE: This step is required if you’ve made changes to the associated objects in the GUI and
need to update the objects.xml file before creating a new egg file or before creating a tar
bundle of your ZenPack as backup or to ship elsewhere.

In Zenoss 5, any templates in the ZenPack have their own xml file under objects/templates,
where the filename is:

<device class path>_rrdTemplates_<template name>.xml
eg. Device_Server_Linux_UserGroup_rrdTemplates_test.xml
Other ZenPack elements go in objects/objects.xml.

The export process also creates a .egg file, and, if you do not want to use the command-line,
all that is required is to export your ZenPack for installation on another system.

From the detailed page of the ZenPack, use the Action icon at the bottom of the left-hand
menu to Export ZenPack.

The options presented are:
e Export to $ZENHOME/exports
e Export to $ZENHOME/exports and download

Oct 13, 2016 ZenPack Developers' Guide 25

http://zenpacklib.zenoss.com/en/latest/getting-started-5.html

< < -

Typically you leave the top radio button selected to just create the ZenPack egg file in
$ZENHOME |/ exports. The file is first created in the ZenPack's dist directory then copied to
the $ZENHOME/exports directory.

The exported .egg file can now be moved to a different Zenoss server and installed like any
other ZenPack.

3.3.2 Creating the .egg from the command line

If you do not need to update the objects.xml data in your ZenPack and only want to create a
.egg file from the command-line:

1) cd to the top-level of your ZenPack (the directory containing setup.py)

2) Issue the following command:
python setup.py bdist egg

This creates the .egg file in the dist subdirectory, from where you can copy it to another
Zenoss system for installation.

3.4 Installing ZenPacks
Always ensure that ZenPack work is done as the zenoss user.

It is good practice to install egg versions of ZenPacks on production systems so that they are
not inadvertently changed through the GUI.

It is also good practice to install a ZenPack using the command line as it is much easier to see
if there are issues.

When developing ZenPacks and making frequent changes it can be advantageous to
understand the minimum requirements for recycling daemons in order to speed the
development process. The safe recommendation is always to restart/recycle all Zenoss
daemons after ZenPack installation. Experimentation and experience can guide a more
limited recycle.

e The safe (but slow) option is to recycle all daemons.

e With Zenoss Service Dynamics 4.x you may have to recycle all daemons. zenhub and
zenwebserver are an absolute minimum.

e With Zenoss 5 (Core and SD) you have to restart the Zenoss.core or Zenoss.resmgr
application and all its child services.

e As a minimum on Zenoss Core prior to version 5, you need to recycle zenhub and
zopectl. Adding or changing any object (device, component) will necessitate a full recycle.
Adding a new element (datasource, parser, report, modeler) will necessitate a full recycle.
Changing an existing datasource, modeler or report you will probably get away with just
restarting zenhub and zopectl. If you have changed a datasource then you will also need to
recycle the daemon that runs the datasource eg. zenpython.

e The documentation provided with the ZenPack should state what needs recycling.

26 ZenPack Developers' Guide Oct 13, 2016

During the development phase, the sample ZenPack created earlier should immediately be
moved out of the $ZENHOME |/ ZenPacks directory. It is good practice for an enterprise to
document a known directory for ZenPack development. The directory must have permissions
that provide full access for the zenoss user. If the code is to be shared outside the
organization, ZenPack directories may well be developed under git.
/code/ZenPacks/DevGuide will be used throughout this paper as the top-level directory for
ZenPack development under Zenoss 4. /z/zenpacks will be the equivalent on Zenoss 5.

cp -r SZENHOME/ZenPacks/ZenPacks.community.dummy /code/ZenPacks/DevGuide

The --link parameter to the zenpack command should be used to reinstall the ZenPack from
the development directory.

zenpack --link --install /code/ZenPacks/DevGuide/ZenPacks.community.dummy

The result of the --link parameter actually removes the ZenPacks.community.dummy
directory hierarchy from $ZENHOME | ZenPacks and the ZenPacks.community.dummy.egg-
link is modified to point to the new top-level

directory /code / ZenPacks [DevGuide | ZenPacks.community.dummy. Now, if anyone deletes
this ZenPack from he Delete ZenPack menu, the only thing that is deleted from
$ZENHOME | ZenPacks is the link file, not all the ZenPack code.

From this point, development of the ZenPack can continue, adding items using the GUI and
by writing code in appropriate directories; all changes will follow this link to actually update
code in the private directory.

It is perfectly acceptable to reinstall a ZenPack that already exists — it will simply give a
warning message that the ZenPack is already installed, but it will do the install. Remember
to restart at least zenhub and zopectl.

If the ZenPack does already exist, in practice the ZenPack's remove method is executed with
leaveObjects=True, followed by the install method. This means that if the ZenPack
introduced a new device object class, dummyDevice, and several device instances had
already been discovered with this class, for which data may have already been gathered for
weeks, these devices would not be deleted by the reinstall. Conversely, if an explicit zenpack
--remove was executed followed by a zenpack --install then such devices, including their
events, configurations and performance data, would be lost.

When a ZenPack is exported, it automatically creates an egg file whose name includes the
Python version, where 2.4 represents Zenoss 2.x, 2.6 represents Zenoss 3.x (for example
ZenPacks.skills1st.bridge-1.0.4-py2.6.egg) and 2.7 represents Zenoss 4 and 5 (for example
ZenPacks.community.dummy-1.0.0-py2.7.egg). Attempting to install a 2.6 egg file in a Zenoss
2 environment and vice versa, will often fail with a message including “***BLOCKED*** by —
allow-hosts”.

A ZenPack compiled for an earlier version of Python will need recompiling under the later
version and a new egg file created. Simply install the code in development mode with the
--link parameter and restart all the Zenoss daemons. All .py files will be recompiled to .pyc
files to be incorporated in the new egg when the ZenPack is exported.

Note that some developers deliberately remove the Python version nomenclature from their
egg file, especially if it is not Python-version-specific. Great care must be taken if files are

Oct 13, 2016 ZenPack Developers' Guide 27

4

renamed as this can cause major issues if done injudiciously, including making the ZODB
inconsistent and rendering the ZenPack neither installable nor uninstallable.

3.4.1 Installing ZenPacks on Zenoss 4

Either use the GUI with ADVANCED -> Settings -> ZenPacks menus and then the Action icon
option to Install ZenPack; or you can use the command line:

zenpack --install ZenPacks.community.dummy-1.0.0-py2.7.egg

If a link-install is performed, the .egg-link file resides in $ZENHOME |/ ZenPacks and points to
the top-level directory of the ZenPack.

It is good practice to use the command line for installation as the GUI can sometimes hide
error messages.

3.4.2 Installing ZenPacks on Zenoss 5
Before installing any ZenPack it is prudent to take a Control Center snapshot as a backup.

The .bashrc file for the zenoss user sets up a common directory, /z, that is shared between the
base host and the various containers and creates command aliases that set the current
directory to /z. As a local standard, this document maintains ZenPack code in /z/zenpacks.
Note that /z/zenpacks must be local (not mounted) and must be readable, writeable, and
executable by all users. .bashrc defines that both zenpack and zenpacklib commands will be
executed in the context of the current directory being /z/zenpacks.

To install a ZenPack, either an egg or a development directory hierarchy, use the zenpack
command as the zenoss user on the base host:

zenpack --install ZenPacks.zenoss.PythonCollector-1.7.3-py2.7.egg
zenpack --link --install ZenPacks.community.dummy

The Zenoss service must be restarted. “Core” will be used throughout to indicate commands
for those using the free version of Zenoss; “Enterprise” will be the annotation for those using
the chargeable Service Dynamics product:

serviced service restart Zenoss.core (Core users)
serviced service restart Zenoss.resmgr (Enterprise customers)

The daemons a ZenPack provides (if any) are packaged in Docker containers, and installed as
child services of the current instance of Zenoss Core.

If a link-install is performed, the .egg-link file resides in /var/zenoss/ZenPacks and points to
the top-level directory of the ZenPack.

3.5 Removing ZenPacks

In Zenoss 4, ZenPacks can be removed either from the GUI or using the CLI. It is good
practice to use the CLI as it is easier to see if there are any issues.

zenpack —--remove ZenPack.community.dummy

Zenoss should be completely restarted after ZenPack removal.

Zenoss 5 only provides the command-line option.

28 ZenPack Developers' Guide Oct 13, 2016

Remember that removing a ZenPack explicitly removes all objects in the ZenPack. If this
includes device classes then all instances of such devices will also be lost.

Another serious consequence may be if a ZenPack includes SNMP MIBs and event transforms
have been written to check the decoded OID parts of an event, then removing the ZenPack
(and hence the MIB) will result in the failure of those transforms.

4.0 Simple ZenPacks

Some ZenPacks can simply be created using the Zenoss GUI; this is especially useful for
moving standard configurations from one Zenoss server to another but may also be
appropriate when creating ZenPacks to share with other people.

The ZenPack is created exactly as described in chapter 3.2 above. To add “things” to the
ZenPack, simply use the Add to ZenPack option that is available on many of the dropdown
menus:

Device Classes

MIBs

Event Classes

Event Mappings

User Commands

Event Commands

Service Classes

Process Classes

Performance Templates

You will be prompted as to which ZenPack you wish to add the item to; only ZenPacks in
development mode will be in the dropdown selections. Devices themselves are the
conspicuous omission from this list. Any individual device is usually specific to a particular
site and therefore not likely to be useful to other Zenoss users. To port device instances, use
Zenoss backups or the zenbatchdump / zenbatchload utilities.

To see what a ZenPack contains, simply use the ZenPacks option from the ADVANCED ->
Settings menu and choose the appropriate ZenPack.

Objects can be removed from the ZenPack by selecting the checkboxes next to them under the
ZenPack Provides heading, and using the Delete from ZenPack menu item.

When a ZenPack is exported (using the Action icon from the Detail page of the ZenPack), not
only is the egg file created but it is at this time that all the objects under the ZenPack
Provides list, are written to the objects.xml file under the objects directory of the ZenPack.
This file can be inspected with an editor — as the name suggests, it is in xml format.

4.1 Adding performance templates to a simple ZenPack

The most common use for a simple ZenPack is to move locally-created performance templates
from one Zenoss installation to another, or to provide such templates to the wider Zenoss
community.

Oct 13, 2016 ZenPack Developers' Guide 29

Start by creating a new ZenPack from the GUI - ZenPacks.community.simplel. It will
automatically be created in development mode. For a simple ZenPack, there is no reason to
copy the ZenPack to a local directory and link-install it.

4.1.1 Adding SNMP performance templates to a ZenPack

This example uses an SNMP performance template, SnmpPacketsInOut, that polls the
standard SNMP MIB-2 MIB for snmpInPkts and snmpOutPkts. The template has been
created so that it can be applied to all devices under the top-level /.

© Zenoss: ZenPacks.co... 3 | O Zenoss: Monitoring T... 3 | O Zenoss: SNMPv2-MIB 3 '\I@Zenoss: Devices % | © Zenoss: zen42.class.... x'u © Zenoss: home.dyn.b. . X'HOjcurry,IZenﬁacks.Sha... b4 |[%7‘ v

‘ [C) example.org | https:/fzen42.class.example.org/zport/dmdtemplate #templateTree:/zport/dmd/Devices/rrdTemplates/SnmpPacketsinOut v @] [:‘,lv Google ﬂ] ‘ @ v

*ﬁl' DASHBOARD EVENTS INFRASTRUCTURE REPORTS /) Q v jane sianout H

Setlings Collectors Monitoring Templates Jobs MIBs Page Tips

Dala Sources Thresholds

Q

[+ [#]=a]
. RabbitMGQueue = Q- : il b
. RPCServer e B
C B 4 snmpOutPkts 13.6.1.21.11.20 true SNMP
. S3Bucket snmpOutPkts.snmpOutPkis DERIVE
. SLA test 4 (3 snmpinPkis 1.3.6.1.21.11.1.0 true SNMP

snmpinPkis.snmpinPkis DERIVE

4 SnmpPacketsinOut

e +[o]e]

> snmpv3test
» SolrCore —
SNMP packets In Out

» SolrCore-upgrade-1438787046
el =aniies) View and Edit Details
» SqlDatasourceTestl

Copy / Override Template
» 5QSQueue
- SubagentShell Bkl Fenback

» SubagentShellApach Toggle Template Binding

[[OB SRR e SN
Figure 10: SnmpPacketsInOut template appllcable to all devices

| https://zen42.class.example.oraizoort/dmdftemplate#

To add a template to a ZenPack, simply use the Add to ZenPack menu option. If the ZenPack's
details page is now inspected, it will show the template; however if the directory hierarchy of
the ZenPack is inspected, the objects/objects.xml file will be insignificant. The ZenPack must
be exported to write all objects to objects.xml.

enP: ity.simple1/S] Zenoss: ZenPacks.community.simplel - Mozilla Firefox

File Edit View Search Terminal Help
[zenoss@zend2 objects]s pwd
/opt/zenoss/ZenPacks/ZenPacks . community.simplel/ZenPacks/community/simplel/objects
[zenoss@zen42 objects]$ cat objects.xml

<?xnl version="1.0"7> Before export

<objectss

</objects>

[zenoss@zend2 objects]$

[zenoss@zend2 objects]$ cat objects.xml
<2xnl version="1.0"7>

<objects>

<t-- (', 'zport', 'dmd’, Devices', 'rrdTemplates’, 'SnmpPacketsInOut') -->

<object id="/zport/dnd/Devices/rrdTemplates/SnnpPacketsInOut’ module='Products.ZenModel.
<property type="string" id="targetPythonClass" mode="w" >

Products. ZenModel.Device

</property> "
<tomanycont id='datasources's
<object id="snmpInPkts' module='Products.ZenModel.BasicDataSource' class='BasicDataSourc e .
<property select variable="sourcetypes" type="selection” id="sourcetype” mode="w"

SNNP

</property>

<property type="boolean" id="enabled" mode="w" >

True

</property>

<property type="string" id="eventClass" mode="w" >

/Cmd/Fail

</property>

<property type="int® id="severity' mode="w" >

3

File Edit View History Bookmarks Tools Help
© Zenoss: ZenPacks.co... 3¢ | & Zenoss: Monitoring T... 3¢ | O Zenoss: SNMPv2-MIB 3¢ | @ Zenoss: Devices 32 | G Zenoss: zend2 class.... 3 |G Zer

2

48 [C/example.org | hitps://zensz class example.orgizport/dmdzenpackManager/packs/ZenPacks.community.simple LviewPack Detail

*@ 1Is DASHBOARD EVENTS INFRASTRUCTURE REPORTS AD

After export @D Colectors Monitoring Templates Jobs MIBs

ZenPackManager > ZenPacks.community.simplet

Detail S
init.py

communi it mi

_init__py

_init__py

_init__py
init.py

_init__py
I_init__py

</property> D.py.example
<property type="int" id="cycletime” mode="w" > it init_py
300 _init__py

</property>

<property type="string" id="oid" mode="w" >
1.3.6.1.2.1.11.1.0

</property>

<property type="boolean" id="usessh" mode="w" > Export ZenPack.. [/Devices/mdTemplates/SnmpPacketsinOut

Mo LESy T

<property type="string" id="parser" mode="w" >

Figure 11: Export the ZenPack to update the ZenPack's objects.xml file

30 ZenPack Developers' Guide Oct 13, 2016

<

Note in Figure 11 the CLI window showing objects.xml before and after the export. Although
the GUI window for the ZenPack is only showing the template under ZenPack Provides,
objects.xml has all the definitions for the template, datasource, datapoints and graph.

With Zenoss 5, the templates will go under the objects /templates directory with one xml file
per template.

The export will also create an egg file in $ZENHOME / export.

It is bad practice to add standard objects to a ZenPack that may ever be removed because the
ZenPack removal, by default, removes all the objects in that ZenPack. For example, if the
standard ethernetCsmacd_64 template was added to a ZenPack that was then removed, all
SNMP interface traffic data collection and graphs would be lost!

4.1.2 Adding zencommand performance templates to a ZenPack

A quick and easy way to create performance graphs for local monitoring is to use a
performance template with a COMMAND data source which will be run by the zencommand
daemon. Fundamentally a command data source runs a script under a bash shell. The script
doesn't have to be a shellscript; using a technique like !/usr/bin/env python as the first line
of a program, any executable program can be run - but it is still within a bash shell with all
the quoting and escaping complexities involved with passing parameters. A COMMAND data
source is also rather inefficient and does not scale well.

COMMAND data sources either run a command on the Zenoss server (strictly on the Zenoss
collector if there is a distributed architecture), or, if the Use SSH box is ticked, then the
command is run on the target device which requires zCommand properties to be configured
for remote user and password.

If Use SSH is not ticked, and the template is to be packaged as part of a ZenPack, the
executable script can also be included in the ZenPack.

Edit Data Source

Monitoring Template:

Enabled
Event Class:

/Cmd/Fail i

Parser:

Component:

testin simple1

Command Template:

TwemproxyServer

.Mchclerv + Q| |& -|| GrowpB
Figure 12: test COMMAND data source in test template

SAVE CANCEL

Template

Cycle Time (seconds):

A
b

testinSimple

${here/ZenPackManager/packs/ZenPacks.community.simple1/path}libexecitest.sh

Scripts should be added to the libexec directory of a ZenPack; ensure that the script has

execute permission.

Oct 13, 2016

ZenPack Developers' Guide

31

The script, test.sh, can then be referenced in the data source as:
$there | ZenPackManager | packs | ZenPacks.community.simplel / path} | libexec | test.sh

The template is added to the ZenPack using the Add to ZenPack menu and the ZenPack
exported.

4-@ 1st DASHBOARD EVENTS INFRASTRUCTURE REPORTS ADVANCED Q v * jane SIGNOUT H

oS N S R S NN NN S S S S SN SN SN NS S NS NSNS NSNS SN NN
g Collectors Monitoring Templates ~ Jobs ~ MIBs Page Tips

ZenPackManager > ZenPacks.community.simplei

OpUZEN0SS!ZENPACKS/ ZENPACKS.COMMLNITY.SIMplel/£enPacks/CommuUNIty/simple1/Drowseriresources/img/placenolder.Ixt
Jloptfzenoss/ZenPacks/ZenPacks.community.simplel/ZenPacks/community/simple1/broy our placeholder.mxt

Jopt/zenoss/ZenPacks/ZenPacks.community.simplel/ZenP wnity/simplel 1sizer
Joptfzenoss/ZenPacks/ZenPacks.community.simplel/ZenPacks/community/simple l/migrate/__init__.py
Joptfzenoss/ZenPacks/ZenPacks.community.simplel/ZenPacks/community/simple1/migrate/ExampleMigration. py
Jloptfzenoss/ZenPacks/ZenPacks.community.simplel/ZenPacks/community/simplel/services/__ init__.py
lopt/zenoss/ZenPacks/ZenPacks.community.simplel/ZenPacks/community/simple1/services/ExampleConfigService.py
: ity.sir IZenP; ity/simple1/lik sh
JoptfzenossiZenPacks/ZenPacks.community.simplel/ZenPacks/community/simple1/libexec/placeholder.txt
lopt/zenoss/ZenPacks/ZenPacks.community.simplel/ZenPacks/community/simple1l/modeler/__init__.py
JoptfzenossiZenPacks/ZenPacks.community.simplel/ZenPacks/community/simple 1/modeler/plugins/__init__.py

lopt/zenoss/ZenPacks/ZenPacks.community.simplel/ZenPacks/community/simple1/mc plugins/community/__init__.py
Jopt/zenoss/ZenPacks/ZenPacks.community.simplel/ZenP wnity/simplel 1s/community/snmp/__init__.py
JoptfzenossiZenPacks/ZenPacks.community.simple1/ZenPacks/community/s le1/mc deler/plugin nmunity/snmp/E I P.py.example
Jopt/zenoss/ZenPacks/ZenPacks.community.simplel/ZenP wnity/simple1 plugins/community/cmd/Example CMD. py.example
Jopt/zenoss/ZenPacks/ZenPacks.community.simplel/ZenP: I lel del 1s/community/cmd/__init__.py

Jopt/zenoss/ZenPacks/ZenPacks.community.simplel/ZenPacks/community/simpleL/lib/__init__.py

ZenPack Provides

[/Devices/rdTemplates/SnmpPacketsinOut

O /Devices/Server/Linux/rrdTemplates/test
[J /Devices/Server/Linux/SimpleTest]

O [Events/Chipcom]
Export ZenPack.. [Mibs/mibs/CHIPCOMMIB
— o

Figure 13: Exporting ZenPacks.community.simplel, including libexec /test.sh and the test template

Note the presence of the test.sh script that you copied to the ZenPack's libexec directory. If the
script needs to be changed then the ZenPack does not need reinstalling and no daemons
need to be recycled.

Without using any Python coding, this is an example of adding script functionality to a

ZenPack by leveraging zencommand and adding locally-developed scripts to the ZenPack's
libexec directory.

4.2 Adding SNMP MIBs and event classes to a simple ZenPack

MIBs can be imported into the Zenoss ZODB object database where they are used to help
decode SNMP TRAPs (or SNMP V2 Notifications). Importing using the zenmib command can
be fraught as there may be a sequence of prerequisite and co-requisite MIBs that also need
importing. Once the MIB is in the ZODB database, it is largely irrelevant whether the
prerequisite/co-requisites are also in the ZODB.

The Chipcom MIB is a simple standalone MIB which includes both MIB OIDs and TRAPs so

will be used here as an example. It can be imported into a ZenPack using the Add to ZenPack
menu.

32 ZenPack Developers' Guide Oct 13, 2016

DASHBOARD EVENTS INFRASTRUCTURE REPORTS) § jane SIGNOUT H

Settings Collectors Monitoring Templates Jobs @ Page Tips

I |
Mibs > CHIPCOMMIB
Overview "

) GHIMAIGI T TUUUGL L.0.0. 1.6, L.43.£. 0.1 Staiar

Edit [chipGenSerial 1.3.6.1.4.1.49.2.1.5 scalar [
[chipGenServiceDate 1.3.6.1.4.1.49.2.1.2 scalar
[chipGenTimeLastChanged 1.3.6.1.4.1.49.21.9 scalar
[chipGenVers 1.36.1.41.49.2.1.7 scalar
[chipmib02 1.3.6.1.4.1.49.2 node
[chipProducts 136.1.41.49.23 node
O chipTFTP 1.3.6.1.4.1.49.2.6 node
ol 10f1436 | | alarmGroup j > > showall Page Size | 40 ok

s~

[chipAboveThreshd 1.3.6.1.4.149.0.14 notification
[chipBelowThreshd notification
[J chipChange notification
[chipEnvironment notification
[chipFatal notification
Add to ZenPack... H chiphardware notification L
L chipHello notffication)

Figure 14: Adding the Chipcom MIB to a ZenPack

Note from Figure 14 that Chipcom OIDs start with 1.3.6.1.4.1.49. If the SNMPV2-SMI MIB
has also been imported then the 1.3.6.1.4.1 will be translated in a TRAP to:

iso.org.dod.internet.private.enterprises

Figure 14 shows that the Chipcom TRAP 0.8 translates to chipFatal. Before the Chipcom MIB
was imported, a TRAP 0.8 from a Chipcom device would have “enterprises.49.0.8” as part of
the event summary; after the MIB is imported, the 49.0.8 is translated to chipFatal. This is
standard Zenoss functionality.

Different SNMP agents sometimes insert or do not insert a 0 between the enterprise part of
the OID (1.3.6.1.4.1.49) and the TRAP number (8). The Zenoss code that processes incoming
SNMP TRAPs can accommodate either version. This is why the screenshot in Figure 15 has a
summary of snmp trap enterprises.49.8 (no zero).

ﬂ-ﬂl DASHBOARD EV S INFRASTRUCTURE REPORTS ADVANCED Q jane SIGNOUT H

Event Console Event Archive Event Classes Triggers Page Tips|

3 Refresh ~ || Actions ~ || Col |

Component:
Event Class: /Chipcom
/Chipcom snmp trap chipFatal Status: New
o [} zen42.class.example.org /Unknown snmp trap chipFatal Message: snmp trap chipFataI
o] zen42.class.example.org {Unknown snmp trap enterprises.49.8
Event Management...
agent zentrap
component null
dedupid zen42.class.example.org||/Chipcom|5|sr
eventClass /Chipcom
eventClassKey chipFatal

G T B
DISPLAYING 1 -3 of 3 ROWS

eventClassMapping chipFatal

Figure 15: Chipcom events from zentrap before importing the Chipcom MIB (bottom event) and after the 7
MIB import (top two events)

In Figure 15 the bottom event is before the Chipcom MIB is imported; the middle event is
after importing the MIB but with no further customisation. Often, a TRAP will need further

Oct 13, 2016 ZenPack Developers' Guide 33

customisation through event mapping. A /Chipcom event class may be created with a
chipFatal event class mapping; the mapping may have a transform that modifies the event
based on various tests.

‘ [ﬁ example.org | https:/fzend2.class.example.org/zport/dmd/Events/Chipcom/instances/chipFatalfeventClassinstEdit ~ @] [-g,]v Google

ﬁﬁ Ist DASHBOARD EV INFRASTRUCTURE REPORTS ADVANCED

Event Console Event Archive Event Classes Triggers

Events > Chipcom > chipFatal

Sequence

Name |chipFatal

Configuration Properties

Event Class i
Sy n Key [chipFatal

Sequence 10
Rule

Regex

Example

snmp trap chipFatal

Transform

Add fo ZenPack... if 'chipFatal' in evt.summary:
eviseverity =5
Event Archive

L T EEEEEEE—————————

Figdré 16: éﬁidetal event class mdpping-for-é-vént class / C’hipcom

Figure 16 shows the mapping, including a transform that tests the event summary field for
the presence of “chipFatal” and changes the severity if found.

Of course, the /Chipcom event class, including any associated event class mappings, can also
be added to a ZenPack with the Add to ZenPack menu.

34 ZenPack Developers' Guide Oct 13, 2016

zenoss@zen42:/opt/zenoss/ZenPacks/ZenPacks.community.simplel/ZenPacks/community/simplel/objects

File Edit View Search Terminal Help
<pﬂ0perty type="string" id="dpName" mode="w" >
snmpOutPkts snmpOutPkts
</property>
<property type="string" id="cFunc" mode="w" >
AVERAGE
</property>
</object>
</tomanycont=
</object>
</tomanycont=
</object=>
<l-- ("', 'zport', 'dmd', 'Events', 'Chipcom') -->
<object id='/zport/dmd/Events/Chipcom' module='Products.ZenEvents.EventClass' class='EventClass'>
<tomanycont id='instances'>
<object id='chipFatal' module='Products.ZenEvents.EventClassInst' class='EventClassInst'>
<property type="text" id="transform" mode="w" >
it 'chipFatal' in evt.summary:
evt.severity = 5
</property>
<property type="string" id="eventClassKey" mode="w" =
chipFatal
</property>
<property type="int" id="sequence" mode="w" >
10
</property>
<property type="string" id="example" mode="w" >
snmp trap chipFatal
</property>
</object>
</tomanycont>
</object>
<l-- ("', 'zport', 'dmd', 'Mibs', 'mibs', 'CHIPCOMMIB') --=
<object id='/zport/dmd/Mibs/mibs/CHIPCOMMIB' module='Products.ZenModel.MibModule' class='MibModule'>
<property type="string" id="language" mode="w" =
SMIv1
</property>
<tomanycont id='nodes'>
<object id='alarmGroup' module='Products.ZenModel.MibNode' class='MibNode'>
"objects.xml" [readonly] line 379 of 36840 --1%-- col 3

Figure 17: objects.xml snippet with the end of a template, the Chipcom event and the start of the
Chipcom MIB

Note in objects.xml that an event class mapping (chipFatal) is referred to as an instance.

The subtle point that this whole sub-chapter is trying to make is that, if this ZenPack is
removed, the MIB will be removed. Any event classes and event class mappings that are
based on the translated TRAP, will now fail to process events as expected. The summary field
of the event will revert to containing “enterprises.49.8”, not “chipFatal” so the transform will
not be applied. The event mapping will not apply because it is based on the event class key
matching “chipFatal” and that will also revert to “enterprises.49.8”.

4.3 Adding device classes to a simple ZenPack
Any device class can be added to a simple ZenPack simply by using the Add to ZenPack menu.

Oct 13, 2016 ZenPack Developers' Guide 35

<)

DASHBOARD EVENTS INFRASTRUCTURE REPORTS ADVANCED jane SIGNOUT B

Processes IP Services Windows Services Network Map Manufacturers Page Tips

— \i IServer/Linux/SimpleTest - Device class to demonstrate inclusion in a ZenPack

Q m] @ - Q Select-M Configure vH Export -l 0 Refresh « [Actions » | Commands «
s R —

=il e ——— e D 2. 3 e L D S 2 e SIS U

@power (1)
OPrinter (2)
4 Oserver (20)
@cmd (0) L
@parwin (0)
@oB2(0)
4 OLinux (15)
@ ActiveMa (0)
@ Redis (1)

v SimpleTd Bind Templates

' Tomeat (| Reset Bindings

172.31.100.4 {Server/Linux/SimpleTest Production Nirtual

Qtwempro: Clear Geocode Cache
@ Microsoft 2
@Remote (0)
Run My Predefined Shell Command
@scan () i 3 B
@solaris (0) Add to ZenPack... DISPLAYING 1- 1 of 1 ROWS

MyFooter ~ | 4 || @ 5-” {) 0Jobs »

Figure 18: Adding a device class to a ZenPack

Edit

Note that, even though the device class contains a device instance, group-100-
servl.class.example.org, the device is not added to the ZenPack.

It is usually bad practice to add standard device classes to a ZenPack that may be removed at
any time in the future as this results in the removal of the DeviceClass, and any children of
the DeviceClass, including devices.

If the ZenPack is reinstalled, then devices are not removed.

4.4 * Adding services and processes to simple ZenPacks
Zenoss provides the ability to monitor IP services, Windows services, and processes.

It is possible to add definitions for each of these to a ZenPack but special care is required.
Good practice would be to have separate ZenPacks for relevant IpServices, WinServices and
Processes.

4.4.1 Adding IP services to a ZenPack

The usual menu is available for services to Add Service to ZenPack. It is also possible to add a
Service Organizer if services have been grouped into an Organizer.

36 ZenPack Developers' Guide Oct 13, 2016

DASHBOARD ~ EVENTS NF REPORTS

ADVANCED

sienour B

jane

Networks Processes [Windows Services Network Map Manufacturers Page Tips.

- IPSERVICE (3007)

Name: Enable Monitoring? (zManitor}

Privileged (684)

tp

Registered (3070) D = (O Set Local Value: | Yes a
escription:
@ Inherit Value "No” from Services
File Transfer [Control]
Port:
m '21 =] Failure Event Severity (zFailSeverity)
1 52
ftp Send String: @ Set Local Value: | Warning ;‘
aaftp 2794 0 - O Inherit Value "Critical” from Services
btp. 162 0 Expect Regex:
etftp 1818 0
Sendon Keys:
Tpagani 57450 ftp, top_00021, udp_00021
fip-data 20 0
ftps 990 0
fips-data 989 0
Save Cancel

gsifip 2811 0
mitp 349 0 . Service Instancas.
ni-ftp a7 0 m—
poate T i Win2003net class example.org Unknown [2
piip L fip zena? class example org true Up ®
sfip 115 0 £ pig.ourshack.com false Unknown
softpe 21 S0 S o zenny.skills-1stco.uk true Up®

my"q Add Service Organizer to ZenPack

Figure 19: Adding a service to a ZenPack

The ftp service is added to a new ZenPack, ZenPacks.community.IpService and the ZenPack is
exported. Examining the objects.xml shows not only the definition of the service but also
instances.

zenoss@zen42:/opt/zenoss/ZenPacks/ZenPacks.community.lpServices/ZenPacks/community/IpServices/objects

File Edit View Search Terminal Help

B?xml version="1.0"?>

<objects=>

<l-- ("', 'zport', 'dmd', 'Services', 'IpService', 'Privileged', 'serviceclasses', 'ftp') -->
<object id='/zport/dmd/Services/IpService/Privileged/serviceclasses/ftp' module='Products.ZenModel.IpServiceClass' c
lass="IpServiceClass'>

<property id='zendoc' type='string'>

File Transfer [Control]

</property>

<property type="string" id="name" mode="w" =

ftp

</property=

<property type="lines" id="serviceKeys" mode="w" >
('ftp', 'tcp_00021', 'udp_00021")

</property=

<property type="text" id="description" mode="w" >

File Transfer [Control]

</property=

<property type="int" id="port" mode="w" >

21

</property>

<property visible="True" type="int" id="zFailSeverity" >
3

</property=

<tomany id='instances'>

<link objid='/zport/dmd/Devices/Server/Linux/devices/pig.ourshack.com/os/ipservices/tcp_00021'/>

<link objid='/zport/dmd/Devices/Server/Windows/Snmp/2 Processors/devices/win2003net.class.example.org/os/ipservices/
tcp 00021'/>

<link objid='/zport/dmd/Devices/Server/Linux/devices/zen42.class.example.org/os/ipservices/tcp_060021'/>

<link objid='/zport/dmd/Devices/Server/Linux/devices/zenny.skills-1st.co.uk/os/ipservices/ftp'/>

</tomany=

</object>

</objects>

"objects.xml" [readonly] 30L, 1192C E
Figure 20: objects.xml for ZenPacks.community.IpServices - note entry for instances

Oct 13, 2016 ZenPack Developers' Guide 37

Examine the entries between <tomany id="instances’> and </tomany> . There is an entry for
each device where the service has been seen (compare with the Service Instances panel in
Figure 19).

This is not helpful. If the ZenPack is installed on a different system, it is very possible that
these device instances will not exist.

Zenoss@zend2:/opt/zenass/iocal

File Edit View Search Terminal Help

[zenoss@zend2 locall$ zenpack ——install ZenPacks.community.IpServices-1.0.0-py2.7.egg 5|
2015-10-27 12:25:31,995 INFO zen.ZPLoader: Loading /opt/zenoss/ZenPacks/ZenPacks.community.IpServices-1.0.
O-pyZ2.7.egg/ZenPacks/community/IpServices/objects/objects.xml

2015-10-27 12:25:32,166 INFC zen.AddToPack: End leoading ckbjects

2015-10-27 12:25:32,166 INFO zen.AddToPack: Processing links

2015-10-27 12:25:32,169 CRITICAL zen.AddToPack: Failed linking relation /zport/dmd/Services/IpService/Priw
ileged/serviceclasses/ftp/instances to obiject /zport/dmd/Devices/Server/Linux/devices/pig.ourshack.com/os/
ipservices/tcp_00021

2015-10-27 12:25:32,170 CRITICAL zen.AddToPack: Failed linking relatien /zport/dmd/Services/IpService/Priv
ileged/serviceclasses/ftp/instances to object /zport/dmd/Devices/Server/Windows/Snmp/2 Processors/devices/
win2003net.class.example.org/os/ipservices/tcp_00021

2015-10-27 12:25:32,175 CRITICAL zen.AddToPack: Failed linking relation /zport/dmd/Services/IpService/Priw
ileged/serviceclasses/ftp/instances to object /zport/dmd/Devices/Server/Linux/devices/zen42.class.example.
org/os/ipservices/tcp_00021

2015-10-27 12:25:32,176 CRITICAL zen.AddToPack: Failed linking relation /zport/dmd/Services/IpService/Priv
ileged/serviceclasses/ftp/instances to object /zport/dmd/Devices/Server/Linux/devices/zenny.skills-lst.co.
uk/os/ipservices/ftp

2015-10-27 12:25:32,179 INFO zen.AddTIoPack: Loaded 0 objects into the ZODBE database

2015-10-27 I2:25:32,282 INFD zen.HGﬂkRepcrthader: Loading reports from /opt/zenoss/ZenPacks/ZenFacks.comm
unity.IpServices-1.0.0-py2.7.egg/ZenPacks/community/IpServices/reports ’}

[zenoss@zend2 locall$

[zencss@Ezend2 locall$
[zenoss@zend2 locall$s
[zencsslzend2 localls
[zencssizend? localls
[zenoss@zend2 locall$ [~]

Figure 21: Installing ZenPacks.zenoss.IpServices on a different system

Error messages will be produced on ZenPack installation for each of the service instances.
Although the dialogue says “Loaded 0 objects into the ZODB database”, this is not true.
Restart Zenoss and check the ftp service to see that it has been updated (the Failure Event
Severity in the source Zenoss was carefully changed from Error to Warning so that changes in
the destination Zenoss could be seen). There are no Service Instances added by the ZenPack.
Although the process is unconvincing, it does actually achieve the desired effect.

A cleaner alternative would be to modify the objects.xml file to comment out the service
instances. This is possible but must be done very carefully. XML comment tags are </-- to
start and --> to finish.

38 ZenPack Developers' Guide Oct 13, 2016

zenoss@zen42:/opt/zenoss/ZenPacks/ZenPacks.community.lpServices/ZenPacks/community/IpServices/objects

File Edit View Search Terminal Help
E?xml version="1.0"7> E]
<objects>

<l-- ('', "zport', 'dmd', 'Services', 'IpService', 'Privileged', 'serviceclasses', 'ftp'} --»

<object id='/zport/dmd/Services/IpService/Privileged/serviceclasses/ftp' module='Products.ZenModel.IpServiceClass
class="IpService(Class'>

<property id='zendoc' type='string'>

File Transfer [Control]

</property>

<property type="string" id="name" mode="w" >

ftp

</property>

<property type="lines" id="serviceKeys" mode="w" >

('ftp', 'tcp_00021', 'udp_00021')

</property=

<property type="text" id="description" mode="w" >

File Transfer [Control]

</property>

<property type="int" id="port" mode="w" >

21

</property> 3
<property visible="True" type="int" id="zFailSeverity" =
3

</property>

<!.-

<tomany id='instances'>

<link objid='/zport/dmd/Devices/Server/Linux/devices/pig.ourshack.com/os/ipservices/tcp 00021'/>

<link objid='/zport/dmd/Devices/Server/Windows/Snmp/2 Processors/devices/win2003net.class.example.org/os/ipservices

/tcp _00021'/>
<link objid='/zport/dmd/Devices/Server/Linux/devices/zen42.class.example.org/os/ipservices/tcp 00021'/>
<link objid='/zport/dmd/Devices/Server/Linux/devices/zenny.skills-1st.co.uk/os/ipservices/ftp'/>

</object>
</objects>

"objects.xml"” 32 lines --3%-- 1,1 ALl [~
Figure 22: objects.xml with service instances commented out

If the service instances must be commented out then you cannot use a GUI exported egg for
installation. If the creation of the egg file happens when the ZenPack is exported, this also
writes to objects.xml and the egg file contains the new objects.xml. Either edit the objects.xml
file after export and then create the egg using the command-line, or the ZenPack must be
moved in source form to the destination Zenoss installation and then link installed (which
does install cleanly.).

It is important to remember that removal of a ZenPack containing IP Services will remove the
service definitions from the Zenoss installation.

The conclusion is that, although the mechanism for adding IP Services to a ZenPack is error
-prone, it is not impossible.
4.4.2 Adding Windows Services to a ZenPack

Windows Services work in exactly the same way as IP Services with respect to ZenPacks.
There is an Add Service to ZenPack option which again adds both the service definition and
any discovered instances of those services, which can be seen in the objects.xml.

Oct 13, 2016 ZenPack Developers' Guide 39

zenoss@zen42:/opt/zenoss/ZenPacks/ZenPacks.community.WinServices/ZenPacks/community/WinServices/objects

File Edit View Search Terminal Help
B?xml version="1.0"?> E
<objects>

<l-- ("', 'zport', 'dmd', 'Services', 'WinService', 'serviceclasses', 'TapiSrv') -->

<object id='/zport/dmd/Services/WinService/serviceclasses/TapiSrv' module='Products.ZenModel.WinServiceClass' class
="'WinServiceClass'>

<property id='zendoc' type='string'=>

Telephony

</property>

<property type="string" id="name" mode="w" >

TapiSrv

</property>

<property type="lines" id="serviceKeys" mode="w" >

('TapiSrv',)

</property>

<property type="text" id="description" mode="w" >

Telephony

</property>

<property type="int" id="port" mode="w" >

[¢]

</property> 3
<property type="lines" id="monitoredStartModes" mode="rw" >
["Auto’', 'Manual']

</property>

<property visible="True" type="int" id="zFailSeverity" >

3

</property=>

<tomany id='instances'>

<link objid="'/zport/dmd/Devices/Server/Microsoft/Windows/devices/i-09d620ed/0s/winservices/TapiSrv'/>

<link objid='/zport/dmd/Devices/Server/Windows/WMI/devices/win2003.class.example.org/os/winservices/TapiSrv'/>
</tomany>

</object>

</objects>

"objects.xml" 31L, 1910C 1.1 ALl
Figure 23: objects.xml for ZenPacks.community. WinServices - note the two instances entries

The same type of error messages are seen when installing the egg version of the ZenPack and,
again, the installation is, in fact, successful.

4.4.3 Adding Processes to a ZenPack

In many ways, it is more useful to be able to add processes to a ZenPack than services. IP
Services tend to be standard with a huge number of definitions shipped as part of the core
product. Windows Services come with a similar huge library and are added to when the
modeler finds new services.

Processes, however, are a feature used by many organizations to monitor their specific
environment. The only out-of-the-box process definitions are those that manage Zenoss
processes.

The implementation with regard to ZenPacks is exactly the same as for services. Process or
Process Organizers can be added to a ZenPack and, unfortunately, the process instances are
also added.

40 ZenPack Developers' Guide Oct 13, 2016

DASHBOARD EVENTS INFi JCTURE REPORTS ADVANCED e sienout B

Networks IP Services Windows Services Network Map Manufacturers Page Tips

¢ FRocESsESEE Process Class Name: Enable Monitoring? (zMonitor) M
pactis (1) Dummy
Dummy (1) - O Sat Local Value: | Yes ﬂ
Description: P
LCAR @ Inherit Value "Yes" from Processes
MySQL (1)
Process Count Threshold Send Event on Restart? (zAlertOnRestart)
Minimur; O Set Local Value: | Yes a
IES
dummy? 2 Iv] @ Inherit Value "No” from Processes
Maximum:
]
=4 Failure Event Severity (zFailSeverity) r
O Sat Local Value: | Error i‘
@ Inherit Value "Error” from Processes
Lock Process Components? (zModelerLock) ||
-
Save Cancel
Add Process Class to ZenPack |
Add Process Class Organizer to ZenPack
Change Sequence = I W
zenny.skills-1st.co.uk true up @ =
Test Process Glass Regular Expressions
Zen42 class.example.or true Up (o] ~
m‘d Test All Process Classes Regular Expressions DISPLAYING 1 - 2 of 2 ROWS

psizendz dass axamprecrgzporamaproces-« M 3 oon 1]
Figure 24: Adding a Process Organizer to a ZenPack

In Figure 24 an organizer is added, rather than a simple process (albeit an organizer
containing one process).

zenoss@zend2:/opt/zenoss/ZenPacks/ZenPacks.community.Processes/ZenPacks/community/Processes/objects

File Edit View Search Terminal Help
E7xml version="1.0"7> 12
<objects>

<!-- ('', 'zport', 'dmd', 'Processes', 'Dummy') -->

<object id='/zport/dmd/Processes/Dummy' module='Products.ZenModel.0SProcessOrganizer' class='0SProcessOrganizer'>
<tomanycont id='osProcessClasses'>

<object id='dummy7' module='Products.ZenModel.0SProcessClass' class='0SProcessClass'>

<property type="string" id="name" mode="w" >

dummy7

</property>

<property type="string" id="regex" mode="w" >

.*bash. *\./dummy7

</property>

<property type="boolean" id="ignoreParametersWhenModeling" mode="w" >

False

</property>

<property type="boolean" id="ignoreParameters" mode="w" >

False

</property>

<property type="int" id="sequence" mode="w" >

0]

</property>
<property visible="True" type="int" id="zFailSeverity" >
2

</property>

<tomany id='instances'>

<link objid='/zport/dmd/Devices/Server/Linux/devices/zenny.skills-1st.co.uk/os/processes/zport_dmd_Processes Dummy_
osProcessClasses dummy7 956e8951lee477dde5d8dd917e813baa8"/>

<link objid='/zport/dmd/Devices/Server/Linux/devices/zend2.class.example.org/os/processes/zport_dmd_Processes_Dummy
_osProcessClasses_dummy7_956e0951eed477dde5d8dd917e813baasd’ />

</tomany>

</object>

</tomanycont>

</object>

</objects>

"objects.xml" [readonly] 32L, 1184C 1,1 ALl [
Figure 25: objects.xml for Zenoss.community.Processes with Process Organizer

Note in Figure 25 the object Dummy representing the organizer and the object dummy7
representing a process inside that organizer. The process object has two instances.

Oct 13, 2016 ZenPack Developers' Guide 41

The same caveats apply on installing the ZenPack in a different environment; either live with
the error messages when installing the egg or edit the objects.xml to comment out all process
instances and then perform a link install of the source ZenPack.

5.0 Understanding core Zenoss objects

In order to extend Zenoss it is necessary to understand what is provided as standard. “core” in
the chapter heading here refers to out-of-the-box functionality and is applicable to both
Zenoss Core and Zenoss Service Dynamics products.

Zenoss is written largely in Python (the zeneventserver daemon is written in Java for
performance reasons). It embraces an object-oriented paradigm for defining “things” - devices,
components, MIBs, services, events, reports, locations, users are all defined as object classes.

By default, the directory structure of a Zenoss installation sets the environment variable
$ZENHOME to /opt/zenoss. The Products directory under $ZENHOME is a hierarchy of
directories holding object class definitions.

El zenoss@zen42:/opt/zenoss/Products

File Edit View Search Terminal Help
[zenoss@zen42 Products]$ pwd
/opt/zenoss/Products
[zenoss@zen42 Products]$ 1s -1
total 104
drwxr-xr-x
~rw-r--r--
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
-rw-r--r--
drwxr-xr-x
drwxr-xr-x

7 zenoss zenoss 4096 Jul 2 17:12 D] act
1 zenoss zenoss 244 Mar 11 2014 init .py
4 zenoss zenoss 4096 May 19 19:46 J
5 zenoss zenoss 4096 May 19 19:46
8 zenoss zenoss 4096 May 19 19:46 LI old
1 zenoss zZenoss 189 Aug 28 2012 README.txt
3 zenoss zenoss 4096 May 19 19:46 7 : :
5 zenoss zenoss 4096 May 19 19:50
drwxr-xr-x 8 zenoss zenoss 4096 Oct 29 11:17
drwxr-xr-x 4 zenoss zenoss 4096 Jul 1 19:17
drwxr-xr-x 6 zenoss zenoss 4096 May 19 18:38
drwxr-xr-x 12 zenoss zenoss 20480 Oct 29 11:17

drwxr-xr-x 2 zenoss zenoss 4096 May 19 19:46

lrwxrwxrwx 1 zenoss zenoss 43 Jul 1 16:16 ->
drwxr-xr-x 5 zenoss zenoss 4096 May 19 19:46 Z

drwxr-xr-x 5 zenoss zenoss 4096 Jul 3 11:12

drwxr-xr-x 6 zenoss zenoss 4096 Aug 5 19:25 :

drwxr-xr-x 5 zenoss zenoss 4096 Jul 2 17:12

drwxr-xr-x 2 zenoss zenoss 4096 May 19 19:46

drwxr-xr-x 8 zenoss zenoss 4096 May 19 19:46 Zer
drwxr-xr-x 11 zenoss zenoss 4096 Jun 17 22:49 Ze
drwxr-xr-x 6 zenoss zenoss 4096 May 19 19:46
drwxr-xr-x 10 zenoss zenoss 4096 May 19 19:46 7
[zenoss@zen42 Products]s I

Figure 26: $Z ENHOME | Products directory listing

$ZENHOME | Products | ZenModel holds definitions for most object classes, with the notable
exception of event definitions which are held under the ZenEvents directory.

42 ZenPack Developers' Guide Oct 13, 2016

zenoss@zen42:/opt/zenoss/Products/ZenModel

File Edit View Search Terminal Help
Zenoss@zend4?2 ZenModel]$

Zenoss@zend4?2 ZenModel]$s

zenoss@zend2 ZenModel]s

zenoss@zend?2 ZenModel]s

[zenoss@zend2 ZenModel]$ pwd
/opt/zenoss/Products/ZenModel
[zenoss@zend?2 ZenModel]$ 1s -1 Device*

————

-rw-r--r-- 1 zenoss zenaoss 34765 Mar 11 2014 DeviceClass.py
-rw-r--r-- 1 zenoss zenoss 33356 May 19 19:46 DeviceClass.pyc
-rw-r--r-- 1 zenoss zenoss 7067 Oct 29 11:17 DeviceComponent.py
-rw-r--r-- 1 zenoss zenoss 8832 Oct 29 11:17 DeviceComponent.pyc
-rw-r--r-- 1 zenoss zenoss 1519 Mar 11 2014 DeviceGroup.py
-rw-r--r-- 1 zenoss zenoss 1575 May 19 19:46 DeviceGroup.pyc
-rw-r--r-- 1 zenoss zenoss 1952 Mar 11 2014 DeviceHW.py
-rw-r--r-- 1 zenoss zenoss 2276 May 19 19:46 DeviceHW.pyc
-rw-r--r-- 1 zenoss zenoass 1915 Mar 11 2014 DeviceManagerBase.py
-rw-r--r-- 1 zenoss zenoss 2067 May 19 19:46 DeviceManagerBase.pyc
-rw-r--r-- 1 zenoss zZenoss 23766 Mar 11 2014 DeviceOrganizer.py
-rw-r--r-- 1 zenoss zenoss 22988 May 19 19:46 DeviceOrganizer.pyc
-rw-r--r-- 1 zenoss zenoss 82174 Oct 14 2014 Device.py

-rw-r--r-- 1 zenoss zenoss 81592 Jun 11 2014 Device.py.bak
-rw-r--r-- 1 zenoss zZenoss 76999 May 19 19:46 Device.pyc
-rw-r--r-- 1 zenoss zenoss 2324 Mar 11 2014 DeviceReportClass.py
-rw-r--r-- 1 zenoss zenoss 2668 May 19 19:46 DeviceReportClass.pyc
-rw-r--r-- 1 zenoss zenoss 6844 May 19 18:34 DeviceReport.py
-rw-r--r-- 1 zenoss zenoss 6213 May 19 19:46 DeviceReport.pyc
-rw-r--r-- 1 zenoss zenoss 6433 0Oct 14 2014 DeviceResultInt.py
-rw-r--r-- 1 zenoss zenoss 6628 May 19 19:46 DeviceResultInt.pyc

[zenoss@zend? ZenModel]$ 1s -1 *Component*
-rw-r--r-- 1 zenoss zenoss 7067 Oct 29 11:17 DeviceComponent.py

-rw-r--r-- 1 zenoss zenoss 8832 Oct 29 11:17 DeviceComponent.pyc
-rw-r--r-- 1 zenoss zenoss 719 Mar 11 2014 HWComponent.py
-rw-r--r-- 1 zenoss zenoss 768 May 19 19:46 HWComponent.pyc
-rw-r--r-- 1 zenoss zenoss 3166 Mar 11 2014 0SComponent.py

-rw-r--r-- 1 zenoss zenoss 2912 May 19 19:46 0SComponent.pyc
[zenoss@zend?2 ZenModell$ I

Figure 27: Device and component object class definition files in $ZENHOME | Products [ZenModel

Zenoss provide a base Device object class and a base DeviceComponent object class; the
DeviceComponent class has two specialisations, HWComponent and OSComponent.

Time should be spent understanding at least some of the contents of Device.py.

5.1 Device.py

The object class that represents any “device” in Zenoss is defined in
$ZENHOME | Products | ZenModel | Device.py.

Devices are what you see on the Zenoss Infrastructure view in the web interface. If you see it
in the Infrastructure view, it's a device. If you don't, it's not. A device has an id attribute that
makes it unique in the system. It will have configuration properties associated with it either
directly, or acquired from the device class within which it is contained. It will also have a
managelp attribute that Zenoss uses for modeling and monitoring. See
http://wiki.zenoss.org/ZenPack Development Guide/Background Information for some good
basic information.

Oct 13, 2016 ZenPack Developers' Guide 43

http://wiki.zenoss.org/ZenPack_Development_Guide/Background_Information

Eile Edit View Search Terminal Help
Device(ManagedEntity, Commandable, Lockable, MaintenanceWindowable,
AdministrativeRoleable, ZenMenuable):

Device is a base class that represents the idea of a single computer system
that is made up of software running on hardware. It currently must he IP
enabled but maybe this will change.

implements(IEventView, IIndexed, IGloballyIdentifiable)

event_key = portal_type = meta_type = 'Device’
default catalog = "deviceSearch" #device ZCatalog
relationshipManagerPathRestriction = '/Devices'
title = "

managelp = ""

productionState = 1060
preMWProductionState = productionState
snmpAgent ks
snmpDescr
snmp0id =
snmpContact
snmpSysName
snmpLocation = ""
rackSlot = ""

comments = ""
sysedgelicenseMode = ""
priority = 3
macaddresses = None

|
Flag indicating whether device is in process of creation
_temp_device = False
"Device.py" [readonly] 2298 lines --9%-- 226,0-1

Figure 28: Start of definition of Device class in $ZENHOME [Products | ZenModel | Device.py
The first line of the class object defines other class objects that Device inherits attributes
from:

class Device (ManagedEntity, Commandable, Lockable, MaintenanceWindowable,

AdministrativeRoleable, ZenMenuable) :

Either these classes will be defined in this file or they will be referenced in an import
statement which by convention, will be at the top of the file; for example, near the top of
Device.py is a line which imports the ManagedEntity class from the file ManagedEntity.py
(strictly the class is imported from the ManagedEntity Python module but the file name and
the module name are synonymous):

from ManagedEntity import ManagedEntity

5.1.1 Object attributes

Referring to Figure 28, several attributes are defined for the Device class. These attributes
are specific to a device and any new class that inherits from Device, will inherit these
attributes - title, managelp, productionState and so on.

To see the attributes and methods that Device has already inherited from ManagedEntity,
inspect the ManagedEntity.py file:

e snmpindex
e monitor
e productionState

e preMWProductionState

44 ZenPack Developers' Guide Oct 13, 2016

zenoss@zend2:/opt/zenoss/Products/ZenModel

Eile Edit View Search Terminal Help

ManagedEntity(ZenModelRM, DeviceResultInt, EventView, RRDView,
MaintenanceWindowable) :

ManagedEntity is an entity in the system that is managed by it.
Its basic property is that it can be classified by the ITClass Tree.
Also has EventView and RRDView available.

list of performance multigraphs (see PerformanceView.py)
FIXME this needs to go to some new setup and doesn't work now
mgraphs = []

primary snmpindex for this managed entity
snmpindex = 0

snmpindex_dct = {}

monitor = True

_properties = (

'id':'snmpindex', 'type':'string', 'mode':'w'}

'monitor', 'type':'boolean', 'mode':'w'}

'id': 'productionState’', 'type':'keyedselection’', 'mode':'w',
'select_variable':'getProdStateConversions', 'setter':'setProdState'},
'id':'preMWProductionState', 'type':'keyedselection', 'mode':'w’',
'select_variable':'getProdStateConversions', 'setter':'setProdState'},

e em T

)

_relations = (
("dependencies", ToMany(ToMany, "Products.ZenModel.ManagedEntity"

("maintenanceWindows", ToManyCont {
)
security = ClassSecurityInfo()

AEFNEEEEE (selT) :
"""Qverridden in lower classes if a device relationship exists.

None

]
"ManagedEntity.py" [readonly] 105 lines --66%--

The attributes for any object is the union of all attributes both defined on the object and

ToOne, "Products.ZenModel.MaintenanceWindow", "productionState"

"dependents")),

("dependents", ToMany(ToMany, "Products.ZenModel.ManagedEntity", "dependencies")),

1.

inherited from parents. For a Zenoss Device, this gives:

e From Device
s id
n title=""

= managelp =

s productionState = 1000

s preMWProductionState = productionState

s snmpAgent =

"nn

s snmpDescr =

nn

s snmpOid =

nn

s snmpContact =

nn

s snmpSysName =

nn

s snmpLocation =

s rackSlot=""

nn

s comments =

"

s sysedgeLicenseMode =

m priority = 3

Oct 13, 2016 ZenPack Developers' Guide

70,0-1

Figure 29: ManagedEntity class definition in $ZENHOME | Products | ZenModel | ManagedEntity.py
Note also the device method which is effectively null code here but the method can be
overridden (ie, redefined) in classes that inherit from this ManagedEntity class.

45

s macaddresses = None
e From ManagedEntity

s snmpindex =0

s monitor = True

s productionState

s preMWProductionState

5.1.2 Object relationships

The definition of the Device class also specifies relationships. Again,
http://wiki.zenoss.org/ZenPack Development Guide/Background Information has a good
descriptions of relationships.

E Zenoss@zend2:/opt/zenoss/Products/ZenModel
File Edit View Search Terminal Help

_relations = ManagedEntity._relations + (
("deviceClass", ToOne(ToManyCont, "Products.ZenModel.DeviceClass",

"devices")),

("perfServer", ToOne(ToMany, "Products.ZenModel.PerformanceConf",
"devices")},

("location", ToOne(ToMany, "Products.ZenModel.lLocation", "devices"}),

("systems", ToMany(ToMany, "Products.ZenModel.System", "devices"}),

("groups", ToMany(ToMany, "Products.ZenModel.DeviceGroup", "devices")),

("adminRoles", ToManyCont(ToOne,"Products.ZenModel.AdministrativeRole",
"managedObject")),

('userCommands', ToManyCont(ToOne, 'Products.ZenModel.UserCommand',
'commandable')),

unused:

('monitors', ToMany(ToMany, 'Products.ZenModel.StatusMonitorConf',
'devices')),

)

"Device.py" [readonly] 2298 lines --10%-- 247,0-1

Figure 30: relations defined for the Device class

Within the context of Zenoss, a relationship establishes a connection between Zope objects. All
relationships must be bi-directional and explicitly defined on both sides of the relationship.
However, if one side is containing, then the other side is contained.

Currently Zenoss supports four types of relationships:
e ToMany
e ToOne
e ToManyCont
e ToOneCont
Figure 30 shows that a Device may have:
o One deviceClass and a deviceClass may contain many Devices
o One perfServer (collector) and a perfServer may have many Devices
e One location and a location may have many Devices
e Many systems and a system may have many Devices

e Many groups and a group may have many Devices

46 ZenPack Developers' Guide Oct 13, 2016

http://wiki.zenoss.org/ZenPack_Development_Guide/Background_Information

e Many adminRoles (containing) and adminRoles is contained by one Device
e Many userCommands (containing) and userCommands is contained by one Device
There are containing and non-containing relationships.

The idea of containment comes from Zenoss' ZODB database being a tree of objects. Every
object in the database must be attached in some way to another persistent object, and only
one other persistent object. An object can only be on the right-hand side of one ToManyCont
relationship.

In the case of a containing relationship you're saying that this is the relationship that
attaches the member objects to the object model and therefore is how they get persisted.
Removing an object from its containing relationship is the same thing as deleting the object
from the database entirely. Any non-containing relationships it might also have, will be
cleaned up.

On the other hand, a non-containing relationship has nothing to do with persistence. Non-
containing relationships are used to create logical linkages from one object to another.

In the relations for Device above:

e If an instance of a Device (say, zen42.class.example.org) is deleted then it's adminRoles
and userCommands objects will also be deleted; however, any related systems or groups
objects will not be deleted.

e If the deviceClass containing zen42.class.example.org is deleted, then all its contained
devices will also be deleted; however, deleting zen42.class.example.org will not affect its
deviceClass.

Remember from Figure 29 that ManagedEntity also has relationships so the full set of
relationships for Device is:

e From Device:
_relations = ManagedEntity._relations + (

("deviceClass", ToOne(ToManyCont, "Products.ZenModel.DeviceClass", "devices")),
("perfServer", ToOne(ToMany, "Products.ZenModel.PerformanceConf", "devices")),
("location", ToOne(ToMany, "Products.ZenModel.Location", "devices")),
("systems", ToMany(ToMany, "Products.ZenModel.System", "devices")),
("groups", ToMany(ToMany, "Products.ZenModel.DeviceGroup", "devices")),
("adminRoles", ToManyCont(ToOne, "Products.ZenModel. AdministrativeRole", "managedObject")),
('userCommands', ToManyCont(ToOne, 'Products.ZenModel.UserCommand', 'commandable')),
unused:
(‘'monitors', ToMany(ToMany, 'Products.ZenModel.StatusMonitorConf, 'devices")),
)

e From ManagedEntity:

_relations = (

Oct 13, 2016 ZenPack Developers' Guide 47

("dependencies", ToMany (ToMany, "Products.ZenModel. ManagedEntity”,
"dependents")),

("dependents", ToMany(ToMany, "Products.ZenModel.ManagedEntity",
"dependencies")),

("maintenanceWindows",ToManyCont(ToOne,
"Products.ZenModel. MaintenanceWindow", "productionState")),

)

n Note that Device does not have either an os or an hw relationship.

5.1.3 Object methods

If an object attribute is a feature or field of an object, then a method is something that can be
done to an object. A method is code, that may well take parameters, to adapt self (the object).

One of the simplest examples of a method for a Device is getManagelp which merely delivers
the managelp attribute:

security.declareProtected (ZEN VIEW, 'getManagelp')
def getManagelp(self):

wnn

Return the management ip for this device.

@rtype: string
@permission: ZEN _VIEW

won

return self.managelp

Another simple example is the getPerformanceServer method to get the performanceServer
(what we know as the collector), for a device:

security.declareProtected (ZEN VIEW, 'getPerformanceServer')
def getPerformanceServer (self):

won

Return the device performance server

@rtype: PerformanceMonitor
@permission: ZEN VIEW

nmoan

return self.perfServer ()

Most of the method is comment, enclosed between the pairs of triple quotes.

Remember that perfServer was a ToOne relationship on the Device object so this method
delivers the object that represents the device's collector.

One way to distinguish between a device's attributes and relationships in code is that using a
relationship will always have () after the relationship name; if it is a simple attribute, there
will be no () .

To get the name of the device's perfServer, there is the getPerformanceServerName method
which again gets the perfServer relationship but then uses the getld() method to get the id
attribute of the collector, provided the relationship exists; otherwise the null string is
returned:

48 ZenPack Developers' Guide Oct 13, 2016

security.declareProtected (ZEN VIEW, 'getPerformanceServerName')
def getPerformanceServerName (self) :

won

Return the device performance server name

@rtype: string
@permission: ZEN _VIEW

cr = self.perfServer ()
if cr: return cr.getId()
return ''

Note the security.declareProtected lines, immediately before the definition of the methods.
This is not mandatory but it imposes a permission (ZEN_VIEW) that a Zenoss role must have
in order to execute the method.

The Device class has an __init method which is called to instantiate an instance of a
device class.

zenoss@zen42:/opt/zenoss/Products/ZenModel

File Edit View Search Terminal Help
init (self, id, buildRelations=True): =
ManagedEntity. init (self, id, buildRelations=buildRelations)
0s = OperatingSystem()
self. setObject(os.id, os)
hw = DeviceHW()
self. setObject(hw.id, hw)
#self.commandStatus = "Not Tested"
self. lastPollSnmpUpTime = ZenStatus(0)
self. snmpLastCollection = 0
self. lastChange = 0
self. create_componentSearch()

"Device.py" [readonly] 2298 lines --13%-- 314,0-1 13%
Figure 31: The __init__ method for Device class

(<]

Note that the “os” line instantiates an object of class OperatingSystem and the “hw” line
instantiates an object of class DeviceHW; in other words, the Device object contains an
OperatingSystem object and a DeviceHW object.

Most of the files under $ZENHOME | Products /| ZenModel define a large number of methods,
too numerous to mention all of them here. Some common methods for the Device object
(including some inherited from other classes), are:

o titleOrld(self)

e name(self)

e getRRDTemplates(self)

e sysUpTime(self)

e getDeviceComponents(self, monitored=None, collector=None, type=None)
e getDeviceGroupNames(self)

e setManagelp(self, ip="", REQUEST=None)

e getMacAddresses(self)

Oct 13, 2016 ZenPack Developers' Guide 49

e getPingStatusString(self)

e getDeviceClassPath(self)

e getDeviceUrl(self)

e getPingStatus(self)

e getProperty(self, Property)

e setZenProperty(self, zProperty, value)

Note that if zProperties are changed programmatically, whether through code or zendmd,
then always ensure that the setZenProperty method is used. Simply using a construct such as
device.zCommandUsername="fred’ will result in corruptions in the ZODB database for the

device where the GUI cannot show the new value of the property.

5.2 DeviceComponent.py

Many devices have components; interfaces, filesystems and OS Processes are examples. Often

the reason for writing a ZenPack is to support new types of components. The

DeviceComponent class is defined in DeviceComponent.py.

El zenoss@zend42:/opt/zenoss/Products/ZenModel
File Edit View Search Terminal Help
DeviceComponent(Lockable):

DeviceComponent is a mix-in class for all components of a device.
These include LogicalComponent, Software, and Hardware.

zope.interface.implements(IIndexed, IGloballyIdentifiable)

__pychecker_ ='no-override’

event key = "Component"

default catalog = "componentSearch"

collectors = ('zenperfsnmp', 'zencommand', 'zenwinperf',
'zenping')

security = ClassSecurityInfo()
perfmonInstance = None

getParentDeviceName(self):

Return the name of this component's device

name =
dev = self.device()
1T dev: name = dev.getDeviceName()
name
hostname = getParentDeviceName

- getParentDeviceTitle(self):

Return the title of this component's device
title = ""
dev = self.device()
f dev: title = dev.titleOrId()
n title

"DeviceComponent.py" [readonly] 235 lines --28%--

67,0-1 15% (7]

Figure 32: DeviceComponent object class in $ZENHOME | Products | ZenModel | DeviceComponent.py

50 ZenPack Developers' Guide

Oct 13, 2016

Note that DeviceComponent inherits just from the Lockable class.

Zenoss@zend42:/opt/zenoss/Products/ZenMode

Eile Edit View Search Terminal Help
from Products.ZenWidgets import messaging |

UNLOCKED = 0@

DELETE LOCKED = 1

UPDATE LOCKED = 2
Lockable(object):

sendEventWhenBlockedFlag = False
modelerLock = UNLOCKED

- getNextlLockableParent({self, obj=None):
for obj: obj = self
" obj.getPrimaryParent() == self.getDmd():
I None
isinstance(obj.getPrimaryParent(), Lockable):
rn obj.getPrimaryParent()

rn self.getNextLockableParent(obj.getPrimaryParent())

f sendEventWhenBlocked(self):
- self.sendEventWhenBlockedFlag:
I True
False
else:
lockableParent = self.getNextLockableParent()
if lockableParent:
return lockableParent.sendEventWhenBlocked()
else:
return False

f isUnlocked(self):
] self.modelerLock == UNLOCKED:
True
rn False

isLockedFromDeletion(self):
Hf (self.modelerLock == DELETE LOCKED
"Lockable.py" [readonly] 159 lines --32%-- 51,9 8% [~

Figure 33: Lockable class defined in $ZENHOME | Products | ZenModel | Lockable.py

The Lockable class is about as fundamental as it gets! It inherits from the object class, has
no attributes and no relationships. It simply has a few methods.

Figure 32 shows that the base DeviceComponent class has no attributes or relationships but
does have a number of methods.

5.3 * Example object class hierarchy for Fan DeviceComponent

It is possible to build object hierarchies of DeviceComponents. The core code provides some.

Oct 13, 2016 ZenPack Developers' Guide 51

Zenoss DeviceComponent object class hierarchy
m@ﬂfeu-my Lockable MW!
| MEProduct
DeviceComponent Hard|ware
[| | /

OSComponent HWComponent

|

| | |
Service Ipinterface IpRouteEnt FileSystem OSProcess

IpService WinService

CPU ExpansionCard Fan HardDisk PowerSupply TemperatureSensor

Figure 34: DeviceComponent object class hierarchy

Taking Fan as an example of a hardware component, it is possible to trace the attributes,
relationships and methods through the class hierarchy.

52 ZenPack Developers' Guide Oct 13, 2016

zenoss@zend2:/opt/zenoss/Products/ZenModel

File Edit View Search Terminal Help

This content is made available according to terms specified in

License.zenoss under the directory where your Zenoss product is installed.
#
(S S S R S S S S S S S S S S S S S R S S R S S

__doc__="""Fan

Fan is an abstraction of any fan on a device. CPU, chassis, etc.
sId: Fan.py,v 1.7 2004/04/06 22:33:24 edahl Exp s"""
__version = "$Revision: 1.7 $"[11l:-2]

from Globals import InitializeClass

from math import isnan

from Products.ZenRelations.RelSchema import *

from HWComponent import HWComponent

from Products.ZenModel.ZenossSecurity import *

class Fan({HWComponent):
"""Fan object"""

portal type = meta type = 'Fan'

state = "unknown"
type = "unknown"

_properties = HWComponent. properties + (
{'id':'state', 'type':'string', 'mode':'w'},
{'id':"type', 'type':'string', 'mode':'w'},

)

_relations = HWComponent. relations + (
("hw", ToOne(ToManyCont, "Products.ZenModel.DeviceHW", "fans")),
)

"Fan.py" [readonly] 94 lines --45%-- 43,0-1
Figure 35: $ZENHOME | Products | ZenModel | Fan.py defining a hardware component

The Fan class inherits from the HWComponent class.

Oct 13, 2016 ZenPack Developers' Guide 53

zenoss@zend2:/opt/zenoss/Products/ZenModel

File Edit View Search Terminal Help
B B B L B e S
#

Copyright (C) Zenoss, Inc. 20807, all rights reserved.

#

This content is made available according to terms specified in

License.zenoss under the directory where your Zenoss product is installed.

#
B e e i e e b

from Hardware import Hardware
from DeviceComponent import DeviceComponent

class HWComponent(DeviceComponent, Hardware):

Hardware component of a device such as a HardDisk, CPU, etc.

AEFNEEVIRE (se1 1) :

"""Return our device object for DeviceResultInt.

hw = self.hw()
i hw: return hw.device()

"HWComponent.py" [readonly] 24 lines --4%-- 1,1 All

Figure 36: $ZENHOME / Products | ZenModel | HWComponent.py only has a single method

HWComponent only has a single method which redefines the device method, inherited from
the ManagedEntity class. HWComponent inherits from the Hardware class as well as the
DeviceComponent class.

54 ZenPack Developers' Guide Oct 13, 2016

zenoss@zend2:/opt/zenoss/Products/ZenModel

File Edit View Search Terminal Help

Hardware (MEProduct):
"""Hardware object"""
portal_type = meta_type = 'Hardware'
tag = ""
serialNumber = ""
_properties = MEProduct. properties + (
{'id':'tag', 'type':'string’, 'mode':'w'},
{'id':'serialNumber', 'type':'string', 'mode':'w'},

)

security = ClassSecurityInfo()

security.declareProtected('Change Device', 'setProduct')
def setProduct(self, productName, manufacturer="Unknown",
newProductName="", REQUEST=None, **Kkwargs):

"""Set the product class of this software.
if)t manufacturer: manufacturer = "Unknown"
1T newProductName: productName = newProductName
prodobj = self.getDmdRoot("Manufacturers").createHardwareProduct (
productName, manufacturer, **kwargs)
self.productClass.addRelation(prodobj)
if REQUEST:
"Hardware.py" 90 lines --42%--
Figure 37: $ZENHOME | Products | ZenModel | Hardware.py

38,0-1

Hardware has no relationships but does have the tag and serialNumber attributes. The

Hardware class inherits from MEProduct.

Oct 13, 2016 ZenPack Developers' Guide

57%

55

zenoss@zend2:/opt/zenoss/Products/ZenModel

File Edit View Search Terminal Help

from Globals import InitializeClass
from AccessControl import ClassSecurityInfo

from ManagedEntity import ManagedEntity

from Products.ZenRelations.RelSchema import *

MEProduct (ManagedEntity):
MEProduct is a ManagedEntity that needs to track is manufacturer.
For instance software and hardware.

_prodKey = None
~_manufacturer = None

_relations = ManagedEntity. relations + (
("productClass", ToOne(ToMany, "Products.ZenModel.ProductClass", "instances")),
)

security = ClassSecurityInfo()

security.declareProtected('View', 'getProductName')
getProductName(self):

Gets the Products's Name (id)

productClass = self.productClass()
productClass:
"MEProduct.py" [readonly] 152 lines --26%-- 40,1 7% 5

Figure 38: $ZENH OME |/ Product.s /ZenModel / MEProazuct: pyp

The MEProduct class adds a relationship, productClass. This is used to hold manufacturer
information. MEProduct inherits from ManagedEntity which we saw previously in Figure 29
but is repeated here for simplicity. It defines four attributes, three relations and a number of
methods, including the device method, which delivers the object device that contains this
object.

56 ZenPack Developers' Guide Oct 13, 2016

zenoss@zend2:/opt/zenoss/Products/ZenModel

Eile Edit View Search Terminal Help

ManagedEntity(ZenModelRM, DeviceResultInt, EventView, RRDView,
MaintenanceWindowable) :

ManagedEntity is an entity in the system that is managed by it.
Its basic property is that it can be classified by the ITClass Tree.
Also has EventView and RRDView available.

list of performance multigraphs (see PerformanceView.py)
FIXME this needs to go to some new setup and doesn't work now
mgraphs = []

primary snmpindex for this managed entity
snmpindex = 0

snmpindex_dct = {}

monitor = True

_properties = (

'id':'snmpindex', 'type':'string', 'mode':'w'}

'monitor', 'type':'boolean', 'mode':'w'}

'id': 'productionState’, 'type':'keyedselection', 'mode’:'w’'
'select_variable':'getProdStateConversions', 'setter':'setProdState'},
'id':'preMWProductionState', 'type':'keyedselection', 'mode':'w’',
'select_variable':'getProdStateConversions', 'setter':'setProdState'},

)

e em T

_relations = (
("dependencies", ToMany(ToMany, "Products.ZenModel.ManagedEntity", "dependents")),
("dependents", ToMany(ToMany, "Products.ZenModel.ManagedEntity", "dependencies")),
("maintenanceWindows", ToManyCont {
ToOne, "Products.ZenModel.MaintenanceWindow", "productionState")),
)

security = ClassSecurityInfo()

AEFNaETEEE (self):
"""Qverridden in lower classes if a device relationship exists.

None

]
"ManagedEntity.py" [readonly] 105 lines --66%-- 70,0-1

Figure 39: $ZENHOME | Products | ZenModel | ManagedEntity.py

This gives the combined class hierarchy for Fan as:
e ManagedEntity Attributes: {id":'snmpindex’', 'type':'string', 'mode":'w'},
{'id":'monitor', 'type':'boolean’, 'mode":'w'},
{'id":'productionState’, 'type':'keyedselection’, 'mode":'w’,

'select_variable':'getProdStateConversions','setter':'setProd
State'},

{id":')preMWProductionState', 'type':'’keyedselection',
‘'mode":'w','select_variable':'getProdStateConversions', setter
"'setProdState'},

Relations: ("dependencies", ToMany(ToMany,
"Products.ZenModel.ManagedEntity", "dependents")),

("dependents", ToMany(ToMany,
"Products.ZenModel.ManagedEntity", "dependencies")),

("maintenanceWindows",ToManyCont(ToOne,
"Products.ZenModel.MaintenanceWindow",
"productionState")),

s MEProduct Attributes: None

Relations: ("productClass", ToOne(ToMany, "
Products.ZenModel.ProductClass", "instances")),

+ Hardware Attributes: {'id':'tag’, 'type':'string’, 'mode":'w'},

{'id":'serialNumber', 'type':'string’, 'mode":'w'},

Oct 13, 2016 ZenPack Developers' Guide 57

Relations: None

¢+ DeviceComponent Attributes: None
Relations: None
e HWComponent Attributes: None

Relations: None

[Nl]

eFan Attributes: {'id':'state', 'type':'string’, 'mode":'w'},

" 1

{'id":'type’, 'type':'string’, 'mode':'w'},

Relations: ("hw", ToOne(ToManyCont,
"Products.ZenModel.DeviceHW", "fans")),

Both the HWComponent and the ManagedEntity classes define a device method; the “lowest”
definition in the hierarchy will win so, for a Fan device component, the device method
definition from HWComponent will be used.

5.4 * Example component class relationships for Ipinterface

$ZENHOME | Products | ZenModel_has files that define most of the objects available in Zenoss
and many of these objects define relationships.

Relationships are bi-directional links between objects. They may be one-to-many or many-to-
many. They may be a containment relationship specifying how the object attaches to the
object model and therefore how they get persisted; or it may be a non-containing relationship
that has nothing to do with persistence and simply creates a logical linkage from one object to
another.

In order to extend the overall object model, it is useful to have an appreciation of what
relationships exist in the core product and how they work.

58 ZenPack Developers' Guide Oct 13, 2016

Relationships for Ipinterface DeviceComponent

ipservices © we -ggr.é_f
"‘.”22“"2’23,32 gl > 03 ®loperatingSystem
os ® : = .
software © =« >0c ® 0s ® os ®

processes © w———— > s @

target routes © infesfiic interfaces
clientroutes IpRouteEnt Ibroutes Ipinterface
networks i i interface

[Location]

ipaddresses € ipaddresses
Key [IpAddress]
[IpAddress] object
-— » one-to-many relationship
ipaddresses non-containing relationship name
Ipaddresses © containing relationship name
network ® implied contained-by relationship name

Figure 40: Relationships for the IpInterface DeviceComponent

Figure 40 attempts to depict the various relationships around the IpInterface component:

e From OperatingSystem.py:

_relations = Software. relations + (
("interfaces", ToManyCont (ToOne,
"Products.ZenModel.IpInterface", "os")),
("routes", ToManyCont (ToOne, "Products.ZenModel.IpRouteEntry", "os")),
("ipservices", ToManyCont (ToOne, "Products.ZenModel.IpService", "os")),
("winservices", ToManyCont (ToOne,
"Products.ZenModel .WinService", "os")),
("processes", ToManyCont (ToOne, "Products.ZenModel.OSProcess", "os")),
("filesystems", ToManyCont (ToOne,
"Products.ZenModel.FileSystem", "os")),
("software", ToManyCont (ToOne, "Products.ZenModel.Software", "os")),

m An OperatingSystem object has a contains relationship to many IpInterface,

IpRouteEntry, IpService, WinService, FileSystem, Software and OSProcess objects.

Note the capitalisation carefully. By convention, an object name starts with a
capital letter.

m Relationships must always be bi-directional, thus one expects to find a ToOne os
relationship in the .py files for IpInterface, IpRouteEntry, IpService, WinService,

FileSystem, Software and OSProcess.

= Relationship names, by convention, start with a lower case letter.

Oct 13, 2016 ZenPack Developers' Guide

59

m Relationship names, by convention, use a singular name for the “one” end of a one-
to-many relationship and use a plural name for the “many” end.

m There is no “contained by” relationship key word but, by implication, the “other”
end of a “Cont” relationship is “contained by”.

e From IplInterface.py:

_relations = OSComponent. relations (

("os", ToOne (ToManyCont, "Products.ZenModel.OperatingSystem", "interfaces")),
("1paddresses", ToMany (ToOne, "Products.ZenModel.IpAddress","interface")),
("iproutes", ToMany (ToOne, "Products.ZenModel.IpRouteEntry","interface")),

)
s Note the matching os relationship for the interfaces relationship defined in

Operating System.py. The os relationship is singular - an interface is contained by
one operating system.

» Note that the location of the matching relationship, strictly, is given as a Python
module path; for example Products.ZenModel.OperatingSystem. This is why there
are periods between the elements not file system slashes. Since module names map
to file system directory hierarchies, the module name generally does give the path
to the containing file.

n Iplnterface objects have ToMany relationships with both IpAddress objects and
IpRouteEntry objects; neither is a containing relationship. Note both relationships,
ipaddresses and iproutes are plural as an interface may have many addresses and
many routes.

s The matching relationships expected in IpAddress.py and IpRouteEntry.py, both
called interface, are singular names for ToOne relationships.

e From IpAddress.py:

_relations = ManagedEntity. relations + (

("network", ToOne (ToManyCont, "Products.ZenModel.IpNetwork","ipaddresses")),
("interface", ToOne (ToMany, "Products.ZenModel.IpInterface","ipaddresses")),
("clientroutes", ToMany (ToOne, "Products.ZenModel.IpRouteEntry", "nexthop")),
)

s Note the matching interface relationship for the IpInterface object.

m An IpAddress also has a ToOne relationship (network) to an IpNetwork (which
contains multiple IpAddress objects)

» An IpAddress has a ToMany relationship (clientroutes) with IpRouteEntryObjects
whereas an IpRouteEntry has a ToOne relationship (nexthop) back to the

IpAddress.
e From IpRouteEntry.py:
_relations = OSComponent. relations + (
("os", ToOne (ToManyCont, "Products.ZenModel.OperatingSystem", "routes")),
("1nterface", ToOne (ToMany, "Products.ZenModel.IpInterface", "iproutes")),
("nexthop", ToOne (ToMany, "Products.ZenModel.IpAddress","clientroutes")),
("target", ToOne (ToMany, "Products.ZenModel.IpNetwork","clientroutes")),

)
s Note that the only contains relationship is os, back to the OperatingSystem.

e From IpNetwork.py:

ZenPack Developers' Guide Oct 13, 2016

relations = DeviceOrganizer. relations + (

T"ipaddresses",ToManyCont(ToOne,"Products.ZenModel.IpAddress", "network")),
("clientroutes", ToMany (ToOne, "Products.ZenModel.IpRouteEntry", "target")),
("location", ToOne (ToMany, "Products.ZenModel.Location", "networks")),

)
s Note that the IpNetwork object has the contains relationship for the IpAddress

m An IpNetwork can also be related to a single Zenoss Location - which can be related
to many IpNetworks.

Please note that these relationships are not exhaustive for the objects described. Other
relationships exist that were inherited from various parent object classes.

5.5 zendmd and the ZMI as tools to understand objects

5.5.1 The Zope Management Interface (ZMl)

The Zope Management Interface (ZMI) strictly is part of the Zope web application
environment, rather than Zenoss; for this reason, it requires the Manager role for a Zenoss
GUI user; ZenManager is not sufficient. The corollary to this is that, potentially, a user of the
ZMI has the power to completely wreck the installation!

Access the ZMI from the web interface; the URL starts the same as for your Zenoss GUI, so if
you access the main INFRASTRUCTURE menu with:

https://zend42.class.example.org/zport/dmd/itinfrastructuref#devices:.zport.dmd.Devices

then the ZMI for all the Zenoss objects can be found at:

https: zen4?2.class.example.org/zport/dmd/manage

In fact, the ZMI can be accessed at many levels:

https://zen42.class.example.orqg/zport/dmd/Devices/Server/Linux/manage

only shows the object model in the ZODB from /Devices/Server/Linux.

https://zen42.class.example.orqg/zport/manage

shows objects outside the Zenoss dmd environment in the containing Zope web application
environment.

The ZMI is good for showing the structure and relationship of objects. To some extent, it
mirrors the device class hierarchy seen through the INFRASTRUCTURE menu but, as you
drill down, it also shows relationships, contained object classes, properties and roles required
to execute methods.

Oct 13, 2016 ZenPack Developers' Guide 61

https://zen42.class.example.org/zport/manage
https://zen42.class.example.org/zport/dmd/Devices/Server/Linux/manage
https://zen42.class.example.org/zport/dmd/manage
https://zen42.class.example.org/zport/dmd/itinfrastructure#devices:.zport.dmd.Devices

ﬁ [@ example.org | https://zend2.class.example.org/zport/dmd/manage ¥ @l [ﬁv Google Q] ﬂ L

- Set Preferences =
[
Contents Security Ownership Properties

® [Z Devices
Events MibOrganizer at /zport/dmd/Mibs
& %3] Groups
B ¢34 |PvBNetworks Accelerated HTTP Cache Manager ¢ I l Add]

& JobManager . e
B 47 Locations 17z L0 Size Last Modified

(8] Manufacturers = S A O

® Mibs. O fred 2013-06-04 21:24

B & Monitors O @) mibSearch (mibSearch) 2012-07-09 18:10

Bl o Networks O =¥ mibs 2015-10-26 18:32

[# NotificationSubscription: o ‘&‘ToManndntRelationship 2015-10-26 18:32

® Processes [Rename l Cut [Copy \ [Delete] [Import/Export } [Select All]

¥ 5] Reports

Services

B T Systems

& Triggers
UserlnterfaceSettings
ZenEventHistory
ZenEventManager

[J ZenLinkManager
ZenPackManager

E ZenUsers

cla I t/dmd/Mibs/mib nage_workspace

Figure 41: Top-level ZMI showing objects within the Zenoss dmd

Note that hovering over icons in the main part of the window, gives translations for the icons
so mibs is a ToManyCont relationship on the Mibs object (note capitalisation).

&) [

‘ I@ example.org | hitps://zen42.class.example.org/zport/dmd/manage

Ownership

& (2] Devices ~
(2d AWS DeviceClass at /zport/dmd/Devices/Server/Linux
Applicaiion
AutoDiscovered Accelerated HTTP Cache Manager ¢] I Add]
(2d
B_ac"“PF""‘c't“h Type Name Size Last Modified
. D'“""E'Ed O (5] ActiveMQ 2014-10-14 18:18
. 4 Example O[3 Redis 2015-07-01 10:38
HTTP 01 (T SimpleTest 2015-10-29 09:42
KVM_ 0 2015-06-30 12:56
d MarkitDatabases O oF adminRoles 2015-10-27 17:52
(L Network O =% devices 2015-10-27 17:52
* Ping O % maintenanceWindows 2015-10-27 17:52
& (2] power O i pack 2015-10-27 17:52
] Printer O =% rrdTemplates 2015-10-27 17:52
= (T server O twemproxy 2015-07-10 17.57
cmd O =% userCommands 2015-10-27 17:52
DB2 0 =% zenMenus 2015-10-27 17:52
(@ Darwin [Rename] Cut l Copy H Delete H Import/Export H Select All
= G
[2d ActiveMQ
https:f/zen42.(I::s.;xaﬁ;lple.org/z;)ortfdmdeevi:es/Server/ljm i t/manage_work e

Figure 42: ZMI device class hierarchy

The left-hand menus can be expanded to drill down class hierarchies. In Figure 42, note the

ToManyCont relationship, devices, between the device class and the devices that are members
n of that class. Drilling into devices shows the device instances - the actual discovered devices.

Note that the icon for the instance of group-100-servi.class.example.org is a Device object.

62 ZenPack Developers' Guide Oct 13, 2016

Set Preferences ¢ @
@ Applicaliun Il _ Contents -

(2 AuteDiscovered g = s 2 7 e s
. ToManyContRelationship at /zport/dmd/Devices/Server/Linux/SimpleTest/devices

] BackupForLotsch|
(@ Discovered
Accelerated HTTP Cache Manager ¢ || Add

¥ [2d Example [|:]
B dHTTP : Type Name Size Last Modified

ZKvM m] group-100-servi.class.example.org 2015-11-03 10:44

(Z MarkitDatabases F cut [Co \

Device py [Delete H Import/Export H Select All

 [Z] Network
¥ [2d Ping

Power ki
(T Printer
& (2 server
cmd
DB2
Darwin
B [2d Linux
[Activema
(2 Redis
mSimpleTesl

Fi igur;z 43: Instances of devices in the |Server/Linux/SimpleTest device class

Also note that many ZMI windows have a Property tab which shows attributes of the
currently selected object.

‘ I@ example.org | https://zen42.class.example.org/zport/dmd/manage ™ @] [-Tlv Google ﬂ] ‘ﬂ -

ra Set Preferences ¢ @

[Bams Bl ST ST ST R TR B
& L Devices w
(TAws (2 DeviceClass at /zport/dmd/Devices/Server/Linux
= QAPP"CﬁliOH Properties allow you to assign simple values to Zope objects. To change property values, edit the values and click "Save Changes".
[Zd AutoDiscovered
Name Value Type
BackupForlLotsch|
(&l Discaverad description] string
(Zd Example devtypes SHMP lines
EHTTP
EIkvm
(2] MarkitDatabases
& (2] Network
mPing [zCollectorlgnorePlugins [HRSWInSta"edMﬁp]slring
[Power [zlpServiceMapMaxPort [8090 l int
& (2 Printer : ,
a [zCollectorPlugins zenoss. snmp. NewDeviceMap lines
[server zenoss.snmp.DeviceMap
cmd HPDeviceMap
DellDeviceMap
DB2 zenoss.snmp.InterfaceMap =
Darwin zenoss.snmp.RouteMap
g Gifit zenoss.snmp. IpServiceMap
O zicon imali i strin
(T ActiveMQ [/zportjdmdllmg/lcons/server linux.png l g
(21 Redis O zHardDiskMapMatch [~[hs]d[a-z]\d+$|c\d+t\d+d\d +s\d+5| " ccissVc\] string
SimpleTest O zCommandUsername [zenplug] string
(& Tomeat | || O zDeviceTemplates SnmpPacketsInout lines
."' " i l Device =

Figure 44: Properties tab for the DeviceClass [Server/Linux

Note that it is (at least in theory) possible to change, add and delete objects using the ZMI; in
practice you may be prevented from doing so and there is great potential for causing
breakage, so the recommendation would be not to change things using the ZMI.

Where the ZMI is particularly useful during ZenPack development is if new objects should
have been created but they do not show on the GUI. In other words, a new modeler has
apparently run successfully but new components do not appear. The ZMI will show whether
the objects exist. If the instances can be seen in the ZMI then the modeler has done its job
correctly and the problem with the ZenPack is in the JavaScript code that displays those
objects.

Oct 13, 2016 ZenPack Developers' Guide 63

For more information on Zope and the Zope Management Interface (ZMI), see
http://docs.zope.org/zope2/zope2book/index.html , especially Chapter 6, “Using the Zope

Management Interface”, http://docs.zope.org/zope2/zope2book/UsingZope.html .

5.5.2 zendmd

zendmd is a command line tool that provides an interpreted Python environment that is
already primed with information about the Zenoss dmd (dmd = Device Management
Database). The tool should be run as the zenoss Operating System user. As with the ZMI,
zendmd is a powerful tool with possibilities for serious breakage.

The utility has a very helpful tab-completion mechanism when you cannot remember exact
method names. It also has command recall available on the up arrow key.

There are lots of zendmd tips on the Zenoss wiki - start at
http:/wiki.zenoss.org/ZenDMD Tips and check the Tips category -
http:/wiki.zenoss.org/Category:Tips .

€ & wiki zenoss org/CategoryTips v @[®search ¥ A A Ty ey =
- s Summind LETFaCK
- » Creating ZenDMD Tip - Delete List Of Locations « ZenDMD Tip - Fix Invalid Primary Parent on OS and
Navigation -
« Customizing Standard Monitoring Templates R HW
Main page vV
Recent changes D « Remaving Commas From IDs and Names « ZenDMD TIP - List Decomissioned devices
Random page » ZenDMD Tip - Manipulate Events
» Debugging Event Transforms «Rename;a’ZenPaci 3 ;
Toals B « Detecting Event Flaps « Restarting Stopped Processes or Services = ZenDMD Tip - Move Devices to Proper Device Class
What links here S — ’ * ZenDMD Tip - Move Products to Proper
clated change rop Events with Transforms
RelateditiangsE FSEE T Manufacturer
Upload file = G .
e E « Template Tip: Polling Interface Status « ZenDMD Tip - Quickly Audit Enterprise Collectors
Printable version « Exporting and Imperting Users Ternary Thresholds + ZenDMD Tip - Recreate Device Rels
Permanent linic » Transforms Tip: More Dependencies » ZenDMD Tip - Refresh DeviceSearch Catalog
Page information I « Transforms Tip: Transforms Based on Time » ZenDMD Tip - Remove all MIBS
Browse propertie
osE prapertiss o Interfaces Tip: Using zInterfaceMaplgnoreNames « Transforms Tip: VMWare host moves * ZenDMD Tip - Remove Invalid Devices from
+ |P Service Monitoring Collectors
u » ZenDMD Tip - Removing Local Templates
J » Using snmpwalk « ZenDMD Tip - Rename Devices
. arser W + Zen ip - Replace modeler plugin
JSON P ZenDMD Tip - Repl deler pl
i programmatically
= Working with Facades « ZenDMD Tip - Set Titles via Reverse Lookup (PTR
« Learning Python « Working With Nagios Plugins record)
o Linux FileSystemns and SNMP » Working with Queues * ZenDMD Tip - ShowAllTransforms
e Linux Load Average Threshald * Working with REST « ZenDMD Tip - ShowEventMappingsAndTransforms
o Linux SSH Used Memory » Working with the JSON AP| « ZenDMD Tip - Test & Delste Overrides
 List all the Devices running specific service z s ZenDMD Tip - Zet managelp via Host Lookup (A
« List Device Data Points record)
M st ZenbMDAdding Devicesanibuls « ZenDMD Tip Renaming Modifying Device Properties
. « ZenDWD Tip - Add Roles to Users in a jiffy o ZenDMD Tips
« Mibs in dmd s ZenDWD Tip - Audit Transforms . « ZerDMD Tips - Impact
= Wonitoring for Stolen CPU on Linux Servers = ZenDMD Tip - Audit Triggers and Notifications « Zonoss 4.2 4 upgrade ZenPacks
« MultipleThresholds s ZenDWD Tip - Audit Users
= Zenoss Processes
« ZenDWD Tip - Bulk Device Removal
N # Zenoss tuning

ZenDWD Tip - Change Interface Speed
Zensendevent in Zenoss 4.2.3
« Notify Me of Important Events °

Figure 45: Zenoss wiki - lots of zendmd samples in the Tips category

Use zendmd to explore the attributes and methods of a device.

[zenoss@zend4?2 ZenModel]$ zendmd

Welcome to the Zenoss dmd command shell!

'dmd' is bound to the DataRoot. 'zhelp()' to get a list of commands.
Use TAB-TAB to see a list of zendmd related commands.

Tab completion also works for objects -- hit tab after an object name and
\ \

64 ZenPack Developers' Guide Oct 13, 2016

http://wiki.zenoss.org/Category:Tips
http://wiki.zenoss.org/ZenDMD_Tips
http://docs.zope.org/zope2/zope2book/UsingZope.html
http://docs.zope.org/zope2/zope2book/index.html

(eg dmd. + tab-key).
>>> d=find('zen42.class.example.org')
>>> d
<Device at /zport/dmd/Devices/Server/Linux/devices/zend2.class.example.org>
>>> d.id
'zen42.class.example.org'
>>> d.managelp
'192.168.10.42"
>>> d.getRRDTemplates ()
[<RRDTemplate at /zport/dmd/Devices/Server/Linux/rrdTemplates/test>,
<RRDTemplate at /zport/dmd/Devices/Server/Linux/rrdTemplates/Device>,
<RRDTemplate at /zport/dmd/Devices/Server/rrdTemplates/LDAPMonitor>,
<RRDTemplate at
/zport/dmd/Devices/Server/Linux/rrdTemplates/ProcessCheck firefox>,
<RRDTemplate at /zport/dmd/Devices/Server/rrdTemplates/PyTest5>,
<RRDTemplate at /zport/dmd/Devices/rrdTemplates/SnmpPacketsInOut>,
<RRDTemplate at
/zport/dmd/Devices/Server/Linux/rrdTemplates/sgl script test>, <RRDTemplate
at
/zport/dmd/Devices/Server/Linux/devices/zend42.class.example.org/SglDatasour
ceTestl>, <RRDTemplate at
/zport/dmd/Devices/Server/Linux/devices/zend42.class.example.org/testl>,
<RRDTemplate at /zport/dmd/Devices/Server/Linux/rrdTemplates/UCD swap>,
<RRDTemplate at
/zport/dmd/Devices/Server/Linux/rrdTemplates/uptimeTwisted>]
>>> d.getDeviceClassPath ()
'/Server/Linux'
>>> d.getDeviceUrl ()
'/zport/dmd/Devices/Server/Linux/devices/zend42.class.example.org'
>>> d.getProperty ('zSnmpCommunity"')
'public’
>>>

Start by getting a variable that represents the device object; either the id or the IP address
can be used as the parameter to find:

d = find('zend42.class.example.org')

Note that find is a shortcut for ‘dmd.Devices.findDevice()’ or
‘app.zport.dmd.Devices.findDevice()’

Note in the examples above that attributes do not have () whereas methods always have (),
and may have “real” parameters.

It is also possible to explore the contained objects and relationships of a device.
>>> for 1 in d.os.interfaces():
print i, i.id

<IpInterface at eth0> ethO
<IpInterface at lo> lo
>>>

The example above drills into the os object of the device and then iterates through the
interfaces relationship, printing the interface object instance and the interface object
instance id.

Oct 13, 2016 ZenPack Developers' Guide 65

To see all the attributes of an object, use the built-in method of _ dict_ to create a dictionary
of the object structure, and then iterate through the items of the dictionary. The “for &, v in

trick iterates the pairs of key and value through the dictionary.

>>> for i in d.os.interfaces():
for k, v in i. dict .items():
print i.id, k, v

eth0 adminStatus 1

eth0 links <ToManyRelationship at links>

ethO ipAddresses ['fe80::20c:29ff:feb5:8a24/24"]
ethO createdTime 2012/08/28 19:30:39.730741 GMT+1
ethO dependencies <ToManyRelationship at dependencies>
ethO iproutes <ToManyRelationship at iproutes>
eth0 speed 1000000000

ethO0 id ethO

ethO0 macaddress 00:0C:29:B5:8A:24

ethO interfaceName ethO

ethO title ethO

ethO0 duplex 3

eth0 os <ToOneRelationship at os>

eth0 primary parent <ToManyContRelationship at interfaces>

eth0 ethernetCsmacd 64 <RRDTemplate at ethernetCsmacd 64>
eth0 propertyValues {}

ethO mtu 1500

ethO operStatus 1

eth0 ipaddresses <ToManyRelationship at ipaddresses>

ethO guid 83777b62-e42c-4685-bb5a-18£1619d198e

ethO ifindex 2

eth0 objects ({'meta type': 'ToManyRelationship', 'id':
{'meta_type': 'ToManyRelationship', 'id': 'dependents'},

'dependencies'},

{'meta type':

'ToManyRelationship', 'id': 'links'}, {'meta type': 'ToOneRelationship',
'id': 'os'}, {'meta type': 'ToManyRelationship', 'id': 'ipaddresses'},
{'meta type': 'ToManyRelationship', 'id': 'iproutes'}, {'meta type':

'RRDTemplate', 'id': 'ethernetCsmacd 64'})

eth0 dependents <ToManyRelationship at dependents>
eth0 type ethernetCsmacd 64

lo adminStatus 1

lo links <ToManyRelationship at links>

Note that relationships are, of course, attributes of the object and this is made clear in the

output.

Some attributes may themselves be objects such as:

ethernetCsmacd 64 <RRDTemplate at ethernetCsmacd 64>

which is a local RRD template object that has been created for this interface on this device.

Where you need to explore an object that has one or more (potentially large) dictionaries, the

pretty print, pprint class in the standard Python pprint module is useful.

of the Zenoss Python environment, it needs importing into zendmd.

>>> from pprint import pprint
>>> for i1 in d.os.interfaces():
print i.id

for k,v in i. dict .items():
if k == ' objects':
pprint (v)

66 ZenPack Developers' Guide

Since it is not part

Oct 13, 2016

else:

print k,v
ethO
adminStatus 1
links <ToManyRelationship at links>
_ipAddresses ['fe80::20c:29ff:feb5:8a24/24"]
createdTime 2012/08/28 19:30:39.730741 GMT+1
dependencies <ToManyRelationship at dependencies>
iproutes <ToManyRelationship at iproutes>
speed 1000000000
id ethO
macaddress 00:0C:29:B5:8A:24
interfaceName ethO
title ethO
duplex 3
0s <ToOneRelationship at os>
__primary parent <ToManyContRelationship at interfaces>
ethernetCsmacd 64 <RRDTemplate at ethernetCsmacd 64>
_propertyValues {}
mtu 1500
operStatus 1
ipaddresses <ToManyRelationship at ipaddresses>
_guid 83777b62-e42c-4685-bb5a-18£1619d198e
ifindex 2

({"id': 'dependencies', 'meta type': 'ToManyRelationship'},
{'id': 'dependents', 'meta type': 'ToManyRelationship'},
{'id': 'links', 'meta type': 'ToManyRelationship'},

{'id': 'os', 'meta type': 'ToOneRelationship'},

{'id': 'ipaddresses', 'meta type': 'ToManyRelationship'},
{'id': 'iproutes', 'meta type': 'ToManyRelationship'},
{'id': 'ethernetCsmacd 64', 'meta type': 'RRDTemplate'})

dependents <ToManyRelatlonshlp at dependents>
type ethernetCsmacd 64

The example above checks whether the dictionary key is called _objects and, if so, uses pprint
to output it. This makes dictionaries far more readable.

zendmd commands are working on your live ZODB database and you may occasionally get

n access clashes with what the rest of the Zenoss code is doing with the database. Generally it
is fairly safe to inspect data. If you change data, changes will be reflected within the same
zendmd environment but will not be seen in the GUI. To commit changes made in a zendmd
session, use:

commit ()

If changes have been made by Zenoss to the ZODB, they can be updated into the running
zendmd session with:

sync ()

Exit a zendmd session with:

quit ()

Oct 13, 2016 ZenPack Developers' Guide 67

6.0 Developing complex ZenPacks

A complex ZenPack typically involves writing Python code. It may also require JavaScript,
HTML / XML, bash scripts and the pseudo-code used with the zenpacklib utility.

ZenPack development should always be performed as the zenoss user.

6.1 Planning considerations

6.1.1 Names and naming convention

It is essential to plan the pieces of code required for a ZenPack and clearly document the
names that will be used, as many elements are referenced in other elements. Note that all
names are case-sensitive.

e ZenPack name

e Python object classes for devices

e Python object classes for components

e Names of classes representing interfaces and infos
e Attribute names

e Names of relationships

e Methods and their parameters

e Names and type of any zProperties

e Names of modeler plugins

e JavaScript directory hierarchy and file names

By convention, class names start with an upper-case letter and may have mixed case
throughout eg. FileSystem.

Again by convention, relationship names start with a lower-case letter and may have mixed
case eg. filesystems, maintenanceWindows. Relationship names typically are plural for
ToMany relationships and singular for ToOne relationships:

("deviceClass", ToOne (ToManyCont, "Products.ZenModel.DeviceClass","devices"))
("devices", ToManyCont (ToOne, "Products.ZenModel.Device", "deviceClass"))

Note that, by convention, the relationship name tends to reflect what is being related to.

6.1.2 ZenPack prerequisites and other considerations

ZenPacks may require prerequisites and co-requisites, both Zenoss code and external. Typical
examples may be:

o Prerequisite ZenPack(s) eg. the PythonCollector ZenPack if you are going to create a
Python datasource.

e Specific SNMP MIBs if you are going to manage a new device type with SNMP.
Strictly, MIBs only need to be imported into Zenoss in order to decode TRAPs or SNMP V2
NOTIFICATIONS.

68 ZenPack Developers' Guide Oct 13, 2016

s A MIB Browser is extremely useful when building SNMP-based ZenPacks.
Consider installing ZenPacks.community.mib_browser; it needs some minor code
hacks but is invaluable when building ZenPacks that use SNMP. Access is at
http://wiki.zenoss.org/ZenPack:MIB Browser .

e If you are considering a command-based ZenPack, check to see whether there are any
existing Nagios plugins that already do what is required. It is generally trivial to drive
Nagios plugins from a COMMAND datasource.

e Ifyou are contemplating a COMMAND-based ZenPack, consider the scaling
implications. A command run against a few devices with a few components will be fine. If
there are hundreds of devices each with lots of tens of components, COMMANDS will not
work well and Python should be considered. This will depend on the commands being run,
how any collectors are balanced, and what the commands are doing (for example, how long

do the commands take to run?). Generally one should use COMMAND datasources for
running commands on the devices or collectors that are proprietary or pre-compiled and
therefore are difficult to use directly from python.

e Are any external packages required? If zenpacklib is to be used then PyYAML must be
installed (or already available in the Zenoss environment).

o Check http://wiki.zenoss.org/ZenPack Catalog in case a ZenPack already exists that
will do the job or at least be a good starting point.

e Ensure you have a test Zenoss installation. You may wish to run a minimal
environment as described in Chapter 3.1.

e Ensure there is access to at least one test device, preferably several with different
characteristics.

e Consider firewall implications. If target devices are likely to be behind firewalls then
understand what TCP/UDP ports need to be open for the ZenPack to work, and document
them.

e Take a backup, preferably a system backup / VMware snapshot and a zenbackup,
before installing any new ZenPack. With Zenoss 5, take a snapshot.

6.2 zenpacklib

In mid-2015, Zenoss delivered zenpacklib which is a package designed to take much of the
coding effort out of ZenPacks. The area where it provides most benefit, is in largely
eliminating the need for JavaScript, info.py, interfaces.py and configure.zcml. Its
documentation pages can be found at http://zenpacklib.zenoss.com/en/latest .

The difficulty with zenpacklib is that it does not do everything; for example, it cannot simplify

writing modeler plugins or custom datasources. In order to write such code it is necessary to
really understand the constructs that zenpacklib simplifies.

zenpacklib.py is simply a Python program that interprets an input file called zenpack.yaml.
The input file uses pseudo-code to define zProperties, Zenoss device classes, device object
classes. component classes, relationships and monitoring templates. Python code is
constructed and implemented in memory to represent these objects.

Oct 13, 2016 ZenPack Developers' Guide

http://zenpacklib.zenoss.com/en/latest
http://wiki.zenoss.org/ZenPack_Catalog
http://wiki.zenoss.org/ZenPack:MIB_Browser

The JavaScript code that would normally be necessary to implement the GUI elements of the
new objects, along with the associated info and interface classes, are also automatically
implemented in memory. There are no files to inspect, other than zenpack.yaml.

6.3 Developing Python code

Most elements of a ZenPack are written in Python.

There are good Python references around; the O'Reilly books are always a good start:
e “Learning Python” by Mark Lutz
e “Python Pocket Reference” by Mark Lutz
e Twisted - Network Programming Essentials” by Jessica McKellar & Abe Fettig

The online Python reference documentation is extremely useful - start at
https://docs.python.org/2/library/index.html .

Zenoss 3 requires Python 2.6; Zenoss 4 and 5 require Python 2.7.
Note that Python 3 is not supported by Zenoss (any version).

If Python code is to be written, be aware that Python is very white-space sensitive. Program
constructs such as if-then-else, while loops, for loops and many other coding elements depend
on white space indentation (and the same number of spaces for the same level of the
construct). If testing Python with the zendmd utility, the same white-space rules must be
obeyed.

6.3.1 pyflakes

pyflakes is a Python library which checks Python source files for errors; more details at
https://pypi.python.org/pypi/pyflakes . For those who still use vi as their workhorse editor, the
pyflakes-vim package, obtainable from http:/www.vim.org/scripts/script.php?script id=2441
is very easy to use. Simply:

e Download the zip package

o Create a.vim (note the leading dot) directory in your home directory - probably the
home directory for the zenoss user

o Unzip the pyflakes-vim package into this .vim directory

n A fiplugin/python /pyflakes/pyflakes directory hierarchy is created which includes
the pyflakes library - no need to install pyflakes separately

e Ensure that the user's .vimrc includes

filetype plugin indent on

o A sample .vimrc might be:

" Double-quote is comment

" "set bg=dark

" " :set paste and :set nopaste

" " vi -R is view but reads rc file
"set tabstop=4

set shiftwidth=4
set expandtab

70 ZenPack Developers' Guide Oct 13, 2016

http://www.vim.org/scripts/script.php?script_id=2441
https://pypi.python.org/pypi/pyflakes
https://docs.python.org/2/library/index.html

set ruler

filetype on

filetype plugin indent on

"highlight SpellBad term=reverse ctermbg=1

highlight clear SpellBad

highlight SpellBad term=standout ctermfg=1 term=underline cterm=underline

The result is that syntax checking is performed automatically as you edit a Python document.
This saves a huge amount of time, detecting syntax errors without going around a process of
reinstalling code and stopping / starting daemons.

In Figure 46 a missing colon at the end of line 22 is detected. Error lines are underlined in red
and a message is given at the bottom of the screen.

= zenoss@zend2:/opt/zenoss/local
File Edit View Search Terminal Help
#!/usr/bin/env python A

Author: Jane Curry

Date October 30th 2012

Description: Sets local zSnmpCommunity property to xyzzyplugh
Updates:

oW E R

import sys

from optparse import OptionParser

import Globals

import time

from Products.ZenUtils.ZenScriptBase import ZenScriptBase
from transaction import commit

of = open('/home/zenoss/zSnmpCommunityChange.out', 'w')
localtime = time.asctime(time.localtime(time.time()))
of.write{localtime + "\n\n")

Need noopts=True or it barfs with the script options
dmd = ZenScriptBase(connect=True, noopts=True}.dmd

zSnmpCom = 'xyzzyplugh'
for dev in dmd.Devices.getSubDevices(f]
f dev.managelp.startswith('172.31"):
Test for a specific device - for testing
#if dev.id == 'group-100-r3.class.example.org':

do NOT use the following line (dev.zSnmpCommunity = zSnmpCom) to set a local property

as it bypasses the aquisition chain and you end up with "half" a local property such

that Configuration Properyties does not see the change, the deleteZenProperty method

cannot find the property but the new community IS used by SNMP methods - Disaster!

#dev.zSnmpCommunity = zSnmpCom

dev.setZenProperty('zSnmpCommunity', zSnmpCom)

of.write('Device %s has zSnmpCommunity local property set to %s \n' % (dev.id, dev.zSnmpCommunity))
'Device %s has zSnmpCommunity local property set to %s \n' % (dev.id, dev.zSnmpCommunity)

commit ()

of.close()

could not compile: invalid syntax (setSnmpCommunity.py, line 22) 22,38 Top [-

Figure 46: Example of pyflakes-vim detecting missing colon in Python file

6.3.2 pep8

pep8 is a tool to check your Python code against some of the style conventions in PEP 8. See
https:/pypi.python.org/pypi/pep8 for more information.

6.4 Developing GUI code

If a ZenPack implements GUI modifications, it may require JavaScript code. In many cases,
using the zenpacklib tool avoids this, but it cannot deliver all GUI features.

If there is a real need to modify older ZenPacks that use page templates, then skills related to
XML will be required.

6.5 Useful tricks for ZenPack developers

1. When you need to find sample code or find a particular attribute or method in standard
Zenoss code, a combination of Unix utilities find and grep is enormously useful.

Oct 13, 2016 ZenPack Developers' Guide 71

https://pypi.python.org/pypi/pep8
http://www.python.org/dev/peps/pep-0008/

cd $ZENHOME/Products
grep setHWProductKey “find . -name "*.py" °

a. Note the “back ticks” around the find to run a command.
b. You need double-quotes around “*.py”.

¢. You can often reduce the effort of the find if you have a good idea where the code may
be; as a general rule-of-thumb:

¢+ ZenModel contains most python classes (Device, components)
+ ZenEvents contains most code related to events
+ DataCollector contains most modelers
¢ Zuul contains default interfaces, info, routers and facades
+ ZenCollector is the base collector daemon code
¢+ ZenUI3 contains Ul code and JavaScript
2. vi tricks

a. If you are cutting code from one file and pasting into another ensure you use :set paste
or the white space will cause you pain.

b. :se sw=4 sets the shift width to 4 spaces. Any code block in the file, terminated by a
blank line, can be moved in by the shift width by positioning on the first line and
using >/ . A code block is moved out by the shift width with </.

3. zendmd is an excellent tool for trying out small pieces of Python code and for exploring
the attributes and relationships of an object.

7.0 Anatomy of a ZenPack

7.1 Basic principles
Before discussing ZenPack code, let's get some basic principles straight first.

Zenoss documentation is apt to be a little imprecise sometimes in its terminology and uses
different words to mean the same thing. There are two very different concepts to do with
collecting data.

Configuration data is typically polled for every 12 hours and is held in the Zope Object
Database (ZODB).

Performance data is typically polled for every 5 minutes and is held in Round Robin
Database (RRD) files (prior to Zenoss 5) from where it can be graphed. With Zenoss 5,
performance data is held in the OpenTSDB subsystem.

n Configuration data and performance data are very different.

7.1.1 Configuration data, modeler plugins and the zenmodeler daemon

Configuration data is polled for by the zenmodeler daemon, using modeler plugins, also
sometimes called collector plugins.

The purpose of a modeler plugin is to map collected data into the attributes of Zenoss objects.

72 ZenPack Developers' Guide Oct 13, 2016

Lots of plugins are provided as standard with Zenoss under
$ZENHOME | Products | DataCollector | plugins [zenoss with separate subdirectories for:

e cmd

e nmap

e portscan
e python

e snmp

Don't be fooled by the directory path containing “DataCollector” - these are configuration
modeler plugins used by the zenmodeler daemon and nothing to do with the collection of
performance data that typically is collected by the zenperfsnmp, zencommand or zenpython
daemons.

Any device or device class can have several modeler plugins assigned to it. This is configured
from the left-hand Modeler Plugins menu of a device's Detail page or, for a device class, follow
the DETAILS link at the top of the left-hand menu for the equivalent Modeler Plugins option.
Available modelers are shown in the left-hand window.

‘ I(') example.org | https://zen42.class.example.org/zport/dmd/Devices/Server/Linux/SimpleTest/devices/group-100-servl.class.example.org/deviced: | v @] ﬁv
‘-@ Ist DASHBOARD EVENTS INFRASTRUCTURE REPORTS ADVANCED Q v * jane sicnouT H
== G 8 5 S AN AT A A AN A AT A AT A M U A A A A AN i i T N N i i A A
CE Networks Processes IP Services Windows Services NetworkMap Manufacturers Page Tips
_g:g:mlgg;‘sgﬂ .class.example.org Mo wonmmme: | up O | Maintenance | iyl
/‘ 172.31.100.4 DEVICE STATUS PRODUCTION STATE PRIORITY
Overview W Pai: I
Events /Server/Linux/SimpleTest/devices/group-100-serv1.class.example.org
4 Components
© Network Routes (2) Plugin Documentation:
@ File Systems (3)
05 Processes (1) Modeler Plugins:
@ Processors. (8) Available Selected
@ nterfaces @ ActiveMQMap e zenoss.snmp.NewDeviceMap 3
Graphs =| | ApcAtsDeviceMap Al zenoss.snmp.DeviceMap
ApcAtsinputMap zenoss.snmp.InterfaceMap
Configuration Properties ApcPduBankMap zenoss.snmp.RouteMap
Software ApcPduDeviceMap = zenoss.snmp.IpServiceMap
My Example Menu 1 ApcPduOutietMap zenoss.snmp.HRFileSystemMap
Mib Browser ApcPduPSMap zenoss.snmp.HRSWRunMap
Custom Properties ApcUpsBatteryMap zenoss.snmp.CpuMap
Administration ApcUpsDeviceMap |
BridgeDeviceMib
4 Monitoring Templates ~| | BridgelnterfaceMib [~
o rerins) [e || oo | (oo

Figure 47: The Modeler Plugins dialogue for a specific device

Note that, through the device class hierarchy, plugins are inherited down the hierarchy but
can be overridden at any level. Figure 47 shows the “Delete Local Copy” button as active for
the device group-100-servi.class.example.org indicating that the class-inherited plugins have
been overridden.

Prior to Zenoss 4, another way to achieve exactly the same effect was to go to the device class
or individual device's Configuration Properties menu and click on the Edit button beside
zCollectorPlugins.

This facility has now been removed from the Configuration Properties dialogue but the actual
zCollectorPlugins property is unchanged and can be seen with zendmd:

Oct 13, 2016 ZenPack Developers' Guide 73

EVENTS INF TRUCTURE REPORTS ADVANCED jane siGNOUT H

Devices Networks Processes IP Services Windows Services Network Map Manufacturers Page Tips

o

Overview
Events
4 Components =
CollectorClientTi it int !]
0 Bridge Interfaces (28) bbbt I =
@ Network Routes (@) zCollectorDecoding |\atin—1 string ¥
@ Interfaces (26) zCollectorLogChanges True | boolean !
Software x 2CollectorPlugins Edit lines INetwork/Switch/BridgeMIB
Graph
e zCommandCommandTimeout |15‘0 float !
Administration
Configuration Properties A EE |§O int 0
Modeler Plugins zCommandExistanceTest |test -f %s 1 string I/
Custom Properties zCommandLoginTimeout |10‘0 float t
Modifications :
C clLoginTri int !
4 Monitoring Templates EHammant- o8 ries I "
Bridge_Stp_Topo (/Network/Switch/BridgeMIE 2CemmandPassword | password /
Device (/Devices) zCommandPath [tusriocalizenosshibexec string !
zCommandPort |22 int !
zCommandProtecol ssh j string ! =

. o+ - o - | Commands ~

Figure 48: Modify the zCollectorPlugins zProperty to activate modeler plugins - Zenoss 3

>>> d=find ('group-100-servl.class.example.org"')

>>> d.zCollectorPlugins

['zenoss.snmp.NewDeviceMap', 'zenoss.snmp.DeviceMap',
'zenoss.snmp.InterfaceMap', 'zenoss.snmp.RouteMap',
'zenoss.snmp.IpServiceMap', 'zenoss.snmp.HRFileSystemMap',
'zenoss.snmp.HRSWRunMap', 'zenoss.snmp.CpuMap']

>>>

Modelers do not do fundamental device discovery, that is the job of the zendisc daemon;
however, once basic discovery has been performed, usually by ping, and basic data has been
added into the ZODB for the device, it is then the job of zenmodeler to discover other
configuration data. This may be basic SNMP agent information used to lookup Hardware and
OS, Manufacturer and Model information, along with the SNMP sysContact and sysLocation
data. zenoss.snmp.NewDeviceMap and zenoss.snmp.DeviceMap are the modelers that achieve
this.

A common requirement for the ZenPack developer is to write new modeler plugins to discover
new attributes of a device and / or discover new components. Standard modelers discover
interfaces, IP routes, IP services, filesystems, processes (zenoss.snmp. HRSWRunMap) and
cpu components.

74 ZenPack Developers' Guide Oct 13, 2016

1-@ 1 DASHBOARD EVENTS INFRASTRUCTURE REPORTS ADVANCED

m Networks Processes IP Services Windows Services Network Map Manufacturers

Overview Path:
Events /AWS/EC2
4 Components

'VPCs (4) Plugin Documentation:
Winstances (16)
'Snapshots (25) Modeler Plugins:
images (9) 5| Available Selected
'Volumes (18) ActiveMQMap i aws.EC2
GRegions (9) ApcAtsDeviceMap
@Zones (25) 'ApcAtsinputMap
@subnets (10) | ApcPduBankMap

Graphs | ApcPduDeviceMap fe

‘ApcPduCutetiap
Configuration Properties ' | ApcPduPSMap
Software ApcUpsBatteryMap [*]

My Example Menu 1

| sae [Cancel |

Mih Broweer =1 &

[mypooter« | 4][« ['commanas - |

Figure 49: AWS device showing the aws.EC2 modeler and Amazon EWS components

ZenPacks.zenoss. AWS is an example of a free ZenPack available from Zenoss to manage
Amazon Cloud devices. It provides a single new modeler plugin, aws.EC2, which discovers
several new components, seen in the left-hand menu of the me device in Figure 49.

When a new ZenPack is created it contains a directory hierarchy for modeler plugins with
ExampleSNMP.py.example under modeler /[plugins /[community /[snmp. It only gathers device
configuration data, not component data, but it has a very interesting demonstration of
applying scalar data to different, existing components:

e memTotalSwap is applied to the os component
o memTotalReal is applied to the hw component

where TotalSwap and TotalMemory are standard attributes defined on the standard os and
hw components, respectively. The data that is gathered is:

snmpGetMap = GetMap ({
'.1.3.6.1.4.1.2021.4.3.0"': 'memTotalSwap',
'.1.3.6.1.4.1.2021.4.5.0"': 'memTotalReal',
1)

This is applied with:

maps = []

maps.append (ObjectMap ({
'totalMemory': getdata['memTotalReal'] * 1024},
compname="hw'))

maps .append (ObjectMap ({

'totalSwap': getdatal'memTotalSwap'] * 1024},
compname="'os"))

Oct 13, 2016 ZenPack Developers' Guide 75

The standard NewDeviceMap modeler in
$ZENHOME | Products | DataCollector | plugins [zenoss [snmp extends this idea further by
assigning data using standard Zenoss setter methods. Thus the data gathered is:

GetMap

—

{
1.1.0"' : '"snmpDescr',
2.0"

snmpGetMap
. 1.
. 1.1 'snmpOid’',

'.1.3.6.1.2.
'.1.3.6.1.2.
1)

The data is used in the process method of the modeler with:

om.setHWProductKey = MultiArgs (om.snmpOid, manufacturer)

The setHWProductKey method can be found as a method for a Device in

$ZENHOME | Products | ZenModel | Device.py and the snmpOid data value gathered is used as
a parameter to this method. See the Zenoss Wiki — Diving into the Device Model at
http://community.zenoss.org/docs/DOC-2350 for more information on both device setters and
properties.

7.1.2 Performance data and monitoring templates

Specify collection of performance data using Zenoss monitoring templates. As with
modeler plugins, templates can be assigned either to a device class hierarchy or to a specific
device but the definition of these templates, the RRD databases that contain the data and the
daemons that collect the data are entirely separate from the configuration data collection
mechanism.

Zenoss provides the zenperfsnmp daemon and the zencommand daemon, among others.
Each works with a Zenoss-supplied datasource, specific to the daemon (SNMP and
COMMAND:); look in ZENHOME | Products | | Zuul | infos | template.py and

$ZENHOME | Products/ | Zuul | interfaces | template.py for some information on these. The
daemons themselves, zenperfsnmp.py and zencommand.py, are in

$ZENHOME | Products | ZenRRD.

If you can access performance data using either SNMP or ssh then, typically, there is no need
to write new code to collect performance data. You may use a new ZenPack to port new, GUI-
built templates from one Zenoss to another, but you don't need to write code. Where code is
required is if you need a new type of datasource.

A datasource defines:
e What performance data to collect, including the GUI dialogue
e How to collect it

e How to convert raw collected data into datapoints specified in a performance
monitoring template. This may be a separate parser.

e How to report errors with the datasource
Standard datasource definitions can be found in $ZENHOME |/ Products | ZenModel:
e BasicDataSource.py

e RRDDataSource.py

76 ZenPack Developers' Guide Oct 13, 2016

http://community.zenoss.org/docs/DOC-2350

There are several examples of new datasources in the standard, Zenoss-supplied ZenPacks;
for example ZenPacks.zenoss.FtpMonitor provides the FtpMonitor datasource type. If a

e PingDataSource.py

ZenPack provides a new datasource, it should go in the datasources directory.

Jabbel

MyFooter ~ + | &~

Monitoring Templa

Jlelelo -

Name

FtpMonitor

FtpMonitor.time

Vonito

Template | Device Class

m
£ g |
2 I

5

[/

Q

E

g |

s B

-

FtpMonitor

a
m
=

o

=
@
a

E= =
3 2

Cycle Time (seconds):
300

A
v

-

ort:

[N

<>

B o B m
12} R © kg
= = = 4
z 8 &
g (@
& =

E]

a

%

Certificate (minimum days for which a certificate is

SAVE CANCEL

Type
FtpMonitor
Severity

\

Warning
Event Class:
/Status/Ftp

\

Timeout (seconds)
60

<>

Host Name
${devid}
Send String:

Quit String:

Mismatch

\

warn

Delay:

Figure 50: FtpMonitor datasource from ZenPacks.zenoss.FtpMonitor

Note in Figure 50 that there are several fields, specific to FTP communications, that do not
appear in SNMP or COMMAND datasources. These are in addition to standard, inherited

fields like Severity, Event Key, Component, Cycle Time and Event Class.

More recently, Zenoss has issued the ZenPacks.zenoss.PythonCollector Zenpack which can
provide a much more efficient and flexible alternative to collecting data than with
zencommand. It provides a new zenpython daemon and a PythonDataSource. The base

Zenoss code now has a Python modeler plugin.

Many newer, Zenoss-provided ZenPacks demand the PythonCollector ZenPack as a

prerequisite.

7.2 New objects in ZenPacks

Probably the most common reason for creating a new, complex ZenPack is to support new
device types and components. The AWS ZenPack in Figure 49 is a good example. New
attributes are created for the new device type and component object classes are created for

Instances, VPCs, Snapshots, Zones, Volumes, Regions and Subnets.

It is important to understand the difference between the Zenoss device class hierarchy seen in
the Infrastructure menus - /Server, /Server/Linux and so on - and the concept of new Python
object classes to represent devices.

ZenPacks.zenoss.AWS defines a new Python object class to represent Amazon AWS accounts.

Oct 13, 2016

ZenPack Developers' Guide

77

zenoss@zend2:/opt/zenoss/ZenPacks/ZenPacks.zenoss.AWS-2.2.2.egg/ZenPacks/zenoss/AWS

File Edit View Search Terminal Help

class EC2Account(Device):

Model class for EC2Account.

meta type = portal type = 'EC2Account’

ec2accesskey = None
ec2secretkey = None
linuxDeviceClass = None
windowsDeviceClass = None
_setDiscoverGuests = None

_properties = Device. properties + (

{'id': 'ec2accesskey', 'type': ‘'string'},
{'id': 'ec2secretkey', 'type': 'string'},
{'id': 'linuxDeviceClass', 'type': 'string'},
{'id': 'windowsDeviceClass', 'type': 'string'},

)

~relations = Device. relations + (
('regions', ToManyCont(
ToOne, MODULE NAME['EC2Region'], ‘'account')),
("'s3buckets', ToManyCont(
ToOne, MODULE_NAME['S3Bucket'], 'account')),
)
"EC2Account.py" [readonly] 172 lines --15%--

Figure 51: Definition of EC2Account object class to represent AWS devices

Note in Figure 51 that the new EC2Account class inherits from Device and then defines four
new properties for the device and two new relationships.

«41 DASHBOARD EVENTS INFR {UCTURE REPORTS ADVANCRD jane siGNouT H

Devices Networks Processes IP Services Windows Services Network Map Manufacturers Page Tips

70 | © petete Local copy |

Overview

Events

!‘ ZPVthl | I

4 Components I
Misc zPythonClass ZenPacks.zenoss.AWS.EC2Account /AWS/EC2

WVPCs (4)
Regions (11)
@instances (16)
°Snap5hots (25)
@ Zones (26)
@ subnets (11)
@ Volumes (18)
°lmages 9)
Graphs

Modeler Plugins

Configuration Properties
DISPLAYING 1 - 1 of { ROWS

~

Figure 52: zPythonClass zProperty for device instance me in device class |AWS/EC2

To ensure that a device instance (the device called me in the screenshot) has the correct
Python object class, the zPythonClass zProperty must be set at the device class, /AWS/EC2.

78 ZenPack Developers' Guide Oct 13, 2016

7.3 GUI code

If new components are created, code is needed to display them and their attributes. If
zenpacklib is used, this code is created automatically in memory; otherwise the files have to
be manually constructed.

7.3.1 Page Template files and skins directories in older Zenoss
Originally in Zenoss 1 and 2, GUI code used a mixture of:

e HyperText Markup Language (HTML)

e (ascading Style Sheets (CSS)

e Zope 2, Zope Page Templates (ZPT) and the Template Attribute Language (TAL)

e ZPT and Macro Expansion for TAL (METAL)

e JavaScript / Asynchronous JavaScript And XML (AJAX))

e Yahoo User Interface (YUI) Library and Mochikit

Code to define the GUI was typically kept under the ZenPack's base directory, under a
directory hierarchy of:

skins/<ZenPack name>/

File extensions were .pt, representing Page Templates. Gradually this mechanism is being
phased out in favour of JavaSecript but there are still some page template files around in
current ZenPacks and in the base Zenoss code - look in

/opt /zenoss [Products [ZenModel | skins [zenmodel. For some examples and explanations of
Page Template files, see “Creating Zenoss ZenPacks” at http:/www.skills-
1st.co.uk/papers/jane/zenpacks/zenpacks.pdf (the original version).

7.3.2 JavaScript code to define GUI elements

The current method of defining GUI code is with JavaScript. Standard Zenoss JavaScript
code resides under $ZENHOME | Products | ZenUI3 | browser | resources | js | zenoss. The Device
Detail page is defined in

$ZENHOME | Products | ZenUI3 | browser | resources | js | zenoss | devdetail.js — this presents the
overall view for a device. Component detail display is handled by

S$ZENHOME | Products | ZenUI3 | browser | resources | js | zenoss | ComponentPanel.js .

A ZenPack should mirror the browser /resources/js hierarchy under its base directory. Note
that some older ZenPacks skip the browser directory and just have a resources directory.

TODO: StevePC: should probably mention Sencha’s ExtJS, the JS library used to construct
the majority of the v4 and v5 Ul

Some examples and explanation is provided in “Creating Zenoss ZenPacks for Zenoss 3” at
http://www.skills-1st.co.uk/papers/jane/zenpacks/zenpacks3.pdf .

The usual method for creating these .js files was to copy someone else's and modify to suit!

Oct 13, 2016 ZenPack Developers' Guide 79

http://www.skills-1st.co.uk/papers/jane/zenpacks/zenpacks3.pdf
http://www.skills-1st.co.uk/papers/jane/zenpacks/zenpacks.pdf
http://www.skills-1st.co.uk/papers/jane/zenpacks/zenpacks.pdf

7.3.3 configure.zcml, infos and interfaces

Three files are required in the base directory of a ZenPack to link between the Python objects
and the JavaScript GUI code:

e info.py
e interfaces.py
e configure.zcml

The info.py file abstracts object attribute information saved in the Zope Object Database
(ZODB), that will be displayed to the user. It also allows code to be written for display that it
is not part of the class definition. Note that the file must have this exact name.

File Edit View Search Terminal Help
S I R S S R S S S S B S S i
doc_ ="""info.py

Representation of Bridge components.
$Id: info.py,v 1.2 2010/12/14 20:45:46 jc Exp $"""
__version = "$Revision: 1.4 $"[11l:-2]

from zope.interface import implements

from Products.Zuul.infos import ProxyProperty

from Products.Zuul.infos.component import ComponentInfo
from Products.Zuul.decorators import infeo

#from Products.ZenUtils.Utils import convToUnits

from ZenPacks.skillslst.bridge import interfaces

ss BridgelInterfaceInfo(ComponentInfo):
implements(interfaces.IBridgelnterfacelnfo)

Port = ProxyProperty("Port")

RemoteAddress = ProxyProperty("RemoteAddress")
RemoteInterface = ProxyProperty("Remotelnterface")
RemoteDevice = ProxyProperty("RemoteDevice")
PortStatus = ProxyProperty("PortStatus")
PortComment = ProxyProperty("PortComment")

@property
r Remotelnterface(self):
| self. object.getRemoteInterfaces()

@property
f RemoteDevice(self):
rn self. object.getRemoteDevice()

"ZenPacks.skillslst.bridge/ZenPacks/skillslst/bridge/info.py" [readonly] 46 lines --97%--
Figure 53: ZenPacks.skills1st.bridge ZenPack - info.py file

In the ZenPacks.skills1st.bridge ZenPack, the info.py provides a link between the attributes
defined on the Bridgelnterface object and the interface which defines how it is displayed.
The ProxyProperty method shuttles data - the attributes Port, RemoteAddress,

Remotelnterface, RemoteDevice, PortStatus and PortComment - from the ZODB to the info
object.

80 ZenPack Developers' Guide Oct 13, 2016

Note that it is the names in red in Figure 53 that need to match the object attributes defined
in a Bridgelnterface.py file.

Note that there is nothing in info.py describing how the data is displayed, just what is
displayed.

In addition to the defined attributes, there is a requirement for other fields to be displayed in
the GUI. These are the Remotelnterface and RemoteDevice methods that will actually be
treated as properties, thanks to the @property Python decorator. The getRemotelnterfaces()
and getRemoteDevice() methods are defined with the Bridgelnterface object and attributes in
Bridgelnterface.py.

interfaces.py describes elements of how the data is displayed (and again, this filename is
prescribed).

El zenoss@zen42:/code/ZenPacks

File Edit View Search Terminal Help
B e e e B
o

This program is part of the Bridge Zenpack for Zenoss.
Copyright (C) 2010 Jane Curry

P
p
P
This program can be used under the GNU General Public License version 2

You can find full information here: http://www.zenoss.com/oss

E

B e b e T

doc interfaces

describes the form field to the user interface.

$Id: interfaces.py,v 1.2 2010/12/14 20:46:34 jc Exp """
__version = "sRevision: 1.4 $"[11:-2]

from Products.Zuul.interfaces import IComponentInfo

from Products.Zuul.form import schema
from Products.Zuul.utils import ZuulMessageFactory as t

IBridgeInterfacelnfo(IComponentInfo):

Info adapter for Bridge Interface component
Port = schema.Text(title=u"Port", readonly=True, group='Details"')
RemoteAddress = schema.Text(title=u"Remote MAC", readonly=True, group='Details')
Remotelnterface = schema.Text(title=u"Remote Interface", readonly=True,group='Details"')
RemoteDevice = schema.Text(title=u"Remote Device", readonly=True, group='Details')
PortStatus = schema.Text(title=u"Port Status", readonly=True, group='Details’)
PortComment = schema.Text(title=u"Port Comment", group='Details’)

"ZenPacks.skillslst.bridge/ZenPacks/skillslst/bridge/interfaces.py" [readonly] 34L, 1304C

Figure 54: ZenPacks.skills1st.bridge ZenPack - interfaces.py file

The elements on the left-hand side in Figure 54 (Port, RemoteAddress etc) must match the
names on the left-hand side of the corresponding statements in the info.py file.

The interfaces file should have basic Zope schema information - formatting details describing
the fields of a form for the attributes to populate. interfaces.py controls the fields seen in a

Oct 13, 2016 ZenPack Developers' Guide 81

component's Details dropdown menu. Any field defined in interfaces.py will require a
matching entry in info.py to tell the GUI what element to display.

For more information on Zope interfaces, see
http://docs.zope.org/zope2/zdgbook/ComponentsAndInterfaces.html

configure.zeml provides the “glue” between interfaces and JavaScript display code and this
exact name will be searched for by the Zope mechanisms. Zope Configuration Markup
Language (ZCML) is Zope 3's XML-based component configuration language for “wiring”
together application policy and component registrations. It is documented at the Zope site at

http://docs.zope.org/zopetoolkit/codingstyle/zcml-style.html .

The actual detailed code for displaying the details for a bridge interface, comes from a
JavaScript file bridge.js which should be under browser /resources/js.

E;I Jjane@zen3:~ - Shell - Konsole <

Session Edit View Bookmarks Settings Help

<txml version="1.0" encoding="utf-8"7§ -
<configure xmlns="http:--namespaces.zope.org-zope"
xmlns:brouser="http: namespaces.zope .org-brouser"
xmlns:zenl="http:/ namespaces .zope .org-zcnl">

<configure zcml:condition="installed Products.Zuul">

{adapter factory=".info.BridgeInterfacelnfo"
for="_BridgeInterface.BridgeInterface"
provides=". interfaces. IBridgeInterfaceInfo"
o

<{brouser resourcelirectory
name="bridge"
directory="resources"
I d

#« Uze for in vieuwlet stanza to restrict use of bridge. js script JUST to
devices of class BridgeDevice (and components) in the

BridgeDevice.py object class file ie. filename.classname

7 - improves performance

<{brouser:vieuwlet
nane=" js-bridge"
for=".BridgeDevice.BridgeDevice"
paths="/++resource++bridge-bridge. js"
ueight="10"
nanager="Products.ZenUI3.brouser. interfaces . IJavaScriptSrcHanager”
class="Products.ZenlI3.brouwser. javascript.JavaScriptSrcBundleVieulet"
pernission="zopeZ.Public"

I
<sconf igure’
{vconf igure> -
"configure.zcml™ 36 lines ——Z»x— 1,38 Top |~
(=] | = shel

Figure 55: configure.zeml

The adapter stanza in configure.zcml links the info file and interfaces file with the device
component class.

e The factory field must match the class defined in info.py

o The provides field must match the class defined in interfaces.py

82 ZenPack Developers' Guide Oct 13, 2016

http://docs.zope.org/zopetoolkit/codingstyle/zcml-style.html
http://docs.zope.org/zope2/zdgbook/ComponentsAndInterfaces.html

® The for field must match the device component class, Bridgelnterface, defined in the
file Bridgelnterface.py — hence Bridgelnterface.Bridgelnterface .

The browser:resourceDirectory stanza indicates where to find JavaScript files. This
ZenPack is an example of earlier coding practice where there was no browser directory and
JavaScript files were directly under a resources directory.

e The name (namespace) field can be any unique name

e The directory field is the subdirectory from where this configure.zcml resides -
resources

The browser:viewlet stanza is the link to the correct JavaScript file to display elements for
a particular device.

e The name (namespace) for this viewlet can be any unique name

e The for field restricts the use of this JavaScript file to the context of devices of class
BridgeDevice in the file BridgeDevice.py — the syntax is <filename without the
.py>.<class name> - don't forget the leading dot! It will be available for all such devices
and their components but will not be loaded for other device types. This can become a
huge performance benefit.

e In the paths field

paths="/++resource++bridge/bridge.js"
o bridge must match the name given to the name in the browser:resourceDirectory
stanza

o Thus the JavaScript file that define the page layout, bridge.js is under the named
resources directory - resources - under the ZenPack's base directory; that is, /
ZenPacks.skills1st.bridge | ZenPacks [skills1st [bridge [resources

e The class field should be
Products.ZenUI3.browser.javascript.JavaScriptSrcBundleViewlet if the paths field has
one or more files listed. It must be this where the paths field has multiple files, space-
separated; it could be Products.ZenUI3.browser.javascript.JavaScriptSrcViewlet for a
single path file.

e The weight field indicates the order of multiple viewlets where 1 would be at the top
and 100 would be at the bottom.

e The permission field is mandatory

7.4 Other elements of a ZenPack
So far, a ZenPack may have:

e New device classes

e New component classes

e Modeler plugins

e New datasources

Oct 13, 2016 ZenPack Developers' Guide 83

o GUI code

Directories for Zenoss data collection
$ZENHOME
/ Products
5 =
Lo e gt ZenuI3
Devices Daemons DataCoallector ZenModel
| | <JavaScript files>
<hostname> plugins — Device.py
| —QperatingSystem.
<datasource>.<datapoint>.rrd Zenoss —DeviceClass.py
— — PerformanceConf,
<component> —Location.py
<component instance> — skins
: |
— <datasource>.<datapoint=.rrd zenmodel
S deviceQsDetail.pt
‘ ‘ viewlpinterface.pt
cmd portscan snmp python nmap e
DeviceMap.py £onom 3
InterfaceMap. JavaScript
HRSWRunMap.py _ resources
Performance Data HRSWRuUnMa Object classes
i and skins
Modeler Plugins

Figure 56: Directory hierarchy for Zenoss data collection

Figure 56 shows the directory structure for many of the standard elements of Zenoss. A
ZenPack may extend all these areas but will do so under its own base directory.

Obviously, a ZenPack may also have objects discussed in the “Simple ZenPacks” chapter -
monitoring templates, event classes, Mibs, etc.

Other elements that might be included in a ZenPack are:
e Parsers for datasources
e Reports
e New zProperties
e Event triggers and notifications

e Menus

84 ZenPack Developers' Guide Oct 13, 2016

8.0 zenpacklib UserGroup sample ZenPack

This first ZenPack sample will demonstrate using the zenpacklib utility to create a new
zProperty, a new Zenoss device class, a new device object class and two new hierarchical
components.

A modeler plugin will then be coded in Python to populate the new device and component
classes. Once components exist, a component performance template will also be created,
ultimately using zenpacklib.

Documentation for zenpacklib is at http:/zenpacklib.zenoss.com/en/latest/index.html .

8.1 Requirements specification

The ZenPack will gather user and group information from Linux servers, using bash
commands over the ssh protocol. The relationship between a user and their primary user
group (also known as the effective user group) will be part of the object model so that easy
navigation is possible from a group to the users contained within that group.

There will be a configurable option for the minimum UID user to be discovered so that low-
numbered system UIDs can be omitted, if required.

A graph will be available for each user with the number of groups to which it is a member.

As extended examples, a colored icon will be used to denote whether a user group has
secondary users. There will also be a method for a user to collate its secondary groups.

8.1.1 bash commands to access user and group information

User and group information can be gathered using the getent bash command to access data in
/etc/passwd and /etc/group. Data in each file has several fields, colon-separated.

/etc/passwd has data in the format:

<username>:<password>:<UID>:<GID>:<user comment>:<home directory>:<command/shell>

root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/bin/sh
bin:x:2:2:bin:/bin:/bin/sh
sys:x:3:3:sys:/dev:/bin/sh

zenplug:x:1001:1002::/home/zenplug:/bin/bash
snmp:x:107:110::/var/lib/snmp:/bin/false
mollie:x:1002:1003:Mol:/home/mollie:/bin/bash

/etc/group has:

<groupname>:<password>:<GID>:<list of users in group, comma-separated>

root:x:0:
daemon:x:1:

bin:x:2:

sys:x:3:

adm:x:4:pi
audio:x:29:pi,mollie

indiecity:x:1001:root,pi

zenplug:x:1002:
snmp:x:110:

Oct 13, 2016 ZenPack Developers' Guide 85

http://zenpacklib.zenoss.com/en/latest/index.html

mlocate:x:111:
mollie:x:1003:

Unix users may exist in multiple groups but have the concept of a primary or effective
group; this is the fourth field from /etc/passwd. For a given user, mollie, this is determined
with:

id =g -n mollie
mollie

The -n parameter specifies to deliver the group name rather than the GID.

The list of all user groups (sometimes know as secondary groups) for the mollie user is given
by:

id -G -n mollie
mollie audio

Note that the primary group is also given in this list of “secondary” groups.

A user can have their primary group changed with:

usermod -g audio mollie

Note that this will require sudo or root privilege.

A user can have an additional secondary group added with the following where the -a
parameter specifies to add:

usermod -a -G ntp mollie
id -G -n mollie

mollie audio ntp

To remove a user from a secondary group is slightly more intricate. usermod -G is used where
any group that is not specified that the user is currently a member of, is removed from their
list of secondary groups:

usermod -G audio mollie
id -G -n mollie

mollie audio

ntp has been removed. Note that this does not remove the user from the primary group,
mollie.

8.2 ZenPack specification
The new ZenPack will be called ZenPacks.community.UserGroup.

A new zProperty, zMinUID will be created. Note that any new zProperty is global and
cannot be restricted to a subset of devices.

A new device object class called UserGroupDevice will be created. The device will have no
extra attributes, beyond the standard Device object.

The ZenPack will create new component objects, User and UserGroup with attributes:

86 ZenPack Developers' Guide Oct 13, 2016

e User
s userName
= UID
s primaryGID
s primaryGroupName
s userComment
s homeDir
s commandShell
e UserGroup
s groupName
= GID
s secondaryUsers
Relationships will be required such that:

e A UserGroupDevice will have a contains many relationship (userGroups) to
UserGroup components. The implied corresponding ToOne relationship will be
userGroupDevice (note the capitalisation carefully).

e A UserGroup component will have a contains many relationship (users) to User sub-
components. The implied corresponding ToOne relationship will be primaryUserGroup.

A modeler plugin will be required to gather user and group configuration data -
UserGroupMap .

A component template, User, will be created to deliver a count of the groups that a user
belongs to.

8.3 Installing zenpacklib

8.3.1 PyYAML

zenpacklib requires the Python YAML library, PyYAML as a pre-requisite. YAML stands for
“YAML Ain't Markup Language” - see http://yaml.org/.

PyYAML is installed as standard with Zenoss 4 SUP 457 and above and is standard with
Zenoss 5; versions prior to this require PyYAML to to be installed explicitly.

To test whether PyYAML is installed, as the zenoss user, enter the python environment and
import yaml:

python
import yaml
yaml

quit ()

If it is installed, you will see something like:

<module 'yaml' from '/opt/zenoss/lib/python2.7/site-packages/PyYAML-3.11-py2.7-
linux-x86 64.egg/yaml/ init .py'>

Oct 13, 2016 ZenPack Developers' Guide 87

http://yaml.org/

If PyYAML is not installed, install it, as the zenoss user, with:

easy install PyYAML

and then rerun the test above. You may see warning messages referring to the absence of
libyaml - you appear to be able to ignore these.
8.3.2 Installing zenpacklib

Fundamentally, zenpacklib is just another Python program. Get zenpacklib into your
nominated ZenPack development directory, /code/ZenPacks/DevGuide for Zenoss 4 and
/z/zenpacks for Zenoss 5.

To obtain the package, on the base host, as the zenoss user:

wget http://zenpacklib.zenoss.com/zenpacklib.py
chmod 755 zenpacklib.py

Note that you may need to add the --no-check-certificate flag to wget.

After downloading you can check the version by running the following command (on Zenoss 4)
as the zenoss user from the directory where the zenpacklib file was placed:

./zenpacklib.py version

or on Zenoss 5 from the base host:

zenpacklib version
Note that throughout this document, provided a Zenoss 5 environment has been setup
according to section 3.1.2, zenpacklib should be called as follows:
e Zenoss 4
s Change directory to the base directory of the ZenPack
m ./zenpacklib.py <parameter>
® Zenoss 5
m zenpacklib <parameter>

m The .bashrc in the zenoss user's home directory will ensure the working directory is
/z/zenpacks

To get some general help on usage of zenpacklib, use:

./zenpacklib.py help Zenoss 4
zenpacklib help Zenoss 5

88 ZenPack Developers' Guide Oct 13, 2016

zenoss@zend2:/code/ZenPacks/DevGuide/ZenPacks.community.zenpacklibtest/ZenPacks/co

File Edit View Search Terminal Help

[zenoss@zend? zenpacklibtest]s$./zenpacklib.py help
Usage: ./zenpacklib.py =command= [options]

Available commands and example options:

Create a new ZenPack source directory.
create ZenPacks.example.MyNewPack

Check zenpack.yaml for errors.
lint zenpack.yaml

Print yUML (http://yuml.me/) class diagram source based on zenpack.yaml.
class diagram yuml zenpack.yaml

Export existing monitoring templates to yaml.
dump_templates ZenPacks.example.AlreadyInstalled

Convert a pre-release zenpacklib.ZenPackSpec to yaml.
py to yaml ZenPacks.example.AlreadyInstalled

Print all possible facet paths for a given device, and whether they
are currently filtered.
list paths [device name]

Print zenpacklib version.
version

[zenoss@zen42 zenpacklibtest]s JJ
Figure 57: Help for zenpacklib.py

Note the lint option that performs syntax checking on a zenpack.yaml file.

See http:/ /zenpacklib.zenoss.com /en /latest | command-line-reference.html for further
documentation.

zenpacklib is developed on GitHub. For current outstanding issues and requests, see
https://github.com/zenoss/zenpacklib/issues .

8.4 Creating the ZenPack

This ZenPack will use zenpack.yaml to define all the objects and relations. No extra GUI code,
beyond that generated automatically to support the objects, is anticipated; neither are
customized datasources, reports or events required. Thus the zenpacklib utility will be used to
create the ZenPack.

Where several other elements are required, with the associated directory hierarchy, it is
better practice to create the ZenPack using the command line (Zenoss 5) or the GUI (Zenoss
4), as documented in section 3.2.

With Zenoss 4, to create a ZenPack from the command line, as the zenoss user, in the current
directory, run the following:

cd /code/ZenPacks/DevGuide
./zenpacklib.py create ZenPacks.community.UserGroup

or with Zenoss 5:

cd /z/zenpacks

Oct 13, 2016 ZenPack Developers' Guide 89

https://github.com/zenoss/zenpacklib/issues
http://zenpacklib.zenoss.com/en/latest/command-line-reference.html

zenpacklib create ZenPacks.community.UserGroup

The environment created in the .bashrc file ensures that zenpacklib commands are performed
in the context of the current directory being /z/zenpacks so that is where the ZenPack
directory hierarchy will be created in Zenoss 5. Note that you must change to the directory
where zenpacklib.py exists as it will be copied from “.” (the current directory) into the base
directory of the new ZenPack.

Several lines will be printed to document what has been created. Note that the ZenPack’s
source directory hierarchy has been created, but it has not yet been installed.

[zenoss@zen50:/z/zenpacks]$ zenpacklib create ZenPacks.community.UserGroup
Creating source directory for ZenPacks.community.UserGroup:

- making directory: ZenPacks.community.UserGroup/ZenPacks/community/UserGroup

- creating file: ZenPacks.community.UserGroup/setup.py

- creating file: ZenPacks.community.UserGroup/MANIFEST.in

- creating file: ZenPacks.community.UserGroup/ZenPacks/ init .py

- creating file: ZenPacks.community.UserGroup/ZenPacks/community/ init .py

- creating file: ZenPacks.community.UserGroup/ZenPacks/community/UserGroup/ init .py
- creating file: ZenPacks.community.UserGroup/ZenPacks/community/UserGroup/zenpack.yaml
- copying: ./zenpacklib.py to ZenPacks.community.UserGroup/ZenPacks/community/UserGroup
[zenoss@zen50:/z/zenpacks]$

Note that these are the only files created. __init_ .py is created in the ZenPacks, community
and UserGroup directories but no directory hierarchy is built under the UserGroup
subdirectory.

__init__.py in the ZenPack's base directory,
ZenPacks.community.UserGroup [ZenPacks [community [UserGroup, will contain:

from . import zenpacklib
CFG = zenpacklib.load yaml ()

This is with zenpacklib version 1.0.11. Earlier versions of zenpacklib simply had
zenpacklib.load yaml () as the second line.

zenpacklib.py is copied to the base directory and a minimal zenpack.yaml is created there,
containing a single line:

[zenoss@zenb50:.../community/UserGroupl]$ cat zenpack.yaml
name: ZenPacks.community.UserGroup

Install the ZenPack in development mode (that is, with the --link parameter). For Zenoss 4,
the current directory should be the nominated ZenPack development directory where the
ZenPack hierarchy resides; that is, one level higher than the ZenPack top-level directory -
/code | ZenPacks [DevGuide. For Zenoss 5, the command alias in .bashrc enforces that the
directory hierarchy must be in /z/zenpacks; it is irrelevant where the command is executed
from.

zenpack --link --install ZenPacks.community.UserGroup

Restart all the Zenoss daemons

zenoss restart for Zenoss 4
serviced service restart Zenoss.core for Zenoss 5 Core
serviced service restart Zenoss.resmgr for Zenoss 5 Enterprise

Create the README.rst skeleton file in the top-level directory of the ZenPack.

90 ZenPack Developers' Guide Oct 13, 2016

Check installed ZenPacks with:

zenpack --list

From the Zenoss GUI, navigate to ADVANCED -> Settings -> ZenPacks, select the new
ZenPack and configure the Author and License fields; also set any Zenoss minimum version

DASHBOARD

zenfg;g
m Control Center

and ZenPack co-requisites.

EVENTS

Monitoring Templates

INFRASTRUCTURE

Jobs MIBs

ZenPackManager > ZenPacks.community.UserGroup

Detail

Name
Version

Author

License

Save I

Required?

ZenPacks.community. UserGroup

REPORTS

ADVANCED Q enoss SlaNouT B

EEGERILE

|1.0.0dev

pane curry - jane.curry@skills-1st.co.uk

GPLv2

Name
Zenoss
ZenPacks.ShaneScottipSLA

Version(s)
|>=4.0

= ZenPacks.SymbicticSystemDesign BaseMIBs

ZenPacks.community. DirFile

= ZenPacks.community.LogMatch

= ZenPacks.community.dummy

I
I
I
I
I
= ZenPacks.community.test2 |

fo-l s e

Figure 58: Configuring Author, License, Zenoss minimum version and ZenPack co-requisites

Export the ZenPack from the Action icon at the bottom-left of this GUI panel to create the egg
file. The base ZenPack directory also gains an objects subdirectory and an empty skins
subdirectory.

8.5 zenpack.yaml

Definitions of new zProperties, object classes, relationships, device classes and templates can
be done in a zenpack.yaml file that must exist in the base directory of the ZenPack. This
permits definitions to be done in a kind of pseudo code that is much simpler to write and
much less error prone than Python. The other major benefit is that JavaScript is created
automatically for these elements.

The YAML reference can be found at http:/zenpacklib.zenoss.com/en/latest/yaml-
reference.html . This documentation is terse but precise. It includes which keywords are
mandatory, what the legal options are, and what the default value will be if omitted. Some
keywords are concerned with defining object attributes (such as type, properties,
relationships); other keywords are concerned with layout and appearance (for example,
label_width, icon, order).

8.5.1 zProperties
The first section of zenpack.yaml defines the new zProperty, zMinUID:

name: ZenPacks.community.UserGroup
zProperties:
DEFAULT:
Oct 13, 2016 ZenPack Developers' Guide 91

http://zenpacklib.zenoss.com/en/latest/yaml-reference.html
http://zenpacklib.zenoss.com/en/latest/yaml-reference.html

category: UserGroup

zMinUID:
type: string # note this is string, not int
default: 0

Check the documentation at http:/zenpacklib.zenoss.com/en/latest/vaml-zProperties.html,
following YAML Reference -> zProperties, for permissible fields and values. Note that:

o The name must start with a lower-case z

e Only the name field is mandatory.

8.5.2 Zenoss device classes

The zenpack.yaml file is rather focused around Zenoss device classes; the
/Server [Linux /| UserGroup device class will be defined with the zPythonClass zProperty set to
ZenPacks.community.UserGroup.UserGroupDevice. zCollectorPlugins will also be set.

device classes:
/Server/Linux/UserGroup:
remove: False #False=default;ensure no instances left in this class when ZP removed
zProperties:
zPythonClass: ZenPacks.community.UserGroup.UserGroupDevice
zSshConcurrentSessions: 5

zDeviceTemplates:

- Device

zCollectorPlugins: ['zenoss.snmp.NewDeviceMap', 'zenoss.snmp.DeviceMap',
'zenoss.snmp.InterfaceMap', 'zenoss.snmp.RouteMap', 'zenoss.snmp.IpServiceMap',
'zenoss.snmp.HRFileSystemMap', 'zenoss.snmp.HRSWRunMap', 'zenoss.snmp.CpuMap',
'zenoss.snmp.SnmpV3EngineIdMap', 'cmd.UserGroupMap']

See http:/zenpacklib.zenoss.com/en/latest/yaml-device-classes.html for the Device Classes
YAML reference.

Note that:

e Comments can be added to a line, either at the start or anywhere on the line, prefaced
by #.

e zProperties for the device class can be set. Do not confuse these with the creation of
new global zProperties configured above.

o IfzDeviceTemplates is set, this must be a list and must include all required templates.
It is a common error to just specify the “extra” templates required.

o A list can either use the hyphen syntax shown for zDeviceTemplates or can use the
square bracket syntax used for zCollectorPlugins. zCollectorPlugins must also contain all
required modelers; cmd.UserGroupMap is included in anticipation of the modeler plugin
that will be written.

e As with Python, white space indentation is crucial and will cause errors if not
honoured.

e Device classes will be created recursively if necessary; ie, should the /Server or
/ Server [Linux class not exist when the ZenPack is installed, they will also be created.

92 ZenPack Developers' Guide Oct 13, 2016

http://zenpacklib.zenoss.com/en/latest/yaml-device-classes.html
http://zenpacklib.zenoss.com/en/latest/yaml-zProperties.html

8.5.3 Object classes

Documentation for object classes for device and components can be found at
http://zenpacklib.zenoss.com/en/latest/vaml-classes-and-relationships.html .

classes:
DEFAULTS:
base: [zenpacklib.Component]

UserGroupDevice:

base: [zenpacklib.Device]

meta type: UserGroupDevice # Will default to this but in for completeness
label: UserGroup Host

icon: four-tux-56x56.png

relationships:
userGroups:
label: User Groups
display: true # this has no effect as it is on the device class

A new device object must inherit from one or more existing classes; zenpacklib.Device, which
is the standard Device object, defined in $ZENHOME / Products | ZenModel | Device.py is the
default.

Similarly, a new component object inherits from zenpacklib.Component.
TODO: How to inherit from some other class??

Note the use of the DEFAULTS statement to set the base parameter to
[zenpacklib.Component]. Since several components will be defined, this avoids the need to
explicitly set base for each component. This DEFAULTS technique can be used throughout
zenpack.yaml.

The label will default to the meta_type, will default to the class name.

An icon can be specified for this device object class. Some standard icons are in
S$ZENHOME | Products | ZenWidgets | skins [zenui [img [icons. If no icon is specified then the
noicon.png file will be used from this directory. The default value for the icon keyword in
zenpack.yaml is <device object class name>.png.

To include icons with the ZenPack, appropriate .png files should be placed under the
resources [icon directory hierarchy under the base directory. Icons should be about 56x56
pixels. This hierarchy will not exist if the ZenPack was created with zenpacklib. Create the
hierarchy, remembering to create an _ init_ .py in each directory, with touch

init .py.

properties in a class definition are object attributes and there is a large reference for
property fields in addition to the class fields. A “special case” of an attribute (a characteristic
of the object), is a method (an action that can be performed on the object) and methods can
also be defined in zenpack.yaml with the api_backendtype and api_only keywords.

The UserGroupDevice object device class has no attributes beyond those inherited from its
parent Device.

UserGroupDevice has two components, UserGroup and User, where the device can contain
many user groups and the user group can contain many users.

Oct 13, 2016 ZenPack Developers' Guide 93

http://zenpacklib.zenoss.com/en/latest/yaml-classes-and-relationships.html

UserGroup:

label: User Group # NB It is label, with spaces removed, that is used to
match a component template

meta type: UserGroup # Will default to this but in for completeness

label width: 50 # This controls the column width for UserGroup in the
Users component display

order: 20 # before User; lower numbers nearer top / left
auto_expand column: secondaryUsers
monitoring templates: [UserGroup] # will default to UserGroup but explicit

for clarity

properties:
groupName :
type: string
label: Group name
short label: Group
label width: 150

order: 3.1
GID:

type: int

label: GID

short label: GID
label width: 60
order: 3.2

secondaryUsers:

type: string

label: Secondary Users
short label: Secondaries
label width: 300

order: 3.3

relationships:
userGroupDevice: # back to the containing device
label: userGroupDevice
display: true
users: # down to User sub-component
label: users
display: true

Note in the component definition:

94 ZenPack Developers' Guide Oct 13, 2016

o The name keyword, UserGroup, must be a valid Python class name so no white space.

o The label keyword is the human friendly label. By default, component performance
templates bind automatically to a component object whose name exactly matches the
template name. It is the label, with any white space removed, not the component
class name, that must match the template name.

o The monitoring_templates keyword may be used to explicitly define performance
templates to automatically bind to this component class. Note this keyword must be a
list. The default is a single-element list with the label name (white space removed). It is
possible with this keyword to override the default binding and, indeed, bind several
templates to this component type.

o The order keyword controls the order that components are shown in the left-hand
menu for the device. The lower the number, the nearer it is to the top of the list. Default
value is 50.

o The UserGroup component object class has three attributes, defined with the
properties keyword:

m The name (eg. groupName) must be a valid Python class

m The type can be one of string, int, float, boolean, lines, password or entity. TODO:
what is an entity? How to use it?

m label is the human friendly label; short_label is an alternative, automatically used
if space is short.

m order controls the order of properties in the component display, lower numbers
nearer the left.

The User component is similar with attributes for userName, UID, primaryGID,
primaryGroupName, userComment, homeDir and commandShell.

User:
label: User # NB It is label, with spaces removed, that is used to
match a component template
meta type: User # Will default to this but in for completeness
label width: 50 # This controls the column width for Users in the
UserGroup component display

order: 30 # after UserGroup
auto_expand column: userComment
monitoring templates: [User] # will default to User but explicit for clarity
properties:
userName:

type: string
label: User name
short label: User
label width: 60

order: 3.1
UID:

type: int
label: UID

short label: UID
label width: 30
order: 3.2

primaryGID:

type: int

label: primaryGID
short label: GID

label width: 30

order: 3.3
userComment :

type: string

label: User Comment
short label: Comment
label width: 150
editable: true # default is false
order: 3.6
commandShell:

type: string

label: Command / Shell
short label: Shell

Oct 13, 2016 ZenPack Developers' Guide 95

label width: 150

order: 3.8

display: false # overridden by grid display and details display
grid display: false

details display: true

Note:

o The label_width on the User class statement. zenpacklib will automatically generate
JavaScript code for the UserGroup object to represent the number of Users in that group.
The class label_width defines the space allocated to this auto-generated User display field.

o As the order is higher than that for UserGroup, the User component will be lower
down the component list.

e When displaying details for a component, the maximum space available is 750 pixels.
The label_width keyword (default 80 pixels) can be used to control space for each property;
The auto_expand_column keyword on the class defines which property to give any
remaining space to. Note that if the combination of all label_width keywords exceeds 750
pixels, then none will be honoured.

o There is also a content_width keyword which defaults to the same as label_width.

e By default, properties in the Details dropdown are read-only. This can be changed with
the editable keyword. Note that when the next modeling cycle is run, any changes will be
replaced with the current value from the modeled device.

o There are three keywords to control whether / where a property is displayed. By
default, display has the value true so the property is shown in the component grid and in
the component Details dropdown display. commandShell has the display default changed
to false, grid_display set false and details_display set true. The display keyword does not
enforce display on both if a grid_display or details_display overrides it.

=
zZen ss DASHBOARD EVENTS = INFRASTRUCTURE = REPORTS ADVANGED * zenoss siGnNouT H
e

Networks Processes IP Services ~ Windows Services Network Map Manutacturers Page Tips.

taplow-30.skills-1st.co.uk ; v ;
 (Server/Linux/UserGroup | [up 0 | Production | Normal
g 70,0080 DEVIGE STATUS PRODUGTION STATE PRIORITY
. Users |@ Q, Type tofilter
Overview | 2 s — s -
Events] et Comment . Home Moniored Locking
v mollie mollie 1002 1003 mollie Mol /home/mollie /]
4 Components
Quser Groups (55)
Display: | Details ™l
@ Natwork Routes (2) User name: Overvisw r
@ interfaces (2) mollie Status
@File Systems (3) uiD: Up
@ P Services (4) 1002
rimaryGID:
@ Processors (1) = . Relationships
Graphs 1008
User Group:
Comporiant Graphs Primary Group Name ol Rk
mollie
Modeler Plugins
User Comment: primaryUserGroup
Software r al :
Mol - modified by JC . mollie
Custom Properties -
Confiquration P i Home Directory:
onfiguration Properties
LRLEe Inomefmallie
Device Administration CarERe T gRal

4 Monitoring Templates

Device (/Server/Linux)

2 -

Attps:ffzenosss zenS0/zport/dmed/Devices/Server)

<>

Ibin/bash

J<>

C
skills-1st.co ukjuserGroups/mallie x J 0Jobs

Figure 59: Display of User component

Note in Figure 59:

96

ZenPack Developers' Guide Oct 13, 2016

o User Groups are above Users in the left-hand menu

e The short_label is automatically used for the column headers - GID, rather than
primary GID, etc.

e The icon for the device is non-standard.
® The userComment field is editable.

e The commandShell attribute is not shown in the grid but is included in the Details
dropdown.

8.5.4 Relationships

Relationships are Zenoss’ way of saying objects are related to each other. For example in core
Zenoss code, the DeviceHW class contains many CPUs of the CPU class. You must also
declare relationships between classes in your ZenPack. If you only declare types based on
zenpacklib. Device you don’t have to do this because they will automatically have a
relationship to their containing device class, Device by default.. However, you must define at
least a containing relationship for every type based on zenpacklib.Component. This is because
components aren’t contained in any relationship by default, and every object in Zenoss must
be contained somewhere to connect it to the overall object map hierarchy.

zenpacklib supports the following types of relationships.
e One-to-Many Containing (1:MC)
e One-to-Many (1:M)
e Many-to-Many (M:M)
e One-to-One (1:1)

It’s important to understand the difference between containing and non-containing
relationships. Each component type must be contained by exactly one relationship. Beyond
that a device or component type may have as many non- containing relationships as required.
This is because every object in Zenoss has a single primary path that describes where it is
stored in the tree that is the Zenoss object database.

In the UserGroup ZenPack, a UserGroupDevice contains many UserGroup component objects
and a UserGroup component object can contain many User sub-component objects.

The documentation for relationships is rather scattered at
http://zenpacklib.zenoss.com/en/latest/vaml-reference.html . The fundamental
class_relationships keyword is described at http:/zenpacklib.zenoss.com/en/latest/vaml-
zenpack.html , as a non-mandatory list, whose default is an empty list.

The default way to write the class_relationships for the UserGroup ZenPack would be:

class_relationships:
- UserGroupDevice 1:MC UserGroup
- UserGroup 1:MC User

The names here must match the object class names. Code will be automatically generated by
zenpacklib to implement these relationships. If a modeler plugin is required - and that is
necessary to populate the components - then the names of these auto-generated relationships
will be needed.

Oct 13, 2016 ZenPack Developers' Guide 97

http://zenpacklib.zenoss.com/en/latest/yaml-zenpack.html
http://zenpacklib.zenoss.com/en/latest/yaml-zenpack.html
http://zenpacklib.zenoss.com/en/latest/yaml-reference.html

v

See http:/zenpacklib.zenoss.com/en/latest/tutorial-snmp-device/component-modeling-5.html
for some explanation of how relationship names are defaulted. The rules are:

e The leading upper-case letter of the class name will be converted to lower-case, i.e. for
the UserGroupDevice object, the relationship name becomes userGroupDevice on the
UserGroup object, which is contained by one UserGroupDevice.

o The letter “s” is added to the end if it is a to-many relationship.

m In the first class_relationship line, the UserGroup object is on the “many” side, so
the relationship name on the UserGroupDevice object becomes userGroups.

s In the second line, the UserGroup object is on the “One” side, so the relationship
name on the User object is userGroup and the relationship on the UserGroup object
will be users.

Relationship names can be defined and used explicitly and it is good practice to do so.

The class_relationship list elements may be augmented by the relationship name to be used,
in brackets. They may be the default value but do not have to be.
class _relationships:

- UserGroupDevice (userGroups) 1:MC UserGroup (userGroupDevice)
- UserGroup (users) 1:MC User (primaryUserGroup)

The relationship names must then be defined on the appropriate object class - see
http://zenpacklib.zenoss.com/en/latest/vaml-classes-and-relationships.html for more
information on the relationships keyword in zenpack.yaml. It is described as being of type
map<name, Relationship Override> where the Relationship Override keywords are given
later on the same page.

The UserGroup ZenPack has overridden the relationship that would have been userGroup (in
the second line) to be primaryUserGroup (still following the convention for lower-casing the
first letter and, in this case, not adding a trailing “s” as the relationship is back to the single
UserGroup object).

The object class definitions have relationships stanzas for:

UserGroupDevice:

relationships:
userGroups:
label: User Groups
display: true # this has no effect as it is on the device class

UserGroup:
relationships:
userGroupDevice: # back to the containing device
label: userGroupDevice
display: true # Ensures relationship shown in Details dropdown
users: # down to User sub-component
label: users
display: true # Relationship shown on grid and Details
User:
relationships:
primaryUserGroup: # back to the containing primary UserGroup

label: primaryUserGroup # label for userGroup in users component

98 ZenPack Developers' Guide Oct 13, 2016

http://zenpacklib.zenoss.com/en/latest/yaml-classes-and-relationships.html
http://zenpacklib.zenoss.com/en/latest/tutorial-snmp-device/component-modeling-5.html

panel taken from UserGroup label, not
from here
display: true
grid display: false # this does control whether UserGroup
displayed in users component panel
details display: true
label width: 20 # this does NOT control width of UserGroup in
users component panel
order: 3.3

Note that the display keywords control whether the relationships are displayed on grid and
Details menu, although some are ignored. In Figure 59, both relationships are shown in the
Details dropdown and the primaryUserGroup relationship is presented as a link.

Note that the content_width keyword on a Relationship Override Map documents that To-
Many relationships are shown simply as a count and will have a shorter width. To-One
relationships show a link to the object and will require a width long enough to accommodate
the object’s title.

One of the huge benefits of the auto-generated JavaScript code, where there is a hierarchical
component relationship, is that an extra Display dropdown is created for a component which
has a sub-component object class.

Zen sS DASHBOARD EVENTS = INFRASTRUCTURE = REPORTS ADVANCED Q zenoss sieNoUT B
Networks Processes IP Services Windows Services Network Map Manufacturers Page Tips

M. Gwowmekletsicouk | [
XN

Overview e i ..
4 Components s
@ users (12) el 655
@ Network Routes (2) ntp
v

°Inle|’laces) operator
OrFie Systems (3)
@1P Services (4)
@ Processors (1)

Graphs nobody nobody 65534 65534 nogroup nob /nonexistent <

Component Graphs o sshd sshd 101 65534 nogroup /var/runfsshd <

Modeler Plugins statd statd 108 65534 nogroup fvarllib/nfs ~

Software

stom Propertie :
& - | - || Commands ~ | | Model Device) 0Jobs »

Figure 60: Users dropdown menu for sub-component of User Groups

The dropdown follows the users relationship on the UserGroup object instance from
component to sub-component, and displays the User component display in the bottom half of
the window, for the selected user group.

Note that although the relationship statements define UserGroupDevice contains many
UserGroup components contains many User sub-components, in the left hand menu for the
device, components and sub-components (to any level) are treated in the same way. The left-
hand menu cannot show the hierarchy.

Oct 13, 2016 ZenPack Developers' Guide 99

8.6 Deploying and testing the ZenPack

Once zenpack.yaml is complete, the first step is to check its syntax, with the lint parameter.
With Zenoss 4, run . /zenpacklib.py in the ZenPack's base directory. The zenpack.yaml file is
found in the current directory.

./zenpacklib.py lint zenpack.yaml

With Zenoss 5 and the environment described earlier, the directory is set to /z/zenpacks
automatically. If you have a copy of zenpacklib.py in /z/zenpacks then the following will
work:

zenpacklib lint ZenPacks.community.UserGroup/ZenPacks/community/UserGroup/zenpack.yaml

The path to zenpack.yaml must be given, relative to /z/zenpacks.

Beware that different ZenPacks may have different versions of zenpacklib.py so
inconsistencies could occur between the file in /z/zenpacks and that in the base directory of
the ZenPack.

Any syntax errors will be reported, usually with helpful pinpointing of line numbers. A simple
return prompt indicates a successful check.

To install the ZenPack in development mode, run the following --link --install command. For
Zenoss 4, the current directory should be one higher than the top-level directory, eg.

/code | ZenPacks | DevGuide; for Zenoss 5, the context will automatically be one higher than
the top-level directory - /z/zenpacks.

[zenoss@zen50:.../community/UserGroup]: zenpack --link --install ZenPacks.community.UserGroup

INFO:zen.ZenPackCMD:installing zenpack ZenPacks.community.UserGroup; launching process
INFO:zen.zenpacklib:Creating DeviceClass Server/Linux/UserGroup
INFO:zen.zenpacklib:Setting zProperty zCollectorPlugins on Server/Linux/UserGroup
INFO:zen.zenpacklib:Setting zProperty zDeviceTemplates on Server/Linux/UserGroup
INFO:zen.zenpacklib:Setting zProperty zSshConcurrentSessions on Server/Linux/UserGroup
INFO:zen.zenpacklib:Setting zProperty zPythonClass on Server/Linux/UserGroup
2016-04-14 18:22:15,650 INFO zen.HookReportLoader: Loading reports from
/z/zenpacks/ZenPacks.community.UserGroup/ZenPacks/community/UserGroup/reports

All daemons should be restarted:

serviced service restart Zenoss.core Zenoss Core 5
serviced service restart Zenoss.resmgr Zenoss Enterprise 5
zenoss restart Zenoss 4

At this stage, only some functionality will work.

e The new zProperty, zMinUID, should exist and be displayed in any device or device
class Configuration Properties menu.

o The new /Server/Linux/UserGroup Zenoss device class should appear in the
INFRASTRUCTURE -> Devices left-hand hierarchy. Check that this class has the
zProperties assigned in zenpack.yaml.

o The components will not yet work as there is no modeler to populate them

When testing new object class functionality, a device will either need to be newly created into
the new Zenoss class, or it is sufficient to move a device from a different class into the new
class. The new attributes and relationships will then be created.

100 ZenPack Developers' Guide Oct 13, 2016

A test device is essential. It is good practice to move the test device out of the test class before
reinstalling a ZenPack which has had object modifications made; /Ping is an easy existing
class to move it to as this has very basic capability and all existing attributes and relations
from the ZenPack, will be removed automatically. It is not necessary to remodel the test
device in the /Ping class.

If the test device is moved into /Server/Linux/UserGroup, it should inherit the modeler
plugins and zProperties from the class, including zPythonClass =
ZenPacks.community.UserGroup.UserGroupDevice. Although no component instances can be
discovered yet - the cmd. UserGroupMap modeler has not yet been written - the UserGroup
relationship should appear when inspected using the ZMI; however, it will have no
instances; thus there can be no sub-component User relationship to see.

€) | @ httpsiyjzenosss zen50/zport/dmdjmanage v | \Ev Google ® T E + A =
e Set Preferences vl Go
@ama g : : ; ; ; fl
® (2 Doy | UserGroupDevice at /zport/dmd/Devices/Server/Linux/UserGroup/devices/taplow-30.skills-1st.co.uk
d Devices 3
ol o
& iscovered Accelerated HTTP Cache Manager v = Add
EhrTe o
i EKkvm Type Name Size Last Medified
(2 Natwork _) ¥ adminRoles 2016-04-18 10:52
:ﬂ Ping » = componentGroups 2016-04-18 10:52
[Power i (3] componentSearch (componentSearch) 2016-04-18 10:52
[Printer =¥ dependencies 2016-04-18 10:52
& (2 server LI ¥ dependents 2016-04-18 10:52
Ecmd _ k. deviceClass 2016-04-18 10:52
& parwin | =} groups 2016-04-18 10:52
B (ad; "
Bl Linux _ B hw 2016-04-18 1052
& oirFile L. location 2016-04-18 1052
gS\mpleTest &% maintenanceWindows 2016-04-18 10:52
e [% :
5 @ UserGroup 1| =% onitors 2016-04-18 10:52
5 M .
Mg 2% mysql_servers 2016-04-18 10:52
(2] Remote i
ESSH 2016-04-18 10:52
2016-04-18 10:52
Zscan
.) 2016-04-18 10:52
(Zsolaris . -
I.'-.'lw . . userCommands 2016-04-18 10:52
indows = ‘
we userGroups @ 2016-04-18 10:52

ihttps:[fz;:ussi.zen5012purl,'dmdee\:llces/Sen/er[L\nuxjusEerup,’manageiwurkspace
Figure 61: Inspecting test device newly moved to |/ Server/Linux/UserGroup class; note userGroups
relationship

<>

If changes are required, then zenpack.yaml must be edited. Some changes do not require a
full Zenoss restart. Examples would be:

e Changing the order keyword to reorder classes or properties
e Changing the label_width keyword for a class or property
e Changing the label or short_label for a property
e Changing the auto_expand_column
e Changing the renderer for a property
e Changing display, grid_display or details_display
In this case, only zope needs restarting:

zopectl restart for Zenoss 4
serviced service restart zope for Zenoss 5

Changes that would mandate a full Zenoss restart are:

Oct 13, 2016 ZenPack Developers' Guide 101

e Adding any new zProperty, class, property or relationship

e Changing a relationship

e Changing a class or property name

e Changing the meta_type of a class

e Changing the type of a property

e Changing the label for a class (as that changes the default template name bound to it)

As a guideline, keyword changes that only affect the GUI display characteristics, can
probably just recycle zope; anything that affects the definition of an object requires a full
Zenoss recycle. If in doubt, recycle Zenoss entirely.

8.7 Modeler plugin

zenpacklib cannot provide help with writing a modeler plugin. It is essential that the
ZenPack writer knows the precise names of objects, properties and relationships defined in
zenpack.yaml.

8.7.1 Design details

Although zenpacklib avoids the need to write object classes in Python for UserGroup and
User, Python modules will be automatically constructed in memory for these two object
classes. The module names will be:

<ZenPack name>.<object class name> That is.......

ZenPacks.community.UserGroup.UserGroup and
ZenPacks.community.UserGroup.User

zenpack.yaml carefully named relationships explicitly and these will also be required in the
modeler.

The modeler will use a command run in bash over an ssh session to gather user and user
group information using the getent Unix utility. The group output will be separated from the
user output by a line containing _ SPLIT .

The new zProperty, zMinUID, will be used to restrict the user sub-components created, to
those with a UID greater than or equal to zMinUID.

The modeler needs to:
e Create an empty list to hold user group maps
o Create an empty list to hold user maps
e Cycle through each user group:
s Create the UserGroup component instance using the userGroups relationship
s Allocate the attributes found from the getent group command.

s Cycle through the user data looking for the primary GID field equal to this user
group.

102 ZenPack Developers' Guide Oct 13, 2016

+ Iffound (and there can only be one primary GID for any user), create a sub-
component User instance, using the users relationship on the UserGroup object. A
group may, of course, be the primary GID for many users.

¢ Allocate the user attributes found from the getent passwd command
+ Return the user relationship map

o Add the user relationship map to the user map list

o Add the user group relationship to the user group map list

e Return all the maps to be processed by zenhub into the ZODB database

8.7.2 UserGroupMap modeler plugin code

8.7.2.1 Creating the directory hierarchy

The ZenPack has been created with zenpacklib; thus no directory hierarchy has been created
for modeler plugins. As this will be a command plugin, the plugin should go under

modeler [plugins /cmd under the base directory. Manually create each directory and touch an
__init__.py file in each directory. Create UserGroupMap.py under the cmd subdirectory. The
name of the file must match the name of the modeler plugin class inside it. The directory
path hierarchy will be reflected in the GUI dialogue for choosing plugins so will be shown as
cmd.UserGroupMap.

Note that any modeler code not being actively used under modeler /plugins should not end in
“.py”. When the zenhub daemon is restarted it will attempt to recompile and add all Python
source files under modeler /plugins to its list of modelers. Broken modelers, even if never
used, will cause error messages in zenhub.log and waste resource cycles.

Most plugins are created by starting with an example as close to your target as possible, and
then modifying to suit.

8.7.2.2 Imports from other Python modules

Any Python code may use functions from other Python modules. An import statement is
required to link to any external utilities, before they can be used in the code.

CommandPlugin is the base class that provides lots of help in modeling data
that's available by connecting to a remote machine, running command line

tools, and parsing their results.
from Products.DataCollector.plugins.CollectorPlugin import CommandPlugin

Classes we'll need for returning proper results from our modeler plugin's process method.

from Products.DataCollector.plugins.DataMaps import ObjectMap, RelationshipMap
from Products.ZenUtils.Utils import prepId

import collections

from itertools import chain

Note that Zenoss imports specify a path relative to $ZENHOME, using a “dot” between
elements (because, strictly, this is a Python module path, rather than a file directory path,
though the two are identical when the slash / dot substitution is made); thus most Zenoss
imports will start with Products. Other imports can be made from standard Python modules.

Oct 13, 2016 ZenPack Developers' Guide 103

If an entire module is required, use the “import collections” syntax and all functions in that

module are available; if only one or two functions are required from a large module, use the

“from Products.ZenUtils.Utils import prepld” format. This is better practice as it will reduce
the overall footprint required to run this modeler plugin.

8.7.2.3 Base class for the UserGroupMap modeler plugin

The UserGroupMap plugin will inherit from the CommandPlugin object class defined in
$ZENHOME | Products | DataCollector | plugins / CollectorPlugin.py.

Fundamentally, a modeler runs against a device (not a component). The component to be
created on the UserGroupDevice will be of object class UserGroup, following the device's
defined relationship of userGroups. Hence, the modeler code specifies:

relname 'userGroups'
modname = 'ZenPacks.community.UserGroup.UserGroup'

where the modname is the module name that has been auto-created in memory to define the
UserGroup object class (<ZenPack name>.<object class name>).

UserGroup : vim - Konsole 2 &
Fle Edit ‘iew Bookmarks Settings Help

Module-level documentation will automatically be shown as additional
information for the modeler plugin in the web interface.

Use rGroupMap

SSH plugin to gather user group and user information

When configuring modeler plugins for a device or device class, this plugin's
name would be cmd.UserGroupMap because its filesystem path within

the ZenPack is modeler/plugins/cmd/UserGroupMap.py. The name of the

class within this file must match the filename.

He R ke e

CommandPlugin is the base class that provides lots of help in modeling data
that's available by connecting to a remote machine, running command line

tools, and parsing their results.
from Products.DataCollector.plugins.CollectorPlugin import CommandPlugin

Classes we'll need for returning proper results from our modeler plugin's process method.
from Products.DataCollector.plugins.DataMaps import ObjectMap, RelationshipMap

from Products.ZenUtils.Utils import prepld

import collections

from itertools import chain

class UserGroupMap(CommandPlugin) :
relname and modname for the CommandPlugin will be inherited by any calls to
rm = self.relMap() or om = self.objectMap()

No compname specified here as UserGroup is a component directly on the device (defaults to null string)
classname not required as largely deprecated. classname is the same as the module name here

relname = 'userGroups'

modname = 'ZenPacks.community.UserGroup.UserGroup'

B # Make ZenPack zMinUID zProperty available to plugin code
deviceProperties = CommandPlugin.deviceProperties +(
'ZMinlUID",
)
"modeler/plugins/cmd/UserGroupMap.py" [Modified] 162 lines --19%-- 32,1 Top

Figure 62: Start of UserGroupMap modeler plugin with class inheritance and zProperty

104 ZenPack Developers' Guide Oct 13, 2016

8.7.2.4 Using zProperties in the modeler plugin

Any plugin can extend the deviceProperties that are available to the modeler:

deviceProperties = CommandPlugin.deviceProperties + (
'zMinUID',
)

This ensures that the new zProperties defined in zenpack.yaml are available to the modeler.
Note that this extends the zProperties from the CommandPlugin class, which inherits from
the CollectorPlugin (see $ZENHOME | Products | DataCollector | plugins / CollectorPlugin.py):

e CommandPlugin zProperties

. 'zCommandPort',

. 'zCommandProtocol’,

. 'zCommandUsername’,

. 'zCommandPassword’,

" 'zCommandLoginTries',

" 'zCommandLoginTimeout',

. 'zCommandCommandTimeout',

" 'zKeyPath',

. 'zCommandSearchPath’,
. 'zCommandExistanceTest',
. 'zSshConcurrentSessions',

" 'zTelnetLoginRegex’,
" 'zTelnetPasswordRegex/,
" 'zTelnetSuccessRegexList',
" 'zTelnetTermLength',
. 'zTelnetEnable’,
" 'zTelnetEnableRegex’,
. 'zEnablePassword',
e CollectorPlugin properties and zProperties
s id,
= 'managelp’,
s _snmpLastCollection',
s '_snmpStatus,
s 'zCollectorClientTimeout',

Within the ZenPack plugin code, any of these can simply be referred to as attributes of
device; for example, device.zMinUID.

Oct 13, 2016 ZenPack Developers' Guide 105

8.7.2.5 CommandPlugin command

The essential variable that a CommandPlugin must provide is the command. This can be
anything that will run in a bash shell, so includes other language scripts if they have an
appropriate shebang. A shebang tells the shell what program to interpret the script with,
when executed; for example, #//usr/bin/env python. If the command for the plugin is not
built-in shellscript code then the command must exist on every target and the correct path to
the script must be known. This may be a major undertaking for some organizations.

The command for this ZenPack plugin needs to get the user group information and then the
user information; a line with _ SPLIT _ will separate group information from user
information. The output will be delivered into a results variable, to be processed by the
process method.

In this case, it is not worth the overhead of creating a custom shellscript. Multiple shellscript
commands can be accommodated by separating lines with semicolon.
The command to run.
Get user groups (one per line) then a line with _ SPLIT _ then users (one per line)
Beware this has potential to return LOTS of data
command = (
'getent group ;'
'echo SPLIT ; '
'getent passwd’

)

Each line needs to be single-quoted when using this construct.

Remember that the command will run, taking account of all the zCommand zProperties of the
device so if ssh to target devices uses usernames and passwords, then the correct values need
to be configured for zCommandUsername and zCommandPassword. If public keys are used
for ssh, the zCommandUsername, potentially the zCommandPassword, and the zKeyPath
must be correct and the public key for the zenoss user on the Zenoss server needs to have been
copied to the .ssh/authorized_keys file for the correct user on the target systems. Note that
zCommandPassword is used to hold the passphrase for the key if one has been set;
otherwise zCommandPassword is not used with public key ssh.

Other zProperties to note that affect running commands over ssh are:

e zCommandLoginTries default 1

e zCommandLoginTimeout default 10s

e zCommandCommandTimeout default 15s

e zCommandSearchPath default is unset
e zSshConcurrentSessions default is 10

Note particularly zCommandCommandTimeout if you have a long-running command,
extending the time limit potentially just slows the whole modeling process, especially if some
targets are not responding at all.

The zCommandSearchPath is a good way of defining a standard for where local scripts should
be held, with the possibility of device-level override if necessary. If the command provided is
not a fully-qualified pathname then the script will be sought for in zCommandSearchPath.

106 ZenPack Developers' Guide Oct 13, 2016

If timeouts occur on the ssh sessions, sometimes an event is generated suggesting that
zSshConcurrentSessions be lowered. zenpack.yaml configured zSshConcurrentSessions for the
/Server [Linux | UserGroup class to be 5. Many newer versions of unix systems have their ssh
daemons configured by default to only allow 1 session per connection, so in these cases
zSshConcurrentSessions will need to be 1; that can significantly reduce the performance of
COMMAND datasources.

8.7.2.6 The process method of the modeler plugin

The process function is passed the command output in the results parameter; the device object
is also passed as is the log parameter.

UserGroup : vim - Konsole g & 2

File Edit View Bookmarks Settings Help
| ~
def process({self, device, results, log):
log.info("Modeler %s processing data for device %s",
self.name(), device.id)
#log.debug('results is %s ' % (results))

Setup an ordered collection of dictionaries to return data to the ApplyDataMap routine of zenmodeler
maps = collections.0OrderedDict([
('myuserGroups', [1),
(‘myusers’', [1),
1)
Instantiate a relMap. This inherits relname and compname from the plugin.
rm = self.relMap()

For CommandPlugin, the results parameter to the process method will
be a string containing all output from the command defined above.
#

#root:x:0:

#daemon:x:1:

#adm:x:4:pi

#audio:x:29:pi,mollie

#mollie:x:1003:

SPLIT

#root:x:0:0:root:/root:/bin/bash
#daemon:x:1:1:daemon:/usr/sbin:/bin/sh
#zenplug:x:1001:1002: : /home/zenplug:/bin/bash
#snmp:x:107:110::/var/lib/snmp:/bin/false

#mollie:x:1002:1003:Mol :/home/mollie:/bin/bash

1lines[0] are the user groups lines[1l] are the users
lines = results.split('_SPLIT_ ')
"modeler/plugins/cmd/UserGroupMap.py" [readonly] 161 lines --27%-- 44,0-1 33%

Figure 63: Start of process function for UserGroupMap modeler

Typically the first line of the method provides some logging and may often include debug
logging to show the raw results:

def process(self, device, results, log):
log.info ("Modeler %s processing data for device %s",
self.name (), device.id)
#log.debug ('results is %$s ' % (results))

“self” in this case is the modeler plugin so the log.info line would provide output in
$ZENHOME /log | zenmodeler.log like:

2016-04-19 08:49:44,100 INFO zen.ZenModeler: Modeler cmd.UserGroupMap
processing data for device taplow-30.skills-1st.co.uk

Ultimately, the modeler will return a collection of maps to zenhubd, with a list of maps for
user groups and a list of maps for users. maps is initialised with:

Setup an ordered collection of dictionaries to return data to the

Oct 13, 2016 ZenPack Developers' Guide 107

ApplyDataMap routine of zenmodeler
maps = collections.OrderedDict ([
("myuserGroups', []),
('myusers', []),

1)

A relationship map is created to hold the list of UserGroup object maps that will be added to
the device's userGroups relationship. The relationship is defined by the relname statement at
the top of the class definition.

rm = self.relMap()

The main body of the process method builds ObjectMaps for components and sub-components
and delivers the RelationshipMaps that link them together.

Where a modeler - any modeler - has to populate a “component that contains a sub-
component” set of relationships, typically there is a for loop to process the component and
then an internal loop, often handled as a separate function, to process sub-components of the
component. The trick is to pass the component relationship and instance as parameters to the
inner loop. An algorithmic outline would be:

initialise RelationshipMap for component maps
for component in list of components
get relevant data for component
modify any raw data, as required
create an ObjectMap for the component
add ObjectMap to component RelationshipMap
for sub-component in list of sub-components
initialise a list for sub-component maps
get relevant data for sub-component
modify any raw data, as required
create an ObjectMap for the sub-component
add ObjectMap to sub-component map list
return a RelationshipMap with correct compname, relname, modname
and the sub-component map list
return the RelationshipMap for the device with correct component relname,
modname and the component map list

There are some really helpful comments from “cluther” at the end of the modeler in the
ZenPacks.zenoss.OpenVZ ZenPack (see
https://github.com/zenoss/ZenPacks.zenoss.OpenVZ/blob/develop/ZenPacks/zenoss/OpenVZ/mo
deler/plugins/zenoss/cmd/linux/OpenVZ.py):

a relMap() 1is just a container to store objectMaps.

in relmap and objectmap, there is a compname and modname

any objectmaps and relmaps are temporary objects that the modeler plugin
sends to zenhub, which then determines if the model needs to be updated.

device/containers/106
om ~ relmap om
we are allowed to return:

a relmap - will be filled with object maps that are related to "device"
an objectmap -

a list of relmaps, objectmaps

A A

H o S S S S S

A process method acts upon results and must deliver one of:

e None - changes nothing. Good in error cases.

108 ZenPack Developers' Guide Oct 13, 2016

https://github.com/zenoss/ZenPacks.zenoss.OpenVZ/blob/develop/ZenPacks/zenoss/OpenVZ/modeler/plugins/zenoss/cmd/linux/OpenVZ.py
https://github.com/zenoss/ZenPacks.zenoss.OpenVZ/blob/develop/ZenPacks/zenoss/OpenVZ/modeler/plugins/zenoss/cmd/linux/OpenVZ.py

o A RelationshipMap for the device - component information
e An ObjectMap for the device - device information
e A list of RelationshipMaps and ObjectMaps — both

See http://www.zenoss.org/forum/137406 for an excellent explanation of these options.

A very common and frustrating issue with modelers handling components and sub-
components, is that you tend to build lists of maps but when zenhub actually tries to apply
these DataMaps to the Zope Database (ZODB), component relationships may not exist before
a sub-component relationship is applied, resulting in an error. Symptoms of this can be seen
in zenhub.log with lines like:

2015-11-26 09:42:20,643 INFO zen.ZenHub: Worker (20122) reports 2015-11-26

09:42:20, 642 WARNING zen.ApplyDataMap: Unable to find compname
'userGroups/audio’

The neatest sample solution around is in the ZenPacks.zenoss.AWS ZenPack, in the EC2.py

modeler, found at
https://github.com/zenoss/ZenPacks.zenoss. AWS/blob/develop/ZenPacks/zenoss/AWS/modeler/
plugins/aws/EC2.py .

The method is:

e Setup an ordered collection of dictionaries to return data to the ApplyDataMap routine
called by zenhub:

maps = collections.OrderedDict ([
("myuserGroups', []),
('myusers', [1),

1)

o The outer loop (in the algorithmic outline above) creates the UserGroup component

object map (om) and builds the rm list of relationship map of components:
rm.append (om)

o The outer loop calls the function getUserMap to accomplish the inner loop, to deliver

the related sub-components, appending to the sub-component tuple:

um= (self.getUserMap(device,lines[1],int (ugList[2]), ugList[0], 'userGroups/%s' % ug_id, 1log))
maps ['myusers'] .append (um)

e The outer loop delivers the component RelationshipMap to the component tuple:

maps ['myuserGroups'] .append (rm)

e The return delivered by the process method ensures the maps are delivered in the
correct order for application by zenhub:

return list(chain.from iterable (maps.itervalues()))

In the main body of the process function, the results command output is split into two lists
using the _ SPLIT _line as the split parameter. This results in:

e lines[0] are the user groups, one per line, newline terminated

e lines[1] are the users, one per line, newline terminated

Oct 13, 2016 ZenPack Developers' Guide 109

https://github.com/zenoss/ZenPacks.zenoss.AWS/blob/develop/ZenPacks/zenoss/AWS/modeler/plugins/aws/EC2.py
https://github.com/zenoss/ZenPacks.zenoss.AWS/blob/develop/ZenPacks/zenoss/AWS/modeler/plugins/aws/EC2.py
http://www.zenoss.org/forum/137406

a It is good practice and enormously helpful, for modeler code to include sample output as
comments.

Each user group line can then be processed in the body of the outer loop.

UserGroup : vim - Konsole

&
(>
(x

File Edit View Bookmarks Settings Help

Instantiatl] a relMap. This inherits relname and compname from the plugin. |
rm = self.relMap()

For CommandPlugin, the results parameter to the process method will
be a string containing all output from the command defined above.
#

#root:x:0:

#daemon:x:1:

#adm:x:4:pi

#audio:x:29:pi,mollie

#mollie:x:1003:

SPLIT

#root:x:0:0:root:/root:/bin/bash
#daemon:x:1:1:daemon:/usr/sbin:/bin/sh
#zenplug:x:1001:1002: : /home/zenplug:/bin/bash
#snmp:x:107:110::/var/lib/snmp:/bin/false

#mollie:x:1002:1003:Mol :/home/mollie:/bin/bash

1lines[0@] are the user groups lines[1l] are the users

lines = results.split('_SPLIT ')

Tfor ug in Tines[@]isplit(*\n'}):
"modeler/plugins/cmd/UserGroupMap.py" [readonly] 161 lines --34%-- ey 38% :

Figure 64: UserGroupMap modeler - sample command output is split and user group loop initiated

The main loop of the process function splits each user group line using the colon as the
separator, to derive the individual attributes for a user group.

UserGroup : vim - Konsole
File Edit View Bookmarks Settings Help
for ug in lines[@] .split('\n'):
#log.debug(' group is %s' % (ug))
if ug:
try:

split each line on ':'
uglist = ug.split{":")
uglList[0] = groupMame, uglist[2] = GID, ugList[3] = secondarylUsers
ug_id = prepld(uglList[@]) # Ensure no dodgy characters in id
Add an Object Map for this user group
Use prepld to ensure id is unigue and doesn't include any dodgy characters like /
om = self.objectMap() inherits modname and compname (null) from plugin
om = self.objectMap()

]>

om.id = ug_id
om.groupName = uglist[0]
om.GID = int(uglist[2]) # GID defined as integer so need to ensure this

om.secondarylUsers = uglList[3]
rm.append(om)
For this user group, create a map for associated users, passing this ug_id as part of compname
log.debug('GID is %s ' % (om.GID))
um = (self.getUserMap(device, lines[l], int(uglist[2]), wuglist[Q], 'userGroups/%s' % ug_id, log))
#log.debug('ug %s has um %s \n um [FEBEEME is % and um compname is %s ' % (om.id, um, um.[ENESME. um.compname))
maps['myusers'] .append({um)
except Exception as e:
log.info{ 'Exception in group processing - %s' % (e))
continue

if len(rm.maps) == 0:
log.info{'No user group data found on %s ' % (device.id))
return Mone

Add the rm relationships to maps['myuserGroups']
maps['myuserGroups'] .append(rm)

Need this complicated setup with maps = collections.OrderedDict and the chain return

to ensure that relationship maps are applied in the correct order. Otherwise there tend
to be issues trying to create relationships on objects that don't yet exist

return list(chain.from_iterable(maps.itervalues()))

"modeler/plugins/cmd/UserGroupMap.py" [Modified][readonly] 154 lines --72%-- 112 0-4 653% 5

Figure 65: UserGroupMap modeler - main body of process function

110 ZenPack Developers' Guide Oct 13, 2016

Note in Figure 65:

Q\ e It is good practice to code for possible errors using the Python try..except construct.
This allows a modeler to fail nicely and log a warning. Typically, execution of the loop will
continue.

except Exception as e:

log.info ("Exception in group processing - %s' $ (e))
continue

n o The ug variable holds a single line of user group data. This is split into a list of fields,
in the ugList variable.. Note that a Python list indexes from 0; hence the list elements are:

= 0 user group name

s 1 password field - not used

s 2 GID

= 3 secondary users - string of users, comma separated

e FEach UserGroup object has an id field (which is inherited as part of the Device class).
—= It is good practice to ensure that id fields are unique using the Zenoss utility, prepld,
4 which can be used to check that any “unsafe” characters are replaced with an underscore.
“Safe” characters are defined in prepld as:

a—2z A-7 0-9 - $ ()
prepld is imported at the top of the plugin file.

e om=self.objectMap() is called to instantiate an instance of a UserGroup object. The
n modname line at the top of the modeler plugin class, defines the class of the object to be
instantiated. objectMap (lower-case “0”) is a method on self (the modeler plugin class)

e The attributes of the object (defined in the properties statement in zenpack.yaml), can
be assigned to the object instance, using the property name:

om.groupName = ugList[0]
om.GID = int (ugList([2])

e Note that type definitions must match up between zenpack.yaml and the plugin code;

n otherwise errors will occur when the modeler executes. The GID attribute was defined as
an int so the Python built-in function of int is used to convert the string value of the
second element of the list, into an integer.

e When all the attribute assignments are complete, the object map, om, is appended to
the relationship map list, rm:

rm.append (om)

o The getUserMap function is called to determine users that have this group as their
primary user group. getUserMap is passed several parameters:

m The device object
s lines[1] which contains all the output from the getent passwd command
s The GID of the current user group being processed, as int(ugList[2])

s The user group name, passed as ugList/0]

Oct 13, 2016 ZenPack Developers' Guide 111

112

s The component relationship name in the format userGroups/<user group id>,
eg. userGroups /audio. This provides the hierarchical link from the UserGroup
object, following the userGroups relationship, specifying the instance of the
relationship through the user group id. Relationship names must match those
defined in zenpack.yaml.

m log is also passed as a parameter to enable logging to continue to take place.

um = (self.getUserMap(device, lines[1l], int(ugList[2]), ugList[O0],

Q

'userGroups/%$s' % ug_id, log))

The getUserMap function returns a relationship map of Users for this UserGroup,

which is appended to the list of user maps:

maps ['myusers'].append (um)

Having cycled through each user group entry, check whether the length of the user

group relationships list of maps is zero; if so, no users or groups have been found so report
this into the log file and return a None value from the modeler plugin:

if len(rm.maps) ==
log.info ('No user group data found on %$s ' % (device.id))
return None

Otherwise, add the user groups relationship map list to maps/‘myuserGroups’]

maps ['myuserGroups'] .append (rm)

o Use the imported chain function to return the list of maps

e

Need this complicated setup with maps = collections.OrderedDict and the

chain return to ensure that relationship maps are applied in the correct
order. Otherwise there tend to be issues trying to create relationships

on objects that don't yet exist

return list(chain.from iterable (maps.itervalues()))

ZenPack Developers' Guide Oct 13, 2016

UserGroup : vim - Konsole ¥ o &
Fle Edit View Bookmarks Settings Help

def getUserMap(self, device, users string, GID, ugName, compname, log):
#log.debug('users string is %s , compname is %s GID is %s' % (users _string, compname, GID))
user_maps = []
for u in users_string.split{'\n'):
TF uz

#log.debug(' user is %s' % (u))

Split out each user fields divided by colons

uList = u.split(':")

uList[0] = userName ulist[2] = UID, uList[3] = primary GID,

uList[4] = userComment wulList[5] = homeDir wulList[6] = commandShell
if int{uList[2]) =»= int(device.zMinUID):
Fry
#log.info('Found user %s in group %s ' % (uList[@], ugName))
if int(uList[3]) == GID: # got a match with this group
user_id = prepId(ulList[@]) # Ensure no dodgy characters in id

Don't want to inherit compname or modname from plugin as we want to set this expicitly
Use ObjectMap rather than om=self.objectMap()
user_maps.append(ObjectMap(data = {

‘id': prepld(uList[8]),

‘userName' : ulList[O],

WID® : intfulistf2]},
‘primaryGID' : int{ulList[3]),
'primaryGroupName' : ugName,
‘userComment' : uList[4],
'homeDir' : uList[5],
'commandShell' : ulList[6],
)

log.info('Found user %s in group %s ' % (user_id, ugName))
except Excecption as e:
log.info{ 'Exception in user processing - %s ' % (e))
continue

Return user_maps relationship map with compname passed as parameter to this method
Again - don't want to inherit _, modname or compname for this relationship as we want to set them explicitly
Use RelationshipMap rather then rm=self.relMap()(
return RelationshipMap(
compname = compname,

= 'users',
modname = 'ZenPacks.community.UserGroup.User',
objmaps = user_maps)

161,0-1 Bot
Figure 66: UserGroupMap plugin - getUserMap function
The getUserMap function cycles through each user record, to determine whether a user's
primary GID matches the user group GID passed as a parameter.

In Figure 66 note:
e Split the users string on newline
for u in users string.split('\n'):
e For each user:

s Split each user on colon, to a list for attribute processing:

uList = u.split(':") producing:
¢« 0 user name

¢ 1 password (not used)

¢ 2 UID (as a string)

¢+ 3 primary GID

¢ 4 user comment

¢ 5 home directory

¢+ 6 command or shell

Oct 13, 2016 ZenPack Developers' Guide 113

m Test that the UID is not less than the zMinUID zProperty for the device; both
zMinUID and the third element of the uList are actually string types.

if int (ulList[2]) >= int (device.zMinUID) :

s Note the #ry..except construct around the main body of the loop

s If the third element of the uList (primary GID) is the same as the GID parameter
passed to this function, then:

¢ Use prepld to ensure a “safe” string for the id attribute

¢+ Use ObjectMap (not objectMap) to create a User object instance, with attributes
(properties defined in zenpack.yaml) set from elements of uList. ObjectMap (upper-
case “O”) is a protobuf; a dictionary of raw data and has no concept of inheriting
relname, modname, compname or classname.

+ Note that the command output for user data does not include the user group
name, only the primary user group GID. The group name does appear in the group
raw data so is passed to this function as a parameter to populate the
primaryGroupName attribute defined in zenpack.yaml.

+ Append the ObjectMap to a user_maps list.

e Finally, return the users sub-component relationship map for the user group
component instance (passed in as a parameter eg. userGroups /audio), for the relation
users using the object class definition found in ZenPacks.community.UserGroup.User
(constructed automatically by zenpacklib).

Return user maps relationship map with compname passed as parameter to

this method. Again - don't want to inherit relname, modname or compname

for this relationship as we want to set them explicitly

Use RelationshipMap rather then rm=self.relMap () (
return RelationshipMap (

compname = compnhame,
relname = 'users',
modname = 'ZenPacks.community.UserGroup.User',

objmaps user maps)

8.7.3 Testing the modeler

If a test device already exists in /Server/Linux/UserGroup then move it to a different class
such as /Ping.

If a new modeler has been created then the ZenPack should be reinstalled and Zenoss
completely recycled. Note that this is a reinstall of the ZenPack, which will be reported.
Under the covers, a ZenPack remove, followed by a ZenPack install will be executed but
objects will not be removed from the ZODB.

If the /Server/Linux/UserGroup Zenoss device class has been manually removed, then you
will see the message below as the ZenPack remove method attempts to remove the class
defined in zenpack.yaml but finds it missing. The message is benign.

zenpack --link --install ZenPacks.community.UserGroup

INFO:zen.ZenPackCMD:Previous ZenPack exists with same name ZenPacks.community.UserGroup

114 ZenPack Developers' Guide Oct 13, 2016

WARNING: zen.zenpacklib:DeviceClass /Server/Linux/UserGroup has been removed at some point
after the ZenPacks.community.UserGroup ZenPack was installed. It will be reinstated if
this ZenPack is upgraded or reinstalled

INFO:zen.ZenPackCMD:installing zenpack ZenPacks.community.UserGroup; launching process
INFO:zen.zenpacklib:Creating DeviceClass Server/Linux/UserGroup
INFO:zen.zenpacklib:Setting zProperty zCollectorPlugins on Server/Linux/UserGroup
INFO:zen.zenpacklib:Setting zProperty zDeviceTemplates on Server/Linux/UserGroup
INFO:zen.zenpacklib:Setting zProperty zSshConcurrentSessions on Server/Linux/UserGroup
INFO:zen.zenpacklib:Setting zProperty zPythonClass on Server/Linux/UserGroup
2016-04-14 18:22:15,650 INFO zen.HookReportLoader: Loading reports from
/z/zenpacks/ZenPacks.community.UserGroup/ZenPacks/community/UserGroup/reports

For subsequent “tweaks” to an existing modeler, some changes can be accommodated simply
by rerunning zenmodeler (and a new .pyc compiled Python file will be generated).
Reinstallation of the ZenPack is not required.

cmd.UserGroupMap was added to the zCollectorPlugins zProperty for the class
/Server [Linux |/ UserGroup, in zenpack.yaml.

The first check towards success is if the modeler does appear in the Available list of plugins
for the class. If it doesn't there is probably a syntax error in the modeler code.

Once the plugin is applied to the Class, move the test device to the class and run zenmodeler
from the command line, just specifying the new plugin for collection. So for a test device,
taplow-30.skills-1st.co.uk:

zenmodeler run -v 10 -d taplow-30.skills-1lst.co.uk --collect cmd.UserGroupMap

To redirect output to a file, append:
> /tmp/fred 2>l

Note that you need to redirect stderr to stdout (2>&1) or you won't see what you need; then
inspect /tmp/fred.

If there are communication errors in the logfile, are zCommandUsername,
zCommandPassword and zKeyPath correctly configured for the test device?

Success is when the test device has User Groups and Users in the left-hand menu, each
populated with the correct instances and the instances have the correct attributes.

Typically, a certain amount of “tweaking” is required to get attribute fields to an optimum
length. Fortunately only the zope daemon needs to be recycled to achieve this. Don't forget to
also refresh the browser page.

8.7.4 Where do things go wrong with modelers?

1. Modeler plugin does not appear in GUI list of Available modelers

a. This is probably a syntax error in the plugin code. If using pyflakes with vi, check
carefully for errors.

b. Check particularly for unmatched / missing quotes
¢. Check for lack of ending colon (:)

d. Check for white-space indentation errors

Oct 13, 2016 ZenPack Developers' Guide 115

e. Try importing the modeler into zendmd;; this will show syntax errors. Note that you
need to specify an object path to the Python source file, not a file path.

import ZenPacks.community.UserGroup.modeler.plugins.cmd.UserGroupMap

f. Watch for yellow highlighted messages when using a Modeler Plugin menu
g. Check $ZENHOME /log | event.log for error messages. For example:

File
"/z/zenpacks/ZenPacks.community.UserGroup/ZenPacks/community/UserGroup/mode
ler/plugins/cmd/UserGroupMap.py", line 45', ' def process(self, device,

] AT
4

results, log)', 'SyntaxError: invalid syntax')

h.
2. Modeler fails

a. Check zenmodeler output carefully. From the GUI Model Device menu, check whether
the modeler appears in the list of modelers to be applied. If it is missing, suspect
syntax errors. For example:

2016-04-19 17:36:38,150 INFO zen.ZenModeler: Using SSH collection method
for device taplow-30.skills-1st.co.uk
2016-04-19 17:36:38,151 INFO zen.ZenModeler: plugins: cmd.UserGroupMap

b. If it appears, check the subsequent output for messages.

c. Run zenmodeler standalone in debug mode, optionally sending output to a file:

zenmodeler run -v 10 -d taplow-30.skills-1lst.co.uk --collect cmd.UserGroupMap

zenmodeler run -v 10 -d taplow-30.skills-1st.co.uk --collect cmd.UserGroupMap \
> /tmp/UserGroupMap.out 2>&1

d. Check that the command in the modeler can be run by the zCommandUser over ssh,
from a command line interface. If zCommandUsername is zenplug, and the zenoss
user's public key on the Zenoss server has been copied to the target machine's
authorized_keys file in zenplug's .ssh directory and there is no passphrase generated
for the public key so zCommandPassword is null, the following test should work:

ssh zenplug@taplow-30.skills-1st.co.uk getent group

e. Note that it is important to test ssh to each target directly as the first
communication will generate the host fingerprint entry and ask whether to add it to
the known_hosts file in the zenoss user's .ssh directory. Zenoss modelers will probably
fail if asked this question.

i. Note on Zenoss 5 the test must be performed from the zencommand container as
the .ssh /known_hosts inside the container is not the same as that for the zenoss
user on the base host.

serviced service attach zencommand su zenoss -1
ssh -1 zenplug zenny2.class.example.org
cat .ssh/known hosts

f. If a relationship is not created then check relationship names in the plugin and
zenpack.yaml, for both device and component.

g. If relationship instance(s) are not created, check:

116 ZenPack Developers' Guide Oct 13, 2016

i. relname and modname statements in modeler plugin exists
ii. relname and modname are correct (especially case-sensitivity)
h. If one or more attributes do not have values:
i. Check spelling of attributes in plugin and zenpack.yaml.
ii. Check in the modeler log that data is collected
iii. Check type of attributes eg. string data assigned to int defined attribute
3. Components do not appear or existing components are removed

a. With RelMaps, the RelMap returned for any given relation needs to contain an
ObjectMap for each component that exists in that relation, whether or not that
component has changed, because applyDataMaps will remove any components not
represented in the RelMap. This means returning an empty RelMap (which some
people do in an error case) will have the likely undesired side-effect of removing all
components from that relation.

4. Insert extra log.debug statements in the modeler code and rerun the zenmodeler
command with the -v 10 flag. No reinstall of the ZenPack is necessary. For example:

log.debug ('GID is %s ' % (om.GID))

a. log has a number of logging levels which should be used sensibly. Everything other
than debug will typically be shown in the GUI modeler output.

i. log.debug

ii. log.info

iii. log.warning
iv. log.error

v. log.critical

b. log.debug lines should largely be commented out once testing is complete.

8.8 * Renderers

The class property and the Relationship Override fields may use a renderer keyword; the
default is None. This presents an opportunity to control how an item is displayed. renderer
code is defined in a JavaScript file, either in the Zenoss core code or supplied with a ZenPack.

As an example, a new attribute will be added to the UserGroup object, hasSecondaries. It
would normally make sense to define this as a boolean in zenpack.yaml, but it will actually be
a string.

hasSecondaries:
type: string
label: Has Secondaries?
short label: Has Sec?
label width: 40
renderer: Zenoss.render.severity # Use event severity renderer
order: 3.4

Note the renderer line specifying Zenoss.render.severity.

Oct 13, 2016 ZenPack Developers' Guide 117

Zenoss supplies lots of renderers with the core code; inspect
$ZENHOME |/ Products | ZenUI3 | browser [resources | js | Renderers.js. The severity renderer
produces the different colored icons in the Event Console display, denoting different severities
of events; critical =red, through to clear=green. The renderer simply takes the value of the
“severity” string and produces a small icon of the correctly mapped color.
severity: function(sev) {
return '<div class="severity-icon-small '+
Zenoss.util.convertSeverity(sev) +
TSN+ /div> T

}

The convertSeverity function is in
$ZENHOME | Products/ | ZenUI3 | browser | resources [js | zenoss [zenoss.js and returns the
severity string in lower case.

Zenoss.util.convertSeverity = function (severity) {
if (Ext.isString(severity)) return severity;
var sevs = ['clear', 'debug', 'info', 'warning', 'error', 'critical'l;

return sevs|[severityl];

}s

It is not necessarily important to understand these details; the crucial point is that a different
colored icon can be produced for an object attribute, whose value is coded to be one of 'clear’,
'debug’, 'info', 'warning', 'error' or 'critical'. (If the attribute does not match any of these exact
strings then no icon is rendered).

The modeler plugin must also be updated to populate the hasSecondaries attribute.

om.secondaryUsers = ugList[3]

hasSecondaries takes string value that matches an event status so that

we can cheat and use Zenoss.render.severity to give icons for this wvalue

If secondaries exist then we get the green 'clear' icon. Otherwise red.
if ugList[3]:

om.hasSecondaries = 'clear'
else:
om.hasSecondaries = 'critical'

Any standard Zenoss renderer can be coded in a renderer keyword in zenpack.yaml.

Having added a new object attribute in a properties statement in zenpack.yaml, the ZenPack
must be reinstalled and Zenoss restarted entirely.

Remodel the test device to populate and display the new hasSecondaries attribute.

118 ZenPack Developers' Guide Oct 13, 2016

=
zZen ss DASHBOARD EVENTS INFRASTRUCTURE = REPORTS ADVANCED Q * zenoss SGNOUT H

CORE

E = = o AT A Al A A T A
O Neiworks Processes P Services Windows Services NetworkMap Manufacturers Page Tips

taplow-30.skills-1st.co.uk i :
/Server/Linux/UserGroup | | Up o | Production | Normal
L 3 10.0.0.30 DEVICE STATUS PRODUCTION STATE PRICRITY
Overview [] User Groups | @ Q Type tofilter
Everis .Evegitli .EEEQ.‘. g;n“g 9 D .Secngseﬁ‘as %s Sec? users m E%EE
4 Components v adm adm 4 pl v 0
¥ User Groups (55) (/] audio audio 29 pi,mollie (/] 0 <
Dusers (12) (/] backup backup 34 1] 0 d
@ Network Routes (2) o bin bin 2 0 0 v
Ointerfaces @) (/] cdrom cdrom 24 pi (/] 0 &
@File Systems (3) ° o
crontab crontab 102 0 v
Q1P Services (4) -
Obrocesors " (/] daemon daemon 1 (1] 0 <
Graphs S @ dialout dialout 20 pi (/] 0 Z v
Component Graphs Display: Graphs ;]
Modeler Plugins 1. . T ... =
S Performance Graphs 1| < ” Zoom In ” Zoom Out H > ‘ Range: Last Hour v ‘G Refresh « ||] |
oftware
Custom Properties "
+ O - [Commands -} { Model Devioel | £J 0dJobs ~

Figure 67: UserGroup component displaying colored icon for hasSecondaries attribute
The red icon denotes no secondaries; green represents that secondaries do exist.

8.9 Templates and zenpacklib

Pre-zenpacklib, performance templates were created using the GUI and then added to a
ZenPack using the Add to ZenPack menu. When the ZenPack is exported, the template,
including any datasources, datapoints and graphs, are written to objects.xml under the objects
directory for Zenoss 4, or under objects /templates for Zenoss 5, with one xml file per template.

zenpacklib offers an alternative method to ship performance templates; they can be defined as
part of the definition of a Zenoss device class, including datasources, datapoints, thresholds
and graphs. The limitation is that templates must be defined as part of a Zenoss device class,
whether they are device-level templates or component templates; see
http:/zenpacklib.zenoss.com/en/latest/yaml-monitoring-templates.html in the zenpacklib
documentation for more detail. This documentation highlights the difference between
template location and binding.:

e Location is the device class in which a monitoring template is contained (and nothing
whatsoever to do with the Zenoss Location groupings that can be used in the GUI). This is
determined when the template is created by associating it with the highest point in the
Zenoss device class hierarchy tree where this template may be bound.

e Binding is the device class, device or component to which a monitoring template is
bound.

m Device-level templates are bound using the standard zDeviceTemplates zProperty
(which is a list), to bind to either a Zenoss device class or, in the GUI, to a specific
device. Note that this property must contain all device-level templates to be bound;
specifying a single new template in the zDeviceTemplates field of a zenpack.yaml
definition, will remove any existing templates.

s Component templates must not be specified in zDeviceTemplates. Component
templates are automatically associated with Python component objects. The best
way to understand what template applies to a component is to navigate to a device

Oct 13, 2016 ZenPack Developers' Guide 119

http://zenpacklib.zenoss.com/en/latest/yaml-monitoring-templates.html

detail page, select a component and change the dropdown menu from Graphs to
Templates.

+ Pre-zenpacklib, component templates are generally associated with a component
Python object class of exactly the same name, though that can be overridden in code.

+ With zenpacklib, the automatic association is with the label field of the component
class (not the object class name, if different).

+ Alternatively, zenpacklib offers the monitoring_templates keyword that can be
used with component templates, to specify one or more templates to be automatically
associated. monitoring_templates expects a value of type list. This way, any

appropriate template can be associated with a component, regardless of the label
name.

To define templates associated with a Zenoss device class in zenpack.yaml. use the templates
keyword. Note that this keyword is only valid on Zenoss device classes, not on object class
stanzas. The zenpacklib documentation only lists SNMP, COMMAND and PING as valid
datasource types for templates but any valid datasource type can be specified.

There are advantages and disadvantages with defining templates in a zenpack.yaml file. The
definitions are fairly straightforward but tedious to create; however they can easily be
modified. Often, the easiest way to start building a template is to build it through the GUI
and then use zenpacklib to dump the correct yaml definitions. Similar templates can be added
to zenpack.yaml using cut-and-paste editor techniques.

8.9.1 Creating a User component template with the GUI

The ZenPack requirements specify the creation of a graph for each user sub-component, with
a count of the number of user groups that the user is a member of.

Monitoring Templates

Jitter Alde | Q@[€ ~ L 2

LDAPServer Name Source Enabled Type Name Type Min
LogMaich
MSExchange2010IS

nUm Groups.numGroups GAUGE

MSExchange2013IS Edit Data Source
MSExchangelnformationStore ENET N - :
MySOL numGroups

MySQLDatabase Enabiee Severity: +
MySQLServer Event &lass Warning

New /Cmd/Fail Cycle Time (seconds):

60

Name

Number of Groups
NipMonitor Parser:

OSProcess Auto Use SSH
OSPr 255-2003

Component: Event Key:

SLA_test ${here/userName} : ${here/primaryGID}
4 User Command Template:

Just/bin/id -G ${here/id} | /usr/bin/wc -w

SAVE CANCEL

+][0 -] cowpsy [Te

0 Jobs »

Figure 68: User component template with COMMAND datasource for group membership

A template called User should be created whose “location” is /Server/Linux/UserGroup. The
group membership information will be gathered using a command over an ssh session; thus

120 ZenPack Developers' Guide Oct 13, 2016

the template needs a datasource created, numGroups, of type COMMAND (the datasource
name does not have to match up with any other definitions).

Ensure that the Use SSH box is ticked.

The Cycle Time is set to 60 seconds for testing; this should be increased when the ZenPack is
in production.

Note that changing the cycle time in Zenoss 4 will prevent any further data from being
collected; RRD data files should be deleted (or hidden) from the $ZENHOME |/ perf/ Devices
directory hierarchy, and allowed to recreate with the new cycle time. With Zenoss 5, changes
to the cycle time are accommodated seamlessly at the next cycle time.

The command will use the unix id utility with the -G parameter to gather all groups for the
specified user. The output is piped into the word count (wc) utility to get the count.

/usr/bin/id -G ${here/id} | /usr/bin/wc -w

Note that fully-qualified path names are used for id and wec,; otherwise these utilities will be
assumed to be in the zCommandPath-specified directory on the target host.

The template will be run against each component object instance, which will be available to
the template as the here variable; hence the command has ${here/id} to be substituted into
the command for each user component.

It is good practice to specify the Component field of the datasource, which will appear in any
event that is generated by this template; ${here/id} is often a good choice, though any legal
attribute (or combination of the attributes) of the user object can be used; for example:

${here/userName} : S${here/primaryGID}

A COMMAND datasource has a Test Against a Device button; note that this does not work for
many component templates and definitely does not work when the command is run remotely
over ssh.

The datasource will deliver a single value for the number of groups. A GAUGE-type
datapoint. numGroups, can be created which will automatically receive this value. Note that
if more than one value is delivered by the datasource command then a more complex design is
required.

A graph definition, Number of Groups, is created to display the single datapoint.

This template should not be bound to any device; as a component template it will be
automatically associated with any component object whose name (label in zenpack.yaml)
matches the template name.

Oct 13, 2016 ZenPack Developers' Guide 121

Zen ss DASHBOARD EVENTS = INFRASTRUGTURE = REPORTS ADVANGED . sic 7]

Devices Networks Processes IP Services Windows Services Network Map Manufacturers Page Tips

\

Pl jliicma0skiiniatcouk rome o — oL
2846 7
[0 -[O] soma+] e

Overview
v mollie mollie 1002 1003 mollie Mol ~hemelmellie]

Ewvents

4 Components
Guser Groups (55)

¥ Users (12)
@Network Routes (2)
Dinterfaces (2)
OrFile Systems (3)

Number of Groups o
OP Services (4) p:

@rrocessors (1) @ numGroups
202

|| |43 Retresh ~ \E
.

Graphs
o] t Graph
omponent Graphs 202
Medeler Plugins
Software 201
Custom Properties I

o

Configuration Properties

20:07:30
B numGCroups 2.00

Device Administration ~ < L P P PP o0 PO e st
Figure 69: Number of Groups graph for user mollie

<>

8.9.2 Exporting templates with zenpacklib

zenpacklib provides a means of exporting templates from an existing ZenPack, provided such
templates are part of the ZenPack and the device class defined as its location is also
explicitly included in the ZenPack. Use the Add to ZenPack menu option for both the

template and Zenoss device class.

If the ZenPack does not include the containing Zenoss device class then only the ZenPack
name will be output.

Note that it is not necessary to export the ZenPack having added the device class and
template. Once the template has been output, the device class and template should be
removed again from the ZenPack.

The dump_templates parameter of zenpacklib is used as follows:
zenpacklib dump templates ZenPacks.community.UserGroup > UGTemps.yaml (25)
zenpacklib.py dump templates ZenPacks.community.UserGroup > UGTemps.yaml (Z4)

Templates are output to Unix stdout (ie the screen) so redirect the output to a temporary file,
not your main zenpack.yaml; it will go to the current directory. This output then needs
incorporating into the main zenpack.yaml, under the appropriate class.

122 ZenPack Developers' Guide Oct 13, 2016

UserGroup : vim - Konsole % & *
Fle Edit Wiew Bookmarks Settings Help

False is default - ensure no instances left in this class when ZenPack removed

=: ZenPacks.community.UserGroup.UserGroupDevice

= ons: 5
- DnsMonitor
| - Device
| zCollectorPlugins: ['zenoss.snmp.NewDeviceMap', 'zencss.snmp.DeviceMap', 'zenoss.snmp.InterfaceM
lap', 'zenoss.snmp.RouteMap', 'zenoss.snmp.IpServiceMap', 'zenoss.snmp.HRFileSystemMap', 'zenoss.snmp.H
, 'zenoss.snmp.CpuMap', 'zenoss.snmp.SnmpV3EngineldMap', 'cmd.UserGroupMap']

|IRSWRunMap '

" COMMAND
ent: '4${here/userName} : ${here/primaryGID}"'
late: /usr/bin/id -G ${here/id} | /usr/bin/wc -w

: GAUGE
ython/unicode 'true'

: Nﬁmbér of Groups:
nits: groups

| d %;.numGroups_numGroups
"zenpack.yaml" [readonly] 177 lines --5%-- 10,9 6%

Figure 70: zenpack.yaml - |/ Server [Linux |/ UserGroup class with template

Note in Figure 70 that the DnsMonitor device template has been added to the
zDeviceTemplates zProperty list, in addition to defining the component User template. The

order of the templates in zDeviceTemplates determines the order of graphs that will be
displayed in the GUI.

When the amalgamated zenpack.yaml is complete, the ZenPack should be reinstalled and
Zenoss completely restarted.

If there are templates in zenpack.yaml that replace existing templates in ZODB, then an
ERROR message is generated, which seems excessive as the new template will be installed
and the existing ZODB template will be renamed, as reported

Oct 13, 2016 ZenPack Developers' Guide 123

UserGroup : bash - Konsole e &
Fle Edit Wiew Bookmarks Settings Help
[zenoss@zen50: . .. /community/UserGroup]: zenpack --link --install ZenPacks.community.UserGroup
INFQO:zen.ZenPackCMD:Previous ZenPack exists with same name ZenPacks.community.UserGroup
ERROR:zen.zenpacklib:Monitoring template /Server/Linux/UserGroup/User has been modified since the ZenPacks.community
.UserGroup ZenPack was installed. These local changes will be lost as this ZenPack is upgraded or reinstalled. Ex
isting template will be renamed to 'User-upgrade-1461229332'. Please review and reconcile local changes:
+++
@@ -3,6 +3,7 @@
numGroups:

type: COMMAND

component : '${here/userName} : ${here/primaryGID}
+ severity: err

commandTemplate: /usr/bin/id -G ${here/id} | /usr/bin/wc -w

cycletime: 60

datapoints:

INFO:zen.ZenPackCMD:installing zenpack ZenPacks.community.UserGroup; launching process

INFO:zen.zenpacklib:Setting zProperty zCollectorPlugins on Server/Linux/UserGroup

INFO:zen.zenpacklib:Setting zProperty zDeviceTemplates on Server/Linux/UserGroup

INFO:zen.zenpacklib:Setting zProperty zSshConcurrentSessions on Server/Linux/UserGroup

INFO:zen.zenpacklib:Setting zProperty zPythonClass on Server/Linux/UserGroup

2016-04-21 09:02:19,761 INFO zen.HookReportlLoader: Loading reports from /z/zenpacks/ZenPacks.community.UserGroup/Zen
Packs/community/UserGroup/reports

2016-04-21 09:02:19,882 INFO zen.zenpacklib: RRDTemplateSpec(zenpack.yaml: 21-36 - User) adding template
[zenoss@zen50: . . . /community/UserGroup]: |

Figure 71: ZenPack installation where yaml template definition differs from ZODB

Differences between the new and existing templates are shown in diff format and the old
template is saved under a different name. Once the yaml versions of the templates are
proven, the old templates, which have a suffix of the epoch time when created, should be
deleted manually in the GUI.

In Figure 71 the ZODB template had the Severity field changed from Warning to Error.

Note that changes to existing template definitions in zenpack.yaml only requires zope to be
restarted.

Note one issue with exporting templates is that a template description field tends to have two
single quotes representing the empty string; zenpack.yaml requires double-quotes, otherwise

subsequent lines are all interpreted as comment. The Unix vi editor provides automatic color

coding for files with a yaml suffix, which helps spot this; red text denotes “quoted”.

124 ZenPack Developers' Guide Oct 13, 2016

zenoss@zend2:/code/ZenPacks/DevGuide/ZenPacks.community.DirFile/ZenPacks/community/DirFile

File Edit View Search Terminal Help
/Server/Linux/DirFile: e |
remove: False # False is default - specified for clarity
ZProperties:
zPythonClass: ZenPacks.community.DirFile.DirFileDevice
zDeviceTemplates:
Disk_free_df

Device
zCollectorPlugins: ['zenoss.snmp.NewDeviceMap', 'zenoss.snmp.DeviceMap', 'HPDeviceMap',
‘DellDeviceMap', 'zenoss.snmp.InterfaceMap', 'zenoss.snmp.RouteMap', 'zenoss.snmp.IpServiceM

ap', 'zenoss.snmp.HRFileSystemMap', 'zenoss.snmp.HRSWRunMap®', 'zenoss.snmp.CpuMap®, 'HPCPUMap
', 'DellCPUMap', 'DellPCIMap', 'zenoss.snmp.SnmpV3EngineIdMap', 'community.cmd.DirFileMap']
templates:

Dir:
description:
targetPythonClass: Products.ZenModel.Device
datasources:

DirDiskUsed:
type: COMMAND
component: ${here/id}
commandTemplate: /fusr/bin/du -P -b -d @ ${here/dirName} | cut -f 1
cycletime: 60
datapoints:
disk used: GAUGE
usessh: true
graphs:
Disk used:
height: 100
width: 500
units: Bytes
graphpoints:
disk_used:
dpName: DirDiskUsed disk used
Disk free dff
"zenpack.yaml" [Modified][readonly] 234 lines --21%-- 51,19 10%

Figure 72: zenpack.yaml with incorporated templates - note red lines denoting comments

[l

Changing the two single quotes for the description field to two double quotes, resolves the
issue.

8.10 * Creating object methods with zenpacklib

When creating object classes for devices and components, most properties for these classes are
attributes - characteristics of the object. It is also possible to work with methods - actions to

be executed against the object.

The zenpacklib documentation at http://zenpacklib.zenoss.com/en/latest/yaml-classes-and-
relationships.html provides two keywords:

e api_backendtype

s Implementation style for the property if api_only is true. Must be property or
method. Default is property.
e api_only
s Should this property be for the API only? The property or method (according to

api_backendtype) must be manually implemented if this is set to true.

Consider the UserGroup ZenPack scenario. The raw data from the Linux getent passwd
command provides user information, including primary group; it does not provide all
secondary groups for a user. The getent group command provides all user groups, including a
field for users for whom this group is a secondary.

Oct 13, 2016 ZenPack Developers' Guide 125

http://zenpacklib.zenoss.com/en/latest/yaml-classes-and-relationships.html
http://zenpacklib.zenoss.com/en/latest/yaml-classes-and-relationships.html

The modeler plugin has gathered all the relevant information into the object model in the
Z0DB; however, no attribute answers the question for a user “What secondary groups am I
in?”.

8.10.1 Writing methods for objects
A Python method can be written which, given the user object instance, can determine the

secondary groups.

Useraroup : vim - Konsole AR X

Fle Edit WView Bookmarks Settings Help

This program is part of the ZenPacks.community.UserGroup ZenPack
Author: Jane Curry

Date: April 21st, 2016

Updated:

Far user (self), find all secondary user groups
Filename must match object class name, must match class defined here

S ok e e e e e

B e e e e S s e
from . import schema

import logging

LOG = logging.getlLogger('zen.UserGroup')

Need to define a method to get string of group names for a user
Called by api backendtype: method in zenpack.yaml

class User(schema.User): # class must match component object class
def getSecGroups(self):
d = self.devicel() # get this user's device object
secGroupList = []
for g in d.userGroups(): # cycle through all this device's groups
#if self.id in g.secondarylsers: # looking for this user in group's secondaries

secondaryUsers is a comma-separated string
for su in g.secondaryUsers.split(','):

if self.id == su.strip(}: # looking for this user in group's secondaries
secGroupList.append(g.id) # add the group id on a match
break
[eturn ', ' .join(secGrouplList) # return list, converted to string, comma sep
"User.py" [Modified][readonly] 32 lines --100%-- 32,9 Bot

Figure 73: getSecGroup method for User class

In Figure 73:

e The class name (User) must match the sub-component object class name defined in
zenpack.yaml. The filename must also match the classname, with .py appended.

e “self” will be an instance of the User object class.

e Note the from . import schema line. This is mandatory and will import from the code
automatically generated by zenpacklib, held in memory.

e The function name, getSecGroups, must match with a stanza under properties, for the
User object, whose name matches getSecGroups and whose api_backendtype is method.

e Any component class must have a method called device(), that returns the containing
device object. If there is a component hierarchy then each sub-component follows the
ToOne relationship until the device is reached:

126 ZenPack Developers' Guide Oct 13, 2016

For a UserGroup:
def device():
return self.userGroupDevice ()

For a User sub-component:
def device():
return self.userGroup () .device ()

These device methods are constructed automatically by zenpacklib, in memory.

o The getSecGroups method calls device() and then uses the ToMany relationship,
userGroups, to cycle through all user groups for that device, checking whether any of the
group's secondaryUsers is the same as the id field of the user; if so, the group id is added
to a list.

e The function returns a string that concatenates the discovered group ids, joined by a
comma.

zenpack.yaml needs a matching definition for this method.

UserGroup : vim - Konsole = &
File Edit Wiew Bookmarks Settings Help
1: User # NB It is label, with spaces removed, that is used to match a component template
o: User # Will default to this but in for completeness
h: 50 # This controls the column width for Users in the UserGroup component display
after UserGroup
1: userComment

{3145: [User] # will default to User but explicit for clarity

: string
: User name
: User
h: 608

L: UID

: primaryGID
= :GTD

_: Primary Group Mame
label: Primary Group

: string
.: Secondary groups
1 1: Sec. Groups
g Bl 7
1dtype: method
apl only: true
"zenpack.yaml" [Modified] 186 lines --52%-- 134,49 68%

Figure 74: zenpack.yaml with getSecGroups method for User sub-component

Oct 13, 2016 ZenPack Developers' Guide 127

Other keywords for the getSecGroups method property are defined as for attribute properties.

TODO: What does the api_backend keyword really do? Tried with both true and false and
zendmd still sees the method, even after deleting the device and rediscovering.

The ZenPack should be reinstalled and Zenoss completely restarted after these modifications.
Move the test device out of /Server/Linux/UserGroup and then back in again to instantiate
the new property. Remodel the device to see the extra Sec Groups property in both the
component grid and the Details drop-down.

Zenoss5.0.7: taplow-30.skills-1st.co.uk - Mozilla Firefox

Yo ®@

Ele Edit View History Bookmarks Tools Help

Control Center x| D Zenoss5.0.7:Devices x ‘@ Zenoss5.0.7: Devices x | @ Zenosss.0.7: taplow-... x | @ Zenosss.0.7: Monitor... x | D Zenoss5.0.7:Events x | © Zenoss5.0.7:ZenPa.. x |+

. € | A\ https://zenoss5.zen50/zport/dmd/Devices/Server/LinuxfUserGroup/devices/taplo

kills-1st.co.uk/devicedstail#deviceDetailNav:Userzport/dm v C‘| ‘v Google “l wBa & & | =

DASHBOARD EVENTS INFRASTRUCTURE REPORTS ADVANCED

taplow-30.skills-1st.co.uk :
Qn eplow. 202k, | C »® Poddion | Noma
LCY W 00030 DEVICE STATUS PRODUGTION STATE PRIORITY
[Users I@ Q Type to filter
Qverview | .) 3
Events T e B e D Y O O L s 1 G T o T MO RIS 00
.
4 Components (] messagebus messagebus 104 106 messagebus Narfrunidbus v
DUser Groups (55) v malie mollie 1002 1003 mollie audio, ntp Mol Jhome/malie
v U 12
a8tz (lz) o nebody nebody 65534 65534 nogroup nobody /nonexistent v

@Network Routes (2)

@interfaces (2) o 0 102 loee /homelntp v
OFHe Systems (3) O pi pi 1000 1000 pi adm,audio,cdrom,dialo... ., /home/pi v :
@ P Services (4) E”) <>
Oprocessors (1) Display: | Details| =
Graphs LIS B ~
Component Graphs mollie Nona
Vodle Sl Secondary groups: pr\mlaryUserGroup:
audio ntp mollie
Software ‘ Bl User Comment:
Custom Properties Mol ’
Configuration Properties 2 B ~
Device Administration C Save Cancel
mm[Commands ~ ‘ [Model Device 1 | ‘v 0Jobs =

Figure 75: User mollie with Sec. Groups displayed in grid and Details dropdown

8.11 *Creating new components directly on Device object class

So far, this sample has relied on creating a new device object class of UserGroupDevice and a
new Zenoss device class of /Server/Linux/UserGroup, setting the zPythonClass property of
/Server [Linux [UserGroup to ZenPacks.community.UserGroup.UserGroupDevice to ensure
that new attributes and components can be populated.

If these new attributes and components are fairly ubiquitous and such devices really should
be placed in other specific device classes, perhaps provided by other ZenPacks, how can the
new features be added directly to the standard Zenoss-supplied Device object class?

8.11.1 * zenpack.yaml modifications

zenpack.yaml needs modifying to eliminate the UserGroupDevice device object; simply
comment out the entire UserGroupDevice definition, including its relationships stanza.

Add a new relationship, userGroups to the Zenoss-provided standard Device object,
commenting out the previous version:

128 ZenPack Developers' Guide Oct 13, 2016

class relationships:

#- UserGroupDevice (userGroups) 1:MC UserGroup (userGroupDevice)

- Products.ZenModel.Device.Device (userGroups) 1:MC UserGroup (uGDevice)
- UserGroup (users) 1:MC User (primaryUserGroup)

Note that the relationship from the UserGroup object back to the containing device has been
changed from userGroupDevice to uGDevice.

Note that the object path to the standard Device object class has to be provided relative to
$ZENHOME - Products.ZenModel.Device.Device.

The Zenoss device class definition may be retained but the zPythonClass association should
be removed:

device classes:
/Server/Linux/UserGroup:
remove: False # False is default - ensure no instances left in this
class when ZenPack removed
zProperties:
Don't set zPythonClass - it should default to Device
#zPythonClass: ZenPacks.community.UserGroup.UserGroupDevice
zSshConcurrentSessions: 5
zDeviceTemplates:
- DnsMonitor
- Device
zCollectorPlugins: ['zenoss.snmp.NewDeviceMap', 'zenoss.snmp.DeviceMap',
'zenoss.snmp.InterfaceMap', 'zenoss.snmp.RouteMap',
'zenoss.snmp.IpServiceMap', 'zenoss.snmp.HRFileSystemMap',
'zenoss.snmp.HRSWRunMap', 'zenoss.snmp.CpuMap',
'zenoss.snmp.SnmpV3EngineIdMap', 'cmd.UserGroupMap']
templates:
User:
datasources:
numGroups:

The UserGroup component object class also requires a little modification as its relationship
back to its containing device has changed:

UserGroup:
relationships:
#userGroupDevice: # back to the containing device
uGDevice: # back to the os relationship on the containing device

#label: userGroupDevice
label: uG Device

display: true # Ensures relationship shown in Details dropdown
users: # down to User sub-component

label: users

display: true # Relationship shown on grid and Details

Everything else in zenpack.yaml can remain the same; the relationship between UserGroups
and Users is unchanged.

8.11.2 * Other modifications

No change is required to the _ init_ .py in the base directory of the ZenPack. In addition to
creating the memory-held Python code representing the UserGroup and User objects,
zenpacklib will also monkeypatch the standard Device object with the new userGroups
relationship.

Oct 13, 2016 ZenPack Developers' Guide 129

No change is required to the modeler plugin. The userGroups relationship that is populated
by the modeler is now on on the Device object class, rather than the UserGroupDevice object
class but the same relationship name was carefully retained.

One issue with this change is that device instances will not need to be in the

/Server [Linux [UserGroup Zenoss device class in order to gather User and Group
components; however the User template defined in zenpack.yaml is located at

/Server | Linux / UserGroup - a template must be defined against a Zenoss device class, not an
object class, and there is no way to add templates to pre-existing classes in zenpack.yaml.

zenpack.yaml includes a monitoring_templates definition for the User object but if the device
instance resides in the /Server/Linux class or other subclasses, then the User template will
simply be ignored.
User:
label: User #

meta type: User # Will default to this but in for completeness
label width: 50 #

order: 30 # after UserGroup
auto _expand column: userComment
monitoring templates: [User] # will default to User but explicit for clarity

To retain the template for more universal use, use the GUI to copy the existing User template
to a higher location, eg. /Server/Linux. Use the Action icon at the bottom of the Monitoring
Templates left-hand menu and choose Copy / Override Template. The template does not
require changes unless you wish to do so; however, the /Server/Linux version should be
added to the ZenPack, through the GUI, in order to ensure that a version is available for all
relevant classes. Don't forget to re-export the ZenPack to save this template under the objects
file directory hierarchy. The User template does not need to be bound as it is a component
template.

This version of the ZenPack is included on GitHub under the device branch and is Version
1.0.1 of the ZenPack.

8.11.3 * Testing the changes

Significant changes have been made to device objects and relationships. Move any existing
devices in /Server/Linux/UserGroup to a different temporary class such as /Ping. The
ZenPack must be reinstalled and everything restarted.

Move a test device to a new Zenoss device class (not /Server/Linux/UserGroup). The
cmd.UserGroupMap modeler plugin will need adding either to the device directly or to the
new test device class.

Adjust the zMinUID property as required.

Remodel the device and check that User and User Group components are created. Check
especially that a graph is created for each user, showing the number of groups that it is
associated with.

A small detail that is lost with this scenario is that the icon at the top-left of a device panel is
associated with a device object class, so the “four-tux” icon is no longer displayed.

130 ZenPack Developers' Guide Oct 13, 2016

8.11.4 * Binding device templates in __init__.py

Remember that zenpack.yaml added the DnsMonitor device-level template to the

/Server [Linux / UserGroup Zenoss device class, shown in Figure 70 on page 123. By adding
the User and Group components directly to the Device object and removing the need for the
/Server [Linux / UserGroup device class, this template binding is lost.

The __init_ .py in the base directory of the ZenPack can be used to perform various
customisations, including template binding. For a good example, look at
https:/gist.github.com/James-Newman/9609c¢84688a0b9a4fee842878b9a5b00 which adds
device classes, templates to device classes and event classes. This gist was designed for a non-
zenpacklib ZenPack but it is fairly easily changed to work with zenpacklib.

UserGroup : vim - Konsole g & %,

Fle Edit View Bockmarks Settings Help
Here begins the non default code

Import all the things.

import logging

Log information shows up in $ZENHOME/log/events.log, as well as stdout if installing/removing via the command line
log = logging.getlogger('zen.UserGroup')

Only need to import ZenPackBase if NOT using zenpacklib

Using zenpacklib, need to import schema to inherit ZenPack class from zenpacklib
#from Products.ZenModel.ZenPack import ZenPack as ZenPackBase

from . import schema

Make our configuration variable names global,

its easier than passing them around to every method
al deviceClassToAdd

al templatesToAdd

leaveDevice(Class

al updateTemplates

gl

We use deviceClassToAdd as a dictionary of classes and templates
Template name should be identical to the one either already in Zenoss or provided in the objects.xml or zenpack.yaml file within the ZenPack
Thats right, vyou can use this way of adding templates to add classes that are provided by other zenpacks
If a class already exists then nothing bad happens.
Leaving the value as an empty list means that no changes get done, the class just inherits from the parent
If a parent doesn't exist, it automatically gets created
deviceClassToAdd = {'Server/Linux/UserGroup' : ['FtpMonitor'],
'Server/Linux': ['DnsMonitor']
1
These are the properties that mean our classes stick around during an uninstall or not
Times when you want to keep the classes are when you have other zenpacks that are using the class, or a child of the class
0Or when you want to keep things around for posterity because you're a sentimental old fool and you like a bit of whimsy.
leaveDeviceClass = True
" _init .py" 279 lines --3%-- 18,3 3%

F. igure 76: __init__.py to bind templates to devices - part 1

« »

For zenpacklib scenarios, schema must be imported from the current directory,

The deviceClassToAdd global variable is a dictionary where the keys are the Zenoss device
class and the values are a list of templates to be added. As an example, the FtpMonitor
template is added to /Server/Linux/UserGroup and the DnsMonitor template is added to
/Server/Linux:

deviceClassToAdd = {'Server/Linux/UserGroup' : ['FtpMonitor'],

'Server/Linux': ['DnsMonitor']

}

If the device class does not exist (or any of its parents) then they will be added; if they do exist
then no action is taken on the class other than adding the templates. Where zenpacklib is
used, device classes should be added through zenpack.yaml.

The leaveDeviceClass global variable should probably be left as True to ensure that classes
are not accidentally deleted when the ZenPack is removed.

Oct 13, 2016 ZenPack Developers' Guide 131

https://gist.github.com/James-Newman/9609c84688a0b9a4fee842878b9a5b00

UserGroup : vim - Konsole & @

=

Fle Edit View Bookmarks Settings Help

|

If working WITHOUT zenpacklib, ZenPack inherits from ZenPackBase;

otherwise inherit via schema from the ZenPack class defined in zenpacklib.

#class ZenPack(ZenPackBase) :

class ZenPack(schema.ZenPack) :
This is the standard install method. It gets called when you install the zenpack
def install(self, app):

log.info('Beginning Installation.')

If using zenpacklib, install the stuff defined by zenpacklib FIRST and
then modify with this customisation. Otherwise this stuff is
overridden by zenpacklib stuff.
super(ZenPack, self).install(app)
Create the new device classes and add templates
We iterate over the class/templates in the deviceClassToAdd dictionary
log.info('Starting template customisation from ZenPack _ init ')
for classToAdd, templatesToAdd in deviceClassToAdd.iteritems():
Add the requested device class
Here we kick our the actual creation to a new method to make things easier for us
If the device class already exists, then the existing organizer is returned.
addedDeviceClass = self.createDevicelrganiserPath(classToAdd)
You can also run a bunch of custom stuff here on the new addedDeviceClass if you want
for example you can set the properties using
addedDeviceClass.setZenProperty('zCommandUsername', 'root')
addedDeviceClass.setZenProperty('zCommandPassword', 'NOTSECURE')
Obviously, any passwords you put in here aren't secure, as your _ init_ .py is plain text!
log.info(' Updating zProperty zSshConcurrentSessions; new value is 5')
addedDeviceClass.setZenProperty('zSshConcurrentSessions', 5)
Once the class is added, we can add the template, only if the template list has an element
Again we kick it out to a new method to make things easier for us
if len(templatesToAdd) = O:
Add the requested templates to the new device class
self.setTemplates(addedDeviceClass, templatesToAdd)

Instruct Zenoss to install any objects into Zope from the objects.xml file contained inside the ZenPack

Once you get down here, running this next line will tell zenoss to install the zenpack as it normally would
For non zenpacklib, use ZenPackBase.install;

for zenpacklib, use super(ZenPack, self).install(app)

#/enPackBase.install(self, app)

#super(ZenPack, self).install(app)

" _init .py" 279 lines --15%-- 43,0-1 17%

Figure 77: __init__.py to bind templates to devices - pdrt 2, install method

The __init__.py needs to monkeypatch the install and remove methods of the ZenPack class.
In a non-zenpacklib ZenPack, the ZenPack class inherits from the imported ZenPackBase; if
zenpacklib is used, the ZenPack class must inherit from the ZenPack class defined in
zenpacklib.

Note that the order of installation can be controlled. In Figure 77 the zenpacklib install
method is run first with:

super (ZenPack, self).install (app)

The configuration in __init_ .py is then run.

For each specified device class to be added or modified, the local createDeviceOrganiserPath
method is run, returning the object representing the device class. It is perfectly benign to run
this if the class already exists.

addedDeviceClass = self.createDeviceOrganiserPath (classToAdd)

The object for the device class can be used to update existing zProperties, if required. Ensure
that the setZenProperty method is used.

addedDeviceClass.setZenProperty ('zSshConcurrentSessions', 5)

Setting a property directly, such as:

addedDeviceClass.zSshConcurrentSessions = 5

can result in an inconsistent ZODB database.

132 ZenPack Developers' Guide Oct 13, 2016

The templates are updated from the deviceClassToAdd dictionary by calling the local
setTemplates method with:

if len(templatesToAdd) > O:
Add the requested templates to the new device class
self.setTemplates (addedDeviceClass, templatesToAdd)

The remove method follows the same principles.
[UserGroup : vim - Konsole
Fle Edit View Bookmarks Settings Help
|
This is the standard remove method
it gets called when you remove the zenpack
If the install method is just to add templates, not classes, ensure
that leaveDeviceClass=True so that classes are not removed, only templates
def remove(self, app, leaveObjects=False):

log.info('Beginning ZenPack remowval.')

log.info('Starting template customisation from ZenPack _ init_ ')
Remove the device class, this ensures that we don't remove devices as well if we don't want to
Again we iterate over the device classes and templates that the zenpack adds
for classToRemove, templatesToRemove in deviceClassToAdd.iteritems():
deviceClassToRemove = self.dmd.Devices.getOrganizer(classToRemove)
1f deviceClassToRemove:
Only if we're removing templates do we run the new method to remove templates from device classes
if len(templatesToRemove) = 0:
self.removeTemplatesFromDeviceClass(classToRemove, templatesToRemove)
This check here is what stops us removing device classes. If we have leaveDeviceClass set to True,
then the device class w111 be left behind
if leaveDeviceClass ==
devicelist = self removeDev1ceOrganlser(classToRemove)
reset zproperty to default value of 10
log.info(' Resetting zProperty zSshConcurrentSessions to default; new value is 10')
deviceClassToRemove.setZenProperty('zSshConcurrentSessions', 10)

Instruct Zenoss to remove any objects from Zope from the objects.xml file contained inside the ZenPack

Once you get down here, running this next line will tell zenoss to remove the zenpack as it normally would
For non zenpacklib, use ZenPackBase.remove;

for zenpacklib, use super(ZenPack, self).remove(app, leaveObjects)

#7enPackBase. remove(self, app)

super{ZenPack, self).remove(app, leavelbjects)

" dnit .py™ 279 lines --30%-- 85,0-1

L BN

34%

Figure 78: __init__.py to bind templates to devices - part 3, remove method

The local setTemplates method manipulates the zDeviceTemplates property.

Oct 13, 2016 ZenPack Developers' Guide

133

UserGroup : vim - Konsole CTNES x
File Edit View Bookmarks Settings Help
def setTemplates(self, deviceClass, newTemplates):
This new method sets the templates for us. We do this by
manipulating the zDeviceTemplates property of the class

Obtain the zDeviceTemplates of the newly created class, and add any extras.

We don't need to worry about getting the parent templates and artificially inheriting them,
7enoss takes care of this for us.

log.info('The following templates will be added; %s.', strinewTemplates))

Get the zDeviceTemplates of the new device class and copy it to a new list
templates = list({deviceClass.zDeviceTemplates)
log.info('The following templates have been inherited already; %s', str(templates))

Loop over the list of templates provided in the config section
updateTemplates = False
for template in newTemplates:
if template not in templates:
Template is new, so we add it to the templates list.
templates.append(template)
updateTemplates = True
log.info('%s added to templates', template)

if updateTemplates == Tru=:
If we need to update the templates on the device class, here we set the Zen Property and commit the change
Doing this automatically sets the zDeviceTemplates as a local copy
It will stop inheriting changes to parent properties!
deviceClass.setZenProperty('zDeviceTemplates', templates)

log.info('Device Class zDeviceTemplates updated to: %s', str(templates))
from transaction import commit

commit()

else:
We don't have to update the templates, so we just log that and end the function

This way we don't start creating local copies of the zproperty if you dont need to

log.info('No new templates need to be added.')

" init .py" 279 lines --67%-- 188,0-1 652%

Figure 79: __init__.py to bind templates to devices - part 3, local setTemplates method

The existing templates on the device class are obtained with:

templates = list (deviceClass.zDeviceTemplates)

This list is then augmented with any new templates specified from the deviceClassToAdd
dictionary, passed as newTemplates.

This method is updating the zDeviceTemplates zProperty on a device in the ZODB database so
the changes must be committed:

from transaction import commit
commit ()

The ZenPack should be reinstalled and all daemons recycled to test these changes in
__init__.py.

8.12 *Creating new components inherited from existing
components

Section 8.11 demonstrated adding the UserGroup component on to the existing Zenoss-
supplied Device object class; but the standard code also provides an existing os relationship
and users and groups would perhaps fit better as sub-components of the OperatingSystem
object class.

At this time, zenpacklib does not appear to fully support such a mechanism but the example
is provided here anyway in the hope that this functionality will soon work. Objects,
relationships and modeling work but the JavaScript for the component display does not work.

134 ZenPack Developers' Guide Oct 13, 2016

8.12.1 zenpack.yaml modifications

Starting from the zenpack.yaml show in section 8.11, the class_relationships stanza should be
modified so that the containing relationship for a UserGroup object is os on the existing
OperatingSystem component object.
class relationships:

#- Products.ZenModel.Device.Device (userGroups) 1:MC UserGroup (uGDevice)

- Products.ZenModel.OperatingSystem.OperatingSystem (userGroups) 1:MC UserGroup (0s)
- UserGroup (users) 1:MC User (primaryUserGroup)

The relationship for UserGroup should be changed to match this:

UserGroup:

relationships:

#userGroupDevice: # back to the containing device
#uGDevice: # back to the os relationship on the containing device
0Ss: # back to the os relationship on the containing device

#label: userGroupDevice
#label: uG Device

label: OS
display: true # Ensures relationship shown in Details dropdown
users: # down to User sub-component

label: users
display: true # Relationship shown on grid and Details

8.12.2 Other modifications

One issue with this scenario is that zenpacklib code will ensure that when the ZenPack is
installed, all device relationships will be rebuilt; however it does not ensure that device
component relationships are rebuilt. The __init_ .py in the base directory of the ZenPack
must do this.

UserGroup : vim - Konsole ¥ & x
File Edit View Bookmarks Settings Help
from . imporfl zenpacklib 4
CFG = zenpacklib.load_yaml()

t# zenpacklib redefines ZenPack
{from Products.ZenModel .OperatingSystem import OperatingSystem

from . import schema
(import logging
tlog = logging.getlLogger('zen.UserGroup')

lass ZenPack(schema.ZenPack) :

def 1 iL1(self, app):
super(ZenPack, self).install(app)

self.rebuildRelations()

|
|
.
1
i
r

£ def remove(self, app, leaveObjects=False):
t OperatingSystem._relations = tuple({[x for x in OperatingSystem._relations if x[@] not in ['userGroups']])
self.rebuildRelations()

r super(ZenPack, self).remove(app, leaveObjects)
1
1 def upgrade(self, app):
} ZenPackBase .upgrade(self, app)
c self.rebuildRelations()
def rebuildRelations(self):
for d in self.dmd.Devices.getSubDevicesGen() :

log.debug('Building relations for: %s', d.id)
d.os.buildRelations()

I“__init__.py“ [readonly] 28 lines --3%-- 1,13 ALl
Figure 80: __init__.py to rebuild os component relationships on ZenPack install | remove | upgrade

Oct 13, 2016 ZenPack Developers' Guide 135

In Figure 80 note:

e The ZenPack class is redefined (monkeypatched). It must inherit from
schema.ZenPack, which is the ZenPack class definition created by zenpacklib.

(1324

e An import for schema from “.” is required.

e A small function is created for the ZenPack class to actually perform the relation
rebuild.

o The remove function ensures that the userGroups relation is removed from
OperatingSystem component objects. This means that an import is also required for
OperatingSystem.

The modeler plugin also requires small changes to populate the os relationship:

class UserGroupMap (CommandPlugin) :
relname and modname for the CommandPlugin will be inherited by any
calls to rm = self.relMap() or om = self.objectMap()
No compname specified here as UserGroup is a component directly on
the device (defaults to null string)
classname not required as largely deprecated. classname is the same
as the module name here

relname = 'userGroups'

modname = 'ZenPacks.community.UserGroup.UserGroup'

Need to add UserGroup objects to the os component relationship
compname = 'os'

The modeler must populate the UserGroup component object on to the existing os
relationship, not directly on to a device class. compname will then be used throughout the
modeler plugin.

When the User sub-component is populated, the component is passed as a parameter from the
calling loop to the getUserMap function. This needs adjusting to reflect the additional sub-
component hierarchy.

#um = (self.getUserMap(device, lines[1], int(ugList[2]), ugList[0], 'userGroups/%$s' % ug id, log))
um = (self.getUserMap(device, lines[1l], int(ugList[2]),ugList[0], 'os/userGroups/%s' % ug id, log))

8.12.3 Testing the changes

As with the preceding section, test devices should be moved out of their existing test classes,
the ZenPack reinstalled and everything must be restarted.

Move a test device to a test device class, ensure that the cmd. UserGroupMap modeler is
assigned to the device or device class, and re-model.

Users and Groups should be modeled and populate down from the os relationship. The ZMI
shows that the relationship hierarchy is populated correctly.

136 ZenPack Developers' Guide Oct 13, 2016

|6—/ @ https://zenoss5.zen50/zport/dmd/manage

v C'| v Google

o s $ A =

Set Preferences v|| Co
=] @ Linux - Contents f Security T Ownership ' Properties 1 0
DirFile
T LoaMaich | |Userat /zportidmd/Devices/Server/Linux/LogMatch/devices/zenny1.class.example.org/os/userGloups/jane/users/jane
gMatcl /os
SimpleTest Properties allow you to assign simple values to Zope objects. To change property values, edit the values and click "Save
= UserGroup | |||Changes".
(2 Microsoft
(& Remote snmpindex strin
(& ssH i g 9
s monitor v boolean
can
(Z Solaris productionState Production v keyedselection
(5] Windows preMWProductionState Production v keyedselection
) deviceSearch _ User name jane string
Events U | UID 500 int
e -
- _ primaryGID 500 int
& pveNatworks Primary Group Name strin
JobManager - Y P jane g
i Locations | User Comment Jane Curry string
Manufacturers _ Home Directory ‘/home/jane string
Mibs . Command / Shell /bin/bash string
.
£ Monitors ~ Save Changes Delete
%" Netwarks 2 |
< <> ~

Figure 81: ZMI demonstrating population of userGroups as an os relationship

The userGroups relationship is on os and has an instance of jane, which in turn has a users
relationship and an instance of the User object class, of jane.

The part of this solution that does not work is the JavaScript to display the component grid

panel.

zen SS) RD

Devices Networks Processes

Overview

Events

4 Components
@ Log Mateh Files (2)
oNatwcrk Routes (2)
oUser Groups (86)
D interfaces 2)

EVENTS IN

IP Services

STRUCTURE ADVANCENQ

Windows Services Network Map Manufacturers

A~
~
~

¥ Users (42) ~
' ; Overview
OFile Systems (3) yser MEma:
ane :
O P Services (13) lu s Status:
: Up

@rrocessors (1) 5
Graphs primaryGID:
Component Graphs 500 Relationships
Modeler Plugins Primary Group Name: User Group: 2
S e Save I I Cancel I

W

[+ 'ln -I Commands ~ n Model Device

Figure 82: Component panel when userGroups is a relationship on os

Oct 13, 2016

ZenPack Developers' Guide

137

<

The upper part of the main component window only shows the default fields of Events, Name,
Monitored and Locking; all the custom fields such as UID and primaryGID are not shown
although the ZMI demonstrates that these fields have been correctly populated.

The Details dropdown does usually work and any graphs for the component do work.

Although building deep hierarchies of components and sub-components is supported, Zenoss
recommends a flatter tree structure because the deeper the relationship hierarchy, the harder
it is to make subsequent changes.

9.0 SNMP LogMatch sample ZenPack

This sample ZenPack demonstrates using SNMP as the protocol to gather data.

The sample deliberately does not use zenpacklib but explicitly codes all elements with Python
or JavaScript. There are a great number of ZenPacks that do not use zenpacklib; the intention
here is to demonstrate (in the next section) how to convert a ZenPack to use zenpacklib.

9.1 Using smidump to get MIB information

smidump is a Unix / Linux utility for exploring SNMP Management Information Bases
(MIBs). There is also a version shipped as part of the Zenoss core code. Source MIBs can be
specified as a file name or a module name. If UCD-SNMP-MIB.txt is placed into
$ZENHOME | share / mibs/site, change to that directory and:

smidump -k -f identifiers UCD-SNMP-MIB.txt | grep table

will show all the tables in the MIB. The “-k” parameter specifies to keep-going if warning
errors are found in the source. Output should be similar to:

UCD-SNMP-MIB prTable table 1.3.6.1.4.1.2021.2
UCD-SNMP-MIB extTable table 1.3.6.1.4.1.2021.8
UCD-SNMP-MIB dskTable table 1.3.6.1.4.1.2021.9
UCD-SNMP-MIB laTable table 1.3.6.1.4.1.2021.10
UCD-SNMP-MIB fileTable table 1.3.6.1.4.1.2021.15
UCD-SNMP-MIB logMatchTable table 1.3.6.1.4.1.2021.16.2
UCD-SNMP-MIB mrTable table 1.3.6.1.4.1.2021.102

From the output, we can see that there is a logMatchTable. To get more information about
this, use:

smidump -k -f identifiers UCD-SNMP-MIB | grep logMatch

Output will show any line containing logMatch:

UCD-SNMP-MIB logMatch node 1.3.6.1.4.1.2021.16
UCD-SNMP-MIB logMatchMaxEntries scalar 1.3.6.1.4.1.2021.16.1
UCD-SNMP-MIB logMatchTable table 1.3.6.1.4.1.2021.16.2
UCD-SNMP-MIB logMatchEntry row 1.3.6.1.4.1.2021.16.2.1
UCD-SNMP-MIB logMatchIndex column 1.3.6.1.4.1.2021.16.2.1.1
UCD-SNMP-MIB logMatchName column 1.3.6.1.4.1.2021.16.2.1.2
UCD-SNMP-MIB logMatchFilename column 1.3.6.1.4.1.2021.16.2.1.3
UCD-SNMP-MIB logMatchRegEx column 1.3.6.1.4.1.2021.16.2.1.4
UCD-SNMP-MIB logMatchGlobalCounter column 1.3.6.1.4.1.2021.16.2.1.5
UCD-SNMP-MIB logMatchGlobalCount column 1.3.6.1.4.1.2021.16.2.1.6
UCD-SNMP-MIB logMatchCurrentCounter column 1.3.6.1.4.1.2021.16.2.1.7
UCD-SNMP-MIB logMatchCurrentCount column 1.3.6.1.4.1.2021.16.2.1.8
UCD-SNMP-MIB logMatchCounter column 1.3.6.1.4.1.2021.16.2.1.9

138 ZenPack Developers' Guide Oct 13, 2016

UCD-SNMP-MIB logMatchCount column 1.3.6.1.4.1.2021.16.2.1.10
UCD-SNMP-MIB logMatchCycle column 1.3.6.1.4.1.2021.16.2.1.11
UCD-SNMP-MIB logMatchErrorFlag column 1.3.6.1.4.1.2021.16.2.1.100
UCD-SNMP-MIB logMatchRegExCompilation column 1.3.6.1.4.1.2021.16.2.1.101

Having found useful MIB variables like logMatchName and logMatchCurrentCounter, they
can be queried using snmpwalk. Either use the full OID seen above or, if the MIB module is
under /usr/share/snmp /mibs, then the module name can be used with the OID name. So,
for device zennyl, which supports SNMP v2, with a community of fraclmye, try:

[zenoss@zend?2 mibs]$ pwd

/usr/share/snmp/mibs

[zenoss@zend2 mibs]$ snmpwalk -v 2c¢ -c fraclmye zennyl UCD-SNMP-MIRB::logMatchName
UCD-SNMP-MIB: :logMatchName.l = STRING: fredl daily

UCD-SNMP-MIB: : logMatchName.2 = STRING: fred2 daily

[zenoss@zend42 mibs]$ snmpwalk -v 2c -c fraclmye zennyl UCD-SNMP-MIB::logMatchCurrentCounter
UCD-SNMP-MIB: :logMatchCurrentCounter.l = Counter32: 8

UCD-SNMP-MIB: :logMatchCurrentCounter.2 = Counter32: 25

[zenoss@zen4?2 mibs]$

9.2 Requirements specification

The first complex, coded sample ZenPack will use the capability of a netSnmp agent to report
on logfiles. Strictly, information comes from the UCD (University of California, Davis or
ucdavis) MIB which is now being maintained by the netSnmp team.

Details for configuring logfile monitoring are provided in the man pages for snmpd.conf.

Eile Edit View Search Terminal Help

Log File Monitoring

zenoss@zen42:/opt/zenoss/share/mibs

This requires that the agent was built with support for either the ucd-snmp/file or ucd-snmp/logmatch modules
respectively (both of which are included as part of the default build configuration).

file FILE [MAXSIZE]
monitors the size of +the specified file (in kB). If MAXSIZE is specified, and the size of the file
exceeds this threshold, then the corresponding fileErrorFlag instance will be set to 1, and & suitable
description message reported via the fileErrorMsg instance.

Note: This situation will mnot automatically trigger a trap to report the problem - see the DisMan Event
MIB section later.

Note: A maximum of 20 files can be monitored.

Note: If no file directives are defined, then walking the fileTable will fail (noSuchObject).

logmatch NAME FILE CYCLETIME REGEX
monitors the specified file for occurances of the specified pattern REGEX. The file position 1is stored
internally so the entire file is only read initially, every subsequent pass will only read the new lines
added to the file since the last read.

NAME name of the logmatch instance (will appear as logMatchName under logMatch/logMatchTable/log-
MatchEntry/logMatchName in the ucd-snmp MIB tree)

FILE absolute path to the logfile to be monitored. Note that this path can contain date/time direc-
tives (like in the UNIX ’'date’ command). See the manual page for ‘strftime’ for the various
directives accepted.

CYCLETIME
time interval for each logfile read and internal variable update in seconds. MNote: an SNMPGET*
operation will also trigger an immediate logfile read and variable update.

REGEX the regular expression to be used. Note: DO NOT enclose the regular expression in quotes even if
there are spaces in the expression as the quotes will also become part of the pattern to be
matched!

Example:

logmatch apache-GETs fusr/local/apache/logs/access.log-%Y-%m-%d 60 GET.*HTTP.*

Figure 83: man snmpd.conf provides documentation on configuring for logfile monitoring

Oct 13, 2016 ZenPack Developers' Guide 139

To monitor for the string “test”, every 5 minutes, in a file under /opt/zenoss/local/fredtest,
whose name is fred1.log YYYYMMDD, where YYYYMMDD changes each day to represent
the current date, put the following entry into the snmpd.conf file (typically in /etc/snmp).
You will need root privileges.

logmatch fredl daily /opt/zenoss/local/fredtest/fredl.log %Y%m%d 300 test

The snmpd daemon will need restarting (with root privilege). The command may vary slightly
depending on your Operating System but:
service snmpd restart or

/etc/init.d/snmpd restart should work

To get logfile information using SNMP, snmpwalk the logfile table. For the device
zen42.class.example.org, using SNMP v2c¢ with a community of public, use:

snmpwalk -v 2c -c public zen42.class.example.org 1.3.6.1.4.1.2021.16

where 1.3.6.1.4.1.2021.16 is the Object Id (OID) for the logfile table in the UCD MIB. You
should not need root privilege for snmpwalk tests.

E=l zenoss@zen42:/opt/zenoss/local/fredtest - 0O x
File Edit View Search Terminal Help

[zenoss@zend2 fredtest]s]
[zenoss@zend42 fredtest]$ cat fredl.log 20151106

test 1

test 2

without keyword 3

without keyword 4

[zenoss@zend2 fredtest]$

[zenoss@zend2 fredtest]$

[zenoss@zend2 fredtest]s snmpwalk -v 2c -c public zend42.class.example.org 1.3.6.1.4.1.2021.16
UCD-SNMP-MIB: :logMatchMaxEntries.® = INTEGER: 250

UCD-SNMP-MIB: :logMatchIndex.1l = INTEGER: 1

UCD-SNMP-MIB: :logMatchName.1l = STRING: fredl daily

UCD-SNMP-MIB: :logMatchFilename.1l = STRING: /opt/zenoss/local/fredtest/fredl.log_ 201511086
UCD-SNMP-MIB: :logMatchRegEx.1 = STRING: test

UCD-SNMP-MIB: :logMatchGlobalCounter.1l = Counter32: 2

UCD-SNMP-MIB: :logMatchGlobalCount.1l = INTEGER: 2

UCD-SNMP-MIB: :logMatchCurrentCounter.l = Counter32: 2

UCD-SNMP-MIB: :logMatchCurrentCount.1l = INTEGER: 2

UCD-SNMP-MIB: :logMatchCounter.1l = Counter32: 2

UCD-SNMP-MIB: :logMatchCount.1l = INTEGER: @

UCD-SNMP-MIB: :logMatchCycle.1l = INTEGER: 300

UCD-SNMP-MIB: :logMatchErrorFlag.l = INTEGER: noError(0)
UCD-SNMP-MIB: : logMatchRegExCompilation.1l = STRING: Success

[zenoss@zend?2 fredtest]s I

Figure 84: snmpwalk command for UCD logfile information

If you need the numeric OIDs rather than the slightly more friendly OID names, add “-O n” to
the snmpwalk command.

140 ZenPack Developers' Guide Oct 13, 2016

zenoss@zen42:/opt/zenoss/local/fredtest

File Edit View Search Terminal Help
[zenoss@zend2 fredtest]$ snmpwalk -v 2c -c public -0 n zend42.class.example.org 1.3.6.1.4.1.2021.16

.1.3.6.1.4.1.2021.16.1.06 = INTEGER: 250
.1.3.6.1.4.1.2021.16.2.1.1.1 = INTEGER: 1
.1.3.6.1.4.1.2021.16.2.1.2.1 = STRING: fredl daily
.1.3.6.1.4.1.2021.16.2.1.3.1 = STRING: /opt/zenoss/local/fredtest/fredl.log 20151106
.1.3.6.1.4.1.2021.16.2.1.4.1 = STRING: test
.1.3.6.1.4.1.2021.16.2.1.5.1 = Counter32: 2
.1.3.6.1.4.1.2021.16.2.1.6.1 = INTEGER: 2
.1.3.6.1.4.1.2021.16.2.1.7.1 = Counter32: 2
.1.3.6.1.4.1.2021.16.2.1.8.1 = INTEGER: 2
.1.3.6.1.4.1.2021.16.2.1.9.1 = Counter32: 0
.1.3.6.1.4.1.2021.16.2.1.10.1 = INTEGER: 0
.1.3.6.1.4.1.2021.16.2.1.11.1 = INTEGER: 300
.1.3.6.1.4.1.2021.16.2.1.100.1 = INTEGER: noError(0)
.1.3.6.1.4.1.2021.16.2.1.101.1 = STRING: Success

[zenoss@zend2 fredteétjs.l
Figure 85: snmpwalk command for UCD logfile information showing full numeric OIDs

If there are several logmatch entries in snmpd.conf then there will be several sets of OID
values in the MIB table, each with an increasing index number.

The UCD-SNMP-MIB.txt MIB file can be obtained from various places on the internet such as
http://www.net-snmp.org/docs/mibs/UCD-SNMP-MIB.txt .

Oct 13, 2016 ZenPack Developers' Guide 141

http://www.net-snmp.org/docs/mibs/UCD-SNMP-MIB.txt

zenoss@zend2:/opt/zenoss/share/mibs/site

File Edit View Search Terminal Help

logMatch OBJECT IDENTIFIER ::= { ucdavis 16 }

logMatchMaxEntries OBJECT-TYPE

SYNTAX Integer32

MAX-ACCESS read-only

STATUS current

DESCRIPTION
"The maximum number of logmatch entries
this snmpd daemon can support.”

::= { logMatch 1 }

logMatchTable OBJECT-TYPE
SYNTAX SEQUENCE OF LogMatchEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Table of monitored files."
::= { logMatch 2 }

logMatchEntry OBJECT-TYPE

SYNTAX LogMatchEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"Entry of file"
INDEX { logMatchIndex }
::= { logMatchTable 1 }

LogMatchEntry ::=
SEQUENCE {
logMatchIndex
Integer3z,
logMatchName
DisplayString,

"UCD-SNMP-MIB.txt" [readonly] 1688 lines --90%--
Figure 86: UCD-SNMP-MIB.txt showing start of logMatch definitions

Figure 86 shows that the logMatch entries start with OID { ucdavis 16 } (ucdavis is defined at
the top of this file as { enterprises 2021 }, which gives the OID to logMatch as
1.3.6.1.4.1.2021.16. There is then a table of entries, one entry for each logMatch file
configured in the agent. This takes us to OID 1.3.6.1.4.1.2021.16.2.1.

Some of the LogMatch OIDs are useful for configuration data; others for performance data.

142 ZenPack Developers' Guide Oct 13, 2016

zenoss@zen42:/opt/zenoss/share/mi

File Edit View Search Terminal Help

logMatchIndex OBJECT-TYPE

SYNTAX Integer32 (1..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Index of logmatch"
::= { logMatchEntry 1 }

logMatchName OBJECT-TYPE

SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"logmatch instance name"
::= { logMatchEntry 2 }

logMatchFilename OBJECT-TYPE

SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"filename to be logmatched"
::= { logMatchEntry 3 }

logMatchRegEx OBJECT-TYPE

SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"regular expression"
::= { logMatchEntry 4 }

"UCD-SNMP-MIB.txt" [Modified][readonly] 1677 lines --93%--

Figure 87: LogMatch OIDs for configuration data

Note the SYNTAX statement in a MIB file - it gives the type of data. Note that DisplayString

is text - but only upto 255 characters.

Thus useful configuration information is:

1.3.6.1.4.1.2021.16.2.1.1
1.3.6.1.4.1.2021.16.2.1.2
1.3.6.1.4.1.2021.16.2.1.3
1.3.6.1.4.1.2021.16.2.1.4
1.3.6.1.4.1.2021.16.2.1.11
1.3.6.1.4.1.2021.16.2.1.100

Oct 13, 2016

ZenPack Developers' Guide

index number into the logMatch table
logMatch instance name

filename being matched

regular expression used for matching
cycle time for this logMatch entry
error flag for this logMatch entry

143

e 1.3.6.1.4.1.2021.16.2.1.101 message of regex precompilation for this entry

Examining further down the MIB file, the various relevant performance data counters are:

logMatchGlobalCounter OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"global count of matches"
:= { logMatchEntry 5 }

logMatchCurrentCounter OBJECT-TYPE

SYNTAX Counter32

MAX-ACCESS read-only

STATUS current

DESCRIPTION
"Regex match counter. This counter will
be reset with each logfile rotation."

::= { logMatchEntry 7 }

logMatchCounter OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Regex match counter. This counter will
be reset with each read"
:= { logMatchEntry 9 }

Counter data types are often more useful than raw data. For displaying data graphically, the
logMatchCurrentCounter (1.3.6.1.4.1.2021.16.2.1.7) is probably the most useful as it will
deliver the number of matches, taking account of the logfile rotating.

In addition to monitoring attributes of the logMatch files, the ucdavis MIB provides some
version information that is pertinent to the overall device.

144 ZenPack Developers' Guide Oct 13, 2016

File Edit View Search Terminal Help

version OBJECT IDENTIFIER ::= { ucdavis 100 }

versionIndex OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Index to mib (always 0)"
i:= { version 1 }

versionTag OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"CVS tag keyword"
::= { version 2 }

versionDate OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Date string from RCS keyword"
::= { version 3 }

versionCDate OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Date string from ctime()
::= { version 4 }

BersionIdent OBJECT-TYPE

"/opt/zenoss/share/mibs/site/UCD-SNMP-MIB.txt"
Figure 88: version OIDs in UCD-SNMP-MIB.txt

[readonly]

zenoss@zen42:/opt/zenoss/local/fredtest

1688 lines --56%--

Note that the version OIDs are all scalar values; in other words, there is only one value, not
a table of values. There is no Table -> Entry hierarchy. When using scalar values within

Zenoss, typically a “.0” needs adding to an OID string.

9.3 ZenPack specification

The new ZenPack will be called ZenPacks.community.LogMatch.

The ZenPack will create a new component type called LogMatch with various attributes:

e logMatch table entry
s logMatchIndex (integer)
s logMatchName (string)
m logMatchFilename (string)
m logMatchRegex (string)
m logMatchCycletime (integer)

Oct 13, 2016 ZenPack Developers' Guide

1.3.6.1.4.1.2021.16.2.1

1
2

3
4
A1

145

s logMatchErrorFlag (integer where 0 = noError and 1 = Error) .100
s logMatchRegExCompilation (string) 101

For now, the ZenPack will also create a new object class for devices that support LogMatch -
LogMatchDevice. This device will have extra attributes providing version information:

e versionTag 1.3.6.1.4.1.2021.100.2.0
e versionDate 1.3.6.1.4.1.2021.100.3.0

A LogMatchDevice will have a ToManyCont relationship with LogMatch components called
logMatchs. The corresponding ToOne relationship from the LogMatch component will be
logMatchDevice (note the capitalisation and presence / lack of a trailing “s”, carefully).

A modeler plugin will be required to discover LogMatch components - LogMatchMap.

JavaScript will be needed to display the new component. The LogMatch.js file will be under
the ZenPack's browser/resources/js directory hierarchy.

Info and Interface classes for the LogMatch component will be LogMatchInfo and
ILogMatchInfo respectively.

Templates will be created through the GUI and added to the objects.xml of the ZenPack.

9.4 Creating the ZenPack

Unless otherwise noted, all ZenPack instructions from here on will be for Zenoss 4 Core (or
earlier). Remember that Service Dynamics and Zenoss 5 have different requirements for
restarting daemons. Refer to Chapter 3 for more details.

1. Create the ZenPack, ZenPacks.community.LogMatch using the GUI. Add an owner
name and a License.

2. Copy the directory hierarchy from $ZENHOME | ZenPacks to
/code | ZenPacks | DevGuide

cd /code/ZenPacks/DevGuide
cp -R $ZENHOME/ZenPacks/ZenPacks.community.LogMatch .

3. Reinstall the ZenPack in development mode with the link parameter

zenpack --link --install ZenPacks.community.LogMatch

4. Restart the necessary Zenoss daemons

zenhub restart
zopectl restart

5. Create the README.rst skeleton file in the top-level directory of the ZenPack

146 ZenPack Developers' Guide Oct 13, 2016

9.5 Creating device and component object classes

The creation of the ZenPack creates various sample files that are good templates for creating
’a the required files. At first, it is good practice to copy the sample files, rather than modify
them, so the unchanged samples can be referred back to.

ExampleDevice.py has been copied to LogMatchDevice.py and then modified. Note that it is
good practice for the filename to match the object class name.

zenoss@zend2:/code/ZenPacks/DevGuide/ZenPacks.community.LogMatch/ZenPacks/community/LogMatch

File Edit View Search Terminal Help

from Products.ZenModel.Device import Device
from Products.ZenRelations.RelSchema import ToManyCont, ToOne

LogMatchDevice(Device):
LogMatch device subclass. In this case the reason for creating a subclass of
device is to add a new type of relation. We want many "LogMatch"
components to be associated with each of these devices.

If you set the zPythonClass of a device class to
ZenPacks.community.LogMatch.LogMatchDevice, any devices created or moved
into that device class will become this class and be able to contain
LogMatch components.

meta_type = portal_type = 'LogMatchDevice'

#EErxxrkxkx****Cystom data Variables here from modeling'&'&'&'&'&'&'&'&'&e‘-kic.'s's'k'&'&'&'k'k"s'ek'k'k

versionTag = ''

versionDate =

#'x.e&x.A'&'S'&'A'&'A'&'&'&'AEND CUSTOM V’ARIABLES EEEEERERERREKKRKEREREREREEREREERREREREREREE

kR kkay. “Those should match ‘this: List below ERERERRERREEKEESE

properties = Device. properties + (
{'id':'versionTag', 'type':'string', 'mode':''}
{'id':'versionDate', 'type':'string', 'mode’:"'’
)

BEEREERERERE LKA KK

i‘!

This is where we extend the standard relationships of a device to add
our "logMatchs" relationship that must be filled with components
of our custom "LogMatch" class.
ZenPacks.community.lLogMatch.LogMatch.LogMatch (starting from the right) is the
LogMatch class in the LogMatch file (strictly module) in the ZenPacks.community.lLogMatch ZenPack
_relations = Device. relations + (
('logMatchs', ToManyCont(ToOne,
'ZenPacks.community.LogMatch.LogMatch.LogMatch',
'logMatchDevice"',
) '
)
)
"LogMatchDevice.py" [Modified][readonly] 39 lines --41%--

Figure 89: LogMatchDevice.py

The LogMatchDevice class inherits from the Zenoss-supplied Device class.

In the

meta-type = portal-type = 'LogMatchDevice'

line, the name at the end should match the object class that is being defined.

The ExampleDevice.py template did not provide examples for new attributes so these have
been added.

Oct 13, 2016 ZenPack Developers' Guide 147

The relationship statement inherits from Device._relations and then adds on the new
logMatchs ToManyCont relationship.

n Note that we have chosen to call the new component object LogMatch, not
LogMatchComponent.

The LogMatch.py file has been copied from ExampleComponent.py and modified.

zenoss@zend2:/code/ZenPacks/DevGuide/ZenPacks.community.LogMatch/ZenPacks/community/LogMatch

File Edit View Search Terminal Help

g@rom Products.ZenModel.DeviceComponent import DeviceComponent
from Products.ZenModel.ManagedEntity import ManagedEntity

from Products.ZenModel.Z7enossSecurity import ZEN CHANGE DEVICE
Trom Products.ZenRelations.RelSchema import ToManyCont, ToOne

» LogMatch(DeviceComponent, ManagedEntity):
meta type = portal type = "LogMatch"

#rererribrrrk¥Custom data Variables here Trom modeling*#kFsskikirkipihirritr
logMatchName = "'

logMatchFilename = '°'

logMatchRegEx = '

logMatchCycle = 300

logMatchErrorFlag = @

logMatchRegExCompilation = "'

#554«5%5«-555«-5%END CUSTOM VARIABLES e EEEEEEEEE LSS S S EE R E R EE R S
#rrxexrxxerrrrr Those should match this list below ****#kssddiidoriikrs
_properties = ManagedEntity. properties + (

{'id': 'logMatchName', 'type': ‘'string', 'mode': ''},

{'id': 'logMatchFilename', 'type': 'string', ‘mode': ''},

{'id': 'logMatchRegEx', 'type': 'string', 'mode': ''},

{'id': 'logMatchCycle', 'type': 'int', 'mode': ''},

{'id': 'logMatchErrorFlag', 'type': 'int', 'mode': "'},

{'id': 'logMatchRegExCompilation', 'type': 'string', 'mode': ''},

)

FE KR R R R KR KKK

_relations = ManagedEntity. relations + (

('logMatchDevice', ToOne(ToManyCont,
'ZenPacks.community.LogMatch.LogMatchDevice.lLogMatchDevice',
‘logMatchs’,

)J

}J

)

Custom components must always implement the device method. The method
should return the device object that contains the component.
ie. follow the logMatchDevice relationship
- device(self):
I rm self.logMatchDevice()
"LogMatch.py” [Modified] 52 lines --69%--

Figure 90: LogMatch.py file defining the LogMatch component object class

n Note the third line in the LogMatch.py file is underlined in red. This is the pyflakes plugin to
the vi editor pointing out an “error”. Moving to that line gives the explanation
“ZEN_CHANGE_DEVICE' imported but unused”; in this case, it is informational rather than
a real issue.

The LogMatch object class inherits from both DeviceComponent and ManagedEntity.

The properties inherit from ManagedEntities._properties and the relations for the object
inherits from ManagedEntity._relations.

Attributes are defined with default values; note that the default value must be of the correct
type to match with the definition in the _properties statement.

148 ZenPack Developers' Guide Oct 13, 2016

Note that Python is perfectly happy with either single quotes (') or double quotes (“) around
strings but the opening and closing quotes must match.

TODO: What should mode be and what does it do???

It is essential that the ToOne relationship, logMatchDevice, matches exactly with the
corresponding definition in the LogMatchDevice.py file.

Any component object class must define a method called device which delivers the object
representing the containing device. In practice, this simply follows the logMatchDevice
relationship.

Remember from Figure 29 in chapter 5 that the ManagedEntity class had a null device
method. The code in LogMatch.py overrides this null method. It is perfectly possible to build
hierarchies of components through relationships and the device method will follow these
relationships.

The ExampleComponent.py template defines factory_type_information with a comment
that implies that this stanza is necessary to see the Graphs dropdown menu for a component.
In Zenoss 4 and later, this is no longer required. (Incidentally, this is why pyflakes was
highlighting the import of ZEN_CHANGE_DEVICE as it is the factory_type_information
stanza that uses this).

When the two object class files are complete, reinstall the ZenPack, watching for error
messages. When a new object class file has been added, restart Zenoss entirely rather than
just zenhub and zopectl.

9.5.1 Checking the device attributes and relationship

One way to check the new device object class is to set the zPythonClass and then check
attributes and relationships. A good way to do this is to set the zPythonClass on a test Zenoss
Device Class and then move a test device into that class.; simply setting the zPythonClass on
a test device generally does not work as the buildRelations() method needs to be run.

1. Create a new Zenoss Device Class for testing - /Server/Linux/SimpleTest

2. From the DETAILS link at the top of the left-hand menu, use the Configuration
Properties menu to set zPythonClass to
ZenPacks.community.LogMatch.LogMatchDevice . This must match the device object
class file in the ZenPack (without the “.py”).

3. If the test device is already in that class, move it to a different class - /Ping is often a
good choice.

4. Move the test device into the sample class. This action runs the buildRelations()
method for any moved devices and creates any new attributes.

5. Examine the test device with the ZMI. You should see a logMatchs relationship (which
will have no instances if you drill into it).

6. Under the ZMI Properties tab for the test device, you should find the new attributes.

Oct 13, 2016 ZenPack Developers' Guide 149

<« [@ example.org | https://zend2.class.example.org/zport/dmd/manage i @l [-"V @] ﬂ -

- Contents Securit Gunarshy -
® (1 Application W P Proparties
(Z BackupFarLotsc
[Discoversd Properties allow you to assign simple values to Zope objects. Ti =
3 Caroe Name Value s
snmpindex string
EHTTP -
T kvm
(I MarkitDatabases moniior boolean
* @ Network productionState [Maintenance [¢ | keyedsslection
* T ping preMWProductionState [Maintenance z) keyedselection
= [Power P e -
® [Printer (] el
= @ server | managelp (172311004] string
Ecmd 1 snmpAgent (] string 2
Zpe2)
(Darwin SnmmDsac [Linux servl.class.example.org 2.4.18-10 #1 Wed Aug 7 11:39:21 EDT 2002 i686 | "9
* @ Linue sampcsd 11.3.6.1.4.1.2021.250.10 siring
fal nsivewy snmpContact string
(Z Redis ane Curry
D simpieTe mmp3ysame [group-100-servl.class.example.org ‘ string
8 il Tomest ‘snmpLocation i & strin
Tl twemprox P Virtual machine room 100 fl
g Wcant snmpLastCollection [2015/11/09 11:52:8.200436 GMT ‘ date
L Remote i)
5 GssH L] snmpagent string
s sl rackSlot () string
(% Scan
@ solaris comments text
< T vMware - |
< @ virtual Machir
* @ windows
(T Storage
A deviceSeareh sysedgeLicenseMode ! string
* Events pricrity B) int
“ Al Groups
J_‘ numMQQueues [) int
< < |PvBNetworks
% JobManager . versionTag o string
® 47 Locations @ versionbate o string
&1, + M ee _link_failure [boolean |
n DI 5

Figure 91: ZMI showing attributes of sample device, group-100-servl, in the /Server/Linux/SimpleTest
device class

9.6 Creating the component modeler

When the ZenPack was created, a directory hierarchy for modelers was created under the
base directory:

e modeler/plugins
= /community
¢+ /snmp
¢+ /emd

It is essential that modelers go under the modeler / plugins hierarchy but the directory
hierarchy is not mandated beyond that. Particularly if there is only one modeler, it may be
clearer to simply place it under modeler/plugins. For this sample, we will adhere to the full
directory hierarchy built on ZenPack creation so, since, the component is managed using
SNMP, the LogMatchMap.py modeler file should go under

modeler [plugins [community [snmp.

Remember that the modeler/plugins directory hierarchy must not contain any files ending in
.py, other than valid, correct modelers; otherwise zenhub will report errors on them. This is
why the sample files all end in “.example”.

The SNMP modeler example provided, ExampleSNMP.py.example, only gathers device
configuration data, not component data. There is an example component modeler under the
cmd subdirectory. That said, ExampleSNMP.py.example has a very interesting demonstration
of applying scalar data to different, existing components (os and hw) of a device.

150 ZenPack Developers' Guide Oct 13, 2016

So, how to get the OIDs into the relevant standard device attributes? Zenoss provides a
number of setter methods for standard attributes, including setHWSerialNumber and
setHWTag (see the Zenoss Wiki — Diving into the Device Model at
http:/monitoringartist.github.io/community.zenoss.org/docs/DOC-2350.html for more
information on both device setters and properties) . The really useful feature that this plugin
demonstrates is that SNMP data can not only be mapped to object attributes; it can also be
mapped to setter methods.

9.6.1 * SNMP modeler code in core Zenoss

The core Zenoss code provides the basic building blocks for modelers.
$ZENHOME | Products | DataCollector | plugins [CollectorPlugin.py defines a
CollectorPlugin class and then several more specific plugins that inherit from that class:

class CollectorPlugin (object) :

Base class for Collector plugins

wnn

order = 100

transport = ""

maptype = ""

relname = ""

compname = ""

modname = ""

classname = ""

weight =1

deviceProperties = ('id',
'managelIp',
' snmpLastCollection',
' snmpStatus',
'zCollectorClientTimeout',

)

There are also several methods defined for the CollectorPlugin, including:

def objectMap(self, data={}):
"""Create an object map from the data

wn

om = ObjectMap (data)

om.compname = self.compname
om.modname = self.modname
om.classname = self.classname

return om

Note that objectMap instantiates an ObjectMap (note upper-case “O”). There is also a
relMap method that instantiates a RelationshipMap.

def relMap (self):
"""Create a relationship map.
relmap = RelationshipMap ()
relmap.relname = self.relname
relmap.compname = self.compname
return relmap

Oct 13, 2016 ZenPack Developers' Guide 151

http://monitoringartist.github.io/community.zenoss.org/docs/DOC-2350.html

Both methods pass the CollectorPlugin compname (component name) to the object or
relationship map. The plugin's modname (module name) and classname are also passed to
the object map and the relname is passed to the relationship map.

ObjectMap and RelationshipMap can be found in DataMaps.py in the same directory; both
are, effectively, protobufs (raw data).

Three other methods in the CollectorPlugin class are:

def condition(self, device, log):
"""Test to see if this CollectorPlugin is wvalid for this device.

won

return True

def preprocess(self, results, log):

"""Perform any plugin house keeping before calling user func process.
nmoan

return results

def process(self, device, results, log):
"""Process the data this plugin collects.

won

raise NotImplementedError

These are methods that may be overridden in classes that inherit from CollectorPlugin. Note
that the process method must be implemented in subclasses or an error will be raised.

CollectorPlugin.py also defines specializations of the CollectorPlugin class:
e class PythonPlugin(CollectorPlugin):
e class CommandPlugin(CollectorPlugin):
e class LinuxCommandPlugin(CommandPlugin):
e class SoftwareCommandPlugin(CommandPlugin):
e class SnmpPlugin(CollectorPlugin):
s SnmpPlugin attributes

class SnmpPlugin(CollectorPlugin) :
moan
An SnmpPlugin defines a mapping from SNMP MIB values to a datamap.
A valid SnmpPlugin must define 'collectoids' (a list of OIDs to be collected)
and the process () method which converts the OID data to a datamap. It
can override the condition() method if necessary.

wnn

transport = "snmp"

conditionOids = []

snmpGetMap = None

snmpGetTableMaps = []

deviceProperties = CollectorPlugin.deviceProperties + ATTRIBUTES + (
'snmpOid’',
'zMaxOIDPerRequest',
)

s SnmpPlugin preprocess method. The GetMap and GetTableMap methods, each of
which has a mapdata method, are defined in the same file.

def preprocess(self, results, log):
"""Gather raw data for process () to process

152 ZenPack Developers' Guide Oct 13, 2016

won

getdata, tabledatas = results
if self.snmpGetMap:
getdata = self.snmpGetMap.mapdata (getdata)
tdata = {}
for tmap, tabledata in tabledatas.items():
tdata[tmap.name] = tmap.mapdata (tabledata)
return (getdata, tdata)

m Note that the SnmpPlugin class does not have a process method defined. It must
be written as part of the modeler in the ZenPack.

9.6.2 The LogMatchMap modeler plugin for component data

Create LogMatchMap.py in the modeler /plugins /community /| snmp subdirectory of the
ZenPack. The name of the file must match the name of the modeler plugin class inside it. The
directory path hierarchy will be reflected in the GUI dialogue for choosing plugins so will be
shown as community.snmp.LogMatchMap.

zenoss@zend42:/code/ZenPacks/DevGuide/ZenPacks.community.LogMatch/ZenPacks/community/LogMatch/modeler/plugins/community/snmp
File Edit View Search Terminal Help
M Module-level documentation will automatically be shown as additional
information for the modeler plugin in the web interface.

LogMatchMap
An SNMP plugin that gathers data for LogMatch components.

When configuring modeler plugins for a device or device class, this plugin's
name would be community.snmp.LogMatchMap because its filesystem path within

the ZenPack is modeler/plugins/community/snmp/LogMatchMap.py. The name of the
class within this file MUST - repeat MUST - match the filename.

SnmpPlugin is the base class that provides lots of help in modeling data
that's available over SNMP.
rom Products.DataCollector.plugins.CollectorPlugin import SnmpPlugin, GetTableMap

—h

LogMatchMap (SnmpPlugin):

Strictly it is a DEVICE that is being queried for SNMP data so we need to

specify the relationship on the device that this modeler is going to populate
We also need to specify the full module path that specifies the component object
that we want to instantiate.

relname = "logMatchs”
modname = "ZenPacks.community.LogMatch.LogMatch"
"LogMatchMap.py" 122 lines --0%-- Lyl

Figure 92: Modeler plugin LogMatchMap.py - initial class definition

The LogMatchMap class inherits from the SnmpPlugin class provided in
$ZENHOME |/ Products | DataCollector | plugins | CollectorPlugin.

Note the definition of relname and modname. It is essential that these exist and are correct
for the modeler to actually create components.

e relname is the name of the relationship on the device (since it is the device, not the
component that responds to SNMP) - logMatchs.

e modname is the full path to the module containing the object definition for the
component. In practice, this is found from the filename in the ZenPack that contains the
object definition - ZenPacks.community.LogMatch.LogMatch.

Oct 13, 2016 ZenPack Developers' Guide 153

An SnmpPlugin must specify scalar and / or table OIDs to collect. These are the 'collectoids’
referenced in the comments at the top of the SnmpPlugin class in

$ZENHOME | Products | DataCollector | plugins | CollectorPlugin.py. The LogMatchMap plugin
will only collect tabular data.

zenoss@zen42:/code/ZenPacks/DevGuide/ZenPacks.community.LogMatch/ZenPacks/community/LogMatch/modeler/plugins/community/snmp

File Edit View Search Terminal Help

[
]
) # snmpGetTableMaps and GetTableMap should be used to request SNMP tables.
The parameters are:
1) The name of the structure that you want to store the results in.
This can be anything but, by convention, is the name of the MIB table
2) The base 0ID for the table. The "entry" 0ID or more specifically the
largest possible 0ID prefix that doesn't change when walking the table.
3) A dictionary that maps columns in the table to names that will be used
to access them in the results. These names should exactly match the
attributes of the LogMatch component.
snmpGetTableMaps = (
GetTableMap('logMatchTable"',
'.1.3.6.1.4.1.2021.16.2.1",
If
{
'.1"': 'logMatchIndex',
'.2': '"logMatchName',
! '.3': 'logMatchFilename',
'.4': 'logMatchRegEx',
'.11': 'logMatchCycle',
'.100': 'logMatchErrorFlag',
'.101': 'logMatchRegExCompilation',
[I
[)
More GetTableMap definitions can be added to this tuple to query
more SNMP tables.
)
1"LogMatchMap.py" [readonly] 122 lines --21%-- 26,0-1

Figure 93: Modeler plugin LogMatchMap.py - snmpGetTableMaps to collect a table of OIDs

snmpGetTableMaps and GetTableMap (defined in
$ZENHOME | Products | DataCollector | plugins | CollectorPlugin.py) should be used to request
SNMP tables. The parameters are:

1. The name of the structure that you want to store the results in.
a m This can be anything but, by convention, is the name of the MIB table
2. The base OID for the table.

s The "entry" OID or more specifically the largest possible OID prefix that doesn't
change when walking the table.

a s This is simply good practice, not mandated. It would be possible to have the
\ following but it would simply mean more typing:

'.1.3.6.1.4.1.2021.16.2",

{

'1.1'": 'logMatchIndex',

'1.2': '"logMatchName',

'1.3": '"logMatchFilename',

'1.4': 'logMatchRegEx',

'1.11"'": '"logMatchCycle',

'1.100"'": '"logMatchErrorFlag',

'1.101"': 'logMatchRegExCompilation',
}

3. A dictionary that maps columns in the table to names that will be used to access them
in the results.

154 ZenPack Developers' Guide Oct 13, 2016

s These names must exactly match the attributes of the LogMatch component.

The remainder of LogMatchMap.py is the mandatory process method.

zenoss@zen42:/code/ZenPacks/DevGuide/ZenPacks.community.LogMatch/ZenPacks/community/LogMatch/modeler/plugins/community/snmp

File Edit View Search Terminal Help
process(self, device, results, log):
log.info("Modeler %s processing data for device %s",
self.name(), device.id)

Results is a tuple with two items. The first (@) index contains a
dictionary with the results of the "snmpGetMap" queries. The second
(1) index contains a dictionary with the results of the
"snmpGetTableMaps" queries.

NB. For this modeler, getdata is null
etdata, tabledata = results

HoQ HoHH R

tabledata contents..
{'logMatchTable': {'1'

{'logMatchRegExCompilation': 'Success', 'logMatchRegEx': 'test',
‘logMatchCycle': 300, 'logMatchErrorFlag': 0, 'logMatchName': 'fredl daily',
‘logMatchFilename': '/opt/zenoss/local/fredtest/fredl.log 20151110°',
‘logMatchIndex': 1},

H

il
{'logMatchRegExCompilation': 'Success', 'logMatchRegEx': 'without',
‘logMatchCycle': 180, 'logMatchErrorFlag': 0, 'logMatchName': 'fred2 daily',
'logMatchFilename': '/opt/zenoss/local/fredtest/fred2.log 20151110°',
‘logMatchIndex': 1},

Mo W W R B R W 8

sk

tabledata may have several dictionaries of tables; we want the logMatchTable dict
logMatchTable = tabledata.get('logMatchTable")
log.debug('logMatchTable is %s ' % (lagMatchTable))
if no tabledata then return logging a warning
logMatchTable:
log.warn{ 'No SNMP response from %s for the %s plugin ', device.id, self.name())
log.warn{ "Table Data= %s", tabledata)

“LogMatchMaplpy“ £21 lines --70%-- 85,18
Figure 94: Modeler plugin LogMatchMap.py - start of process method

The process method is passed the results parameter from the preprocess method of the
n SnmpPlugin class. This is a Python tuple with two items (note that all Python indexing starts
at 0, not 1).

e The first (0) index contains a dictionary with the results of the "snmpGetMap" queries;
ie the scalar data. For the LogMatchMap modeler, this is null.

o The second (1) index contains a dictionary with the results of the "snmpGetTableMaps"
queries; ie the tabular data.

m Strictly the table data is a dictionary of dictionaries of dictionaries. Once you can
m run the modeler and get debug output it is useful to provide as comments, sample
output for tabledata.

m This modeler only requests one GetTableMap, logMatchTable, but it is perfectly
possible to specify several OID tables to collect. Thus the “outer” dictionary only
has one element, with the key logMatchTable.

s The value of the “outer” dictionary is a dictionary of table instances - whose keys
are the index numbers - 1, 2 and so on, in the case of this data.

s The value of the “instance” dictionary is also a dictionary where the keys are the
names provided for the columns in the OID table (which matches the component
n object attributes) - logMatchName, logMatchFilename, etc and the values are the
data values received for those attributes.

Oct 13, 2016 ZenPack Developers' Guide 155

v

Whilst not strictly necessary here where the modeler is only collecting one table of data, it is
good practice to assign each separate table in tabledata, to a variable so that it is more easily
manipulated in the ensuing code:

logMatchTable = tabledata.get ('logMatchTable')

Data gathering may fail for all sorts of reasons - broken network, incorrect community names,
slow response from network or target, target SNMP agent down, MIB value not supported by
an agent, etc. It is good practice to always check that there is data for each table requested
and provide a warning in the log if data collection failed. Whether the process method
continues or halts is up to the plugin developer. In this case, the process method simply
returns (with an implied None result).
if not logMatchTable:

log.warn('No SNMP response from %$s for the %s plugin ', device.id, self.name())

log.warn("Table Data= %s", tabledata)
return

The process method of the modeler plugin class is expected to return output in one of the
following forms.

e A single ObjectMap instance

e A single RelationshipMap instance

o A list of ObjectMap and RelationshipMap instances

e None

If the plugin encounters a bad state and you don't want to affect Zenoss' model of the device
you should return None.

The rest of the process method is devoted to returning a single RelationshipMap instance.

zenoss@zen42:/code/ZenPacks/DevGuide/ZenPacks.community.LogMatch/ZenPacks/community/LogMatch/modeler/plugins/community/snmp

File Edit View Search Terminal Help

Create a relationship map - relname above specifies the logMatch relationship
rm = self.relMap[il
For each entry in the SNMP table, we need to create a LogMatch component

oid, data logMatchTable.items():

Use try / except to prevent nasty failures

Next line instantiates a LogMatch component object, populating the
component object's attributes with the matching values from the LogMatchTable
logMatchName, logMatchFilename, etc
modname (specified above) defines the object class for the component
om = self.objectMap(data)
Any attribute can then be overwritten, if required. id is an inherited
attribute but we want to ensure uniqueness
om.id = self.prepId(om.logMatchName)
snmpindex is also an inherited attribute. Set it to the oid index
om.snmpindex = oid
Append this object instance to the relationship map
rm.append (om)

If something goes wrong, fail nicely with a logged warning and then

continue aroound the loop again

t (KeyError, IndexError, AttributeError, TypeError), errorInfo:

log.warn(' Error in %s modeler plugin %s' % { self.name(), errorInfo))

1 1rm
"LogMatchMap.py" [Modified] 121 lines --72%-- 88,206

Figure 95: Modeler plugin LogMatchMap.py - main body of process method to create a RelationshipMap

First instantiate a RelationshipMap, rm:

rm = self.relMap()

156 ZenPack Developers' Guide Oct 13, 2016

Bear in mind that the re/Map() method populates the RelationshipMap with the relname and
compname defined in the plugin. compname is not specified but relname is set at the start of
the plugin to “logMatchs”.

An SNMP plugin typically then has an iterative loop through the instances (or rows in the
table):

for oid, data in logMatchTable.items() :

where oid will be the instance (or index) number - 1, 2 in our data here, and data will be the
dictionary of attributes and values eg. {logMatchRegEx'": 'test', TogMatchCycle'": 300, 1.

To actually create a component instance, we need a component object. This is achieved with:

om = self.objectMap (data)

Again, remember that the objectMap() method populates the ObjectMap with the compname,
modname and classname defined in the plugin. compname and classname are not specified
but modname is set at the start of the plugin to
“ZenPacks.community.LogMatch.LogMatch'". This is the link that tells objectMap what
sort of object to create, with which attributes and methods.

The data parameter passed to objectMap is used to populate the LogMatch component
attributes - provided the keys of the data dictionary match the attributes of the
component object.

At this stage, assuming the data in the first dictionary instance shown in the comments in
Figure 94, we have a LogMatch component object, populated with attributes and values:

logMatchName = 'fredl daily'
logMatchFilename = '/opt/zenoss/local/fredtest/fredl.log 20151110"'
logMatchRegEx = 'test'

logMatchCycle = 300
logMatchErrorFlag = 0
logMatchRegExCompilation = 'Success'

Often, some values need modification. For example, if a MIB data value is presented in bytes
and the size attribute would rather use KBytes, then that attribute can be changed:

om.size = om.size / 1024

Remember that there are also inherited attributes for objects, such as id and snmpindex. It is
good practice to ensure that the id attribute is unique and the prepld() method on the
CollectorPlugin class provides that function.

om.id = self.prepld(om.logMatchName)

The snmpindex attribute is crucial when gathering performance data with monitoring
templates. It is the index used to associate the correct row of performance data with the
appropriate component. Typically this is the index or instance of the table, which is being
used as the oid key into the MIB table.

om.snmpindex = oid

Be aware that the index oid is not always a simple, increasing integer. IP interfaces,
especially from Windows SNMP agents, can be large random numbers. The snmpindex
attribute is inherited from ManagedEntity, where it is actually defined as a string.

Oct 13, 2016 ZenPack Developers' Guide 157

4

Having finished modifying this component object, it is added to the RelationshipMap and the
loop continues with the next instance.

rm.append (om)

It is good practice to code for possible errors using the Python ¢ry..except construct. This
allows a modeler to fail nicely and log a warning. Typically, execution of the loop will
continue.

except (KeyError, IndexError, AttributeError, TypeError), errorInfo:

o)

log.warn(' Error in %s modeler plugin %s' % (self.name(), errorInfo))
continue

When all instances have been processed and a component created for each, the
RelationshipMap is returned from the process method. It is then up to the zenmodeler daemon
to populate the ZODB with the new objects and relationships.

9.6.3 Testing the modeler

If a new modeler has been created then the ZenPack should be reinstalled and Zenoss
completely recycled. For subsequent “tweaks” to an existing modeler, restarting zenhub and
zopectl generally suffices.

If you have a test Zenoss Device Class then the easiest way to deploy the modeler is to add it
to the Modeler Plugins dialogue for the Device Class.

The first check towards success is if the modeler does appear in the Available list. If it doesn't
there is probably a syntax error in the modeler code.

Once the plugin is applied to the Class and a device is in that class, run zenmodeler from the
command line, just specifying the new plugin for collection. So for a test device, taplow-
11.skills-1st.co.uk:

zenmodeler run -v 10 -d taplow-11l.skills-1lst.co.uk --collect community.snmp.LogMatchMap

To redirect output to a file append:
> /tmp/fred 2>&1

Note that you need to redirect stderr to stdout (2>&1) or you won't see what you need; then
inspect /tmp/fred.

158 ZenPack Developers' Guide Oct 13, 2016

zenoss@zen42:/code/ZenPacks/DevGuide

1.8),7" 8
110'},

Kk

10 20:

10
10
10
10
10

'/opt/zenoss/local/fredtest/fred2.log 20151110', '.1.
'.1.3.6.1.4.1.2021.16.2.1.2': {'.1.3.6.1.4.1.2021.16.2.1.2.2

20:
20:
20:
20:
20:

2}}

00:
00:
00:
00:
00:
00:

, 'logMatchCycle':
.log 20151110',
'logMatchErrorFlag': ©,
hIndex':
2015-11-10 20:00:52,430
2015-11-10 20:080:52,470
2015-11-10 20:00:52,470

52,407
52,429
52,430
52,430
52,430
52,430

180},

300,

File Edit View Search Terminal Help
chMap object at 0x94883de>

2015-11-
2015-11-
2015-11-
2015-11-
2015-11-
2015-11-
ectorPlugin.GetTableMap
021.16.2.1.11.2"':
L35 BN AL 202 10162
1.4.1.2021.16.2.1.4":

DEBUG zen.

INFO zen.SnmpClient: snmp client finished collection for taplow-11.skills-lst.co.uk

.ZenModeler: Client for taplow-11l.skills-1lst.co.uk finished collecting

.ZenModeler: Processing data for device taplow-11.skills-1st.co.uk

.ZenModeler: Processing plugin community.snmp.lLogMatchMap on device taplow-11.skills-1st.co.uk ...
.ZenModeler: Plugin community.snmp.LogMatchMap results = ({}, {<Products.DataCollector.plugins.Coll

DEBUG zen
DEBUG zen
DEBUG zen
DEBUG zen
object at

I B T
1.101': {'.1.3.6.1.4.1.2021.16.2.1.101.2': 'Success', '
{.1.3.6.1.4.1.2021.16.2.1.4.1": 'test', '.l1.3. 6.2.
e e R {8 2 A 2 S] A= '.1.3.6.1.4.1.2021.16 Zollolla@"3 &y "olaEsEallg

FaEs g 4 i ol

1)
2015-11-10 20:00:52,430 INFO zen.ZenModeler: Modeler community.snmp.lLogMatchMap processing data for device taplow-11.skills-1st.co.u

2015-11-10 20:00:52,430 DEBUG zen.ZenModeler: logMatchTable is {'1': {'logMatchRegExCompilation': 'Success', 'logMatchRegEx': 'test’
‘logMatchErrorFlag': 0, 'logMatchName': 'fredl daily', 'logMatchFilename': '/opt/zenoss/local/fredtest/fredl
1}, '2': {'logMatchRegExCompilation': 'Success', 'logMatchRegEx': ‘'without', 'logMatchCycle': 180,

‘logMatchName': 'fred2 daily', 'logMatchFilename': '/opt/zenoss/local/fredtest/fred2.log 20151110', 'logMatc

'logMatchIndex':

DEBUG zen

DEBUG zen.

.Classifier: No classifier defined
INFO zen.ZenModeler: No change in configuration detected

B}

SnmpClient: sending queries for plugin community.snmp.LogMatchMap

0x9464e50>: {'.1.3.6.1.4.1.2021.16.2.1.11"': {'.1.3.6.1.4.1.2021.16.2.1.11.1"': 360, '.1.3.6.1.4.1.2
4.1.2021.16.2.1.100"': {'.1.3.6.1.4.1.2021.16.2.1.100.2': @, '.1.3.6.1.4.1.2021.16.2.1.100.1"': 0},

.1.3.6.1.4.1.2021.16.2.1.101.1"': ‘Success'}, '.l.3.6.
1.1 2': 'without'}, '.1.3.6.1.4.1.2021.16.2.1

6.1.4.1.202 1.4.
4 1.2021.16.2.1.3"': {'.1.3.6.1.4.1.2021.16.2.
So

12 DAL B2 SR
‘fred2_daily'

/opt/zenoss/local/fredtest/fredl.log 20151

.1 6.1.4.1.2021.16.2.1.2.1": ‘'fredl daily'}}

ZenMoueler Cllent taplow 11 skills-1st.co.uk finished

Figure 96: Output from zenmodeler running the LogMatchMap plugin with full debugging

The upper highlighted area in the zenmodeler output in Figure 96 (Plugin
commaunity.snmp.LogMatchMap results =) is the raw results data and often is hard to sort
out the various dictionaries.

The lower highlighted area is the result of the log.debug line inserted into the plugin code
after splitting out the logMatchTable;

log.debug ('logMatchTable is %s ' % (logMatchTable))

Use the ZMI to check whether the test device now has instances for the logMatchs
relationships; if so, are the properties of the components correct?

The ultimate sign of success is to refresh the web browser page for the sample device and
have it show LogMatch components.

Events

Graphs

Software

Components
Qinteraces (4)
@network Rautes (5)
¥ LogMatch (2)
005 Processes (2)
©OFile systems (3)
@ie services (14)
°Pmcessors (1)

Mib Browser

Administration

Modeler Plugins

My Example Menu 1

Custom Properties

Networks

Configuration Properties

4 Monitoring Templates
Device (/Server/Linux)
ProcessCheck_firefox (/Server/Linux)
SnmpPacketsInOut (/Devices)

DASHBOARD

Processes

EVENTS N S CTL REPORTS ADVANCED L jare sicnouT B

IP Services Windows Services Network Map Manufacturers Page Tips

0 -[0swa]

fred1_daily

fred2_daily

play: Details =

Save Cancel

Figure 97: LogMatch components found by the LogMatchMap modeler plugin

Oct 13, 2016

ZenPack Developers' Guide 159

Note, at this stage, there will be dropdown menus in the middle of the main panel but none
will be active. Similarly, the top half of the component display will show very little detail.

A minimal, default presentation is being used to display the new components and some
JavaScript code is required to enhance this.

Note that the modeler collects data for the “.1” column representing logMatchIndex. This
value has not been used in the modeler. Further, referring back to the attributes of a
LogMatch component in Figure 90, there is no attribute called logMatchIndex. Ultimately, the
zenhub daemon will try to apply the map presented by zenmodeler, to the ZODB database and
it will have trouble with this undefined attribute, generating a WARNING error message in
zenhub.log:

2015-11-15 17:17:21,973 WARNING zen.ApplyDataMap: The attribute

logMatchIndex was not found on object fred2 daily from device taplow-
11.skills-1st.co.uk

If the logMatchIndex is really not required then the line should be removed from the
modeler's GetTableMap entry; however, if it may be used for a later “phase 2” development, a
n trick is to preface the name with underscore which is a standard Python technique to denote a
local variable. This avoids error messages in zenhub.log.
snmpGetTableMaps = (
GetTableMap ('logMatchTable',

.1.3.6.1.4.1.2021.16.2.1",
{

'.1': ' logMatchIndex',

'.2': '"logMatchName',

'.3"'": '"logMatchFilename',

'.4': 'logMatchRegEx',

'.11': 'logMatchCycle',

'.100'": '"logMatchErrorFlag',
'.101"': '"logMatchRegExCompilation',

)y

9.6.4 The LogMatchDeviceMap modeler for the device

In addition to component configuration, the ZenPack specification requires versionTag and
versionDate attributes for the device. A very simple SNMP modeler will suffice for this.

160 ZenPack Developers' Guide Oct 13, 2016

zenoss@zen42:/code/ZenPacks/DevGuide/ZenPacks.community.LogMatch/ZenPacks/community/LogMatch/modeler/plugins/community/snmp

File Edit View Search Terminal Help

Module-level documentation will automatically be shown as additional
information for the modeler plugin in the web interface.

LogMatchDeviceMap

\An SNMP plugin that gathers version data for LogMatchDevice devices.

When configuring modeler plugins for a device or device class, this plugin's

name would be community.snmp.LogMatchDeviceMap because its filesystem path within
the ZenPack is modeler/plugins/community/snmp/LogMatchDeviceMap.py. The name of the
class within this file MUST - repeat MUST - match the filename.

from Products.DataCollector.plugins.CollectorPlugin import SnmpPlugin, GetMap

LogMatchDeviceMap (SnmpPlugin):
snmpGetMap = GetMap({
'.1.3.6.1.4.1.2021.100.2.0"': 'versionTag',
'.1.3.6.1.4.1.2021.100.3.0"': 'versionDate’,
1

lef process(self, device, results, log):
log.info("Modeler %s processing data for device %s",
self.name(), device.id)

Results is a tuple with two items. The first (@) index contains a
dictionary with the results of the "snmpGetMap" queries. The second
(1) index contains a dictionary with the results of the "snmpGetTableMaps" queries.
NB. For this modeler, table is null
getdata, tabledata = results
ﬁ getdata contents. Note the empty dictionary at the end repesenting no tabledata
results = ({'.1.3.6.1.4.1.2021.100.3.0': '$Date: 2010-01-24 09:41:03 -0200 (Sun, 24 Jan 2010) $', '.1.3.6.1.4.1.2021.100
2 Bs W5RE LA}, T)
if no getdata then return logging a warning
t getdata:
log.warn('No SNMP response from %s for the %s plugin ', device.id, self.name())
log.warn("Get Data= %s", tabledata)

Populate the device attributes versionTag and versionDate with the matching values
retrieved in the getdata dictionary.

om = self.objectMap(getdata)

I rn om
"LogMatchDeviceMap.py" [Modified] 41 lines --68%-- 28,9 Top =

Figure 98: LogMatchDeviceMap modeler to gather versionTag and versionDate attributes for a device
The snmpGetMap 'collectoids' structure is created to define the two OIDs required and the
names they will map to (which correspond with the attributes defined in LogMatchDevice.py).

Note that the OIDs have “.0” on the end in Figure 98- this is scalar data.

An objectMap is instantiated using the “getdata” data. Since the modeler is run against the
device (whose zPythonClass zProperty is set to
ZenPacks.community.LogMatch.LogMatchDevice), the versionTag and versionDate attributes
are known and populated. The objectMap is returned to the zenmodeler daemon which will
merge this objectMap data into the existing configuration data for the device.

9.6.5 Where do things go wrong with SNMP modelers?
Check section 8.7.4 for general issues with modeler plugins.

1. Modeler fails

a. Check zenmodeler output carefully. From the GUI Model Device menu, check whether
the modeler appears in the list of modelers to be applied. If it is missing, suspect
syntax errors. For example:

2015-11-12 12:52:02,337 INFO zen.ZenModeler: SNMP collection device
taplow-11.skills-1st.co.uk
2015-11-12 12:52:02,337 INFO zen.ZenModeler: plugins:
zenoss.snmp.NewDeviceMap, zenoss.snmp.DeviceMap, HPDeviceMap,
DellDeviceMap, zenoss.snmp.InterfaceMap, zenoss.snmp.RouteMap,
zenoss.snmp.IpServiceMap, zenoss.snmp.HRFileSystemMap,
zenoss.snmp.HRSWRunMap, zenoss.snmp.CpuMap, HPCPUMap, DellCPUMap,
DellPCIMap, community.snmp.LogMatchMap

b. If it appears, check the subsequent output for messages.

Oct 13, 2016 ZenPack Developers' Guide 161

¢. Run zenmodeler standalone in debug mode, optionally sending output to a file:

zenmodeler run -v 10 -d taplow-11l.skills-lst.co.uk --collect community.snmp.LogMatchMap

zenmodeler run -v 10 -d taplow-11l.skills-1st.co.uk --collect community.snmp.LogMatchMap \
> /tmp/LogMatchMap.out 2>&1

d. Check that output is actually received from SNMP and that it matches what you
expect. The following message would be an indication that the OID you are requesting
is incorrect or not supported on the agent:

No decoder for oid 1.3.6.1.4.1.2021.16.100.3.0 type ASN BIT8 - returning None

e. If a relationship is not created then check relationship names and object files for both
device and component.

f. If relationship instance(s) are not created, check:
i. relname and modname statements in modeler plugin exists
ii. relname and modname are correct (especially case-sensitivity)
g. If one or more attributes do not have values:
i. Check spelling of attributes in plugin table column names
ii. Check OID is correct and that data is collected
iii. Check attribute names in object class files do match with (i)
iv. Check type of attributes eg. string data received for int defined attribute

2. Use the standalone snmpwalk utility as a test tool to check SNMP access,
authentication parameters and OIDs. For example:

snmpwalk -v 2c¢ -c fraclmye taplow-11.skills-1lst.co.uk .1.3.6.1.4.1.2021.16.2.1

snmpwalk -v 3 -a MD5 -A fraclmyea -1 authNoPriv -u jane zenny .1.3.6.1.4.1.2020.16.2.1

a. Check that Zenoss really does have the same parameters configured in the various
SNMP zProperties for the device.

b. Note that the leading dot “.” on the OID is optional (it confirms a “fully-qualified” OID
starting at the root of the MIB tree).

3. Insert extra log.debug statements in the modeler code and rerun the zenmodeler
command in debug. For Zenoss Core 4 and earlier, you only need to recycle zenhub and
zopectl daemons if you insert extra log statements. No reinstall of the ZenPack is
necessary. For example:

log.debug('logMatchTable is %s ' % (logMatchTable))

4.

9.7 GUl display code

JavaScript code is required to determine what attributes should be displayed and how they
should be displayed.

Note that the zenpacklib utility can dramatically reduce the amount of human-created
JavaScript but zenpacklib does not do everything and the ZenPack creator needs to

162 ZenPack Developers' Guide Oct 13, 2016

understand what names are related in the different ZenPack elements. For that reason, this
sample will hand-code all the JavaScript. Subsequent examples will take advantage of
zenpacklib.

A ZenPack that is providing JavaScript must also provide an info.py, an interfaces.py and at
least one configure.zeml file.

9.7.1 JavaScript for new components
TODO: Explain why sample doesn't work.

I cannot make the constructs in the sample ExampleDevice.js file under the

browser [resources /js directory, work. The left-hand component menu sees the correct
component configuration and Details in the dropdown menu shows correct data but the
component configuration panel only shows the default fields; no fields customized in the
ZenPack js file.

[£] zenoss@zend2:/code/ZenPacks/DevGuide/ZenPacks.community.LogMatch/ZenPacks/community/LogMatch/browser/resourc - o0 x

File Edit View Search Terminal Help

/R €
* Based on the configuration in ../../configure.zcml this JavaScript will only
* be loaded when the user is looking at a LogMatchDevice in the web interface.
x/

(function(){

var ZC = Ext.ns('Zenoss.component');

ks
* Custom component grid panel. This controls the grid that gets displayed for
* components of the type set in "componenType".
* Note that the sample Ext.define('Zenoss.component.ExampleComponentGridPanel"’) i
* IS WRONG!!!! It should be
* Zenoss.component.ExampleComponentPanel no "Grid" in this name
* The extend: 'Zenoss.component.ComponentGridPanel', IS CORRECT
ny

ZC.LogMatchPanel = Ext.extend(ZC.ComponentGridPanel, {
constructor: function({config) {
config = Ext.applyIf(config||[{}, {
autoExpandColumn: ‘logMatchFilename',
componentType: 'LogMatch',
sortInfo: {
field: 'logMatchName',
direction: 'ASC'

}J

fields: [
{name: 'uid'},
{name: 'name'},
{name: 'severity'},
{name: 'logMatchName'},
{name: 'logMatchFilename'},
{name: 'logMatchRegEx"},
{name: 'logMatchCycle'},
{name: 'logMatchErrorFlag'},
{name: 'logMatchRegExCompilation'},
{name: 'locking'},
{name: 'usesMonitorAttribute'},
{name: 'monitor'},
{name: 'monitored'}

"LogMatch.js" [Modified][readonly] 102 lines --0%-- 1,2 Top [+

Figure 99: Start of LogMatch.js under browser [resources /s directory of the ZenPack

The code is extending the standard ComponentGridPanel that is defined in
$ZENHOME | Products | ZenUI3 | browser | resources [js | zenoss | ComponentPanel.js .

Oct 13, 2016 ZenPack Developers' Guide 163

Note that the new component panel must be called <object component name>Panel eg.
LogMatchPanel. There should be no Grid in this name.

At the top of the definition can be placed parameters that apply to the whole panel, rather
than an individual field:

e autoExpandColumn - the fieldname (which must be defined below) is allowed to take
any remaining width in the panel

e sortInfo - which field (defined below) will the panel be sorted on by default

The fields section defines any field that will be used in the GUI dialogue panel. These names
must match attribute names in the corresponding ComponentInfo class; that is, the
LogMatchlInfo class defined in info.py in the base directory of the ZenPack. Although by
convention these names will often be the same as component object attributes, it is the
LogMatchlInfo class attributes that are required, not the LogMatch class attributes.

Some of the field names may be inherited.

Zenoss@zend2:/opt/zenoss/Products/Zuul

File Edit View Search Terminal Help
B
#

Copyright (C) Zenoss, Inc. 2010, all rights reserved.
#

This content is made available according to terms specified in

License.zenoss under the directory where your Zenoss product is installed.
#
B e s e e i

from zope.interface import implements
from zope.component import adapts

from Products.Zuul.interfaces import IComponentInfo, IComponent

from Products.Zuul.infos import InfoBase, ProxyProperty, HasEventsInfoMixin, LockableMixin
from Products.Zuul.form.builder import FormBuilder

from Products.Zuul.decorators import info

from Products.Zuul.utils import safe hasattr as hasattr

ComponentInfo(InfoBase, HasEventsInfoMixin, LockableMixin):
implements(IComponentInfo)
adapts(IComponent)

@property
@info
device(self):
self. object.device()

@property
usesMonitorAttribute(self):
True

monitor = ProxyProperty('monitor')

@property
monitored(self):
self. object.monitored()
"./infos/component/ init .py" [readonly] 86 lines --1%-- 1,9 Top

Figure 100: ComponentlInfo attributes of usesMonitorAttribute, monitor and monitored

164 ZenPack Developers' Guide Oct 13, 2016

The ComponentInfo class is in $ZENHOME | Products | Zuul | infos | component | __init__.py
and defines the usesMonitorAttribute, monitor and monitored attributes.

The locking attribute is defined in the LockableMixin class in
$ZENHOME | Products |/ Zuul /infos/ __init__.py.

[£] zenoss@zend2:/code/ZenPacks/DevGuide/ZenPacks.community.LogMatch/ZenPacks/community/LogMatch/browser/resourc _ 0O

File Edit View Search Terminal Help

columns: [{
id: 'severity',
datalndex: 'severity',
header: t('Events'),
renderer: Zenoss.render.severity,
sortable: true,
width: 50

oA
id: 'logMatchName',
datalndex: 'logMatchName',
header: _t('LogMatch Name'),
sortable: true,

width: 100

A
id: 'logMatchFilename',
Flex: 1,

datalndex: 'logMatchFilename',
header: t('LogMatch File Name'),
sortable: true,
width: 400

A
id: 'logMatchRegEx',
datalndex: 'logMatchRegEx',
header: t('LogMatch RegEx'),
sortable: true,
width: 200

oA
id: 'logMatchErrorFlag',
datalndex: 'logMatchErrorFlag',
header: _t('LogMatch Errors'}),
sortable: true,
width: 100

oA
id: 'monitored',
datalndex: 'monitored',
header: t('Monitored'),
renderer: Zenoss.render.checkbox,
sortable: true,
width: 65

oA
fd: 'locking',

"LogMatch.js" 110 lines --80%--

89,17

69% |

Figure 101: columns definitions for LogMatch.js

The stanza that determines exactly what gets displayed and how, is columns.

In columns:

e The id can be any unique name

o The datalndex must match an attribute in the ComponentInfo class and must have

been defined in the fields statement above.

o The header field is simply a text string for the column header

e It is good practice to include sortable: true

e The width is a pixel width and is adjusted after examining the panel display.

Remember that the overall autoExpandColumn directive, if used, will take any remaining

column width.

Oct 13, 2016 ZenPack Developers' Guide

165

4

e By default, a column is simply rendered as text but there are several Zenoss-provided
renderers (see $ZENHOME | Products | ZenUI3 | browser | resources | js | zenoss | Renderers. js
) and it is also possible to write your own.

s The column that displays Events severity uses Zenoss.render.severity to provide the
color-coded icon.

m The monitored column uses Zenoss.render.checkbox.

m The locking column uses Zenoss.render.locking_icons.

[l zenoss@zend2:/code/ZenPacks/DevGuide/ZenPacks.community.LogMatch/ZenPacks/community/LogMatch/browser/resourc - o0 x

File Edit View Search Terminal Help
] Fid &
id: 'monitored',
datalndex: 'monitored',
header: t('Monitored'),
renderer: Zenoss.render.checkbox,
sortable: true,
width: 65
oA
id: 'locking',
datalndex: 'locking',
header: t('Locking'),
renderer: Zenoss.render.locking icons,
width: 65
oA
id: ‘'snmpindexblahblah’,
dataIndex: 'snmpindexblah',
header: _t('SNMP Index'),
sortable: true, =
width: 70

]
});
ZC.LogMatchPanel.superclass.constructor.call(this, config);
i)
)i

Ext.reg('LogMatchPanel', ZC.LogMatchPanel);

L¥
* Friendly names for the components. First parameter is the meta type in your
* custom component class. Second parameter is the singular form of the
* friendly name to be displayed in the UI. Third parameter is the plural form.

%/

ZC.registerName('LogMatch', _t('Log Match File'), t('Log Match Files'));

"LogMatch.js" [Modified] 111 lines --67%-- _ B 75,1 96% |-
Figure 102: End of LogMatch.js JavaScript file

The rest of the JavaScript file is boilerplate. The line that controls the component name in the
left-hand menu is:
ZC.registerName ('LogMatch', t('Log Match File'), t('Log Match Files'));

where the first parameter must match the meta-type declared at the top of the LogMatch.py
component object file. By convention this meta-type is the same as the component object
name. In LogMatch.py:

class LogMatch (DeviceComponent, ManagedEntity) :
meta type = portal type = "LogMatch"

166 ZenPack Developers' Guide Oct 13, 2016

9.7.2 info.py

The info.py file abstracts object attribute information saved in the Zope Object Database
(ZODB), that will be displayed to the user. It also allows code to be written for display that it
is not part of the class definition. Note that the file must have this exact name.

n It describes what will be displayed not how something will be displayed.

El Zenoss@zend2:/code/ZenPacks/DevGuide/ZenPacks.community.LogMatch/ZenPacks/community/LogMatch

File Edit View Search Terminal Help

ﬁ This file is the conventional place for "Info" adapters. Info adapters are
a crucial part of the Zenoss API and therefore the web interface for any

custom classes delivered by your ZenPack. Examples of custom classes that

will almost certainly need info adapters include datasources, custom device
classes and custom device component classes.

Mappings of interfaces (interfaces.py) to concrete classes and the factory
(these info adapter classes) used to create info obfflects for them are managed
in the configure.zcml file.

from zope.component import adapts
from zope.interface import implements

from Products.Zuul.infos import ProxyProperty
from Products.Zuul.infos.component import ComponentInfo

from ZenPacks.community.lLogMatch.LogMatch import LogMatch
from ZenPacks.community.LogMatch.interfaces import ILogMatchInfo

ss LogMatchInfo{ComponentInfo):
implements(ILogMatchInfo)
adapts(LogMatch)

logMatchName = ProxyProperty("logMatchName")
logMatchFilename = ProxyProperty("logMatchFilename")
logMatchRegEx = ProxyProperty("logMatchRegEx")
logMatchCycle = ProxyProperty("logMatchCycle")
logMatchErrorFlag = ProxyProperty("LlogMatchErrorFlag")
logMatchRegExCompilation = ProxyProperty("logMatchRegExCompilation")
snmpindexblah = ProxyProperty("snmpindex")
"info.py" [readonly] 31 lines --3%-- 1,1

Figure 103: info.py in base directory of LogMatch ZenPack

The LogMatchInfo class inherits from the standard ComponentInfo class defined in
$ZENHOME | Products | Zuul | infos | component/ __init__.py. It shuttles data between the
LogMatch device component class defined in this ZenPack and the ILogMatchlInfo class
defined in interfaces.py in this ZenPack.

In practice, the names on the left-hand side of definitions in info.py need to match names
used in interfaces.py and in the fields of any JavaScript files. The right-hand side of info.py
definitions specify what device / component object attributes are to be displayed.

To demonstrate the point, the last line in Figure 103 links the “real” snmpindex attribute
found on any component, with a name snmpindexblah, to be used in interfaces.py and it can
be seen in the JavaScript file in Figure 102 as the datalndex value of the last column
definition.

Oct 13, 2016 ZenPack Developers' Guide 167

9.7.3 interfaces.py
n interfaces.py describes how the data is displayed (and again, this filename is prescribed).

El zenoss@zend2:/code/ZenPacks/DevGuide/ZenPacks.community.LogMatch/ZenPacks/community/LogMatch

File Edit View Search Terminal Help

lrom Products.Zuul.form import schema L&
from Products.Zuul.interfaces.component import IComponentInfo

ZuulMessageFactory is the translation layer. You will see strings intended to
been seen in the web interface wrapped in t(). This is so that these strings
can be automatically translated to other languages.

from Products.Zuul.utils import ZuulMessageFactory as t

In Zenoss 3 we mistakenly mapped Textline to Zope's multi-line text
equivalent and Text to Zope's single-line text equivalent. This was
backwards so we flipped their meanings in Zenoss 4. The following block of
code allows the ZenPack to work properly in Zenoss 3 and 4.

Until backwards compatibility with Zenoss 3 is no longer desired for your
ZenPack it is recommended that you use "SinglelLineText" and "MultiLineText"
instead of schema.TextlLine or schema.Text.

from Products.ZenModel.ZVersion import VERSION as ZENOSS VERSION

from Products.ZenUtils.Version import Version

if Version.parse('Zenoss %s' % ZENOSS VERSION) == Version.parse('Zenoss 4'}):
SinglelLineText = schema.TextlLine

MultiLineText = schema.Text

HHEHE HHHEHR

.SingleLineText = schema.Text
MultiLineText = schema.TextlLine

155 ILogMatchInfo(IComponentInfo):

logMatchName = SingleLineText(title= t{u"LogMatch Name"))

logMatchFilename = SingleLineText(title= t(u"LogMatch Filename"))

logMatchRegEx = SinglelLineText(title= t(u"LogMatch RegEx"))

logMatchCycle = schema.Int(title= t(u"LogMatch Cycle"))

logMatchErrorFlag = schema.Int(title= t(u"LogMatch ErrorFlag"))

logMatchRegExCompilation = SinglelLineText(title= t{u"LogMatch RegExCompilation"))

snmpindexblah = SingleLineText(title=_t(u"SNMP Index for datasource"))
"interfaces.py" 34 lines --2%-- 1,1 ALl [

Figure 104: interfaces.py file for LogMatch ZenPack

The ILogMatchInfo class inherits from IComponentInfo defined in
$ZENHOME | Products/ | Zuul | interfaces | component.py. The definitions for this ZenPack are
simply string or int data but more complex constructs are possible.

The left-hand side names must match entries defined in info.py.

The right-hand side specifies the name that will be used in the GUI for this attribute and its
type. Specifically, these names are seen in the Details dropdown menu for components; any
details to be seen must appear both in info.py and interfaces.py.

a When working with SNMP-based ZenPacks, it is good practice to display the snmpindex
! attribute in the Details dropdown, as a debugging aid.

168 ZenPack Developers' Guide Oct 13, 2016

DASHBOARD

Networks Processes

Events
4 Components
Qintertaces (4)
@network Routes (5)
¥ Log Match Files (2)
QOS Processes (2)
OFile systems (3)
Q1P services (14)
°Procmsurs (1)
Graphs
Modeler Plugins
Configuration Properties

Software

My Example Menu 1

Mib Browser

‘Custom Properties

Administration

4 Monitoring Templates

Device (/Server/Linux)
ProcessCheck_firefox (/Server/Linux)
‘SnmpPacketsinOut (/Devices)

EVENTS NF

IP Services

v fred1_daily

REPORTS

ADVANCED Q admin SIGH a

Windows Services Network Map Manufacturers Page Tips

;'o_u Vo O ec | |

Joptizenossflocalfredtestfredt.log_20151113 test

o fred2_daily Joptizenoss/localfrediestiredz2.log_20151113

without

Status:
Up
LogMatch Name:

fred1_daily

LogMatch Filename:
/opt/zenoss/local/frediest/fred1.log_20151113
LogMatch RegEx:

test

LogMatch Cycle:

300

LogMatch ErrorFlag:

0

LogMatch RegExCompilation:

Success

SNMP Index for datasource:

1

Figure 105: Component panel for LogMatch component with Details dropdown data

9.7.4 configure.zcml

Something needs to ultimately tie together the different display elements. That is the role of
configure.zcml which provides the “glue” between interfaces and JavaScript display code
and this exact name will be searched for by the Zope mechanisms (ZCML = Zope
Configuration Markup Language, a variant of XML).

Often a ZenPack will use two separate configure.zcml files.

e configure.zcml in the base directory of the ZenPack

s Provides adapter stanzas that link an info with an interface, optionally for an
object class. If no object class is defined then the default is for all classes.

<?xml version="1.0" encoding="utf-8"?>

<configure

xmlns="http://namespaces.zope.org/zope"
xmlns:zcml="http://namespaces.zope.org/zcml" >

<!-- Includes: Browser Configuration -->
<include package=".browser"/>

<adapter factory=".info.LogMatchInfo"
for=".LogMatch.LogMatch"
provides=".interfaces.ILogMatchInfo"

/>

</configure>

s The two namespace definitions at the top of the file are mandatory.

s It is common to have <include package=".browser” /> in this configure.zcml. It is
pointing to the browser subdirectory where a second configure.zcml provides
— viewlet information. This is not mandatory but is good practice.

Oct 13, 2016

ZenPack Developers' Guide 169

e configure.zcml in the browser subdirectory of the ZenPack:

Provides viewlet stanzas that link object displays to JavaScript files.

The following is required boilerplate:

<?xml version="1.0" encoding="utf-8"?>
<configure xmlns="http://namespaces.zope.org/browser">

El zenoss@zend2:/code/ZenPacks/DevGuide/ZenPacks.community.LogMatch/ZenPacks/community/LogMatch

File Edit View Search Terminal Help
E?xml version="1.0" encoding="utf-8"7>

<!
<l
<!

<configure xmlns="http://namespaces.zope.org/browser">

-- A resource directory contains static web content. -->

-- name can be anything unique but is used below in the paths statement -->

-- directory is the path from this configure.zcml to where the js directory is -->
<resourceDirectory

name="LogMatchJavascript"
directory="resources"

>
<!-- Register custom JavaScript for LogMatch devices. --=
<!-- name can be anything unique --=
<!-- In paths, /++resource++LogMatchJavascript substitutes the LogMatchJavascript name
defined above, into the path to the Javascript file, resulting in
resources/js/LogMatch.js, relative to where this configure.zcml is -->
<! The weight field indicates the order of multiple viewlets where 1 would be at the top
-
<! In for, the path to the LogMatchDevice class in the LogMatchDevice module
is up one directory from where this configure.zcml sits -->
<viewlet

name="js-LogMatchJavascriptJs”
paths="/++resource++LogMatchJavascript/js/LogMatch.js"

weight="10"

for="..LogMatchDevice.LogMatchDevice"
manager="Products.ZenUI3.browser.interfaces.IJavaScriptSrcManager"
class="Products.ZenUI3.browser.javascript.JavaScriptSrcBundleViewlet"
permission="zope2.Public"

/=

</configure>
"browser/configure.zeml" 31 lines --3%-- ;1 All

Figure 106: configure.zcml in LogMatch ZenPack browser subdirectory

s In the resourceDirectory stanza:

¢+ name can be any unique name

¢ directory will be substituted for this name in the paths statement

s In the viewlet stanza:

+ name can be any unique name

¢+ paths gives the path to the JavaScript file, typically including a
substitution of the resourceDirectory name; hence paths will be in
resources/js/LogMatch.js, starting from where this

configure.zeml resides

+ weight indicates the order of multiple viewlets where 1 would be at the

top

+ for restricts the use of this JavaScript file to the context of devices of

class LogMatchDevice in the module LogMatchDevice (ie. in the file
LogMatchDevice.py)

170

ZenPack Developers' Guide Oct 13, 2016

+ The rest is boilerplate.

9.7.5 Where do things go wrong with GUI display code?

1.

9.

Field names in JavaScript files must match ComponentInfo class attributes, not the
DeviceComponent class attributes.

Any field defined in the columns stanza must be declared in the fields stanza.
JavaScript should not have a comma at the end of the last statement in a clause.

Brackets mismatch is extremely easy, especially in JavaScript files. The vi % command
to match brackets is enormously helpful.

Ensure that IComponentInfo classes in interfaces.py specify suitable display types.
Using a schema.Int definition when the object data is actually a string, will cause
issues.

Forgetting to write / update info.py, interfaces.py and/or configure.zcml is common.

Specifying a “for” statement in configure.zcml that is incorrect will result in no errors
but no component display.

Errors in a configure.zcml are scary as they will prevent zenhub from starting, with an
error message. Fortunately it is quite good at pinpointing where the error is.

File "/opt/zenoss/lib/python/zope/configuration/fields.py", line 229, in
fromUnicode

raise InvalidToken ("%$s in %$s" % (v, u))
zope.configuration.xmlconfig.ZopeXMLConfigurationError: File
"/opt/zenoss/etc/site.zcml", line 16.2-16.23

ZopeXMLConfigurationError: File
"/code/ZenPacks/DevGuide/ZenPacks.community.LogMatch/ZenPacks/community/Log
Match/configure.zcml", line 15.4-18.11

ConfigurationError: ('Invalid value for', 'for', 'ImportError: Module
ZenPacks.community.LogMatch.LogMatch has no global LogMatchDevice in
.LogMatch.LogMatchDevice')

9.7.6 * Architecture of the ComponentPanel

Many ZenPacks extend device component capabilities so understanding the component panel
is important. The code that defines it is in
$ZENHOME | Products | ZenUI3 | browser | resources | js | zenoss.

Oct 13, 2016 ZenPack Developers' Guide 171

Zel"IC)SS' DASHBOARD ~ EVENTS INFRAS TURE = REPORTS ADVANCED ane sianouT H

m Metworks Processes IP Services Windows Services Network Map Manufacturers Page Tips

=

Overview

Events
4 Components v > - aroup-100-13 class example org
© Network Routes (2) e
@ Intertaces (265
+ Bridge Inferfaces (28) 2 D0B08E0A0FSA EyimiammaiA o G Qroup-100-2.class.example org 3 up 2-00:30:93.0A0F5A
Software

4 08:4C92:D0:8889 3 4-084C92D008889

3 084CBF C279F5 3 up® 3-084CBF C279F5

Graphs
Bridge Interfaces
Administration

18 0004:C1020002 ¢ ey eione group-100-s2 class.example org 4 Down @ 18-00:04:C1:02:00:02

4 0004:C10200C o eio group-100-s2 class example org 4 Down @ 4-00:04:C102:00 C4

Configuration Properties
Modeler Plugins

Custom Properties

Moctoations

4 Monitoring Templates ‘ |

Bridge_Stp_Topo (/Network/Switch/BridgeVil
10 k |
e i jﬂi

00:04:C102:00CS group-100-s2 class example org 4 Down @ 5-00:04:C10200.CS

FastEthe rneto/s:

IECECH A L"Stupmi

Device (/Devices)

m WM) wwwu '

2011-01-04 19:23:08 2011-91-19 18:23:09
M dot1TpPortoutFranes cur: 1.B7k avg: 2.15k max: 4.38k
W dotTpPortInFrames cur: 5.66k avg: 7.63k max:l4 .97k

— ZC.ComponentPanel

I Title Bar

W ZC.ComponentGridPanel
Zenoss.DetailNavCombo

S Zenoss.ContextCardPanel

Figure 107: ComponentPanel diagram

Examining ComponentPanel.js (line numbers here are given for Zenoss 4.2.5, SUP 457):

Zenoss.nav.register from lines 59 - 260 sets up the default dropdown menus from the
Display DetailNavCombo box — Graphs, Events, Details and Templates. This is why the
LogMatch ZenPack has these menus without the ZenPack having to define it.

ZC.ComponentDetailNav from lines 262 to 320, is concerned with augmenting the Display
dropdown menu and explicitly prohibits menu items with the names status, events,
resetcommunity,pushconfig, objtemplates,modeldevice and historyevents.

ZC.ComponentPanel runs from lines 325 to 458. Fundamentally there are four main areas
inside the entire Component Panel (outlined in blue in Figure 54):

The Title Bar (tbar) outlined in pink

The Component Grid Panel with attribute values for each instance of a component, outlined
in red

The title bar of the bottom half of the window is the text and a

dropdown box to select the data to be seen at the bottom. This is outlined in . This
section prohibits the display of the Graphs dropdown menu if the monitor attribute is not set
for the object. It also filters out any dropdown menu items that match the list given above
under ZC.ComponentDetailNav.

The is the bottom window with graphs, events, details, etc and is outlined
in

172 ZenPack Developers' Guide Oct 13, 2016

ZC.ComponentGridPanel (lines 461 — 639) defines the container for the top part of the
component panel — the Component Grid Panel. It defines the default object attribute fields
that will be used to help construct the top panel, unless they are overridden by custom
JavaScript via config.fields. Omitting any of these fields in custom JavaScript may lead to
unpredictable results.

The remaining definitions ZC.IPInterfacePanel, ZC.WinServicePanel,
ZC.IpRouteEntryPanel, ZC.IpServicePanel, ZC.OSProcessPanel,
ZC.FileSystemPanel, ZC.CPUPanel, ZC.ExpansionCardPanel,
ZC.PowerSupplyPanel, ZC.TemperatureSensorPanel and ZC.FanPanel each define
the specific ComponentGridPanel for the individual, standard component objects. Note that
the code here would be good samples from which to start writing custom JavaScript for new
component objects.

When the ZC.ComponentPanel constructor executes, the upper space of the window
(designated by the red border) is left empty. A ZC.ComponentGridPanel is loaded into this
space by the ZC.ComponentPanel.setContext method. The code begins on line 412 of
ComponentPanel.js. One of the parameters passed to this method is type, which is a string
containing the component object class name. The code searches for a registered component
with the name type + "Panel". So if your component is named LogMatch, the code searches for
a registered object named LogMatchPanel and uses the code to fill in this upper slot. Note
that all the definitions for standard components at the end of ComponentPanel.js follow this
model — IpInterfacePanel, FileSystemPanel, etc.

9.8 Adding component performance templates

The ZenPack has added a component of object class LogMatch. The requirements
specification in section 9.2 said to gather the logMatchCurrentCounter
(1.3.6.1.4.1.2021.16.2.1.7) as the OID best representing the number of matches in a logfile.
Remember that this OID is tabular data and there will be a further index / instance id on the
end of this OID, one for each match file configured.

The tricks when creating component performance templates are:
n e The name of the template must exactly match the name of the component object class.

e A component template is automatically bound to all components of the matching
class (and indeed should not be manually bound).

e A component template does not include the index (or instance) for an OID. That comes
from the snmpindex attribute of the component object.

e The component template is not seen in the left-hand menu under Monitoring
Templates but can be seen by selecting a component and then selecting the Templates
dropdown from the Display menu.

Oct 13, 2016 ZenPack Developers' Guide 173

JuniperContents
JuniperFPC
JuniperlpSecNAT
JuniperMIC
JuniperPIC
JuniperRoutingEngine
JuniperSPU
JuniperSRX550_CPU_Mem
Layer2info
LDAPMonitor
LDAPServer
LogMatch

[

Markit_Database_backup_age
MarkitDbTbs
MarkitDbTempThs
MarkitDbUndoTbs
MSExchange2010IS
MSExchange20131S
MSExchangelS

MySaL

MySQLDatabase

DASHBOARD

| MyFooter ~ H i |?‘ m\ Group By: %
Figure 108: LogMatch component template with logMatchCurrentCounter datasource

EVENTS INFRASTRUCTURE REPORTS ADVANCED

.Dlh Sources
~*lefo] +)
Name Source Enabled Type Name Type

Edit Data Source

Name

logMatchCurrentCounter

OID: Enabled

1.3.6.1.4.1.2021.16.2.1.7

Graph Definitions

[+]e]o]

Test Against a Device Name

Device Name

taplow-11.skills-1st.co.uk

Bound: Component:)

Min. Value Max. Value

0 Jobs +

Provided a graph is also created based on the datasource / datapoint seen in Figure 108, the
Graphs dropdown option should start showing data after 2 zenperfsnmp cycles (zenperfsnmp
cycle time is 300s by default).

-

 {Server/Linux/SimpleTest
/10001
Overview
Events
4 Components.
Y Interfaces (4)
@ Network Routes (3)
¥ Log Match Files (2)
@ 0S Processes (3)
@ File Systems (3)
@ 1P Services (14)
@ Processors (1)
Graphs
Modeler Plugins
Configuration Properties
Software
My Example Menu 1
Mib Browser
Custom Properties
Administration
4 Monitoring Templates

Device (/Server/Linux)

DASHBOARD

 @TID tetwors Processes IPServices Windows Senvices NeworkMap Manufaclurers
~ taplow-11.skills-1st.co.uk

MyFooter m’?\ Commands ~

EVENTS

REPORTS ADVANCED Q

wp® |

DEVIGE STATUS

Ko v Mo N
| vogtten s [0 [0 ot

Lvants , Loghtaich Mama =

v fred1_dally

Production |
PRODUCTION STATE

fopt/zenoss/local/fredtest/fred1.log 20151117 test o

o fred2_daily /opt/zenoss/local/fredtest/fred2.log_20151117 without o

Display: | Graphs (] Range: Hourly
=| Log Match Current Counter I < H Zoom In “ Zoom Out ” > 1

30

] 20

£

]

b}

2 10

94 1 J
Mon 12:00 Tue 00: 00 Tue 12:
2015-11-16 00:19:19 GMT to 2015-11-17 12:19:19 GMT
B logMatchCurrentCounter cur:28.80 avg: 5.88 max:28.080

Figure 109: Log Match current Counter graph for LogMatch component

174

ZenPack Developers' Guide

» admin

Normal
PRIORITY

SIGN OUT

‘Page Tips|

Q, Type to filter.

O 1

2

ot e | ik) e -

L/ 0Jobs ~

Oct 13, 2016

Note that the datapoint is created automatically for an SNMP datasource and, by default, will
be of type GAUGE. In practice, this means that the logMatch value being graphed will be the
total number of matches. Although the SNMP agent is providing a COUNTER value, Zenoss,
by default, is not treating it as such.

When monitoring real files, it may be better to change the datapoint to a COUNTER type to
get a rate of change of matches. If you do this, ensure that you delete any existing
logMatchCurrentCounter_logMatchCurrentCounter.rrd files under $ZENHOME | perf/ Devices
as they will fail to collect data after the data type change.

Better still, the datapoint mechanism provides for a DERIVE type which acts like a
COUNTER but, if you set the RRD Minimum value to zero then it prevents graph spikes if a
counter wraps around.

When the template is tested, use the Action icon from the bottom of the left-hand menu from
ADVANCED -> Monitoring Templates, to add the template to the correct ZenPack.

9.9 Adding other ZenPack elements through the GUI

Since the LogMatch ZenPack is working on OIDs in the UCD-SNMP-MIB, it would be useful
to add that to the ZenPack. Assuming that this MIB is already loaded into Zenoss, using the
GUI, simply navigate to ADVANCED-> MIBs, select the tick-box beside the UCD-SNMP-MIB
and from the dropdown menu at the top of the list of MIBs, choose Add to ZenPack. In the
ensuing dropdown box, choose the ZenPacks.community.LogMatch ZenPack..

Remember that it will be added to the ZenPack's objects / object.xml file, but only when the
ZenPack is exported.

9.10 Finalising the ZenPack
When the ZenPack is complete and tested, there are a few things to check:
o Isthere a README.rst in the top-level directory?

e Has the version, author and license information been completed? This will be Version
1.0 of the LogMatch ZenPack.

e Have any Zenoss or Zenoss ZenPacks dependencies been filled in?

e It is good practice to remove any unused files and directories from the ZenPack
directory hierarchy.

e Has the ZenPack been exported?
The export writes the object/objects.xml file and creates the .egg file.

The egg file is created by first copying the entire ZenPack directory hierarchy to its own
build /1ib subdirectory. The egg file is actually constructed from this build subtree. Note that
for the .egg file to be completely up-to-date, the ZenPack must be exported after any change;
even adding a comma to README.rst needs an export for that change to be included in the
egg file.

Oct 13, 2016 ZenPack Developers' Guide 175

The egg file is first created under the ZenPack's dist directory and it is then copied to
$ZENHOME/export.

Note that there is a bug whereby the build/lib subdirectory is not cleaned out before export.
This means that existing files will be updated, new files will be added but if old files have
been deleted then they will still exist in the build/lib subdirectory and hence, in the new egg
file. This is documented in ticket 7324 (http://dev.zenoss.com/trac/ticket/7324) and
https://jira.zenoss.com/browse/ZEN-20977 . If files have been deleted from ZenPack sources,
ensure that everything under the build/lib subdirectory is removed before exporting the
ZenPack (this is safe to do).

Once an egg file has been created in the export subdirectory, it can be moved to a different
system and loaded there.

9.11 Extending the ZenPack to modify the device Overview

The LogMatch ZenPack has created versionTag and versionDate attributes for a LogMatch
Device and the LogMatchDeviceMap modeler populates these attributes; however the only
way to see these is with the ZMI or zendmd.

There is an excellent wiki tip at http:/wiki.zenoss.org/Device Overview_ Panels which
describes how to modify the Overview page for a device. There is also a link to the code on
GitHub, https:/github.com/cluther/ZenPacks.example.CustomOverview .

JavaScript can be created to modify any of the Overview panels:
e deviceoverviewpanel_summary (top-left)
e deviceoverviewpanel_idsummary (top-middle)
e deviceoverviewpanel_descriptionsummary (top-right)
e deviceoverviewpanel_customsummary (bottom-left)
e deviceoverviewpanel_systemsummary (inner panel in bottom-left)
e deviceoverviewpanel_snmpsummary (bottom-right)

The GitHub example uses __init_ .py in the base directory of the ZenPack, to create a new
attribute on the standard device, called contact. To access this through a JavaScript file, an
info definition is needed so the standard Devicelnfo class is extended with contact. Note the
imports at the top of the file.

from Products.ZenModel.Device import Device
from Products.Zuul.infos import ProxyProperty
from Products.Zuul.infos.device import DeviceInfo

Set a default value for a device's contact.
Device.contact = "'

Make a device's contact available through the API.
DeviceInfo.contact = ProxyProperty('contact')

Suppose we wish to modify the SNMP Summary panel to:
e Remove the SNMP community name

o Add the versionTag and versionDate fields to this panel

176 ZenPack Developers' Guide Oct 13, 2016

https://github.com/cluther/ZenPacks.example.CustomOverview
http://wiki.zenoss.org/Device_Overview_Panels
https://jira.zenoss.com/browse/ZEN-20977
http://dev.zenoss.com/trac/ticket/7324

e This should only happen for LogMatchDevice devices
The solution requires:
e Some JavaScript to modify the Overview panel - custom-overview-device.js

‘z s We could use the existing JavaScript file but it is good practice and easier
— debugging to keep different bits of functionality separate.

s It also potentially makes the application of the new JavaScript more flexible by
using the “for” statement in browser/configure.zcml

e An entry in browser /configure.zcml to point to the new JavaScript file

® An entry in info.py to define the LogMatchDevicelnfo class with the two version
properties

® An entry in interfaces.py to define the ILogMatchDevicelnfo class with entries for the
two new properties

e An entry in the top-level configure.zcml with an adapter stanza for LogMatchDevice

9.11.1 custom-overview-device.js

The following is in custom-overview-device.js under browser [resources/js.

Ext.onReady (function () {
var DEVICE SNMP ID = 'deviceoverviewpanel snmpsummary';
Ext.ComponentMgr.onAvailable (DEVICE SNMP ID, function () {
var overview = Ext.getCmp (DEVICE SNMP ID);

/* overview.addListener ("afterrender", function(){ */
overview.removeField ('snmpCommunity"') ;

overview.addField ({
name: 'versionTag',
xtype: 'displayfield',
fieldLabel: t('Version Tag')
1)
overview.addField ({
name: 'versionDate',
xtype: 'displayfield',
fieldLabel: t('Version Date')
P
/*}) s
1N
)i
The standard snmp fields for the Devicelnfo class are defined in

$ZENHOME | Products | Zuul | infos /| device.py.

Note the two lines highlighted in pink that are commented out with /* */ . This
construct is used in the wiki item and in the GitHub sample but I cannot make it work. The
device Overview field is completely blank. It works perfectly well without the
overview.addListener function.

*/

TODO: Why does the sample construct not work ?

9.11.2 browser/configure.zcml

A viewlet entry is required to attach to the new JavaScript.

Oct 13, 2016 ZenPack Developers' Guide 177

<viewlet
name="js-custom-overview-device"
paths="/++resource++LogMatchJavascript/js/custom-overview-device.js"
for="..LogMatchDevice.LogMatchDevice"
weight="10"
manager="Products.ZenUI3.browser.interfaces.IJavaScriptSrcManager"
class="Products.ZenUI3.browser.javascript.JavaScriptSrcBundleViewlet"
permission="zope2.Public"

/>

Note the for statement to restrict the application of this JavaScript just to devices with object
class LogMatchDevice.

9.11.3 info.py

Do not forget the extra import statements required for Devicelnfo, LogMatchDevice and
ILogMatchDevice.

El zenoss@zend2:/code/ZenPacks/DevGuide/ZenPacks.community.LogMatch/ZenPacks/community/LogMatch

File Edit View Search Terminal Help
E This file is the conventional place for "Info" adapters. Info adapters are L
a crucial part of the Zenoss API and therefore the web interface for any

custom classes delivered by your ZenPack. Examples of custom classes that

will almost certainly need info adapters include datasources, custom device
classes and custom device component classes.

Mappings of interfaces (interfaces.py) to concrete classes and the factory
(these info adapter classes) used to create info ohjects for them are managed
in the configure.zcml file.

from zope.component import adapts
from zope.interface import implements

from Products.Zuul.infos import ProxyProperty
from Products.Zuul.infos.component import ComponentInfo
from Products.Zuul.infos.device import Devicelnfo

from ZenPacks.community.lLogMatch.LogMatch import LogMatch

from ZenPacks.community.lLogMatch.LogMatchDevice import LogMatchDevice
from ZenPacks.community.lLogMatch.interfaces import ILogMatchInfao

from ZenPacks.community.lLogMatch.interfaces import ILogMatchDeviceInfo

class LogMatchInfo(ComponentInfo):
implements(ILogMatchInfo)
adapts(LogMatch)

logMatchName = ProxyProperty("logMatchName")

logMatchFilename = ProxyProperty("logMatchFilename")

logMatchRegEx = ProxyProperty("logMatchRegEx")

logMatchCycle = ProxyProperty("logMatchCycle")

logMatchErrorFlag = ProxyProperty("logMatchErrorFlag")
logMatchRegExCompilation = ProxyProperty("logMatchRegExCompilation™)
snmpindexblah = ProxyProperty("snmpindex")

class LogMatchDeviceInfo(DevicelInfo):
implements(ILogMatchDevicelInfo)
adapts(LogMatchDevice)

versionTag = ProxyProperty("versionTag")
versionDate = ProxyProperty("versionDate")

"info.py" 40 lines --2%-- 1,1 ALl
Figure 110: info.py with new lines highlighted for LogMatchDevice

9.11.4 interfaces.py

The extra entries in interfaces.py are an import for IDevicelnfo and entries for the two version
attributes:

from Products.Zuul.interfaces.device import IDeviceInfo

class ILogMatchDeviceInfo (IDeviceInfo):

178 ZenPack Developers' Guide Oct 13, 2016

versionTag = SinglelLineText (title= t(u"Version Tag"))
versionDate = SingleLineText (title=_ t (u"Version Date"))

9.11.5 Top-level configure.zcml
An adapter stanza is required for the LogMatchDevice:

<adapter factory=".info.LogMatchDeviceInfo"
for=".LogMatchDevice.LogMatchDevice"
provides=".interfaces.ILogMatchDeviceInfo"

/>

9.11.6 Testing the new changes
Once all edits are complete, it should be sufficient just to recycle zenhub and zopectl.

Refresh the browser window showing the Overview for a LogMatchDevice and check that the
changes are correct.

*ﬂ 1s DASHBOARD EVENTS IN E REPORTS ADVANCED admin

Devices Networks Processes IP Services Windows Services Network Map Manufacturers

QOverview
Events
4 Components Systems edit: SNMP SysName:

Winterfaces (4) None bino
@ Network Routes (3) Groups edit: SNMP Location:
och A None Cedar Chase this is a long long long
@ 0s Processes (3) Location edit: location description
@File Systems (3) s SNMP Contact:
@1P Services (14) Cifike: Jane Curry [
@ Processors (1) SNMP Description:

Graphs Gamments: Linux bino 2.6.37.6-0.5-default #1 SMP

Modeler Plugins 2011-04-25 21:48:33 +0200 i686

Configuration Properties SNMP Version:

Software vl

My Example Menu 1 Version Tag:

Mib Browser 56.1

Gustom Properties Version Date:

Administration $Date: 2010-01-24 09:41:03 -0200 (Sun,

4 Monitoring Templates —=— 3 — 24 l2n 2010) § |

Device (/Server/Linux) . 4]

Figure 111: Modified overview panel for a LogMatchDevice instance

Note that the SNMP Community item has disappeared as well as adding the two version
items.

Since new functionality has now been added to the ZenPack, the minor version number
should be changed to 1.0.1.

Update the README.rst, including the “Change History”.

When all is complete, re-export the ZenPack.

Oct 13, 2016 ZenPack Developers' Guide 179

9.12 Modifying the ZenPack to remove LogMatchDevice

The ZenPack has created a new device object class of LogMatchDevice which can contain
many LogMatch components. This is only possible if an instance of a device has its
zPythonClass set to ZenPacks.community.LogMatch.LogMatchDevice. Fundamentally, a
device instance is associated with one zPythonClass. In practice, this also often drives the
Zenoss device class hierarchy; a device instance can only be in one Zenoss device class.

What happens if someone else creates a useful ZenPack with a device object class
specialisation that we also want to use?

A possible answer is that the LogMatch component is so prevalent that it is worth adding to
the base, Zenoss-supplied object class of Device. This can be achieved by adding code to the
__init__.py in the base directory and then adjusting other elements of the ZenPack to match.

Better still, a Device has existing os and ~Aw components; the LogMatch component fits better
as a relationship on the os (Operating System) component.

The solution requires:

e Entriesin _ init_ .py to monkeypatch the logMatchs relationship on to the existing
OperatingSystem relationship, os, and rebuild relations when the ZenPack is installed and
removed. The versionTag and versionDate attributes could also be monkeypatched on to
the Device object class.

e Modify LogMatch.py to change the relationship, logMatchDevice, to be os on an
OperatingSystem component. The device method will also need to be modified.

e The entries for LogMatchDevice in info.py and interfaces.py become redundant

o browser/configure.zcml needs its “for” statement modifying so that a LogMatch
component can be displayed for a standard Device (not a LogMatchDevice).

o The LogMatchMap modeler plugin will need modifying. The LogMatchDeviceMap
modeler is fine as-is.

e Ifthe LogMatchDevice object class is effectively removed, the LogMatch modeler
plugins will need manually assigning to relevant devices.

When developing variants of a ZenPack, one way to maintain the original safely is to use git
and develop the variant solution in a new git branch. git will be discussed in more detail in
Chapter 17. This ZenPack variant will be developed in the device branch and will be Version
1.0.2 of the ZenPack.

9.12.1 monkeypatching standard objects in __init__.py

Initially, _ init_ .py was just comments, including some hints for what one might achieve
there:

Nothing is required in this init .py, but it is an excellent place to do

many things in a ZenPack.

#

The example below which is commented out by default creates a custom subclass
of the ZenPack class. This allows you to define custom installation and

removal routines for your ZenPack. If you don't need this kind of flexibility
you should leave the section commented out and let the standard ZenPack

class be used.

180 ZenPack Developers' Guide Oct 13, 2016

Code included in the global scope of this file will be executed at startup
in any Zope client. This includes Zope itself (the web interface) and zenhub.
This makes this the perfect place to alter lower-level stock behaviour
through monkey-patching.

H o o W 3

monkeypatching is the dynamic replacement of attributes at runtime (and a method is a
special case of an attribute). Great care must be taken when using this technique as it has
potential to lead to unpredictable results.

In practice, it is a way of changing or extending Zenoss-supplied code.

zenoss@zen42:/code/ZenPacks/DevGuide/ZenPacks.community.LogMatch/ZenPacks/community/LogMatch

File Edit View Search Terminal Help
from Products.ZenModel.ZenPack import ZenPack as ZenPackBase E]
from Products.ZenRelations.RelSchema import ToManyCont, ToOne
from Products.ZenModel.OperatingSystem import OperatingSystem

from Products.ZenModel.Device import Device
from Products.Zuul.infos import ProxyProperty
from Products.Zuul.infos.device import DevicelInfo

Monkey patch the logMatchs relationship on to the existing OperatingSystem relationships

and versionTag and versionDate on to Device

OperatingSystem._relations += (("logMatchs", ToManyCont(ToOne, "ZenPacks.community.LogMatch.LogMatch", "os")),)
Device.versionTag = ''

Device.versionDate =
Make a device's version attributes available through the API.
We need the Devicelnfo info class extending.
DeviceInfo.versionTag = ProxyProperty('versionTag')
DeviceInfo.versionDate = ProxyProperty('versionDate')

Also need the interfaces information by extending IDeviceInfo
from Products.Zuul.form import schema
from Products.ZenModel.ZVersion import VERSION as ZENOSS_VERSION
from Products.ZenUtils.Version import Version
f Version.parse('Zenoss %s' % ZENOSS VERSION) >= Version.parse('Zenoss 4'):
SinglelLineText = schema.TextlLine
MultiLineText = schema.Text

éingleLineText = schema.Text
MultiLineText = schema.TextLine

from Products.Zuul.interfaces.device import IDevicelnfo
from Products.Zuul.utils import ZuulMessageFactory as t

IDeviceInfo.versionTag = SingleLineText(title=_t(u"Version Tag"))
IDevicelInfo.versionDate = SinglelineText(title=_t(u"Version Date"))

" _init__.py" line 51 of 71 --71%-- col 1
Figure 112: __init__.py for LogMatch ZenPack - monkeypatching

[T

The requirement is to extend the existing OperatingSystem class, which is defined in
$ZENHOME | Products | ZenModel /| OperatingSystem.py. It already has a number of
relationships defined:

class OperatingSystem(Software) :

totalSwap = 0L
uname = ""

_properties = Software. properties + (
{'id':'totalSwap', 'type':'long', 'mode':'w'},
{'id':'uname', 'type':'string', 'mode':''},

_relations = Software. relations + (
("interfaces", ToManyCont (ToOne,
"Products.ZenModel.IpInterface", "os")),
("routes", ToManyCont (ToOne, "Products.ZenModel.IpRouteEntry", "os")),
("ipservices", ToManyCont (ToOne, "Products.ZenModel.IpService", "os")),

Oct 13, 2016 ZenPack Developers' Guide 181

("winservices", ToManyCont (ToOne,

"Products.ZenModel .WinService", "os")),
("processes", ToManyCont (ToOne, "Products.ZenModel.OSProcess", "os")),
("filesystems", ToManyCont (ToOne,
"Products.ZenModel.FileSystem", "os")),
("software", ToManyCont (ToOne, "Products.ZenModel.Software", "os")),

The following line in the __init_ .py of the ZenPack achieves this:

OperatingSystem. relations += (("logMatchs", ToManyCont (ToOne,
"ZenPacks.community.LogMatch.LogMatch", "os")),)

The standard OperatingSystem class is extended dynamically when the ZenPack is loaded.

Similarly, the standard Device object class has new attributes added for versionTag and

versionDate. Since we may want to display these attributes, it is also necessary to extend both

the Device info (Devicelnfo) and the interface (IDevicelnfo) classes; see Figure 112.
A common error is to forget the necessary imports, defining the classes for modification.

The remainder of __init_ .py ensures that all os relations are rebuilt for all device instances,
when the ZenPack is installed:

class ZenPack (ZenPackBase) :

def install (self, dmd):
ZenPackBase.install (self, dmd)

Put your customer installation logic here.
for d in self.dmd.Devices.getSubDevices|() :
d.os.buildRelations ()

and that the OperatingSystem relations have the logMatchs removed and all device instance
os relations are rebuilt, when the ZenPack is removed:

def remove (self, dmd, leaveObjects=False):
if not leaveObjects:

When a ZenPack is removed the remove method will be called with

leaveObjects set to False .This means that you likely want to

make sure that leaveObjects is set to false before executing

your custom removal code.

OperatingSystem. relations = tuple([x for x in OperatingSystem. relations \
if x[0] not in ['logMatchs']]) B

for d in self.dmd.Devices.getSubDevices() :

d.os.buildRelations ()

9.12.2 LogMatch.py
The only changes in LogMatch.py are:
1. Change the relationship to match __init_ .py:

The logMatchs relationship does not exist in the default Products.ZenModel.OperatingSystem

It is monkey-patched in the init .py of this zenpack
_relations = OSComponent. relations + (
('os', ToOne (ToManyCont,
'Products.ZenModel .OperatingSystem', 'logMatchs')),

182 ZenPack Developers' Guide Oct 13, 2016

2. The device method needs changing from return self.logMatchDevice() to:

def device (self):
os = self.os()
if os: return os.device ()

It follows the os relationship to the OperatingSystem class and then returns its device
method.

Inspecting $ZENHOME | Products | ZenModel | OperatingSystem.py shows:

def device (self):
"""Return our Device object for DeviceResultInt.

won

return self.getPrimaryParent ()

Ultimately we end up at the object representing the device.

It is perfectly possible (and probably more “Pythonic”) to do this in a single statement:

return self.os () .device ()

9.12.3 browser/configure.zcml

The stanza that links JavaScript files with device classes will need changing. The original
configure.zcml has two viewlet entries, one to display LogMatch components and one to
modify the device's Overview panel. The LogMatch stanza will certainly need changing to
apply to all Devices. The Overview change may or may not be desirable - it is exactly the same
code for each:
<viewlet

name="js-LogMatchJavascriptJs"

paths="/++resource++LogMatchJavascript/js/LogMatch.js"

weight="10"

for="Products.ZenModel.Device.Device"

manager="Products.ZenUI3.browser.interfaces.IJavaScriptSrcManager"

class="Products.ZenUI3.browser.javascript.JavaScriptSrcBundleViewlet"

permission="zope2.Public"

/>

Note that the “for” statement effectively uses a “fully-qualified” path, starting from Products,
to the Device class in the Device module.

Note that the “for” statement applies to the Device object class, including any device object
class that inherits from Device. In practice this generally means that all device instances are
eligible to use the LogMatch JavaScript code.

9.12.4 LogMatchMap modeler plugin

A modeler plugin fundamentally runs against a device instance. The original modeler
specified the logMatchs relationship in relname; the implication being that logMatchs was on
the device.

In the new scenario, the logMatchs relationship is on the os component, not directly on the
device, so a compname statement is required. This extra line is the only change.

relname
modname

"logMatchs"
"ZenPacks.community.LogMatch.LogMatch"

Oct 13, 2016 ZenPack Developers' Guide 183

It is a component of the os component of a device that we want to populate
compname = "os"

Section 9.6.1 discussed the inheritance of the modeler plugin compname by both
RelationshipMaps and ObjectMaps. When the modeler plugin code creates a relMap() and
then appends to it any objectMaps populated from the modeler data, the compname is
implicitly used in the creation of these objects:
Create a relationship map - relname above specifies the logMatch
relationship
rm = self.relMap()
For each entry in the SNMP table, we need to create a LogMatch component
for oid, data in logMatchTable.items() :
Use try / except to prevent nasty failures
try:
Next line instantiates a LogMatch component object, populating the
component object's attributes with the matching values from the LogMatchTable
logMatchName, logMatchFilename, etc
modname (specified above) defines the object class for the component

om = self.objectMap (data)
Any attribute can then be overwritten, if required. id is an inherited

attribute but we want to ensure unigueness

om.id = self.preplId(om.logMatchName)

snmpindex is also an inherited attribute. Set it to the index
om.snmpindex = oid

Append this object instance to the relationship map
rm.append (om)

The LogMatchDeviceMap.py does not require any changes as it populates attributes directly
on the device instance that is being modeled (which used to be of class LogMatchDevice and
will now be of object class Device).

Remember that the modeler plugins will need to be added either to Zenoss device classes or to
individual device instances.

9.12.5 Remove / install ZenPack

Given the changes made to this ZenPack, it is prudent to remove the ZenPack and then
install it, rather than simply doing a reinstall. Zenoss should be stopped and started entirely
after both the remove and the install.

Before removing the ZenPack, as a precautionary measure, move any devices in the
/Server [/ Linux /SimpleTest device class (the one with the zPythonClass set), to
/Server/Linux.

To test the changes, add the LogMatchMap modeler plugin to a test device in the
/Server /[Linux class and ensure that the snmp agent on that device is configured to deliver
logmatch information. Modeling the device should produce Log Match Files components.

184 ZenPack Developers' Guide Oct 13, 2016

4# 1 DASHBOARD EVENTS UCTURE REPORTS ADVANCED 2 admin out H

Devices Networks Processes IP Services Windows Services Network Map Manufacturers Page Tips

[

Overview
Events s s "
4 Components fred1_daily foptizenoss/local/fredtest/fred. ..
OMVSQL Servers (1) fred2_daily /optizenoss/local/fredtest/fred. ..
@ Network Routes (7) fred3_daily /opt/zencss/local/frediest/fred. ..
@ MySQL Databases (7)
@ Monitored URLs (1)
¥ Log Match Files (3)
@File Systems (3)

< Zoom Out >
@ subagentShell (4)
@ SNMP Commands (2) o8
@ Interfaces (2) g 10
@ RabbitMQ Exchanges (25) s 9 e
05 Processes (27) g 8
@ RabbitMQ Nodes (1) ol L
@ RabbitMa VHosts (2) Tue 12:00 Wed 00: 00 Wed 12:00
i 2015-11-17 07:37:52 GMT to 2015-11-18 19:37:52 GMT
@ 1P Services (16) B logMatchCurrentCounter cur: 9.00 avg: 9.00 max: 9.00
@ RabbitMQ Queues (10)
@ Processors (2)
Graphs L]
3

T rnrnc—n R G

Figure 113: Test device in /Server/Linux class with Log Match Files components

The LogMatch component template should still be automatically bound to components of
object class LogMatch; however, because these components are now components of os, the rrd
data files will be under:

SZENHOME /perf/Devices/<device name>/os/logMatchs/<logMatch instance>

The ZMI should also show the change in relationships.

~ [ﬁv Google nl &

[setprterences <] ¢

« [@example.org https:/izen42.class.example.org/zport/dmd/manage

Security

arena

= [Z Devices
& (Z] Aws R Software at fzport/dmd/Devices/Server/Linux/devices/zen42.class.example.org/os
® (& Application L= —— oy
AzlzDisoovered [Aooeleraied HTTP Cache Manager] @
(2 BackupForLotschi=| [;e —— e
= Discc\.:red . Wm Size. Last Modified
® (5 Example m; apachestatus 2015-11-18 18:06
@ HTTF' O ‘w oommandst-atus 2015-11-18 18:06
O . dependencies 2015-11-18 18:06
Ervm O =% dependents 2015-11-18 18:06
. “N”:l’:t':’:'abases : filesystems 2015-11-18 18:06
O =7 httoComponents 2015-11-18 18:06
E g:"iﬂ o .,.: interfaces 2015-11-18 18:06
[%¥ ipSLAs 2015-11-18 18:06
&1 (& printer 0 2% ipservices 2015-11-18 18:06
= (& server O =¥ logMatchs @ 2015-11-18 18:06
Ecmd [=* maintenanceWindows 2015-11-18 18:06

Figure_ 114: ZMI with logMatchs relationship under the os component of a /Server [Linux device
instance

Finalise the ZenPack by updating the README.rst, updating the version to 1.0.2 and
exporting the ZenPack to create the egg file and objects.xml.

Oct 13, 2016 ZenPack Developers' Guide 185

10.0 Rewriting the LogMatch ZenPack with zenpacklib

In mid-2015, Zenoss delivered zenpacklib which is a package designed to take much of the
coding effort out of ZenPacks. The area where it provides most benefit, is in largely
eliminating the need for JavaScript, info.py, interfaces.py and configure.zcml. Its
documentation pages can be found at http://zenpacklib.zenoss.com/en/latest .

The difficulty with zenpacklib is that it does not do everything; for example, it cannot simplify
writing modeler plugins or custom datasources. In order to write such code it is necessary to
really understand the constructs that zenpacklib simplifies for you.

10.1 Creating ZenPacks with zenpacklib

There are two ways to get started with zenpacklib. You can either use it to create a new
ZenPack from the command line, or you can copy it into an existing ZenPack.

To create a ZenPack from the command line, run the following:

./zenpacklib.py create ZenPacks.community.zenpacklibtest

This will print several lines to let you know what has been created. Note that the ZenPack’s
source directory has been created, but it has not yet been installed.

Zenoss@zen42:/code/ZenPacks/DevGuide

File Edit View Search Terminal Help

[zenoss@zen42 DevGuide]$./zenpacklib.py create ZenPacks.community.zenpacklibtest E}
Creatlng source directory for ZenPacks.community.zenpacklibtest:
making directory: ZenPacks.community.zenpacklibtest/ZenPacks/community/zenpacklibtest
- creating file: ZenPacks.community.zenpacklibtest/setup.py
- creating file: ZenPacks.community.zenpacklibtest/MANIFEST.in
- creating file: ZenPacks.community.zenpacklibtest/ZenPacks/ init .py
- creating file: ZenPacks.community.zenpacklibtest/ZenPacks/community/ init .py
- creating file: ZenPacks.community.zenpacklibtest/ZenPacks/community/zenpacklibtest/ init .py
- creating file: ZenPacks.community.zenpacklibtest/ZenPacks/community/zenpacklibtest/zenpack.yaml
copying: ./zenpacklib.py to ZenPacks.community.zenpacklibtest/ZenPacks/community/zenpacklibtest
[zenoss@zen42 DevGuide]$ I

Figure 115: Creating a ZenPack with zenpacklib.py

Note that the start of the usual directory hierarchy is created, each directory having an
__init__.py. zenpacklib.py is copied to the base directory of the ZenPack and a zenpack.yaml is
created.

No other directories are created under the base directory, such as modeler/plugin hierarchies
or datasource directories. This means that if you create such directories you must ensure you
create an __init_ .py in each directory in the subsequent hierarchy. It is adequate to use:

touch init .py

The zenpack.yaml file simply contains:

name: ZenPacks.community.zenpacklibtest

The __init__.py in the base directory of the ZenPack contains:

from . import zenpacklib
zenpacklib.load yaml ()

186 ZenPack Developers' Guide Oct 13, 2016

http://zenpacklib.zenoss.com/en/latest

Alternatively, if a ZenPack already exists, simply copy zenpacklib.py to the base directory of
the ZenPack and create zenpack.yaml in the base directory, ensuring there is a name entry
for the ZenPack as shown above.

The existing __init__.py in the ZenPack's base directory will need the following lines added:

from . import zenpacklib
zenpacklib.load yaml ()

10.2 zenpacklib capabilities

The online documentation for zenpacklib facilities is at
http://zenpacklib.zenoss.com/en/latest/vaml-reference.html :

e Object class definitions for devices and components
e Relationships between devices and components

e Zenoss device classes

e zProperties

e Performance template definitions

There is a presumption that the ZenPack will create new Zenoss device classes and new
object classes for device and components. There is no assistance with modifying core Zenoss
constructs, other than adding a global zProperty.

TODO: Is it possible to modify existing classes??

10.3 Converting the logmatch ZenPack for zenpacklib

As with the last major modification to the LogMatch ZenPack, the conversion to zenpacklib
will be developed in a separate git branch, called zenpacklib and it will be version 1.0.3. The
starting point for this version and git branch will be 1.0.1 where a new device object class is
created and the Overview menu is modified to show versionTag and versionDate.

In addition, a Zenoss device class /Server/Linux/LogMatch will be created.

10.3.1 zenpacklib benefits - items no longer required

zenpacklib will make the following files and directories redundant so they should be removed
(or at least “hidden”):

e LogMatchDevice.py
e LogMatch.py

e configure.zeml

e info.py

e interfaces.py

e browser/

Oct 13, 2016 ZenPack Developers' Guide 187

http://zenpacklib.zenoss.com/en/latest/yaml-reference.html

10.3.2 zenpack.yaml

Definitions of new object classes, relationships, device classes and templates can be done in a
zenpack.yaml file that must exist in the base directory of the ZenPack. This permits
definitions to be done in a kind of pseudo code that is much simpler to write and much less
error prone. The other major benefit is that JavaScript is created automatically for these
elements.

The zenpack.yaml file is rather focused around Zenoss device classes; the

/Server [/ Linux / LogMatch device class will be defined in zenpack.yaml with the zPythonClass
zProperty set to ZenPacks.community.LogMatch.LogMatchDevice. zCollectorPlugins will also
be set.

name: ZenPacks.community.LogMatch

device classes:
/Server/Linux/LogMatch:

remove: False # False is default - specified for clarity
zProperties:
zPythonClass: ZenPacks.community.LogMatch.LogMatchDevice
zCollectorPlugins: ['zenoss.snmp.NewDeviceMap', 'zenoss.snmp.DeviceMap',
'HPDeviceMap', 'DellDeviceMap', 'zenoss.snmp.InterfaceMap',
'zenoss.snmp.RouteMap', 'zenoss.snmp.IpServiceMap',
'zenoss.snmp.HRFileSystemMap', 'zenoss.snmp.HRSWRunMap',
'zenoss.snmp.CpuMap', 'HPCPUMap', 'DellCPUMap', 'DellPCIMap',
'zenoss.snmp.SnmpV3EngineIdMap', 'community.snmp.LogMatchDeviceMap',

'community.snmp.LogMatchMap']

The LogMatchDevice object classes will be defined in zenpack.yaml with:

classes:
DEFAULTS:
base: [zenpacklib.Component]

LogMatchDevice:

base: [zenpacklib.Device]

meta type: LogMatchDevice # Will default to this but in for completeness
label: LogMatch Host

properties:
versionTag:
type: string
label: Version Tag
short label: VerTag
versionDate:
type: string
label: Version Date
short label: VerDate

relationships:
logMatchs:
label: logMatchs
display: false

The versionTag and versionDate attributes are defined; the default keyword could also be
used but a property value defaults to None anyway.

Note the relationships stanza to explicitly name a relationship called logMatchs.

188 ZenPack Developers' Guide Oct 13, 2016

The LogMatch component class follows a similar patter, with a few extra items:

LogMatch:

label: Log Match File # NB It is label, with spaces removed, that is used
to match a component template

meta type: LogMatch # Will default to this but in for completeness

order: 60
auto expand column: logMatchFilename
monitoring templates: [LogMatch]
properties:

logMatchName:

type: string

label: LogMatch Name
label width: 100

order: 3.1
logMatchFilename:

type: string

label: LogMatch Filename
label width: 400

order: 3.2
logMatchRegEx:

type: string

label: LogMatch RegEx
label width: 150

order: 3.3
logMatchCycle:

type: int

label: LogMatch Cycle
grid display: false
order: 3.4
logMatchErrorFlag:

type: int

label: LogMatch ErrorFlag
label width: 100

grid display: false
order: 3.5
logMatchRegExCompilation:
type: string

label: LogMatch RegExCompilation
label width: 100

grid display: false
order: 3.6

relationships:
logMatchDevice:
label: logMatchDevice
display: true # Show this relationship in Details dropdown

Note carefully that the label field for this component object class (Log Match File):

e Will be used in the left-hand menu as the name of the component. For a single
component instance the label will be singular - Log Match File; if there are multiple
instances the label will automatically be plural - Log Match Files.

e The label not the object class name is used, by default, to find component performance
templates to automatically apply

e It is possible to define a component template to apply using the monitoring_templates
keyword (which expects a list):

Oct 13, 2016 ZenPack Developers' Guide 189

monitoring templates: [LogMatch]

Note that this ZenPack continues to provide performance templates added by the GUI, in
objects.xml (which works perfectly well for both Zenoss 4 and 5). A later example will discuss
adding templates to zenpack.yaml.

If several component classes are defined, the order keyword can be used to arrange the order.
The smaller the number, the nearer to the top of the list will be the component.

The auto_expand_column can be used exactly the same way as in a JavaScript file to select a
field to take advantage of any unallocated space in the component panel width.

An order keyword can also used when defining properties; smaller numbers are nearer the
left. There are many keywords available for defining properties which match many of the
controls available in JavaScript; common ones are:

e label width defaults to 80
e column_width defaults to label _width
o default depends on type which can be:

string, int, float, boolean, lines, password or entity

e details_display defaults True - show in Details dropdown
e grid_display defaults True - show as column in comp display
e renderer default to None (ie string)

e api_only) used to define property or method used in
e api_backendtype) the API. Defaults are false and property
°) method must be defined in a .py file

Note that if column widths are defined that exceed 750 pixels then all the column width

directives are ignored and revert to the default.

Relationships between the device and component are denoted by a class_relationship stanza:
class_relationships:

- LogMatchDevice (logMatchs) 1:MC LogMatch (logMatchDevice)

Note that the relationships stanza is not mandatory for either a device or a component object
class. Similarly, in the class_relationships stanza it is not mandatory to specify the
relationship names (those in brackets); however, default relationship names will be created
according to the following rules:

o A ToOne relationship will default by lowercasing the first letter of the class. giving
logMatchDevice.

e A ToMany relationship will default by lowercasing the first letter of the class and
adding an “s” to the end to make it plural, giving logMatchs.

In this case, the relationships stanzas on both object classes could be omitted and the
Class_relationship could simply be:

LogMatchDevice 1:MC LogMatch

however, it is better practice to explicitly name the relationships to avoid confusion.

190 ZenPack Developers' Guide Oct 13, 2016

Use the lint parameter to zenpacklib.py to check the syntax of zenpack.yaml:
./zenpacklib.py lint zenpack.yaml

10.3.3 zenpack.yaml elements in modeler plugins

The relationship name is needed in the LogMatchMap modeler plugin to specify the relname
to populate. Similarly, the modname in the modeler needs to match the concatenation of the
ZenPack name and the component class as defined in zenpack.yaml.

10.3.4 Completing the ZenPack

Whenever classes or properties have been added or deleted in zenpack.yaml, the zenpack
should be reinstalled. If properties have been changed, for example label_width on an
attribute or monitoring_templates on a component class, then it is sufficient to recycle zenhubd
and zopectl. zenhub will report if the total width of defined label fields exceeds 750 pixels.

Note that there are no source files generated for the object classes, info.py. interfaces.py,
configure.zcml or JavaScript files; these are all generated by zenpacklib and held in memory.

As with any other development ZenPack, items can be added from the menus, other code files
can be added, the README.rst should be updated and the version should be increased. The
ZenPack's build /lib directory should be cleared and the ZenPack should then be exported to
recreate the .egg file and the objects.xml.

To ensure clean testing, the test device should be completely removed from Zenoss and then
recreated as a /Server/Linux/LogMatch device.

*-@ 1 DASHBOARD EVENTS INFRZ CTURE REPORTS ADVANCED admin sieNout H

Networks Manufacturers

Windows Services

(o) e T

Devices Processes IP Services Network Map

liu_ [3}

Page Tips

[Type to filter...
Overview 2

Events | e

Components

v Log Match Files (2) |

@ Network Routes (3)

@ Interfaces (4)
@05 Processes (3)
@ File Systems (3)
@ 1P Services (14)
& Processors (1)

Graphs

Modeler Plugins

Configuration Properties

Software

My Example Menu 1

Mib Browser

Custom Properties

Administration

4 Monitoring Templates

Device (/Server/Linux)

fred1_daily
fred2 dail fred2 dail

y: Details B4

Relationships

logMatchDevice:
taplow-11.skills-1st.co.uk

LogMatch Name:
fred1_daily
LogMatch Filename:
/optizenoss/local/fredtest/fred1.log_20151123
LogMatch RegEx:
test
LogMatch Cycle:

1300
LogMatch ErrorFlag:

¥l 0

ffredtesi/fred1.log 20151123 1

/opt/zenoss/local/fredtest/fred2.log 20151123 without

Overview

Status:
Up

-

MyFootnrv.+v £ ~| commands ~) 0Jobs »

Figure 116: Log Match Files components for /Server/Linux/LogMatch device - created using zenpacklib

Oct 13, 2016

ZenPack Developers' Guide

191

10.3.5 JavaScript to modify the device Overview panel

This reproduces most of the functionality from version 1.0.1 of the ZenPack; however, it does
not achieve the changes on a device's Overview panel to show the versionTag and versionDate
fields.

There is an expected way to do custom JavaScript using zenpacklib that doesn't involve any
n ZCML. If you want to have a JavaScript file loaded for all Zenoss pages, put it in

resources /global.js; if you want it to only apply to your custom device type(s), put it in

resources [<device>.js. If zenpacklib detects the presence of either of these types of files it will

wire up the ZCML for you automatically:

e Create a resources directory under the base directory

o Create an __init_ .py in resources

e Copy the old custom-overview-device.js to LogMatchDevice.js in resources
e Reinstall the ZenPack and recycle daemons

There is one major hiccup with converting an existing ZenPack to use zenpacklib. Without
zenpacklib, rrd files for components are created under $ZENHOME | perf/ Devices | <host

n name> and a subdirectory is created with the name of the component relationship (logMatchs
in this case). Under this subdirectory is a further directory for each component instance
(fred1_daily etc) and the rrd files are under there.

The code in zenpacklib.py (1.3 at least) ignores the subdirectory for the relationship and
creates directories for component instances directly under $ZENHOME |/ perf/ Devices [<host
name>. If data already exists, it won't be used after the zenpacklib upgrade.

One way to address this is to modify the zenpacklib.py code for this ZenPack in the rrdPath
method (around line 900). Do ensure a backup is taken of the file first.

def rrdPath(self):
"""Return filesystem path for RRD files for this component.

Overrides RRDView to flatten component RRD files into a single
subdirectory per-component per-device. This allows for the
possibility of a component changing its contained path within
the device without losing historical performance data.

This requires that each component have a unique id within the
device's namespace.

original = super (ComponentBase, self).rrdPath()

try:
Zenoss 5 returns a JSONified dict from rrdPath.
json.loads (original)
except ValueError:
Zenoss 4 and earlier return a string that starts with "Devices/"
#JC - revert back to rrd directories having a component relationship subdir
#return os.path.join('Devices', self.device().id, self.id)
return original
else:
return original

192 ZenPack Developers' Guide Oct 13, 2016

10.3.6 Performance data as a component configuration attribute

When viewing components for a device, typically the top part of the window shows
configuration details for the component and the lower part shows graphs, where the graphs
are driven by data collected by a daemon such as zenperfsnmp, zencommand or zenpython
and data is typically collected every 5 minutes. Configuration data is typically collected every
12 or 24 hours.

The standard file systems component is a good example where Free Byes and Used Bytes
appear both as configuration data and are also graphed.

How can the configuration display be updated with the up-to-date information provided by
the performance data collection daemon?

One solution is achieved using the zenpython daemon and will be discussed in section 13.5. A
much simpler and effective solution is possible with zenpacklib. An object class attribute can
be defined with the datapoint keyword.

The LogMatch ZenPack is gathering the logMatchCurrentCounter (1.3.6.1.4.1.2021.16.2.1.7)
OID as a datapoint in the LogMatch performance template. The LogMatch object class does
not currently have this attribute; the definition in zenpack.yaml can be modified to add it:

LogMatch:
label: Log Match File
meta type: LogMatch # Will default to this but in for completeness
order: 60 #
auto _expand column: logMatchFilename
monitoring templates: [LogMatch]

properties:
logMatchName:
type: string
label: LogMatch Name
label width: 100
order: 3.1

logMatchCurrentCounter:
type: int
label: Current Counter
label width: 60
order: 3.7
datapoint: logMatchCurrentCounter logMatchCurrentCounter
datapoint default: 0

The type is defined as an integer and the order puts it at the far right of the component
display. The label_width statements for several attributes have been adjusted slightly to fit
the space. Note that the type keyword will need to be numeric - either int or float.

The datapoint keyword must match an existing datapoint, where the format is:
<datasource name>_<datapoint name>
logMatchCurrentCounter logMatchCurrentCounter for example
A default value for the datapoint can be specified with the datapoint_default keyword.

The modeler plugin should have a slight change so that a configuration poll does collect data
for the new logMatchCurrentCounter attribute:

Oct 13, 2016 ZenPack Developers' Guide 193

snmpGetTableMaps = (
GetTableMap ('logMatchTable',
'.1.3.6.1.4.1.2021.16.2.1",

{
'.1': ' logMatchIndex',
'.2': 'logMatchName',
'.3'": 'logMatchFilename',
'.4': 'logMatchRegEx',
'.11': 'logMatchCycle',
'.100': 'logMatchErrorFlag',
'.101': '"logMatchRegExCompilation',
'.7"': '"logMatchCurrentCounter',
}

)y

The rest of the modeler code needs no changes as the values from GetTableMap populate their
corresponding fields in the component objectMap.

The ZenPack should be reinstalled and Zenoss recycled.

".ﬁ 1 DASHBOARD EVENTS INFRASTRUCTURE REPORTS ADVANCED jane sigNoUT H

m Networks Processes IP Services Windows Services Network Map Manufacturers Page Tips

Overview
Events o e —
4 Components v fred1_daily fred1_daily Jopt/zenoss/local/fredtest/fred.log_20160628
fred2_daily lopt/zenoss/local/fredtest/fred2.log_20160628

Q, Type o filter...

* Log Match Files (2) fred2_daily without
@Network Routes (2)

@ interfaces (2)
@0s Processes (1)
@File Systems (3)
@ P Services (13)
@processors (1)
Graphs

Modeler Plugins

matches

Configuration Properties
Software

) Mon 12:00 Tue 00: 00 Tue 12:00
Mib Browser 2016-06-27 05:54:11 BST to 2016-06-28 17:54:11 BST
My Example Menu 1 B logMatchCurrentCounter cur:11.00 avg:281.12m max: B.00

| Custom Properties

Figure 117: LogMatch component with Current Counter datapoint displayed as configuration
information

Note that you should refresh the browser to see updates to the upper-window configuration
data.

This feature has been incorporated into the zpl_and_datapoint git branch of the ZenPack and
is version 1.0.4.

11.0 COMMAND DirFile sample ZenPack

The LogMatch ZenPack used the SNMP protocol both for gathering configuration data with
the modeler plugins and for gathering performance data through templates.

194 ZenPack Developers' Guide Oct 13, 2016

This ZenPack sample provides a straight-forward example of using a CommandPlugin
modeler and using COMMAND performance templates. Fundamentally, this means using
ssh to talk to target systems.

The advantage of ssh is that it is very flexible and setting up performance templates is
relatively simple. The disadvantage is that it is very inefficient of resources on the Zenoss
server and potentially also on the target devices.

A later sample will discuss the merits and details of rewriting the COMMAND elements to
use a PythonPlugin modeler and creating Python datasources.

This ZenPack also demonstrates the concept of sub-components where a device contains
multiple components, which contain multiple sub-components.

zenpacklib is used to create and build this ZenPack.

11.1 Requirements specification

It is required to collect configuration information for the existence of certain Linux
filesystem directories. Additionally, for each specified directory, file information is required.
The directory will be specified as a fully-qualified pathname; files within the directory will be
based on matching a regular expression; for example:

e Directoryl /opt/zenoss/local/fredtest
e Directoryl file regex fred1.*

e Directory2 /var/log

e Directory?2 file regex Flog$

The effort (in terms of human development time) is to be minimal at the cost of efficiency of
computing resources. The bash command to be run to collect directory information is:

find / -type d

The command for file information is:

find / -type £

This ZenPack, with these unmodified commands, should not be run on anything other than a
small test system because of the effort required to deliver and process the output of the
commands. A more realistic scenario might be to limit the scope of the bash find commands to
a much more restricted subset of the filesystem; for example /opt/zenoss/local. The aim is to
provide a ZenPack that is very simple to test.

Upto three sets of directory / file regex pairs may be configured.

Configuration information should show directories as components of a device if they exist. In
addition, if files matching the file regex exist, they should be sub-components of the
directory.

Performance information should be gathered for both directory and file components using the
du bash command to show the disk used by the element, in bytes.

Oct 13, 2016 ZenPack Developers' Guide 195

11.2 ZenPack specification

The new ZenPack will be called ZenPacks.community.DirFile.

The ZenPack will create a new component type called Dir with a single attribute:
e dirName of type string

There will also be a File component with three attributes:

e fileName of type string
e fileDirName of type string
e fileRegex of type string

For now, the ZenPack will also create a new object class for these devices - DirFileDevice.
The device class has no extra attributes.

A DirFileDevice will have a ToManyCont relationship with Dir components called dirs. The
corresponding ToOne relationship from the Dir component will be dirFileDevice (note the
capitalisation carefully). The Dir component class will also have a files ToManyCont
relationship with File components whose corresponding ToOne relationship with the Dir, will
be dir, thus creating a 3-tier hierarchy.

The ZenPack will create the new Zenoss device class /Server/Linux/DirFile.

Configuration for the three pairs of directories and optional file regex parameters, will be
achieved with new zProperties:

e zMonitorDirl zMonitorDirl1File
e zMonitorDir2 zMonitorDir2File
e zMonitorDir3 zMonitorDir3File

Since much of the data is to do with directory hierarchies, many “names” will have one or
more unix-style slashes in them. Such characters could be interpreted as meta-characters so a
general policy will be, when creating fundamental id attributes, the Zenoss utility, prepld,
will be used to ensure that any “unsafe” characters are replaced with an underscore. “Safe”
characters are defined in prepld as:

a-z A-Z 0-9 -, . $ ()
A modeler plugin will be required to discover Dir and File components - DirFileMap.

zenpacklib will generate all the JavaScript that is required and produce some useful links
between the component hierarchy. No info.py, interfaces.py or configure.zecml is required.

Templates will be created through the GUI and added to the objects.xml of the ZenPack.

Unless otherwise noted, all ZenPack instructions from here on in this chapter, will be for
Zenoss 4 Core (or earlier).

11.3 Creating the ZenPack

The ZenPack will be built using zenpacklib so that will also be used for creation:

196 ZenPack Developers' Guide Oct 13, 2016

./zenpacklib.py create ZenPacks.community.DirFile

The ZenPack directory hierarchy is created down to the base directory which contains:
o zenpacklib.py
e zenpack.yaml containing the ZenPack name.
e _ init_ .py containing the import of zenpacklib and the load_yaml() statement
No further directories or files are created.
Create a README.rst in the top-level directory.

Note than the zenpacklib create command does not install the ZenPack. Do so with:

zenpack --link --install ZenPacks.community.DirFile

Examine the ZenPack through the Zenoss GUI and fill in the Author and License fields and
any co-requisites. Note that a ZenPack created with zenpacklib will have a version 1.0.0dev
by default.

11.4 zenpack.yaml

zenpack.yaml allows the definition of new zProperties. Prior to zenpacklib, new properties
could be defined fairly simply in the __init_ .py in the base directory of a ZenPack. For
example, the original VMwareESXiMonitor ZenPack created zVSphereUsername and

2V SpherePassword zProperties (see Figure 118).

Note that any zProperties created by any ZenPack by any method, defines global zProperties.
d‘ They cannot be limited to an object class or to a Zenoss device class. For this reason, the
&4 facility should be used sparingly.

Oct 13, 2016 ZenPack Developers' Guide 197

€

@ Firefox

Branch: master ~

areESxXiMonitor/blob/master/ZenPacks/communityVMware ESXiMonitor__init__.py .r (o) C?!Ew.m-:h

ZenPacks.community.VMwareESXiMonitor / ZenPacks / community / VMwareESXiMonitor / __init__.py

Mattikin ViviwareESXiMonitor 2.0.1 5019839 on 7 Nov 2014

1 contributor

56 lines (45 sloc) 2.25 KB Raw Blame History # [T
This program is part of the VMwareESXiMonitor Zenpack for Zenoss.
Copyright] 2014 Eric Enns, Matthias Kittl.
This program can be used under the GNU General Public License version 2
You can find full information here: http:/ . ZENOSS. COM/ 0SS

import Globals
import os.path

import logging

log = logging

from Products,
from Products,
from Products,
from Products,

skinsDir = os

getlogger('zen. vmwareesximonitor')

ZenModel. ZenPack import ZenPackBase

ZenUtils.Utils import zenPath

CMFCore.Directoryview lmport registerDirectory
ZenRelations. zPropertyCategory import setzPropertyCategory

path.join(os.path.dirname(__file), 'skins')

if os.path.isdir(skinsbir):

registerDirectory(skinsbir, globals())

_PACK_Z_PROFS

=1

('zvephereUsername', '', 'string'),
('zvspherePassword', '', 'password'),

]

for name. default value. tvoe in PACK Z PROPS:

Figure 118: __init__.py for original ZenPacks.community. VMwareESXiMonitor showing creation of new

zProperties

The /Server/Linux/DirFile device class will be defined in zenpack.yaml with the
zPythonClass zProperty set to ZenPacks.community.DirFile.DirFileDevice. zCollectorPlugins

will also be set.

See http://zenpacklib.zenoss.com/en/latest/vaml-zProperties.html for full documentation on

creating zProperties with zenpacklib, including supported types and defaults.

198

ZenPack Developers' Guide Oct 13, 2016

http://zenpacklib.zenoss.com/en/latest/yaml-zProperties.html

zenoss@zen42:/code/ZenPacks/DevGuide/ZenPacks.community.DirFile/ZenPacks/community/DirFile

Eile Edit View Search Terminal Help
name: HenPacks.community.DirFile 12

ZProperties:
DEFAULT:
category: DirFile

ZMonitorDirl:
type: string

zMonitorDir2:
type: string

zMonitorDir3:
type: string

ZMonitorDirlFile:
type: string
zMonitorDir2File:
type: string
zMonitorDir3File:
type: string

device classes:
/Server/Linux/DirFile:
remove: False # False is default - specified for clarity
ZProperties:
zPythonClass: ZenPacks.community.DirFile.DirFileDevice
zCollectorPlugins: ['zenoss.snmp.NewDeviceMap', 'zenoss.snmp.DeviceMap', 'HPDeviceMap', 'Del
1DeviceMap', 'zenoss.snmp.InterfaceMap', 'zenoss.snmp.RouteMap', 'zenoss.snmp.IpServiceMap', 'zeno
ss.snmp.HRFileSystemMap', 'zenoss.snmp.HRSWRunMap', 'zenoss.snmp.CpuMap', 'HPCPUMap', 'DellCPUMap'’
, 'DellPCIMap', 'zenoss.snmp.SnmpV3EngineIdMap', 'community.cmd.DirFileMap']
"zenpack.yaml" 98 lines --1%-- L7 Top

[<T

Figure 119: zenpack.yaml for DirFile ZenPack - zProperties and device class

The DirFileDevice object class and the Dir and File Component classes are defined next in
zenpack.yaml.

Oct 13, 2016 ZenPack Developers' Guide 199

zenoss@zen42:/code/ZenPacks/DevGuide/ZenPacks.community.DirFile/ZenPacks/community/DirFile

File Edit View Search Terminal Help
] &
classes:
DEFAULTS:
base: [zenpacklib.Component]

DirFileDevice:
base: [zenpacklib.Device]
meta type: DirFileDevice # Will default to this but in for completeness
label: DirFile Host

relationships:
dirs:
label: dirs
display: fTalse

Dir:
label: Dir # NB It is label, with spaces removed, that is used to match a component template
meta type: Dir # Will default to this but in for completeness
label width: 150 # This controls the column width for Dir in the Files component display
order: 60 # before file
auto expand column: dirName
monitoring templates: [Dir] # will default to Dir but explicit for clarity

properties:
dirName:
type: string
label: Directory name
short label: DirName
label width: 300
order: 3.1

relationships:

dirFileDevice:
label: dirFileDevice
display: true

files:
label: files
display: true

"zenpack.yaml" 98 lines --27%-- 27,0-1 43% [~

Figure 120: zenpack.yaml for DirFile ZenPack - object class for device and Dir component

Points to note in Figure 120 are:
e For the Dir component:

s The label is used to automatically match a component template. The
monitoring_templates keyword is redundant here but is explicit to improve
understanding. The label is also used as the component name in the left-hand
menu (with “s” added for more than one component instance).

» When the directory is used as part of the Files component display, it is the label
and column_width keywords in the Dir definition that controls the display

s The order of components in the left-hand menu is controlled by the class definition
order keywords, where lower numbers are nearer the top. Thus Dirs (order: 60)
will be above Files (order: 70).

s Both relationships are defined explicitly although they would default to these same
names (object class lower-cased; ToManyCont relationship is plural; ToOne
relationship is singular).

s Both relationships should be displayed in the component grid and in the Details
dropdown.

There are two contradictions to the above notes.

200 ZenPack Developers' Guide Oct 13, 2016

o The left-hand menu component label is supposed to become singular if there is only
one instance. This does not appear to happen.

e Although both relationships for Dir have display: true , only the dirFileDevice
relationship is actually shown in the Details dropdown.

zenoss@zen42:/code/ZenPacks/DevGuide/ZenPacks.community.DirFile/ZenPacks/community/DirFile

File Edit View Search Terminal Help
File:
label: File # NB It is label, with spaces removed, that is used to match a component template
meta type: File # Will default to this but in for completeness
order: 70 # after dir
auto expand column: fTileName

monitoring templates: [File] # will default to File but explicit for clarity
properties:
fileName:
type: string
label: File name
short_label: FileName
label width: 250
order: 3.1
fileDirName:
type: string
label: File Dir name
short_label: FileDirName
label width: 200
order: 3.2
fileRegex:
type: string
label: File Regex
short label: FileRegex
label width: 1580

order: 3.3
relationships:
dir:

label: dir # label for
grid display: false
details display: true
label width: 20 # this does NOT control width of Dir in files component panel
order: 3.3 # this seems to have no effect on order in the files component display

dir in files component panel taken for Dir label, not from here
this does control whether Dir displayed in fTiles component panel

class relationships:
DirFileDevice(dirs)
Dir(files)

1:MC Dir(dirFileDevice)
1:MC File{dir)

"zenpack.yaml" 105 lines --100%-- 165,0-1

Figure 121: zenpack.yaml for DirFile ZenPack - object class for File and class relationships

Bot -

Points to note in Figure 121 for the File component class definition are:
e The class order: 70 places it below Dirs in the left-hand menu

o The order of columns is controlled by the property order statements with 3.1 left of 3.2
ete.

e The relationship again is defined explicitly, however:

m Either grid_display or display set to true controls whether the relationship is
shown as a column in the Files component panel

m The label_width and label for this column are taken from the Dir class keywords,
not from this relationship statement

s The order keyword appears to have no effect

When the yaml file is complete, the ZenPack should be reinstalled and zenoss completely
recycled.

zenpack --link --install ZenPacks.community.DirFile
zenoss restart for Zenoss 4

Oct 13, 2016 ZenPack Developers' Guide 201

serviced service restart Zenoss.core for Zenoss 5 Core
serviced service restart Zenoss.resmgr for Zenoss 5 Enterprise

Check that the new Zenoss device class is created and that the zPythonClass and
zCollectorPlugins are correctly set.

11.5 DirFileMap modeler plugin

Modeler plugins must go under a modeler/plugin directory hierarchy under the base ZenPack
directory. To follow the previous sample, there should then be a community/cmd continuation
of the hierarchy, although this is not essential.

n Creating a ZenPack with zenpacklib does not create any of this hierarchy so it must be done
manually and each directory should have an empty __init_ .py.

The DirFileMap plugin will inherit from the CommandPlugin object class (whereas the
LogMatch example inherited from the SnmpPlugin).

11.5.1 * CommandPlugin code in core Zenoss

The CommandPlugin class is defined in
$ZENHOME | Products | DataCollector | plugins [CollectorPlugin.py. It inherits from the
CollectorPlugin class that is discussed in more detail in Section 9.6.1.

202 ZenPack Developers' Guide Oct 13, 2016

zenoss@zen42:/opt/zenoss/Products/DataCollector/plugins
File Edit VWiew Search Terminal Help
; CommandPlugin({CollectorPlugin): 4

A CommandPlugin defines a command to be run on a remote device and
a parsing methos to turn the commands output into a datamap. A valid
CommandPlugin must have class variable "command" defined and must implement
the methods process and condition.
transport = "command"
command = ""
deviceProperties = CollectorPlugin.deviceProperties + (

'zCommandPort ',

*zCommandProtocol',

'zCommandUsername ',

*zCommandPassword "',

'zCommandLoginTries"',

'zCommandLoginTimeout ',

'zCommandCommandTimeout',

'zKeyPath',

'zCommandSearchPath',

*zCommandExistanceTest',

'zSshConcurrentSessions',

'zTelnetLoginRegex',

'zTelnetPasswordRegex',

'zTelnetSuccessRegexList',

'zTelnetTermLength',

'zTelnetEnable',

'zTelnetEnableRegex',

'zEnablePassword',

)

" preprocess(self, results, log):
"""Strip off the command if it is echoed back in the stream.

results.lstrip().startswith(self.command):
results = results.output.lstrip()[len(self.command):]
n results

"CollectorPlugin.py" [readonly] 366 lines --44%-- 162,1 49% [©
Figure 122: CommandPlugin class for ssh-based modeler plugins

As Figure 122 shows, all the Command and Telnet zProperties for a device are made available
to a CommandPlugin. It is the transport variable set to command that instructs the
zenmodeler.py daemon code to use ssh (by default, the other option for zCommandProtocol
being telnet).

If the results returned are prefaced by the command being echoed back, then the preprocess
method strips off that command.

The command variable in CommandPlugin is the null string; this must be overridden to be
the correct command in the ZenPack modeler.

zenmodeler.py works out what modelers should be applied for each device and then runs the
collectDevice method. (zenmodeler.py is in $ZENHOME |/ Products /| DataCollector.

Oct 13, 2016 ZenPack Developers' Guide 203

zenoss@zend2:/opt/zenoss/Products/DataCollector

File Edit View Search Terminal Help

def collectDevice(self, device):

Collect data from a single device.

@param device: device to collect against
@type device: string
clientTimeout = getattr(device, 'zCollectorClientTimeout', 180)
ip = device.managelp
timeout = clientTimeout + time.time()
- USE WMI:
self.wmiCollect(device, ip, timeout)

i

else:
self.log.info("skipping WMI-based collection, PySamba zenpack not installed")

self.pythonCollect(device, ip, timeout)

self.cmdCollect(device, ip, timeout)

self.snmpCollect(device, ip, timeout)

self.portscanCollect(device, ip, timeout)

"zenmodeler.py" [readonly] 1171 lines --26%-- 314,0-1 25% [«
Figure 123: collectDevice method in $ZENHOME | Products | DataCollector [zenmodeler.py
Indeed, collectDevice calls all five collect methods, including :

self.cmdCollect (device, ip, timeout)

zenoss@zen42:/opt/zenoss/Products/DataCollector

File Edit View Search Terminal Help
self, device, ip, timeout): e

Start shell command collection client.

@param device: device to collect against

@type device: string

@param ip: IP address of device to collect against

@type ip: string

@param timeout: timeout before failing the connection

@type timeout: integer

client = None

clientType = 'snmp' # default to SNMP if we can't figure out a protocol

hostname = device.id
g plugins = self.selectPlugins(device,"command")
if not plugins:
self.log.info("No command plugins found for %s" % hostname)

protocol = getattr(device, 'zCommandProtocol', defaultProtocol)
commandPort = getattr(device, 'zCommandPort', defaultPort)

if protocol == "ssh":

client = SshClient(hostname, ip, commandPort,
options=self.options,
plugins=plugins, device=device,
datacollector=self, islLoseConnection=True)

clientType = 'ssh'

self.log.info('Using SSH collection method for device %s'

% hostname)

elif protocol == 'telnet':

if commandPort == 22: commandPort = 23 #set default telnet

client = TelnetClient(hostname, ip, commandPort,
options=self.options,
plugins=plugins, device=device,
datacollector=self)

clientType = 'telnet’

self.log.info('Using telnet collection method for device %s'

"zenmodeler.py" [readonly] 1171 lines --32%-- 384,17 33%

Figure 124: cmdCollect method in zenmodeler.py

(<]

204 ZenPack Developers' Guide Oct 13, 2016

cmdCollect checks for plugins of type command, gathers the zCommandProtocol and
zCommandPort for the device (defaults are ssh and port 22), and then calls SshClient to
actually collect ssh data.

The SshClient method is in $ZENHOME / Products /| DataCollector /| SshClient.py. There are a
complex set of methods to build a transport session to the target device, taking account of all
the ssh authentication zProperties and handling any failures. The addCommand method
documents that a new channel is opened for each command to be run, which could be very
expensive if lots of commands are required.

SshClient delivers results using Python twisted libraries. twisted is a generic way of
delivering results asynchronously; in other words, several requests may be sent out without
having to wait for the result from the first request to be returned. twisted tracks requests and
responses and ensures that the correct returning data (or failure) is associated with the
appropriate request, by means of callbacks. Performance can be dramatically improved by
this way of working as communication is less likely to be blocked.

twisted is not specific to ssh communications; twisted libraries are used by most modeler
plugins and by many of the performance data collector daemons.

In summary, the CommandPlugin has access to all the zCommand zProperties for a device,
and manages the session setup, data retrieval, session close and any error handling for ssh
communications.

11.5.2 Using zProperties in the modeler plugin

Any plugin can extend the deviceProperties that are available to the modeler:

class DirFileMap (CommandPlugin) :

deviceProperties = CommandPlugin.deviceProperties + (
'zMonitorDirl',
'zMonitorDir2',
'zMonitorDir3',
'zMonitorDirlFile',
'zMonitorDir2File',
'zMonitorDir3File',

)

This ensures that the new zProperties defined in zenpack.yaml are available to the modeler.
Note that this extends the zProperties from the CommandPlugin class, which inherits from
the CollectorPlugin (see $ZENHOME | Products /| DataCollector | plugins / CollectorPlugin.py):

e CommandPlugin zProperties

» 'zCommandPort',

» 'zCommandProtocol’,

» 'zCommandUsername’,

» 'zCommandPassword’,

" 'zCommandLoginTries',

" 'zCommandLoginTimeout',

» 'zCommandCommandTimeout',

" 'zKeyPath',

Oct 13, 2016 ZenPack Developers' Guide 205

" 'zCommandSearchPath',
" 'zCommandExistanceTest',
" 'zSshConcurrentSessions’,
" 'zTelnetLoginRegex/,
" 'zTelnetPasswordRegex',
" 'zTelnetSuccessRegexList',
" 'zTelnetTermLength',
" 'zTelnetEnable’,
" 'zTelnetEnableRegex/,
" 'zEnablePassword’,
e CollectorPlugin properties and zProperties
s 'id,
= 'managelp’,
s '_snmpLastCollection',
s '_snmpStatus',
s 'zCollectorClientTimeout',

Within the ZenPack plugin code, any of these can simply be referred to as attributes of
device; for example, device.zMonitorDirlFile.

11.5.3 CommandPlugin command

The essential variable that a CommandPlugin must provide is the command. This can be
anything that will run in a bash shell,. If the command for the plugin is not built-in
shellscript code then the command must exist on every target and the correct path to the
script must be known.

The command for this ZenPack plugin needs to get all directories, starting from a particular
point in the filesystem, and then get all files. The output will be delivered into a results
variable, to be processed by the process method. To separate the directories output from the
files output, a line that contains _ SPLIT _ will be used:

The command to run.
Get directories (one per line) then a line with SPLIT then files (one per line)
Beware this has potential to return LOTS of data
command = (
#'find /opt/zenoss/local -type d ;'
'find / -type d ;'
'echo SPLIT ; '
#'find /opt/zenoss/local -type f'
'find / -type f'
)

Note that semicolons are used to effect a newline in the “shellscript”. Each line needs to be
single-quoted when using this construct.

206 ZenPack Developers' Guide Oct 13, 2016

The command can be a simple one-line shellscript as is created in the Example command
modeler, ExampleCMD.py.example, found when a ZenPack is created from the GUI:

command = "/bin/cat /proc/partitions"

n Note that zProperties cannot normally be used as part of the command definition.

A good sample Command-based ZenPack that is publicly available, written by Zenoss, is
ZenPacks.zenoss.RabbitMQ, available from GitHub at
https:/github.com/zenoss/ZenPacks.zenoss.RabbitMQ

Remember that the command will run, taking account of all the zCommand zProperties of the
device so if ssh to target devices uses usernames and passwords, then the correct values need
to be configured for zCommandUsername and zCommandPassword. If public keys are used
for ssh, the zCommandUsername, potentially the zCommandPassword, and the zKeyPath
must be correct and the public key for the zenoss user on the zenoss server needs to have been
copied to the .ssh /authorized_keys file for the correct user on the target systems. Note that
zCommandPassword is used to hold the passphrase for the key if one has been set;
otherwise zCommandPassword is not used with public key ssh.

Other zProperties to note that affect running commands over ssh are:

e zCommandLoginTries default 1

e zCommandLoginTimeout default 10s

e zCommandCommandTimeout default 15s

e zCommandSearchPath default is unset
e zSshConcurrentSessions 10

Note particularly zCommandCommandTimeout if you have a long-running command, though
extending the time limit potentially just slows the whole modeling process, especially if some
targets are not responding at all.

The zCommandSearchPath is a good way of defining a standard for where local scripts should
be held, with the possibility of device-level override if necessary. If the command provided is
not a fully-qualified pathname then the script will be sought for in zCommandSearchPath.

11.5.4 The process method of the modeler plugin

A CommandPlugin in a ZenPack must include a process method to decode and apply the
command output. The method is passed the device object and the results from the
command. Typically the first line of the method provides some logging and may often include
debug logging to show the raw results:
def process(self, device, results, log):
log.info ("Modeler %s processing data for device %s",

self.name (), device.id)
#log.debug('results is %$s ' % (results))

“self” in this case is the modeler plugin so the log.info line would provide output in
$ZENHOME /log | zenmodeler.log like:

2015-11-27 09:54:53,670 INFO zen.ZenModeler: Modeler
community.cmd.DirFileMap processing data for device taplow-11.skills-
lst.co.uk

Oct 13, 2016 ZenPack Developers' Guide 207

https://github.com/zenoss/ZenPacks.zenoss.RabbitMQ

The first real task of process is to construct a dictionary of the zProperties for directories and

files:

Create dictionary where key is
dirRegex = {}
if device.zMonitorDirl:
if device.zMonitorDirlFile:
dirRegex[device.zMonitorDirl
else:
dirRegex[device.zMonitorDirl
if device.zMonitorDir2:
if device.zMonitorDir2File:
dirRegex[device.zMonitorDir2
else:
dirRegex[device.zMonitorDir2
if device.zMonitorDir3:
if device.zMonitorDir3File:
dirRegex[device.zMonitorDir3
else:

dirRegex[device.zMonitorDir3.

log.info (' dirRegex is %s ' %

directory and value is file regex

.rstrip('/")]
.rstrip('/")]
.rstrip('/")]
.rstrip('/")]
.rstrip('/")]
rstrip('/"')]
(dirRegex))

device.zMonitorDirlFile

None

device.zMonitorDir2File

None

device.zMonitorDir3File

None

This ensures that a null device.zMonitorDir property is not included in the lookup dictionary.
It is permissible for a non-null dictionary to have a null file regex. If the directory zProperty
has been entered by a user with a trailing “/” then this is stripped off. The directory is used as

the directory key; the file regex is the value.

The main body of the process method builds ObjectMaps for components and sub-components

and delivers the RelationshipMaps that link them together.

Where a modeler - any modeler - has to populate a “component that contains a sub-
component” set of relationships, typically there is a for loop to process the component and
then an internal loop, often handled as a separate function, to process sub-components of the
component. The trick is to pass the component relationship and instance as parameters to the

inner loop. An algorithmic outline would be:

initialise RelationshipMap for component maps

for component in list of components

get relevant data for component
as required

modify any raw data,

create an ObjectMap for the component
add ObjectMap to component RelationshipMap

for sub-component in list of sub-components

initialise a list for sub-component maps
get relevant data for sub-component

modify any raw data,

as required
create an ObjectMap for the sub-component

add ObjectMap to sub-component map list

return a RelationshipMap with correct compname,

and the sub-component map list
return the RelationshipMap for the device with correct component relname,
modname and the component map list

A process method must deliver one of:

o None - changes nothing. Good in error cases.

relname, modname

o A RelationshipMap for the device - component information

208

ZenPack Developers' Guide

Oct 13, 2016

o An ObjectMap for the device - device information
e Alist of RelationshipMaps and ObjectMaps - both

See the discussion in section 8.7.2.6 about delivering consistent maps where components and
sub-components are created.

E zenoss@zen42:/code/ZenPacks/DevGuide/ZenPacks.community.DirFile/ZenPacks/community/DirFile/modeler/plugins/community/cmd

File Edit View Search Terminal Help
Setup an ordered collection of dictionaries to returnfldata to the ApplyDataMap routine of zenmodeler !
maps = collections.OrderedDict([

('dirs', [1),

{'files', [1},
1)
Instantiate a relMap. This inherits relname and compname from the plugin.
rm = self.relMap()

For CommandPlugin, the results parameter to the process method will be a string containing all output from the command defined above.
/opt/zenoss/local
/opt/zenoss/local/fredtest

SPLIT--

/opt/zenoss/local/fredtest/fred2.log 26151123
/opt/zenoss/local/fredtest/fred2.log 20151124
dirlines [B] = dirs [1] = files
irlines = results.split('_SPLIT_ ')
dir in dirlines[@].split{'\n'):
Check for a dir matching a directory in our dirRegex lookup dictionary
if dir in dirRegex.keys():
dir_id = prepId(dir)
Add an Object Map for this directory
Use prepld to ensure id is unique and doesn't include any dodgy characters like /
om = self.objectMap() inherits modname and compname (null) from plugin
om = self.objectMap()
om.id = dir_id
om.dirName = dir
for k,v in om.items():
log.debug('dir om key is %s and value is %s' % (k, v))
rm.append (om)
For this directory, create a map for associated files, passing this dir id as part of compname
fm = (self.getFileMap(device, dirlines[1], dirRegex, dir, 'dirs/%s' % dir id, log))
log.debug('dir %s has fm %s \n fm relname is %s and fm compname is %s ' % (om.id, fm, fm.relname, fm.compname))
maps['files'].append(fm)
f len(rm.maps) > @:
log.info('Found matching dirs %s on %s \n dir relname is %s and dir compname is %s ' % (rm, device.id, rm.relname, rm.compname})

~h R R W R R

else
log.info('No matching dirs found on %s ' % (device.id))
ret None
Add the rm relationships to maps['dirs']
maps['dirs'].append(rm)
Next 4 lines are old code when dir maps was created as a list rather than using rm=self.relMap()
#maps['dirs'].append(RelationshipMap(
relname = 'dirs’,
modname = 'ZenPacks.community.DirFile.Dir’',
objmaps = dir_maps))
Need this complicated setup with maps = collections.OrderedDict and the chain return to ensure that relationship maps are
applied in the correct order. Otherwise there tend to be issues trying to create relationships on objects that don't yet exist
ret list(chain.from iterable(maps.itervalues()))
"DirFileMap.py" [Modified][readonly] 160 lines --48%-- 77,64 67%

Figure 125: Main loop of DirFileMap modeler plugin

<

Note in Figure 125 that:

e The relationship map for dirs is instantiated with a call to relMap which ensures that
the relname is inherited from the modeler plugin.

Instantiate a relMap. This inherits relname and compname from the plugin.
rm = self.relMap ()

e The code used to construct an object map for the directory uses the objectMap method
(note lower-case “0”). This is a method on the CollectorPlugin class that automatically sets
the ObjectMap compname, modname and classname to those specified (or defaulted) for
the modeler plugin. Specifically, modname is set to ZenPacks.community.DirFile.Dir.

dir id = prepId(dir)

om = self.objectMap ()

om.id = dir_id

om.dirName = dir

rm.append (om)

Oct 13, 2016 ZenPack Developers' Guide 209

e The id attribute of the Dir component has had prepld applied to ensure there are no
unsafe characters in this field

o The Files sub-component(s) for this Dir are populated by calling the getFileMap
function and passes to that function the compname as:
'dirs/%s' % dir id
where dirs is the relationship on the device and the %s has substituted

this particular Dir id making an example component parameter of
'dirs/opt zenoss local fredtest'

The getFileMap function checks the file regex against all the files in the chosen directory and
returns a RelationshipMap with a list of ObjectMaps, one for each matching file.

zenoss@zen42:/code/ZenPacks/DevGuide/ZenPacks.community.DirFile/ZenPacks/community/DirFile/modeler/plugins/community/cmd

File Edit View Search Terminal Help
def getFileMap(self, device,lfiles_string, dirRegex, dirMatch, compname, log):
#log.debug('files string is %s , dirRegex is %5 , compname is %s ' % (files string, dirRegex, compname))
file_maps = []
for file in files_string.split('\n'}:
Split out the filename part and the directory part

f = file.split('/')[-1]
d="'/'.join(File.split('/"}[:-1]}
Only consider creating a file map if the directory matches the dirMatch parameter
f d == dirMatch:
k, v in dirRegex.items():
fd == k: # got directory match
re.search(v, f): # check the regex

Got a regex match against filename T
file_id = prepId(f)
Don't want to inherit compname or modname from plugin as we want to set this expicitly
Use ObjectMap rather than om=self.objectMap(
file maps.append(ObjectMap(data = {
'id': file_id,
‘fileName' : T,
‘fileDirName' : d,
'fileRegex' : v,
1))
log.info('Found dir %s and file %s match' % (d, T))
Get out of for k, v in dirRegex.items(): loop - don't care if matches on =1 regex

Return file maps relationship map with compname passed as parameter to this method
Again - don't want to inherit relname, modname or compname for this relationship as we want to set them explicitly
Use RelationshipMap rather then rm=self.relMap()(
1 RelationshipMap(

compname = compname,

relname ‘filaes® ;

modname 'ZenPacks.community.DirFile.File"',

objmaps file_maps)

"DirFileMap.py" [readonly] 167 lines --79%-- 132,33 99% [

Figure 126: DirFileMap modeler plugin - getFileMap function

n Note in Figure 126 that the RelationshipMap uses the compname passed from the calling code
as a parameter and specifies the relname on the component (files). The modname is the
module containing the object class definition for the Files component
(ZenPacks.community.DirFile.File).

210 ZenPack Developers' Guide Oct 13, 2016

Zenoss RelationshipMaps and ObjectMaps

maps 'dirs' RelationshipMap

relname=dirs

modname=ZenPacks.community.DirFile Dir

id=opt_zenoss_local
dilName=/opt/zenossflocal

— id=var_log

objmaps

dir ——

—dirfName=Narl/log

—'files' RelationshipMap compname=/dirs/opt_zenoss_local

relname=files
modname=ZenPacks.community.DirFile.File

objmaps— . id=fred1.log
RelationshipMap _f'm{ fleName=fred1.log

compname=/dirs/var_log fileDiName=
relname=files lopt/zenoss/local

—modname=ZenPacks.community.DirFile.File id=fred2.log
—file n—E fileName=fred2.log

m filet—-id=kdm.log fileName: :
1—ElleName kdm.log fileDiName=
fileDirName=Nar/log lopt/zenoss/local

Figure 127: RelationshipMaps and ObjectMaps

Figure 127 demonstrates the resultant maps directory with its dirs and files
RelationshipMaps.

11.5.5 * What's in an object map?

Different ZenPacks use varying techniques for constructing object maps and relation maps.
The raw data is in an ObjectMap (upper-case “O”). The CollectorPlugin class in $ZENHOME /
Products /DataCollector /plugins defines the objectMap (lower-case “0”) method:

def objectMap (self, data={}):
"""Create an object map from the data

won

om = ObjectMap (data)

om.compname = self.compname
om.modname = self.modname
om.classname = self.classname

return om

It is good practice to specify relname and modname at the top of the ZenPack modeler plugin
class if a single relationship is being modeled..

No compname specified here as Dir is a component directly on the device
(defaults to null string)
classname not required as largely deprecated. classname is the same

Oct 13, 2016 ZenPack Developers' Guide 211

as the module name here
relname = 'dirs'
modname = 'ZenPacks.community.DirFile.Dir'

The compname is null for Dir objects as they are components directly on the device class.

The classname is effectively deprecated now that the modeler plugin classname is mandated
to match its module name.

Note that objectMap instantiates an ObjectMap (note upper-case “O”). ObjectMap and
RelationshipMap can be found in DataMaps.py in the same directory; both are, effectively,
protobufs (raw data).

The ZenPack modeler code then instantiates an object with:

om = self.objectMap ()

There is also a relMap method that instantiates a RelationshipMap.

def relMap (self):
"NNCragte a relationship map.

mwan

relmap = RelationshipMap ()
relmap.relname = self.relname
relmap.compname = self.compname
return relmap

Again, the relMap instantiates a RelationshipMap with relname and compname being
populated from the modeler plugin values. A RelationshipMap is just a container to store
ObjectMaps.

class RelationshipMap (PBSafe) :

relname = ""

compname = ""

def init (self, relname="", compname="", modname="", objmaps=[]):
self.relname = relname
self.compname = compname
self.maps = [ObjectMap (dm, modname=modname) for dm in objmaps]

The ZenPack modeler code instantiates a relationship with:

rm = self.relMap()
..... create an object map
rm.append (om)

Note that to check whether rm contains any object maps, check the length of the maps list:

if len(rm.maps) > 0O:

When populating sub-components of components, the modeler plugin values for modname,
compname and relname are not useful. The getFileMap function sets these directly, where
compname is passed as a parameter showing the relationship and instance of the directory:

return RelationshipMap (

compname = compname,
relname = 'files',
modname = 'ZenPacks.community.DirFile.File',

objmaps = file maps)

212 ZenPack Developers' Guide Oct 13, 2016

The object map is created directly with an ObjectMap class:

file maps = []
file maps.append(ObjectMap (data = {
'id': file id,

'fileName' : f,
'fileDirName' : d,
'fileRegex' : v,

1)

11.5.6 zenpacklib and the modeler plugin

It is clear from the preceding subsections that it is essential that the ZenPack writer knows
the precise names of objects, relationships and modules. Although zenpacklib avoids the need
to write an object class file for Files, a module will be constructed in memory, for that class
whose name will be:

<ZenPack name>.<object class name> eg.
ZenPacks.community.DirFile.File

zenpacklib defaults relationship names to be a classname with the first letter lower-cased and
an “s” added for ToMany relationships. Whilst labour-saving, this is less than ideal from a
clarity perspective. It is better practice to explicitly name the relationships as has been
demonstrated in the two sample zenpack.yaml files.

11.5.7 Testing the DirFileMap modeler

It is strongly recommended that testing take place on a small system where the search for
directories and files is limited. The test environment shown in the following log file was
working against:

e Device taplow-11.skills-1st.co.uk
e zMonitorDirl /opt/zenoss/local/fredtest
e zMonitorDirlFile fredl.*
e zMonitorDir2 /var/log/
e zMonitorDir2File .*log$
e zMonitorDir3 /opt/zenoss/local/fredtest/test
e zMonitorDir3File fred2\.log.*
taplow-11 has two matching files in each of the directories.

The COMMAND string was limited by providing a subdirectory for the start of the find:
find /opt/zenoss/local -type d

Once the modeler code is complete, restart zenhub and zopectl. The DirFileMap modeler
should now appear in the available list of the modeler plugins dialogue.

Move a test device to the /Server/Linux/DirFile zenoss class and remodel it. To get
debugging output, run the new modeler standalone:

zenmodeler run -v 10 -d taplow-1l.skills-1lst.co.uk --collect community.cmd.DirFileMap

Oct 13, 2016 ZenPack Developers' Guide 213

Hopefully, after refreshing the GUI for the device in question, the two new components
appear:

o -~

‘ [6 example.org | https://zen42.class.example.org/zport/dmd/Devices/Server/Linux/DirFile/devices/taplow-11.skills-1st.co.uk/devicedetail # deviceDetailNav /v zl @v Google

«-41 DASHBOARD EVENTS INFRASTRUCTURE REPORTS ADVANCED Q admin SiGNouT B
m Networks Processes IP Services Windows Services Network Map Manufacturers Page Tips
(O ok o vespEmo |
lo-]e

Overview e e e ——————————es

Evenis

4 Components Q opt_zenoss loc... /opt/zenoss/local/fredtest

v Dirs (2) v opt_zenoss_loc... /opt/zenoss/local/fredtest/test
@rFiles (4)
Winterfaces (4)
@ Network Routes (3) T T T
@08 Processes (3) e
@rile Systems (3)
@ P Services (14)
@ Processors (1)

Graphs

=

Q fred2.log 2015... fred2.log... /opt/zenoss/local/fredtest/test fred2\.log.”

(/] fred2.log 2015... fred2.log... /opt/zenoss/local/fredtest/test fred2\.log.”

Modeler Plugins
Configuration Properties
Software

Figure 128: GUI showing Dirs and Files components

Note that both Dirs and Files are shown in the left-hand menu, even though File is a sub-
component of Dir. The Files left-hand menu shows a correct count of 4 (2 for each directory).

n Note that a really neat trick of the JavaScript code generated by zenpacklib is that it

A

N

automatically creates a dropdown Files menu from the Dir component panel which shows the
sub-components for that component. Before zenpacklib, this took a fair amount of complex
JavaScript coding to achieve. For hand-written JavaScript samples, have a look at the A10

ZenPack at https:/github.com/jcurry/ZenPacks.community.A10 or the RabbitMQ ZenPack at
https:/github.com/zenoss/ZenPacks.zenoss.RabbitMQ .

w 11.5.7.1 * Analysing the zenmodeler log

214 ZenPack Developers' Guide Oct 13, 2016

https://github.com/zenoss/ZenPacks.zenoss.RabbitMQ
https://github.com/jcurry/ZenPacks.community.A10

zenoss@zen42:/code/ZenPacks/DevGuide/ZenPacks.community.DirFile/ZenPacks/community/DirFile/modeler/plugins/community/cmd

File Edit View Search Terminal Help

H015-11-30 13:16:46,195 DEBUG zen.ZenModeler: Loaded plugin community.cmd.DirFileMap

2015-11-30 13:16:46,195 INFO zen.ZenModeler: No portscan plugins found for taplow-11.skills-1st.co.uk

2015-11-30 13:16:46,195 DEBUG zen.ZenModeler: Running 1 clients

2015-11-30 13:16:46,196 DEBUG zen.ZenModeler: Collection slots filled

2015-11-30 13:16:46,196 DEBUG zen.ZenModeler: Running 1 clients

2015-11-30 13:16:46,263 DEBUG zen.SshClient: taplow-11.skills-1st.co.uk host fingerprint: 2b:63:65:36:70:b8:70:ad:43:c8:fb:e6:0b:3f:0a:db

2015-11-30 13:16:46,269 DEBUG zen.SshClient: Creating new SSH connection...

2015-11-30 13:16:46,270 DEBUG zen.SshClient: Expanded SSH key path from zKeyPath ~/.ssh/id_dsa to /home/zenoss/.ssh/id_dsa

2015-11-30 13:16:46,302 DEBUG zen.ZenModeler: Queued event (total of 1) {'rcvtime': 1448889406.302332, 'manager': 'zen42.class.example.org', 'ev|

entKey': 'sshClientAuth', 'severity': 0, 'device': 'taplow-11.skills-1st.co.uk', 'eventClass': '/Cmd/Fail', 'component': 'zenmodeler', 'monitor
: 'localhost', 'agent': 'zenmodeler', 'summary': 'Authentication succeeded for username zenplug'}

2015-11-30 13:16:46,302 DEBUG zen.SshClient: SshClient connected to device taplow-11.skills-1st.co.uk (10.0.0.11)

2015-11-30 13:16:46,302 DEBUG zen.SshClient: 10.0.0.11 SshClient has 1 commands te assign to channels (max = 10, current = @)

2015-11-30 13:16:46,302 DEBUG zen.SshClient: 10.0.0.11 channel @ SshConnection added command find /opt/zenoss/local -type d ;echo _ SPLIT ; fin

d /opt/zenoss/local -type T

2015-11-30 13:16:46,308 DEBUG zen.SshClient: 10.0.0.11 channel 1 Opening command channel for find /opt/zenoss/local -type d ;echo _ SPLIT ; fin

d /opt/zenoss/local -type T

2015-11-30 13:16:46,416 DEBUG zen.SshClient: 10.0.0.11 channel 1 CommandChannel exit code for find /opt/zenoss/local -type d ;echo _ SPLIT ; fi
nd /opt/zenoss/local -type f is 0: Success

2015-11-30 13:16:46,416 DEBUG zen.SshClient: 10.0.0.11 channel 0 SshConnection clesing

2015-11-30 13:16:46,417 DEBUG zen.SshClient: 10.0.0.11 channel 1 CommandChannel closing command channel for command find /opt/zenoss/local -type
d ;echo _ SPLIT ; find /opt/zenoss/local -type f with data: '/opt/zenoss/local\n/opt/zenoss/local/fredtest\n/opt/zenoss/local/fredtest/test\n/
opt/zenoss/local/fredtest/test/lowertest\n_ SPLIT \n/opt/zenoss/local/fredtest/test/lowertest/fred2.log 20151123\n/opt/zenoss/local/fredtest/te
st/lowertest/fredl.log 20151116\n/opt/zenoss/local/fredtest/test/lowertest/fred2.log 20151116\n/opt/zenoss/local/fredtest/test/lowertest/fred2.1
0g_20151118\n/opt/zenoss/local/fredtest/test/lowertest/fred2.log_20151110\n/opt/zenoss/local/fredtest/test/lowertest/fredl.log 20151117\n/opt/ze
noss/local/fredtest/test/lowertest/fred2.log 20151124\n/opt/zenoss/local/fredtest/test/lowertest/fred2.log 20151117\n/opt/zenoss/local/fredtest/
test/lowertest/fredl.log 20151124\n/opt/zenoss/local/fredtest/test/lowertest/fredl.log 20151123\n/opt/zenoss/local/fredtest/test/lowertest/fredl
.log 20151110\n/opt/zenoss/local/fredtest/test/lowertest/fredl.log 20151118\n/opt/zenoss/local/fredtest/test/fred2.log 20151110\n/opt/zenoss/loc
al/fredtest/test/fred2.log 20151124\n/opt/zenoss/local/fredtest/fredl.log 20151116\n/opt/zenoss/local/fredtest/fredl.log 26151110\n"

2015-11-30 13:16:46,417 DEBUG zen.SshClient: 10.0.0.11 SshClient closing channel (openSessions = @)

2015-11-30 13:16:46,417 INFO zen.CmdClient: command client finished collection for taplow-11.skills-1st.co.uk

2015-11-30 13:16:46,417 DEBUG zen.ZenModeler: Client for taplow-11.skills-1st.co.uk finished collecting

2015-11-30 13:16:46,417 DEBUG zen.ZenModeler: Processing data for device taplow-11.skills-1st.co.uk

2015-11-30 13:16:46,417 DEBUG zen.ZenModeler: Processing plugin community.cmd.DirFileMap on device taplow-11.skills-1st.co.uk ...

Figure 129: zenmodeler debug output for the DirFileMap modeler plugin - ssh connectivity
Figure 129 shows detailed logging of the ssh connection:

o The first (red) highlighted section confirms that the DirFileMap modeler has been
loaded. If it does not appear in the list then suspect syntax errors in the modeler code.

e The second (green) highlighted section shows the ssh credentials being used

m The host fingerprint is generated when the first ssh communication is established
to the target host.

+ Note that it is important to test ssh to each target directly as the first
communication will generate the fingerprint entry and ask whether to add it to the
known_hosts file in the zenoss user's .ssh directory. The target name must be
identical to the name that Zenoss uses. Zenoss modelers will fail if asked this
question. The direct test must be performed as the zenoss user.

+ Note on Zenoss 5 the test must be performed from the zencommand container as
the .ssh /known_hosts inside the container is not the same as that for the zenoss user
on the base host.

serviced service attach zencommand su zenoss -1
ssh -1 zenplug zenny2.class.example.org
cat .ssh/known hosts

m The zKeyPath zProperty is retrieved and used

s The queued event summary has “Authentication succeeded for username zenplug”
which gives the outcome and the username

o The third (blue) highlighted section shows the command being sent and the data being
returned

The second part of the log shows the standard results output and the output from some of the
log statements inserted into the modeler code.

Oct 13, 2016 ZenPack Developers' Guide 215

zenoss@zen42:/code/ZenPacks/DevGuide/ZenPacks.community.DirFile/ZenPacks/community/DirFile/modeler/plugins/community/cmd

file Edit View Search Terminal Help
Ho15-11-30 13:16:46,417 DEBUG zen.ZenModeler: Processing plugin community.cmd.DirFileMap on device taplow-11.skills-1st.co.uk ... =
2015-11-30 13:16:46,417 DEBUG zen.ZenModeler: Plugin community.cmd.DirFileMap results = /opt/zenoss/local
/opt/zenoss/local/fredtest

/opt/zenoss/local/fredtest/test

/opt/zenoss/local/fredtest/test/lowertest

| SPLIT

/opt/zenoss/local/fredtest/test/lowertest/fred2.log 20151123
/opt/zenoss/local/fredtest/test/lowertest/fredl.log 20151116
/opt/zenoss/local/fredtest/test/lowertest/fred2.log_20151116
/opt/zenoss/local/fredtest/test/lowertest/fred2.log 20151118
/opt/zenoss/local/fredtest/test/lowertest/fred2.log 20151110
/opt/zenoss/local/fredtest/test/lowertest/fredl.log 20151117
/opt/zenoss/local/fredtest/test/lowertest/fred2.log 20151124
/opt/zenoss/local/fredtest/test/lowertest/fred2.log 20151117
/opt/zenoss/local/fredtest/test/lowertest/fredl.log 20151124
/opt/zenoss/local/fredtest/test/lowertest/fredl.log 20151123
/opt/zenoss/local/fredtest/test/lowertest/fredl.log 20151110
/opt/zenoss/local/fredtest/test/lowertest/fredl.log 20151118
/opt/zenoss/local/fredtest/test/fred2.log 20151110

/opt/zenoss/local/fredtest/test/fred2.log 20151124

/opt/zenoss/local/fredtest/fredl.log 20151116

/opt/zenoss/local/fredtest/fredl.log 20151110

2015-11-30 13:16:46,417 INFO zen.ZenModeler: Modeler community.cmd.DirFileMap processing data for device taplow-11.skills-1st.co.uk

2015-11-30 13:16:46,417 INFO zen.ZenModeler: dirRegex is {'/opt/zenoss/local/fredtest': 'fredl.*', 'sopt/zenoss/local/fredtest/test': 'fred2\\.
ILag st E/Avar/ilog el ogs)

2015-11-30 13:16:46,418 DEBUG zen.ZenModeler: dir om key is dirName and value is /opt/zenoss/local/fredtest

2015-11-30 13:16:46,418 DEBUG zen.ZenModeler: dir om key is id and value is opt zenoss local fredtest

2015-11-30 13:16:46,418 INFO zen.ZenModeler: Found dir /opt/zenoss/local/fredtest and file fredl.log 20151116 match

2015-11-30 13:16:46,418 INFO zen.ZenModeler: Found dir /opt/zenoss/local/fredtest and file fredl.log 20151116 match

Figure 130: zenmodeler debug output for the DirFileMap modeler plugin -standard debug logging and
specific ZenPack logging
The top highlighted section is standard output if zenmodeler is run in debug mode.

e Which modeler is run against which device
o The results output

The second section (green) is generated by the log.info statement at the start of the process
method.

The third (blue) section is the modeler's log.info to display the dirRegex directory

The fourth (yellow) section is the result of the log.debug statement when creating the
directory object:
for k,v in om.items () :

log.debug('dir om key is %s and value is %s' % (k, v))

The fifth (purple section) is from the log.info in getFileMap, each time a relevant directory /
file pair is found.

zenoss@zen42:/code/ZenPacks/DevGuide/ZenPacks.community.DirFile/ZenPacks/community/DirFile/modeler/plugins/community/cmd

File Edit view Search Terminal Help
B015-11-30 13:16:46,419 DEBUG zen.ZenModeler: dir opt zenoss local fredtest has fm <RelationshipMap [<ObjectMap {'fileDirName': '/opt/zenoss/lo
cal/fredtest',

‘fileName': 'fredl.log_20151116',

'fileRegex': 'fredl.*',

tidt *firedl.logl 20151116,

‘modname': 'ZenPacks.community.DirFile.File'}>,

<ObjectMap {'fileDirName': '/opt/zenoss/local/fredtest',

‘fileName': 'fredl.log_20151110',

'fileRegex': 'fredl.*',

'id': *fredl.log 201511160',

'modname' : 'ZenPacks.community.DirFile.File'}>]>

fm relname is files and fm compname is dirs/opt zenoss local fredtest
2015-11-30 13:16:46,419 DEBUG zen.ZenModeler: dir om key is dirName and value is /opt/zenoss/local/fredtest/test
2015-11-30 13:16:46,419 DEBUG zen.ZenModeler: dir om key is id and value is opt_zenoss local fredtest test

Figure 131: zenmodeler debug output for the DirFileMap modeler plugin -file relationship map plus fm
rename and compname

The third part of the log is generated by the log.debug statement at the end of the first loop.
The relationship for each directory / file matching pair is printed. A newline (\n) is used to
ensure the fm.relname is files and fm.compname... is on a separate line for clarity.

216 ZenPack Developers' Guide Oct 13, 2016

rm.append (om)

For this directory, create a map for associated files, passing this

dir id as part of compname

fm = (self.getFileMap(device, dirlines[1l], dirRegex, dir, 'dirs/%$s' $ dir id, log))

log.debug('dir %s has fm %s \n fm relname is %s and fm compname is %s ' %
(om.id, fm, fm.relname, fm.compname))

The final part of the log shows the output of the log.info at the end of the process method,
which outputs the directory relationship:

log.info ('Found matching dirs %$s on %$s \n dir relname is %s and dir \

' Q

compname is %s % (rm, device.id, rm.relname, rm.compname))

zenoss@zen42:/code/ZenPacks/DevGuide/ZenPacks.community.DirFile/ZenPacks/community/DirFile/modeler/plugins/community/cmd

File Edit View Search Terminal Help
2[15-11-30 13:16:46,421 INFO zen.ZenModeler: Found matching dirs <RelationshipMap [<ObjectMap {'classname': '',

'compname': '',

'dirName': '/opt/zenoss/local/fredtest',

'id': 'opt zenoss local fredtest',

‘modname': 'ZenPacks.community.DirFile.Dir'}>,

<ObjectMap {'classname': '',

'compname': '',

'dirName': '/opt/zenoss/local/fredtest/test',

'id': 'opt_zenoss local fredtest test',

‘modname': 'ZenPacks.community.DirFile.Dir'}>]> on taplow-11.skills-1st.co.uk

dir relname is dirs and dir compname is

2015-11-30 13:16:46,421 DEBUG zen.Classifier: No classifier defined

2015-11-30 13:16:46,590 INFO zen.ZenModeler: Changes in configuration applied

2015-11-30 13:16:46,591 DEBUG zen.ZenModeler: Client taplow-11.skills-1st.co.uk finished

2015-11-30 13:16:46,591 DEBUG zen.ZenModeler: Running 0 clients

2015-11-30 13:16:46,591 INFO zen.ZenModeler: Scan time: 0.79 seconds

2015-11-30 13:16:46,592 DEBUG zen.thresholds: Checking value 0.786814928055 on Daemons/localhost/zenmodeler cycleTime

2015-11-30 13:16:46,600 DEBUG zen.MinMaxCheck: Checking zenmodeler_cycleTime 0.786814928055 against min None and max 34560.0

2015-11-30 13:16:46,609 DEBUG zen.ZenModeler: Queued event (total of 2) {'zenoss.device.url': 'zport/dmd/Monitors/Performance/localhost/viewDaem

onPerformance', 'zenoss.device.path': 'Monitors/Performance/localhost', 'severity': O, 'min': None, 'max': 34560.0, 'component': '', 'agent': 'z
enmodeler', 'summary': 'threshold of zenmodeler cycle time restored: current value 0.786815', 'current': 0.7868149280548096, 'manager': 'zen42.c
lass.example.org', 'eventKey': 'zenmodeler cycle time', ‘'rcvtime': 1448889406.609074, 'device': 'localhost collector', 'eventClass': '/Perf', 'm
onitor': 'localhost'}

2015-11-30 13:16:46,609 DEBUG zen.collector.scheduler: In shutdown stage before

2015-11-30 13:16:46,609 DEBUG zen.ZenModeler: Tried to stop reactor that was stopped

2015-11-30 13:16:46,609 INFO zen.ZenModeler: Daemon ZenModeler shutting down

2015-11-30 13:16:46,609 DEBUG zen.ZenModeler: Sending 2 events, © perf events, 0 heartbeats

2015-11-30 13:16:46,624 DEBUG zen.ZenModeler: Removing service EventService

2015-11-30 13:16:46,624 DEBUG zen.ZenModeler: Removing service ModelerService

2015-11-30 13:16:46,624 DEBUG zen.pbclientfactory: Lost connection to ::1:8789 - [Failure instance: Traceback (failure with no frames): <class '
twisted.internet.error.ConnectionLost'>: Connection to the other side was lost in a non-clean fashion: Connection lost.

]
2015-11-30 13:16:46,624 DEBUG zen.collector.scheduler: In shutdown stage during
2015-11-30 13:16:46,624 DEBUG zen.collector.scheduler: In shutdown stage after

Figure 132: zenmodeler debug output for the DirFileMap modeler plugin - directory reﬁztgr;sljip and
close

It is perfectly normal and not an error condition to get a line saying:

2015-11-30 13:16:46,421 DEBUG zen.Classifier: No classifier defined

Watch for a line saying “Changes in configuration applied”; this is likely to be good news.

The section at the end of the log highlighted in yellow is also perfectly normal and does not
represent an error condition.

11.6 *monkeypatching so command modeler uses zProperties

A major drawback with a CommandPlugin modeler is that the actual command run cannot
make use of a device's zProperties; the process method can, but the command definition
cannot.

There is a very neat workaround shown as an example at
https:/github.com/cluther/ZenPacks.example.EvaluatedCommandModeler .

It is the CollectorClient class in $ZENHOME | Products | DataCollector / CollectorClient.py that
manages the ssh connection to remote targets, to collect data. It uses a number of parameters
defined in its __init__ method:

Oct 13, 2016 ZenPack Developers' Guide 217

https://github.com/cluther/ZenPacks.example.EvaluatedCommandModeler

def init (self, hostname, ip, port, plugins=None, options=None,
device=None, datacollector=None, alog=None) :

Note particularly the plugins and device parameters which will be populated by modeler
routines, where the device is the object representing the target and the plugins is the
CommandPlugin, including the command to be run (see Figure 122).

The __init_ .py in the base directory of the ZenPack can monkeypatch the standard
CollectorClient class to force the plugin.command to check for a “${“ construct and perform a

TALES evaluation if found. Thus the command definition in the modeler can use expressions
such as $there/zMonitorDirl}.

This example is delivered in the evalCommand branch on GitHub. It starts from the original
master branch and ZenPack version 1.0.0. The new branch generates version 1.0.3 of the
ZenPack.

11.6.1 * Modifying __init__.py

The default __init_ .py will be very minimal, simply importing zenpacklib and loading the
yaml file:

from . import zenpacklib
zenpacklib.load yaml ()

218 ZenPack Developers' Guide Oct 13, 2016

DirFile : vim - Konsole

File Edit Wiew Bookmarks Settings Help

import sys

from Products.ZenUtils.Utils import monkeypatch
from Products.ZenUtils.ZenTales import talesEvalStr

SshClient does a relative import of CollectorClient from
/opt/zenoss/Products/DataCollector/CollectorClient .py.
The standard CollectorClient class has an __init__ like:
def init (self, hostname, ip, port, plugins=None, options=hNone,
device=None, datacollector=None, alog=None) :
Note first 3 parameters are mandatory (args[@] to args[2]), plugins
is first optional at args[3]. device may be args[5]

Normally one cannot pass TALES expressions to a command. This code
does a monkeypatch to the relative CollectorClient module already in
sys.modules to check for ${ syntax and performs a TALES evaluation.

R T T T T

if 'CollectorClient' in sys.modules:
CollectorClient = sys.modules['CollectorClient']

@monkey]

def . Ar

tch{CollectorClient .CollectorClient)
t (self, *args, **kwargs):

original(self, *args, **kwargs)

Reset cmdmap and commands.
self.cmdmap = {}
self. commands = []

Get plugins from args or kwargs.
plugins = kwargs.get('plugins')
if plugins is MNaone:
if len{args) = 3:
plugins = args[3]
glse:
plugins = []

Get device from args or kwargs.
device = kwargs.get('device')
if device is MNone:
if len{args) = 5:
device = args[5]

else:
] device = None
" _init .py" 65 lines --72%-- A7 1

E_original is injected into locals by the monkeypatch decorator.

{«

o

18%

(=

] >

2

Figure 133: __init__.py (part 1) to monketpatch CollectorClient to permitnuse of zProperties in command

Note in Figure 133:
e sys, monkeypatch and talesEvalStr need importing.

e Itisthe _init_ method that is being monkeypatched.

e The original arguments are accessed and the device and plugins parameters are

extracted.

e The cmdmap and _commands attributes are reset to an empty dictionary and an

empty list respectively.

Oct 13, 2016 ZenPack Developers' Guide

219

DirFile : vim - Konsole @ e &

Fle Edit View Bookmarks Settings Help

] >

Do TALES evaluation of each plugin's command.
for plugin in plugins:
if '${' in plugin.command:
try:
command = talesEvalStr(plugin.command, device)
except Exception:
CollectorClient.log.exception(
"%s - command parsing error",
device.id)

continue
glse:
command = plugin.command

self.cmdmap[command] = plugin
self. commands.append(command)

L
-~

" init .py" 65 lines --100%-- 65 ,08-1 Bot
| [DirFile : vim |

Figure 134: __init__.py (part 2) to monketpatch CollectorClient to permitnuse of zProperties in command

bt

Each plugin is then tested for the ${ string; if found, the talesEvalStr method is used which
takes the plugin.command and the device as parameters and performs a ZODB lookup to
determine the resulting value of the zProperty specified in the calling ${here/zProp} syntax.
Otherwise the command is left in its original form.

11.6.2 * Modifying the modeler plugin code

The modeler plugin can be greatly simplified if the command has access to the zMonitorDir
properties and its performance improved many-fold.

cmd : vim - Konsole & & X
Fle Edit Wiew Bookmarks Settings Help
1 -
The command to run.
For each zMonitorDir parameter, check whether dir exists and get
= all files imediately under that directory, chopping off directory prefix
MNote that we're using TALES in the command. Normally that's NOT
possible. Check out the monkeypatch of CollectorClient. init method
in this ZenPack's _ init .py to see what makes it possible.
command = (
'if [-d ${here/zMonitorDirl}] =/dev/null 2>&1; then '
'echo ${here/zMonitorDirl};
'find ${here/zMonitorDirl} -maxdepth 1 -type f | awk -F\/ “\'{print $$NFI\';'
sEche . CSEEAY St
I
'if [-d ${here/zMonitorDir2} 1 =/dev/null 2=&1; then '
'echo ${here/zMonitorDir2};"
'find ${here/zMonitorDir2} -maxdepth 1 -type f | awk -F\/ “\'{print $$NFI\';'
‘echo _ SPLIT ;'
Fi
'if [-d ${here/zMonitorDir3}] =/dev/null 2>&1; then '
'echo ${here/zMonitorDir3};"
'find ${here/zMonitorDir3} -maxdepth 1 -type f | awk -F\/ “\'{print $$NF}\';"
Vi
) =
"DirFileMap.py" 196 lines --20%-- 41,0-1 23%

Figure 135: command definition for modeler plugin, using zProperties

220 ZenPack Developers' Guide Oct 13, 2016

For each zMonitorDir zProperty:

o The existence of the directory is checked with a simple test, discarding output to
/dev [null:

if [-d ${here/zMonitorDirl}] >/dev/null 2>&1

e The zMonitorDir zProperty is echoed to stdout

o The find command is used to list all files in this directory (avoiding directories and
recursion into subdirectories). awk is used to return the last field when separated by “/”
(which must be escaped).

e Note that the last field, normally $NF, needs an extra $ to prevent $ being interpreted
as a special character.

e Note that single quotes in the awk command need escaping with \

e The original modeler returned the full pathname of files. Since the directories are now
known, this version only returns the short name of the file.

cmd : vim - Konsole ¥ 2

File Edit View Bookmarks Settings Help

rm =flself.relMap()

For CommandPlugin, the results parameter to the process method will
be a string containing all output from the command defined above.
#

#/opt/zenoss/local/fredtest

#fred2.log_ 20166506

#fredl.log 201608510

#fredl.log_20166506

#fredl.log 20166511

SPLIT

#/opt/zenoss/local/fredtest/test

#fred2.log_ 20160506

#fredl.log 20166510

#fredl.log_20160506

#fred2.log_201665011

#fred2.log 201605010

#fredl.log_201608511

Delivers upto 3 dirlines, one per zProperty
dirlines = results.split('_SPLIT ')
for dirline in dirlines:
dirFiles = dirline.split('“n')
#log.debug('dirFiles is %s ' % (dirfFiles))
Seem to get & null string as first element. If so, discard
Blank zMonitorDir property with completed file property also
causes havoc so keep popping until reach line starting /
while not dirFiles[0] :
rFiles.pop(Q)

 if dirFiles[@].rstrip('/') not in dirRegex.fEYEI() :

s
continue

dirFiles[0] is zMonitorDir

dirName = dirFiles[0].rstrip('/")

log.debug('dirName is %s ' % (dirName))

Lose the zero'th element and the rest is short filenames, one per line
dirFiles.pop(0)

dir_id = prepldi{dirName)

"DirFileMap.py" 196 lines --50%-- 98,13 62%

Figure 136: process method of modified DirFileMap modeler plugin- part 1

The process method of the modeler starts as before, building a dirRegex dictionary to hold the
relevant zProperties and the maps collection is initialised.

Output from the command should be as shown in Figure 136 with a line for the directory
name, followed by lines for each file in that directory. The pairs of directory / file output for
each set of zProperties are separated by a line with _ SPLIT .

Oct 13, 2016 ZenPack Developers' Guide 221

The first line for each property pair should be the directory but sometimes a blank line creeps
in so they are discarded with:

dirFiles.pop (0)

A non-null first line is tested to ensure it matches one of the zMonitorDir directories.

The directory name is extracted into dirName for use in creating the directory object and the
zero'th element containing the directory is then discarded with pop, leaving the remaining
dirFiles holding a list of file names.

= cmd : vim - Konsole oo &
z Fle Edit Wiew Bookmarks Settings Help
bl dir_id = prepld(diriName) A
Add an Object Map for this directory
Use prepld to ensure id is unigque and doesn't include any dodgy characters like /
om = self.objectMap() inherits modname and compname (null) from plugin
om = self.objectMap()
om.id = dir_id
om.dirName = dirName
t for k,v in om.items():
log.debug('dir om key is %s and value is %s' % (k, v))
rm.append (om)
For this directory, create a map for associated files, passing this dir_id as part of compname
fm = (self.getFileMap(device, dirFiles, dirRegex, dirName, 'dirs/%s' % dir_id, leg))
log.debug('dir %s has fm %s \n fm relname is %s and fm compname is %s ' % (om.id, fm, fm.relname, fm.compname))
maps[' files'] .append(fm)

if len(rm.maps) = 0:
#log.info('Found matching dirs %s on %s \n dir relname is %s and dir compname is %s ' % (rm, device.id, rm.relname, rm.compname))
pass

glse:
log.info('No matching dirs found on %s ' % (device.id))
return None

Add the rm relationships to maps['dirs']
maps(['dirs'] .append(rm)

Need this complicated setup with maps = collections.OrderedDict and the chain return

to ensure that relationship maps are applied in the correct order. Otherwise there tend
to be issues trying to create relationships on objects that don't yet exist

return list(chain.from_iterable(maps.itervalues()))

def MetFi

zp(self, device, files string, dirRegex, dirMatch, compname, log): =
i"DirFileMap.py

196 lines --85%-- 168,9 83% M

Figure 137: process method of modified DirFileMap modeler plugin- part 2

The directory object and relationship map are created exactly as before.

The getFileMap function is still used to test the list of files in the directory, against the
regular expression given in the zMonitorDirFile zProperty. The main difference is that
dirFiles is passed as the files_string parameter.

1 cmd : vim - Konsole CINES X
Fle Edit View Bookmarks Settings Help
; def getFileMap(self, device, files string, dirRegex, dirMatch, compname, log): A
#log.debug(' files string is %s , dirRegex is %s , compname is %s ' % (files string, dirRegex, compname))
file maps = []
for f in files_string:
dirMatch is directory name
regex is dirRegex[dirMatch]
if re.search(dirRegex[dirMatch], f):
Got a regex match against filename f
file id = prepld(f)
Don't want to inherit compname or modname from plugin as we want to set this expicitly
Use ObjectMap rather than om=self.objectMap()
file maps.append(ObjectMap(data = {
'id! : file id,
'fileName' : T,
'fileDirName' : dirMatch,
'fileRegex' : dirRegex[dirMatch],
)
log.info('Found dir %s and file %s match' % (dirMatch, f))

Return file maps relationship map with compname passed as parameter to this method
Again - don't want to inherit relname, modname or compname for this relationship as we want to set them explicitly
Use RelationshipMap rather then rm=self.relMap()(
return RelationshipMap(
compname = compname, ¢

relname = 'files',
modname = 'ZenPacks.community.DirFile.File',
objmaps = file_maps)
| U
|"DirFileMap.py" 196 lines --99%-- 195,0-1 99% =
v

Figure 138: process method of modified DirFileMap modeler plugin-getFileMap method

222 ZenPack Developers' Guide Oct 13, 2016

The getFileMap function is also much simplified. Each file in the files_string parameter is
tested against the regular expression for the specified directory. If a match is found then the
file object is created and a RelationshipMap is returned.

11.6.3 * Testing the new code

Since __init__.py has been changed, test devices should be removed from the
/Server /Linux / DirFile class, the ZenPack reinstalled and Zenoss completely recycled. Move a
test device back to the device class and remodel.

If the modeler does not appear in the modeler list then suspect syntax errors; try importing it
into zendmd with:

import ZenPacks.community.DirFile.modeler.plugins.community.cmd.DirFileMap

If the modeler is shown in the list of modelers, but fails, run the modeler in debug mode:

zenmodeler run -v 10 -d zenny2.class.example.org —--collect DirFilePythonMap > /tmp/fred 2>&l

11.6.4 * Caveats

The new modeler should produce exactly the same results as the original version; however it
should take far less cycles to do so.

The only caveat with this solution, as with any ZenPack that monkeypatches core code, is that
if Zenoss changes the underlying code in a new version or patch then breakage may well
occur!

12.0 Collecting performance data

This section will continue to develop the DirFile ZenPack, exploring different ways of
collecting performance data.

Commands give an easy way to collect performance data through monitoring templates. The
COMMAND datasource type is run by the zencommand daemon.

The examples in this section are not intended as serious, production-strength monitors; the
intention is to provide easy scripts with virtually no prerequisite knowledge or effort required
to implement them.

12.1 Testing environment for the ZenPack

Testing was carried out against two target devices, each with two directories to be monitored,
where each directory has a small handful of files, each containing several lines with specific
string matches:

e taplow-11.skills-1st.co.uk and taplow-30.skills-1st.co.uk devices, both with:
s zMonitorDirl = /opt/zenoss/local/fredtest
+ zMonitorDirlFile = fred1.*
m zMonitorDir3 = /opt/zenoss/local/fredtest/test
¢ zMonitorDir3File = fred2\.log.*

Oct 13, 2016 ZenPack Developers' Guide 223

o /opt/zenoss/local/fredtest directory contains:

bino:/opt/zenoss/local/fredtest # 1s -1

total 16

-rw-r--r-- 1 jane users 119 Dec 2 17:36 fredl.log 20151110
-rw-r--r-— 1 jane users 559 Dec 2 17:37 fredl.log 20151116
-rw-r--r-— 1 jane users 952 Dec 3 22:40 fredl.log 20151202
drwxr-xr-x 3 jane users 4096 Dec 3 19:17 test

e /opt/zenoss/local/fredtest/test contains:

bino:/opt/zenoss/local/fredtest/test # 1ls -1

total 12

-rw-r—--r-— 1 jane users 499 Dec 2 17:38 fred2.log 20151124
-rw-r--r-— 1 jane users 499 Dec 3 19:17 fred2.log 20151125
drwxr-xr-x 2 Jjane users 4096 Nov 29 18:17 lowertest

e Each file has a selection of lines, some with key words that some templates will be
trying to match (“test 1” and “without”). For example:

bino:/opt/zenoss/local/fredtest # cat fredl.log 20151110
test 1

test 2

without key word

test 1

test
test
test
test
test
test
test
test
test 1

a line with test

el e e

The test environment must be kept small. The objective is to demonstrate ZenPack features,
not provide a production-strength ZenPack.

12.2 Collecting device performance data

As a simple example somewhat related to the DirFile scenario, the amount of free disk space
on the root filesystem of a device will be gathered using a COMMAND datasource.

The script is df _root.sh:

#!/bin/bash

#

Use df to get disk free. Get result in bytes (-B 1) and use Posix flag
for compatibility.

Check 6th whitespace separated field for /

output 3rd field (Used in KB) and make sure no duplicate lines

df -P -B 1 | awk -F " " '$6~/"\/S$/ {print $3}' | unigq

Good practice might be to develop the script within the libexec directory of the ZenPack
' initially. Ensure the script is executable and that it runs successfully locally. The result must
be numeric.

224 ZenPack Developers' Guide Oct 13, 2016

This script will need to be run against remote devices using ssh, using all the zCommand
zProperties that should already be in place for modelling.

Note that zCommandPath will be appended to any command that does not have a fully-

@ qualified path name. Note also that it is dubious practice to include environment variables in
zCommandPath eg. $ZENHOME | libexec, as $ZENHOME may vary depending on remote
systems and the zCommandUsername that is used for ssh. It is better to use explicit path
names unless there is a good, well-documented reason for using environment variables.

n Note that the zCommandSearchPath appears to be ignored by the zencommand mechanism.
Use zCommandPath to set a path. (Tested with Zenoss 4.2.5 SUP 457).

Ensure that the correct zCommand zProperties are configured either at a device class or at a
specific device level.

g~

DASHBOARD EVENTS INFRASTRUCTURE REPORTS ADVANCED Q admin sigNouT E

Networks Processes IP Services Windows Services Network Map Manufacturers Page Tips

taplow-11.skills-1st.co.uk —— -
@ e Dt ‘ AR | up O | Production | Normal
100011 DEVICE STATUS PRODUCTION STATE PRIORITY
. B £ | €| pelete Local Copy
Overview -
-
Eterts b%%bbb
4 Components | zComman| |
QDirs @ er 1d zC 1dTimeout 15 /
aFiIes ®) E i zC dExistanceTest test -f %s !
Pintodaces (4) zencommand zCommandLoginTimeout 10 !
! File Systems (3) zencommand zCommandLoginTries 1 /i
@Network Routes (3) 8 4
005 Processes (3) || Yes zer zC Path /homer/zenplug x /Server/Linux/DirFile/devices/taplow...
°|P Services (14) er d zC 1dPort 22 !
@processors (1) L Brotocol ssh /
Erin or d 20 dSearchPath /
Modeler Plugins er zC Jsername zenplug x /Server/Linux
Configuration Properties
Qnfhwara DISPLAYING 1 - 10 of 10 ROWS

Figure 139: zCommand zProperties for ssh communication

The example here has:

Copy

zCommandUsername zenplug
zCommandPath /home/zenplug

the script to the target device into /home/zenplug, owned by zenplug; ensure that

execute permission is set and test it.

Test the script manually from the Zenoss server, as the zenoss user:

[zenoss@zen42 libexec]$ ssh -1 zenplug taplow-1l.skills-lst.co.uk /home/zenplug/df root.sh

The authenticity of host 'taplow-1l.skills-1st.co.uk (10.0.0.11)"' can't be
established.

RSA key fingerprint is 2b:63:65:36:70:b8:70:ad:43:c8:fb:e6:0b:3f:0a:db.
Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added 'taplow-11l.skills-1lst.co.uk' (RSA) to the list
of known hosts.

4729434112

Oct 13, 2016 ZenPack Developers' Guide 225

Make sure you use exactly the same target name as Zenoss knows the device by, to ensure
that a host key is established correctly in known_hosts.

Create a monitoring template, Disk_free_df and associate it with /Server/Linux/DirFile.
Create a datasource, df in the template, of type COMMAND.

o -
e ASHBOARD NTS INFRASTRUGTURE ~ REPORTS | ADVANGED Edil:Dsla:Source
g ame
Monitoring Templates
S A= 22 +
Name Source Enabled Type Nam,
+|Q|Q-
Na
Test Against a Device
Device Name:
.
MyFooter ~ || 4= || @ | £ ~ roup B Template || Device Class || E

Figure 140: df datasource in the Disk_free_df performance template

Ensure that the Use SSH box is ticked. It is good practice to fill in the Component field if at
all appropriate as this feeds through into the Events Console. Since the script is designed to
only monitor the “/” filesystem, that will be used as the component.

Note that the Cycle Time is a configurable parameter for a COMMAND datasource, which
defaults to 300s. 60s is useful for testing but obviously inappropriate in production for
gathering disk space data.

With Zenoss 4, be aware that changing the Cycle Time of any datasource will invalidate any
data already collected for that particular datasource and will result in no further data being
collected with the new cycle time. This is because the rrd file has this parameter as its <step>
value; try looking at an rrd file with:

rrdtool dump df df root.rrd | more

If the cycle time is changed, delete the existing rrd file and let it be recreated when the next
datapoint is gathered. With Zenoss 5, the cycle time can be changed and the effect will be
active at the next collection interval.

Make the Command Template box simply the executable filename, leaving Zenoss to append
the zCommandPath before sending the command to the target.

Remember to create a datapoint for the output of the command. In this case it is trivial as
there is only one result so a single GAUGE datapoint will suffice.

Create any graphs and thresholds required for the template.

Don't forget that the device template must be bound either at the device class level or to a
specific device.

226 ZenPack Developers' Guide Oct 13, 2016

COMMAND datasources always have a Test function. Sometimes this is useful; sometimes it
is misleading.

e Test works for running local scripts against devices
e Test sometimes works running local scripts against components

n e Test does not work running against remote targets - it actually applies the zProperties
and then tries to run the command locally (even though it reports that it is running
against the remote device)

A much more reliable test is to run zencommand with the --showfullcommand option:

zencommand run -v 10 --showfullcommand -d taplow-11l.skills-1lst.co.uk

n The --showfullcommand parameter is useful especially where values are substituted from
zProperties. It does show all the substituted parameters of the command. In this particular
example, it doesn't actually add anything significant.

Hopefully, typically after two cycle time intervals, data should appear in any graph that was
defined for the template, under the left-hand Graphs menu. The impatient who are using
Zenoss 4 and earlier, can check the rrd files under $ZENHOME |/ perf | Devices | <name of
device> to see if a data file has been created. The file takes the format:

<datasource>_<datapoint>.rrd eg. df_df_root.rrd

Q-@l':‘ DASHBOARD EVENTS INFRASTRUCTURE REPORTS ADVANCED * admin sigNouT B

taplow-11.skills-1st.co.uk = @0 | i
@ v inuxCitie o wvaiec | I ety
100011 DEVICE STATUS PRODUCTION STATE PRIORITY
Overview 2 Performance Graphs | Range: Hourly a| Custom Range ||| Reset || Link Graphs?: |v|| £ Refresh ~
Events root dif [< [zoomm| zoomout| > | I
4 Components |
Qoirs 2) 06
OFies () 486 i e
lles
T 466G N
b
Interfaces (4) 8> 440
@ Network Routes (3) 426
@0s Processes (5) 4,06+
OF'I S 3 Mon 12:00 Tue 00: 00 Tue 12:00
le Systems (3) 2015-11-30 06:36:32 GMT to 2015-12-01 18:36:32 GMT
QIPServices(M) B df_root cur: 4.736 avg: 4.736 max: 4.73G
@ Processors (1)
Graphs Load Average J <][Zoom In ” Zoom Out H >]
Modeler Plugins
Configuration Properties o 200m
Software L] 5 =

Figure ﬂlﬁmph of roo; df for taplow-11.skills-1st.co.uk

The template can be added to the ZenPack through the Zenoss GUI and then exported to save
the new contents of objects.xml.

12.2.1 * Analysing the zencommand debug log

Oct 13, 2016 ZenPack Developers' Guide 227

zenoss@zend2:/code/ZenPacks/DevGuide/ZenPacks.community.DirFile/ZenPacks/community/DirFile/libexec

File Edit View Search Terminal Help

015'12—01 17:48:41,162 DEBUG zen.collector.scheduler: Task taplow-11.skills-1st.co.uk 60 Remote starting (waited @ seconds) on 60 second intervals

2015-12-01 17:48:41,162 DEBUG zen.collector.scheduler: Task taplow-11.s5kills-1st.co.uk 60 Remote changing state from IDLE to QUEUED

2015-12-01 17:48:41,162 DEBUG zen.zencommand: purgeOmittedDevices: deletedConfigs=

2015-12-01 17:48:41,162 DEBUG zen.collector.scheduler: Task configloader finished, result: 'Configuration loaded'

2015-12-01 17:48:41,163 DEBUG zen.collector.scheduler: Task taplow-11.skills-1st.co.uk 60 Remote changing state from QUEUED to RUNNING

2015-12-01 17:48:41,163 DEBUG zen.collector.scheduler: Task taplow-11.skills-1st.co.uk 60 Remote changing state from RUNNING to CONNECTING

2015-12-01 17:48:41,163 DEBUG zen.zencommand: Creating connection object to taplow-11.skills-1lst.co.uk

2015-12-01 17:48:41,163 INFO zen.zencommand: REACTOR type -> <twisted.internet.epollreactor.EPollReactor object at 8x34d1f90>

2015-12-01 17:48:41,163 DEBUG zen.SshClient: 10.0.0.11 SshClient connecting to taplow-11.skills-1st.co.uk:22 with timeout 10.0 seconds

2015-12-01 17:48:41,238 DEBUG zen.SshClient: taplow-11.skills-1st.co.uk host fingerprint: 2b:63:65:36:70:b8:70:ad:43:c8:fb:e6:0b:3f:0a:db

2015-12-01 17:48:41,244 DEBUG zen.SshClient: Creating new SSH connection...

2015-12-01 17:48:41,244 DEBUG zen.SshClient: Expanded SSH key path from zKeyPath ~/.ssh/id dsa to /home/zenoss/.ssh/id dsa

2015-12-01 17:48:41,262 DEBUG zen.zencommand: Queued event (total of 1) {'rcvtime': 1448992121.262702, 'device_guid': "d20533d1l-7ee9-4c91-be@e-9fa83efcb4@3', 'componen
mmand', 'agent': 'zencommand', 'manager': 'zend2.class.example.org’, 'device': ‘taplow-1l.skills-lst.co.uk', 'eventClass': '/Cmd/Fail', 'monitor': 'localhost', 'severi
ummary': 'Authentication succeeded for username zenplug', 'eventKey': 'sshClientAuth'}

2015-12-01 17:48:41,262 DEBUG zen.SshClient: SshClient connected to device taplow-11.skills-1st.co.uk (10.0.0.11

2015-12-01 17:48:41,262 DEBUG zen.SshClient: 10.0.0.11 SshClient has © commands to assign to channels (max = 1@, current = 0)

2015-12-01 17:48:41,263 DEBUG zen.zencommand: Queued event (total of 2) {'rcvtime': 1448992121.263044, 'monitor': 'localhost', 'component': 'zencommand', ‘'agent': 'zen
‘summary': ‘'Connected to taplow-11.skills-1st.co.uk [10.0.0.11]', 'manager': 'zend42.class.example.org’, 'device': 'taplow-1l.skills-1st.co.uk', 'eventClass': '/Cmd/Fai
e _guid': 'd20533d1-7eed-4c91-be@e-9fa83efch403"', 'severity': 0}

2015-12-01 17:48:41,263 DEBUG zen.zencommand: Connected to taplow-11.skills-1lst.co.uk [10.0.0.11]

2015-12-01 17:48:41,263 DEBUG zen.collector.scheduler: Task taplow-11.skills-1st.co.uk 60 Remote changing state from CONNECTING to FETCH DATA

2015-12-01 17:48:41,263 INFO zen.zencommand: Datasource Disk free_df/df command: /home/zenplug/df_root.sh

2015-12-01 17:48:41,263 DEBUG zen.SshClient: 10.0.0.11 SshClient has 1 commands to assign to channels (max = 1@, current = 0)

2015-12-01 17:48:41,263 DEBUG zen.SshClient: 10.0.0.11 channel 8 SshConnection added command /home/zenplug/df root.sh

2015-12-01 17:48:41,267 DEBUG zen.SshClient: 10.0.0.11 channel 1 Opening command channel for /home/zenplug/df_root.sh

2015-12-01 17:48:41,356 DEBUG zen.SshClient: 10.0.0.11 channel 1 CommandChannel exit code for /home/zenplug/df root.sh is ©: Success

2015-12-01 17:48:41,357 DEBUG zen.SshClient: 10.0.0.11 channel 8 SshConnection closing

2015-12-01 17:48:41,357 DEBUG zen.SshClient: 10.0.0.11 channel 1 CommandChannel closing command channel for command /home/zenplug/df root.sh with data: '4729438208\n’'
2015-12-01 17:48:41,357 DEBUG zen.zencommand: Process Disk free df/df stopped (8), 0.09 seconds elapsed

2015-12-01 17:48:41,357 DEBUG zen.collector.scheduler: Task taplow-11.skills-1st.co.uk 60 Remote changing state from FETCH DATA to PARSING DATA

2015-12-01 17:48:41,359 DEBUG zen.collector.scheduler: Task taplow-11.skills-1st.co.uk 60 Remote changing state from PARSING DATA to STORE PERF_DATA

2015-12-01 17:48:41,359 DEBUG zen.RRDUtil: /opt/zenoss/perf/Devices/taplow-11.skills-1st.co.uk/df_df_root.rrd: 4729438208.0, @ N

2015-12-01 17:48:41,360 DEBUG zen.zencommand: Queued event (total of 3) {'rcvtime': 1448992121.359964, 'device guid': "d20533d1-7ee0-4c91-be@e-9faB83efcbd®3', 'componen
agent': 'zencommand', 'manager': 'zend2.class.example.org', 'device': 'taplow-11.skills-1lst.co.uk', ‘eventClass': '/Cmd/Fail', 'severity': @, 'monitor': 'localhost',
‘Datasource Disk_free_df/df command timed out', 'eventKey': 'Timeout'}

2015-12-01 17:48:41,360 INFO zen.CmdClient: command client finished collection for taplow-11l.skills-1lst.co.uk

2015-12-01 17:48:41,360 DEBUG zen.zencommand: Collection time for taplow-11.skills-1st.co.uk was 0.197066 seconds; cycle interval is 60 seconds.

JQ1E 17 A1 17:42.41 2&A NERIE 2an rallactar erhadinlar: Tack +anlaw 11 ebille Tet rn bl GO Damata finichad racolt: [(-Dradurte 7AnDDN 2Anrsamman. A CmAd inctanca at OVRR2T

Figure 142: Output from zencommand run in debug

The first highlighted section (red) shows that the configuration has loaded. It is the
responsibility of zenhub to analyse all templates and the devices they are bound to and then
allocate tasks to different daemons for data collection. Bear in mind that it is perfectly
possible to have multiple collector Zenoss systems, each typically running an instance of each
of the collection daemons and looking after a subset of the devices. If there is an error in the
template, especially if it includes a user-developed datasource, then the “Configuration
loaded” message will be replaced by an error message.

The second (green) section shows SshClient (the same module used by zenmodeler)
establishing an ssh session with taplow-11. Note the summary of the queued event with
“Authentication succeeded for username zenplug”.

The third (blue) highlighted section shows the command being run and confirms its full path
as /home/zenplug/df root.sh. The good news comes almost at the end of this section with:

zen.SshClient: 10.0.0.11 channel 1 CommandChannel closing command channel
for command /home/zenplug/df root.sh with data: '4729438208\n'

Data has been found.

The ultimate good news is the final (yellow) highlighted line with a call to zen.RRDU'til. This
means that data is actually being written to an rrd file. It is often worth searching a daemon
debug log for RRDU'til; if there are no matches, there will be no data!

12.3 Collecting component performance data

There are a number of different scenarios with regard to collecting component performance
data:

e COMMAND datasource command completely specifies command to be run for each
component. Single value returned.

e COMMAND datasource command completely specifies command to be run for each
component. Multiple values returned.

228 ZenPack Developers' Guide Oct 13, 2016

e COMMAND datasource command returns data for all components.

e COMMAND datasource passes customized key values with command which returns
data for all components.

The first two can be handled without any serious coding.

12.3.1 Specific component command; single value returned

The requirement is to get the disk usage for each File component, using a command like:

/usr/bin/du -P -b /opt/zenoss/local/fredtest/fredl.log 20151110 | cut -f 1

The filename will need to be passed as a parameter for each File component. The cut
command at the end ensures that only the number of bytes used, will be returned.

As with any datasource, attributes of either the device or the component can be made
available. For a device-level template, the here object is the device; for a component, here is
the component object. Access is also provided to the dev object, which for a device-level
template, will be the same as here.

Monitoring Templates

Name: Source Enabled Type Name Type Min. Value Max. Value

Edit Data Source

Name

FileDiskUsed
Enabled

/Cmd/Fail e Cycle Time (seconds):

FileSystem Parser: 60 :
HTTP Component: Event Key:

Sihereid] | +[e]o -
Command Template Name
IS Just/binidu -P -b ${here/fileDirName}/${here/i

SAVE CANCEL

Fi Lgure143 File datasource in the File component template

The template must be named File to match the component object and provide the automatic
binding; the datasource can have any name (FileDiskUsed). The command has a fully
qualified pathname and concatenates the fileDirName and fileName attributes of the File
object to get the target parameter for the du command:

/usr/bin/du -P -b ${here/fileDirName}/${here/fileName} | cut -f 1
The cycle time has been reduced to 60s for testing and the Use SSH box is ticked. The
Component field has been set to ${here/id}. The rest of the key values are defaults.

A single datapoint, diskUsed, of type GAUGE has been created and a graph has been defined
to display this datapoint.

Provided the command returns a single value and there is a single datapoint, the value
automatically defaults to being associated with the defined datapoint.

Oct 13, 2016 ZenPack Developers' Guide 229

‘ﬂ 1 DASHBOARD EVENTS INFRASTRUCTURE REPORTS ADVANCED 2 admin SIGNOUT H

m Networks Processes IP Services Windows Services Network Map Manufacturers Page Tips

9 X s R D - L@:_: ‘

Overview
Events

Q, Type tofilter...

fredl.log 2015... fredl.log 20151110 Joptizenoss/local/fredtest

4 Components
@oirs (2) fred1 log_2015...
Lhlesib) Jopt/zenoss/local/fredtest
Winterfaces (4)

@ Network Routes (3)

@0s Processes (5)

@File Systems (3)

@ P services (14)

@processors (1)

Graphs

fred1.log 20151116 Joptizenossflacalfredtest

Jopt/zenoss/local/fredtest/test

|| Custom Range

Modeler Plugins
Configuration Properties
Software

My Example Menu 1 Tue 12:00 Wed 00: 00 Wed 12:00

2015-12-01 06:02:24 GMT to 2015-12-02 18:02:24 GMT
W diskUsed cur:323.00 avg:179.46 max:323.00

Mib Browser

Frig.urﬁ'e 144: Graphical data for Disk Used on File component

12.3.2 Specific component command; multiple values returned

Supposing performance monitoring is to be extended to check for the presence of two specific
strings in a File component and provide a count for the number of lines where the string
appears. The strings are known in advance. A script, file_stats.sh, can be designed to deliver
two values, with counts for each string. The script will be developed initially in the libexec
directory of the ZenPack before being distributed to target systems.

#!/bin/bash

#

Author: Jane curry

Date: December 2nd 2015

Updated:

First parameter is filename to search for strings
#

Nagios return codes

#set -x

STATE OK=0

STATE WARNING=1
STATE CRITICAL=2
STATE UNKNOWN=3

#
exitstatus=$STATE OK

filename="S$1"
Substitute spaces for _
stringl="test 1"
stringlName="echo $stringl | sed -e 's/ / /g'"
string2="without"
string2Name="echo $string2 | sed -e 's/ / /g'"
Check that command is valid
stringCountl=$ (grep "S$stringl" $filename 2>/dev/null)
if ["$2?" =0]
then
echo "Error collecting file stats"
exit $STATE WARNING
else
stringCountl=$ (grep "$stringl" $filename | wc -1)

230 ZenPack Developers' Guide Oct 13, 2016

fi
Check that command is wvalid
stringCount2=$ (grep "S$Sstring2" S$filename 2>/dev/null)
if ["$?" =0]
then
echo "Error collecting file stats"
exit $STATE_WARNING
else
stringCount2=$ (grep "S$string2" S$filename | wc -1)
fi

echo " File string count test ok | $stringlName=$stringCountl $string2Name=$stringCount2"
exit $Sexitstatus

The trick for delivering multiple values to a datasource - whether it is for a component or a
device - is to have the script echo output in Nagios format, see https:/nagios-
plugins.org/doc/guidelines.html#PLUGOUTPUT for further details. This basically means the
output should be:

<string> | <varl>=<valuel> <var2>=<value2> <var3>=<value3>
The <string> will appear in any event that is generated by running the command.
The exit status of the script will drive the severity of any event that is generated.

The <varl>=<valuel> pairs deliver the data back to the datasource. The crucial trick is that
the <varl> variable names must exactly match the names of the datapoints in the
datasource.

In this script, the two strings are hardcoded where:
e stringl="test 1"
e string2="without"

\z The strings are checked for white space as it is dubious practice to have datapoint names with
spaces. The <var> names returned will have white space substituted by underscore, so output
will be like:

File string count test ok | test 1=7 without=3

Thus, the datasource that runs this command will require the two GAUGE datapoints of
test_1 and without.

Oct 13, 2016 ZenPack Developers' Guide 231

https://nagios-plugins.org/doc/guidelines.html#PLUGOUTPUT
https://nagios-plugins.org/doc/guidelines.html#PLUGOUTPUT

DASHBOARD

e
2T

Q

Echo

EVENTS

Jobs

Data Sources

A[+[e]e-]
| Name

INFRASTRUCTURE

REPORTS

ADVANCED

Q v * admin SIGNOUT H

P === g g S g g S g g S g g g g g g
| Monitoring Templates J MiBs ips

Thresholds

[+]

ESXiDatastore | Souree. Ensbied Type, fiame, Type Min. Yalus, Mo vawe

ESXiHost \ _] FileDiskUsed Justibin/du -P -b ${heresfileDirName}/${hereffilsName} | cut -f 1 over SSH true COMMAND

ESXiVM - @) FileTest1WithoutCount file_stats.sh "${herefileDirName}/${here/fileName}" over SSH ‘COMMAND

EsxTopHost FileTest1WithoutCount.test 1 GAUGE

e alE = e FileTest! WithoutCount.without GAUGE

ethernetCsmacd 64 E Edit Data Source

ExampleComponent 1 Name I lm W I =
o

FileSystem
FtpMonitor
HTTP
HtipMonitor
ifOperStatus
ns

Eve s:
/Cmd/Fail %

Parser.

Component

S{here/id)

Cycle Time (s¢)
60

{i+lels |
ablame

Disk Used

without count

test 1 count

and Template:
1s.sh “${here/fileDirName}/${here/fileName}™

IISADMIN
liSSites
ipSecNATCount

a1
MyFooter « [_][E] [O—“ Group By: | Template || Device Class || Bouna: %2
Figure 145: Datasource to run file_stats.sh with 2 datapoints and 2 graphs

Note in Figure 145:

./ 0Jobs ~

e The template called File can have as many datasources as required, provided they are
unique

e The datasource name is FileTest1WithoutCount
o The cycle time (60s) is artificially low for testing
e Use SSH is ticked

e The component field is set to ${here/id}

e The command template is not fully-qualified so will look in the zCommandPath
directory for the target host

e There are two datapoints. When creating the datapoint, it must match with the
variable name in the output from the script; this is, without and test_I. The full name of
the datapoint has the datasource name appended to the front giving
FileTest1WithoutCount.test_1 and FileTest1WithoutCount.without.

e A graph is created for without count and test 1 count each of which has the appropriate
single datapoint.

e This is in a component template so no manual binding is required.

Note that it is good practice not to have underscore characters in datasource names.
Especially with earlier versions of Zenoss, the underscore sometimes appeared as the divider
between datasource and datapoint in a full datapoint name which could cause errors.

Test by running zencommand standalone in debug mode and redirect output to a file:

zencommand run -v 10 -d taplow-11.skills-1st.co.uk --showfullcommand > /tmp/fred 2>¢l

If there are issues, it is always worth checking the Event Console for errors from the
zencommand daemon.

232 ZenPack Developers' Guide Oct 13, 2016

4@] DASHBOARD EVENTS INFRASTRUCTURE REPCORTS ADVANCED 2 admin SIGNouT H

Event Console I SN T EventClasses Triggers Page Tips

0]V @# [se- - comave] Fromeen e e

[x] Q taplow-11.skill... fred1.log 20151110 /Cmd/Fail Datasource File/File_test_1_without_count command timed out 2015-12-02 19:23:45 2015-12-02 19:23:45 1 zencommand -
o ° taplow-11.skill... fredi.log 20151116 /Cmd/Fail Datasource File/File_test_1_without_count command timed out 2015-12-02 19:23:45 2015-12-02 19:23:45 1 zencommand
0 ° taplow-11.skill... ICmd/Fail C to taplow-11.skills-1st.co.uk [10.0.0.11] 2015-12-02 19:23:43 2015-12-02 19:23:43 1 zencommand
[x] (] taplow-11.skill... fred1.log 20151110 /Cmd/Fail ile/FileDi: timed out 2015-12-02 19:22:59 2015-12-02 19:22:59 1 zencommand
0] taplow-11.skill... fredi.log 20151116 [Cmd/Fail ile/FileDi: timed out 2015-12-02 19:22:59 2015-12-02 19:22:59 1 zencommand
0 v taplow-11.skill... /Cmd/Fail CHANNEL_OPEN_FAILURE: Try lowering zSshConcurrentSessions 2015-12-02 19:22:44 2015-12-02 19:22:44 1 zencommand
[x] (/] taplow-11.skill... fred1.log 20151110 /Cmd/Fail Datasource File/File_test 1_without_count command timed out 2015-12-02 19:16:45 2015-12-02 19:16:45 1 zencommand
o ° taplow-11.skill... ICmd/Fail 1o taplow-11.skills-1st.co.uk [10.0.0.11] 2015-12-02 19:16:43 2015-12-02 19:16:43 1 zencommand
o /] taplow-11.skill... fred1.log 20151110 /Cmd/Fail ile/FileDi: timed out 2015-12-02 19:15:59 2015-12-02 19:15:59 2 zencommand
[x] /] taplow-11.skill... / ICmd/Fail Datasource Disk_free_df/df command timed out 2015-12-02 19:15:59 2015-12-02 19:15:59 1 zencommand
0 v taplow-11.skill... ICmd/Fail CHANNEL_OPEN_FAILURE: Try lowering zSshConcurrentSessions 2015-12-02 19:15:44 2015-12-02 19:15:44 2 zencommand
0 ° taplow-11.skill... /Cmd/Fail Ci to taplow-11.skills-1st.co.uk [10.0.0.11] 2015-12-02 19:15:43 2015-12-02 19:15:43 1 zencommand
o ! taplow-11.skill... / /Cmd/Fail Datasource Disk_free_df/df command timed out 2015-12-02 19:15:27 2015-12-02 19:15:27 1 zencommand
0 v taplow-11.skill... /Cmd/Fail CHANNEL_OPEN_FAILURE: Try lowering zSshConcurrentSessions 2015-12-02 19:15:12 2015-12-02 19:15:12 1 zencommand
a o taplow-11.skill... / ICmd/Fail Datasource Disk free dfidf command timed out 2015-12-02 19:11:52 2015-12-02 19:11:52 1 zencommand C|

DISPLAYING 1 - 15 of 43 ROWS

Figure 146: Event Console showing issues with running commands

As the load on both the zencommand daemon and on the remote target increases, occasional
timeouts may be seen with subsequent clearing events. The value of customizing the
Component field in the datasource can now be seen.

The event with a summary of CHANNEL_OPEN_FAILURE: Try lowering
zSshConcurrentSessions was very frequent with this property set to the default of 10;
reducing it to 5 eliminated this category of event.

Data should appear automatically in the graphs since this is another datasource in the File
component template (so is automatically bound).

mﬂ 1 DASHBOARD EVENTS N CTURE REPORTS ADVANCED

Devices Networks Processes IP Services Windows Services Network Map Manufacturers

E\ tskils-tstoouk

Overview | m B m

Events
4 Components
@oirs (2)
A\Files (5)

Winterfaces (4) u 1 T
@ Network Routes (3] 12 '
10
@ 0s Processes (5) = |
6
OFie Systems (2 | Wed 12:00 Thu 00: 68 Th 12:00
°IPServioes(14) 2015-12-02 04:53:21 GMT to 2015-12-03 16:53:21 GMT
@ Processors (1) W without curi11.00 avgil13.48 max:15.00
Graphs
Madlr Pl L ..
Configuration Properties 40 - . e v
|
Software
0 30
My Example Menu 1 Ll
-
Mib Browser = 20
Custom Properties 0
Administration ' Wed 12:00 Thu 00: 08 Thu 12:00
o 2015-12-02 04:53:21 GMT to 2015-12-03 16:53:21 GMT
4 Monitoring Templates W test_1 cur:48.00 avg:36.81 max:40.00

Figure 147: Graphs showing counts for "without” and "test 1” on the File component

Oct 13, 2016 ZenPack Developers' Guide 233

With very little modification, this datasource could be copied and used to gather disk used
statistics for Dir components, using the command:

/usr/bin/du -P -b -s S${here/dirName} | cut -f 1

12.3.3 Generic component command with parser

Take the scenario where the remote script is proscribed by someone else - part of a
commercial package or the work of another department. The script delivers information about
all components. A mechanism is needed at Zenoss to parse the command output and deliver
appropriate values for appropriate components.

To demonstrate parsers, we shall use a rather contorted example to keep the Linux
requirements absolutely minimal. Is -l <directory> provides output for each file in that
directory, including, in the fifth field, the number of bytes in the file; the last field is the
filename. This sample will run the /s -/ command to bring back all files for a directory and
then select the particular instance, by the fileName attribute, along with its size.

Parsers can (indeed, must) be used for any COMMAND datasource. A number are supplied
as part of the core product under $ZENHOME | Products | ZenRRD | parsers:
[zenoss@zend?2 parsers]$S pwd

/opt/zenoss/Products/ZenRRD/parsers
[zenoss@zend?2 parsers]$ 1ls -1

total 56

-rw-r—--r-- 1 zenoss zenoss 1576 Mar 11 2014 Auto.py
-rw-r—--r-- 1 zenoss zenoss 1068 May 19 2015 Auto.pyc
-rw-r—--r-- 1 zenoss zenoss 2504 Mar 11 2014 Cacti.py
-rw-r--r-- 1 zenoss zenoss 1982 May 19 2015 Cacti.pyc
-rw-r--r-- 1 zenoss zenoss 368 Mar 11 2014 init .py
-rw-r--r-— 1 zenoss zenoss 134 May 19 2015 init .pyc
-rw-r--r-- 1 zenoss zenoss 3159 Mar 11 2014 JSON.py
-rw-r--r-—- 1 zenoss zenoss 5174 Mar 11 2014 Nagios.py
-rw-r—--r-- 1 zenoss zenoss 3770 May 19 2015 Nagios.pyc
-rw-r--r-- 1 zenoss zenoss 10998 May 19 2015 ps.py
-rw-r--r-- 1 zenoss zenoss 3052 Mar 11 2014 uptime.py

Note in Figure 145 that there is a Parser field in the datasource dialogue which defaults to
Auto. The Auto parser simply tries the Nagios parser first, then tries the Cacti parser.

There is an excellent, brief explanation of parsers in the old Zenoss 3 Developers' Guide in
Chapter 12.5.2.

A ZenPack can provide a parser in the parsers subdirectory under the base directory. This
directory is not created by default. Ensure that it also contains a __init__.py.

The core Zenoss code provides the CommandParser and ComponentCommandParser classes
under $ZENHOME | Products |/ ZenRRD. A parser may have a complex job of decoding the
output data; however, the ComponentCommandParser class provides a fairly easy way to
decode output data, using Python regular expressions, and then matching that data to
particular component instances.

The first, essential trick is that the CommandParser class name must match the component
object class, so a parser for the File component must be called File. Note that
ComponentCommandParser inherits from CommandParser.

234 ZenPack Developers' Guide Oct 13, 2016

A ComponentCommandParser has four attributes that need defining in the ZenPack parser to
override the defaults in ComponentCommandParser.py:

e componentSplit = "\n'

e componentScanner ="

e scanners = ()

e componentScanValue = 'id’

The assumption is that data will be delivered with information for each component instance
on a separate line, hence componentSplit being set to the newline character. This holds good
for s -l data.

The componentScanner is a regular expression that picks out an element of the line that will
match an attribute instance of the component. So for an example line like:

-rw-r--r-- 1 jane users 119 Dec 2 17:36 fredl.log 20151110

the componentScanner needs to match the last field to the fileName attribute of the
component. The regular expression might be:

componentScanner = r' (\S+\s+)+ (?P<component>.+)$"'

The regex must contain the Python named groups construct to deliver a group which must
be called component. The regex above should deliver the last element of the line, separated
by white space, into component.

The componentScanValue specifies the attribute of the component that needs to match with
the componentScanner instance.

componentScanValue = 'fileName'

So, we are looking for a File component instance with a fileName attribute of
fredl.log_20151110.

If this is found in the output data, the scanners list is another regular expression that defines
what data value(s) to extract and where to put it.
scanners = [

r' (\S+\s+) {4} (?P<1lsBytesUsed>[0-9]+)"'
]

The regex passes over four whitespace-separated fields and picks out the fifth field, which
must be numeric, and again uses the named groups technique to put the value into a group

n called IsBytesUsed. The group name in scanners can be anything but must match a
datapoint name in the datasource that calls this command.

If the output of the command is amenable to this level of processing, then the parser only
needs to contain these 4 lines in the new ComponentCommandParser class.

Oct 13, 2016 ZenPack Developers' Guide 235

zenoss@zen42:/code/ZenPacks/DevGuide/ZenPacks.community.DirFile/ZenPacks/community/DirFile/parsers

File Edit View Search Terminal Help
from Products.ZenRRD.ComponentCommandParser import ComponentCommandParser =
import logging

log = logging.getlLogger('.'.join(['zen', name_]))
log.info('Start of File parser by JC')

The parser class name MUST match the object class name ie. File
class File(ComponentCommandParser):

output from 1ls -1

#total 16

#-rw-r--r-- 1 jane users 119 Dec 2 17:36 fredl.log 20151110
#-rw-r--r-- 1 jane users 559 Dec 2 17:37 fredl.log 20151116
#-rw-r--r-- 1 jane users 500 Dec 3 11:09 fredl.log 20151202 |
#drwxr-xr-x 3 jane users 4096 Dec 2 17:38 test

Split components on newline
componentSplit = '\n'

component fileName attribute instance matches last field eg. fredl.log 20151110
1-or-more non-whitespace char followed by 1-or-more whitspace, 1 or more times
followed by l-or-more anything put into component variable

followed by end-of-line ie. last field

componentScanner = r'(\S+\s+)+(?P<component>.+)$"'

Get 5th field that must be digits
l-or-more non-whitespace char followed by 1l-or-more whitspace, 4 times
followed by l-or-more digits put into lsBytesUsed variable
1lsBytesUsed MUST match datapoint name in template
scanners = |
r' (\S+\s+) {4} (?P<lsBytesUsed>[0-9]+)"'
]

Component object attribute that componentScanner instance value must match
BomponentScanvalue = 'fileName'
"File.py" [readonly] 37 lines --100%-- 37,5 Bot [

Figure 148: File ComponentCommandParser
When the parser code is complete, zenhub and zopectl need to be restarted.

The datasource to run this command will be another addition to the File component template.
The command is artificially contorted, and wildly inefficient, to keep the Linux environment
very simple; it will take the fileDirName attribute of a File component instance and run [s - [
against that value.

236 ZenPack Developers' Guide Oct 13, 2016

4.@ 1st DASHBOARD EVENTS INFRASTRUCTURE REPORTS ADVANCED Q v * admin siGNouT B
F A A A S = s v o g iy S AN A AN A U N N I A N A B S A O A A AN AN S AN A A O U AN A i A i I i N
Settings ~ Collectors Jobs MIBs Page Tips
Q Data Sources Thresholds
[#[olo-,
e e T
e |_] FileDiskUsed [usr/bin/du -P -b ${hereffileDirName}/${here/fileName} | cut -f ... true COMMAND
FtpMonitor ‘ |_] FileTest1WithoutCount file_stats.sh "${here/fileDirName}/${here/fileName}" over SSH true COMMAND
HTTP -) FileLsDiskUsed /bin/ls -I ${here/fileDirName} over SSH COMMAND
HttpMonitor Ll FileLsDiskUsed.IsBytesUsed . GAUGE al AL I [
_ | Edit Data Source
ifOperStatus 7 Nama
B - [+]o]e |
IISADMIN — S 1 —
lISSites EvontClase: Warning g Disk Used
ipSecNATCount Cycle Time (seconds) Wwithout count
ipSecPolicyCount e test 1 count
ipSecVPNPhase1Count ;
ipSecVPNPhase2Count Component vent K
psenice
IRCD = Command Template:
MyFooter ~ F"a m | Group By: r'[emplale Device Class || Bound: 2 m

Figure 149: FileLsDiskUsed datasource for File component template using ZenPack parser
Note the dropdown box for Parsers. The first test of the new parser code is that it should
appear in the list as:

ZenPacks.comunity.DirFile.parsers.File

If it does not appear, either the daemons have not been recycled or there may be a syntax
error in the parser code.

Also note the datapoint for this datasource called IsBytesUsed. This must exactly match the
named group in the scanner's regex in the parser code.

Debugging of parsers starts with debug level output from the zencommand daemon. Inspect
carefully to ensure that the correct commands are run. If no data is returned then suspect
that one of the regular expressions is incorrect. There is a very helpful Python regex checker
application at http.//www.pyregex.com/

There may also be helpful events in the Event Console along the lines of:
Error running parser <Products.DataCollector.Plugins.PluginlLoader instance
at 0x6c977e8>

The message field contains the Python stack trace, which in this case, ended in:

invalid expression error: unbalanced parenthesis

which indeed was the case!

In the Event Details the event has an output field which contains all the output delivered by

this command (the newlines get lost in the Console GUI):
total 16 -rw-r--r-- 1 jane users 119 Dec 2 17:36 fredl.log 20151110 -rw-r--
r-- 1 jane users 559 Dec 2 17:37 fredl.log 20151116 -rw-r--r-- 1 jane users
500 Dec 3 11:09 fredl.log 20151202 drwxr-xr-x 3 jane users 4096 Dec 2 17:38
test

Oct 13, 2016 ZenPack Developers' Guide 237

http://www.pyregex.com/

t@ Ist DASHBOARD EVENTS INFR CTURE REPORTS ADVANCED Q v © admin SI

E == A AT A A AR A A A A i AR T A ST A
E=™ Networks Processes IPSenices Windows Services NetworkMap Manufacturers

low-11.skills-1st.co.uk ; 5
-ftsaegle‘r)/unux/m:ne 5 lstcol | Ei LN | Upo | Production | Normal

- 10.0.0.11 DEVICE STATUS PRODUCTION STATE PRIORITY

Overview et |@ Q Type to filter
Events uEyonis,, JMNamo.S Eliohiama, ElicDirhiame, Hliedege, ddonioreg
4 Components @ fredilog 20151... fredi.log 20151110 foptizencss/localifredtest fredt.* <
@Dirs (2) @ fredilog 20151... fredi.log 20151116 foptizencss/localifredtest fredt.* |
v fredilog 20151... fredi.log 20151202 foptizenoss/localffredtest i O
Interfaces (4) @ fred2log 20151... fred2.log 20151124 fopt/zenoss/localffredtest/test fred2\.log.* i
@ Network Routes 3) (] fred2.log_20151 fred2.log 20151125 foptize s/local/fredtest/test fred2\.log.* Zd

@ 0s Processes (5)
@ File Systems (3)

@ 1P Services (14) *| Display: | Graphs w Range: Hourly QI\\ Link Graphs? M\[

@ Processors (4]

Graphs Is Disk Used [< M Zoom In ” Zoom Out H > I

Modeler Plugins
12k =
Configuration Properties

Software Lok

0.8 k -

Bytes

My Example Menu 1
Mib Browser 0.6 k
Custom Properties 0.4 k+

Wed 12:00 Thu 00: 00 Thu 12:00
2015-12-02 08:43:02 GMT 2015-12-83 20:43:02 GMT

Administration .
B lsBytesUsed cur: 1.19k avg:679.41 max: 1.19k

4 Monitoring Templates

Figure—lﬁ Graph of data from s -l command using ZenPack parser to select data

12.3.4 customized datasource to pass customized key values

The final data collection scenario is where existing datasources do not provide all the
functionality required. There are two main reasons for this:

e No suitable collection method exists
e More configuration is required in the datasource GUI dialogue

Many of the standard Zenoss core ZenPacks such as ApacheMonitor, DigMonitor, FtpMonitor
and many others, create their own datasource, usually to control the dialogue. Most of these
standard ZenPacks actually use a CommandPlugin to run a Nagios plugin, under the covers,
even though the datasource type selected may be ApacheMonitor, DigMonitor or FtpMonitor.
With these older ZenPacks, the new GUI is built with a mixture of new techniques and old
TALES page template (.pt) files.

If a ZenPack gathers data using some form of API, like the ZenPacks.zenoss.AWS Amazon
ZenPack or ZenPacks.community. VMwareESXiMonitorPython to collect VMware statistics,
then the datasource will need to provide a new collection method, probably in addition to
datasource GUI customisation. If developing new collection methods it is good practice to
create Python datasources; this will be discussed in a later chapter.

Consider the earlier example for checking the number of lines where a particular word
appeared in a file. The search strings were hardcoded in the script; how would one pass the
desired string as a parameter from the datasource dialogue?

The requirement will be changed slightly to specify that the datasource will be limited to
having a single datapoint which, by convention, will be called the same as the string to search
for. The datasource dialogue needs to provide the same entry fields as a command datasource
plus a box to specify the search string.

238 ZenPack Developers' Guide Oct 13, 2016

Edit Data Source

Name:

Enabled
Event Class:

/DirFile

Parser:

Type:
DirFileDataSource
Severity:
Error
Cycle Time (seconds):
60

Auto Use SSH

Component: Event Key:

${herefid}
Command Template:

file_stats_param.sh ${hereffileDirName}/${here/fileName}

stringToFind
Search String:

without

Figure 151: DirFileDataSource datasource to define "without” with single datapoint "matches”

Note the extra Search String field in the GUI dialogue in Figure 151. Also, the Command
Template field has changed to reflect the slightly different script, file_stats param.sh.

New datasources are created under the datasources directory of a ZenPack. If the ZenPack
is created with zenpacklib then the directory will need manually creating along with its
__init__.py. If the ZenPack is created from the Zenoss GUI then a datasources directory, with
__init__.py will be created automatically.

The datasource file, DirFileDataSource.py, must be written in Python. A new class is defined
for the datasource which defines:

e The name of the class
e The name of the datasource as seen in the GUI

e Any standard datasource fields whose default values are to be overridden in this
ZenPack. These fields are defined in
$ZENHOME | Products | ZenModel | RRDDataSource.py :

m sourcetypes default = ()

Oct 13, 2016 ZenPack Developers' Guide 239

m sourcetype default = None

n eventClass default ="

s cycletime default = 300

m severity default = 3 (Warning)
= enabled default = True

s component default ="

s eventKey default ="

s commandTemplate default =

e Any new datasource fields

o Properties and relations for this new datasource class

e Any methods for the class. These may be either:
s Overrides of existing methods inherited through the class hierarchy
s New methods

z‘ As usual, it is good practice to setup logging so that it reflects the name of the ZenPack:

240 ZenPack Developers' Guide Oct 13, 2016

[E] zenoss@zend2:/code/ZenPacks/DevGuide/ZenPacks.community.DirFile/ZenPacks/community/DirFile/data: - o x

File Edit View Search Terminal Help

import Products.ZenM@del.BasicDataSource as BasicDataSource 14
from Products.ZenModel.ZenPackPersistence import ZenPackPersistence

from zope.component import adapts
from zope.interface import implements

from Products.Zuul.form import schema

from Products.Zuul.infos import ProxyProperty

from Products.Zuul.infos.template import CommandDataSourceInfo

from Products.Zuul.interfaces.template import ICommandDataSourcelInfo
from Products.Zuul.utils import ZuulMessageFactory as _t

from DateTime import DateTime

from Products.PageTemplates.Expressions import getEngine

from Products.ZenUtils.ZenTales import talesCompile

Setup logging so it includes the ZenPack name
import logging
log = logging.getlogger('."'.join(['zen', name_ 1))

DirFileDataSource(ZenPackPersistence, BasicDataSource.BasicDataSource):
""" Get DirFile data using Command """

ZENPACKID = 'ZenPacks.community.DirFile'

Friendly name for your data source type in the drop-down selection.
sourcetypes = ('DirFileDataSource’,)
sourcetype = sourcetypes[0]

Standard fields in the datasource - with overriden values
(which can be overriden again in the template)
component = '${here/id}"’
Note: Event Class must be defined to see this default in GUI
eventClass = '/DirFile’
cycletime = 600
parser = "Auto"
usessh = True
commandTemplate = 'file stats param.sh ${here/fileDirName}/s{here/fileName}'
stringToFind = "'

_properties = BasicDataSource.BasicDataSource. properties + (

{'id': 'stringToFind', ‘'type': 'string', 'mode': ‘'w'},

)

"DirFileDataSource.py" [Modified] 132 lines --0%-- 1,21 Top

Figure 152: DirFileDataSource.py - imports, logging and attributes

<

Setup logging so it includes the ZenPack name
import logging
log = logging.getLogger ('.'.join(['zen', name]))

The DirFileDataSource class inherits from the ZenPackPersistence and BasicDataSource
classes. ZenPackPersistence provides a catalog to associate objects in the ZODB with the
ZenPacks that provide those object classes, to make it easy to delete all associated objects if a
ZenPack is removed. Note that ZenPackPersistence should be the first class listed in a list of
inheritance classes to ensure that its methods are not overridden.

BasicDataSource (defined in $ZENHOME | Products | ZenModel | BasicDataSource.py) is the
base class used for SNMP and COMMAND datasources.

A common convention in datasource files is to override the sourcetypes and sourcetype
attributes from RRDDataSource. Typically sourcetypes just contains the “friendly” name of

Oct 13, 2016 ZenPack Developers' Guide 241

the datasource to be used in the Zenoss GUI,; sourcetype (singular) is then assigned to the first
element (that is, the zero'th element) of that tuple.

Any of the attributes inherited by the new datasource class can have their defaults changed.

n Note that if an eventClass is defined, that class must already exist in the ZODB database
when an instance of this datasource is created; otherwise the eventClass field will be blank in
the GUL

The commandTemplate attribute reflects the new script to be run with its single parameter.

Any new attributes should be defined with a default value and added to the _properties

stanza.
stringToFind = "'
_properties = BasicDataSource.BasicDataSource. properties + (
{'id': 'stringToFind', 'type': 'string', 'mode': 'w'},

)

The _relations attribute typically just inherits relations from its parent class:

_relations = BasicDataSource.BasicDataSource. relations + (

)

There are a number of methods defined for the base DataSource classes, some of which are
already overridden in other base classes; they can be further overridden in the new class and
new methods can be defined.

12.3.4.1 getDescription method

def getDescription (self):
getDescription in BasicDataSource only sets values if type = COMMAND or SNMP
This is the comment under Source that you see in the template against the datasource
if self.usessh:

return self.commandTemplate + " " + self.stringToFind + " over SSH"
else:
return self.commandTemplate + " " + self.stringToFind

getDescription in the BasicDataSource class only sets a useful value if the sourcetype is SNMP
or COMMAND; otherwise it returns getDescription from the RRDDataSource, which is None.
The code has simply been copied from the COMMAND option in BasicDataSource.

12.3.4.2 useZenCommand method

def useZenCommand (self):
useZenCommand in BasicDataSource only returns True for sourcetype == 'COMMAND'
return True

The new class is, in fact, going to run a command so needs the useZenCommand method to
return True for the new sourcetype.

12.3.4.3 getCommand method

def getCommand(self, context, cmd=None) :
No getCommand in BasicDataSource - inherits from
SimpleRRDDataSource inherits from RRDDataSource
Duplicate getCommand from RRDDataSource and add stringToFind
Perform a TALES eval on the expression using self
if cmd is None:

242 ZenPack Developers' Guide Oct 13, 2016

cmd = self.commandTemplate
if self.stringToFind:
#Need to ensure any white space is wrapped in quotes

cmd = cmd + " "' + self.stringToFind + '"'
if not cmd.startswith('string:') and not cmd.startswith ('python:"'):
cmd = 'string:%s' % cmd

compiled = talesCompile (cmd)
d = context.device ()
environ = {'dev' : d,
'device': d,
'devname': d.id,
'ds': self,
'datasource': self,
'here' : context,
'zCommandPath' : context.zCommandPath,
'nothing' : None,
'now' : DateTime () }
res = compiled(getEngine () .getContext (environ))
if isinstance(res, Exception):
raise res
res = self.checkCommandPrefix (context, res)
return res

BasicDataSource provides a getCommand that is almost what is required but it needs the
new stringToFind attribute appended to the command. stringToFind is enclosed in quotes so
that the entire attribute is finally passed to the command on the target machine as a single
parameter; thus the string can include white space.

12.3.4.4 addDataPoints method

addDataPoints for the new class defines a single datapoint called matches.

def addDataPoints (self):
Add a datapoint called matches if it isn't defined in the template
if not hasattr(self.datapoints, 'matches'):
there is no manage addBasicDataPoint method - only manage addRRDDataPoint
self.manage addRRDDataPoint ('matches')

The addDataPoints method is redefined in both SimpleRRDDataSource and BasicDataSource
(BasicDataSource inherits from SimpleRRDDataSource, inherits from RRDDataSource),
leaving the inherited method only defined for datasources of type SNMP.

12.3.4.5 Infos, Interfaces and configure.zcml

Since the ZenPack is defining new GUI elements, there also need to be interface and info
definitions and an entry in configure.zcml to tie them all together. The info and interface
class may be put in info.py and interfaces.py, respectively in the base directory of the
ZenPack; alternatively, the new info and interface classes can be defined in the same
datasource file as the main class. configure.zcml in the base directory is required and will
reflect where the info and interface classes are defined. In this example, all the classes will go
in the datasource file.

There is no need to create any JavaScript or page template code to deploy the new
datasource.

Oct 13, 2016 ZenPack Developers' Guide 243

Base definitions for datasource info and interface classes are under
$ZENHOME | Products | Zuul | infos and $ZENHOME | Products | Zuul | interfaces respectively;
in each case there is a templates.py file. Each file defines classes for:

e RRDDataSource

e BasicDataSource

e CommandDataSource inherits from BasicDataSource
e SNMPDataSource inherits interface from BasicDataSource
e PingDataSource inherits from RRDDataSource

Unless annotated above, inheritance is from the very basic IInfo / InfoBase classes.

n There is a rather inconsistent mixture of attributes defined in these files. For example,
RRDDataSource includes component and eventKey fields but BasicDataSource does not.

The CommandDataSourcelnfo and matching ICommandDataSourcelnfo are the best starting
points for the new classes as they have all the standard fields plus those specific to running
commands - cycletime, parser, usessh and commandTemplate.

If the new classes inherit from these command templates then it is only necessary to define
the new field, stringToFind.

class IDirFileDataSourcelInfo (ICommandDataSourcelInfo) :
"""TInterface that creates the web form for this data source type.
These entries define fields you see in the GUI
The group statement is to keep attributes together on the GUI.

moan

stringToFind = schema.TextLine (
title = t(u'Search String'),
group t('stringToFind'))

n Note that the group name can be used to keep several new GUI definition fields together.

class DirFileDataSourcelInfo (CommandDataSourcelInfo) :
""" Adapter between IDirFileSourcelInfo and DirFileSource
These entries define the default data that you see in GUI fields

moan

implements (IDirFileDataSourceInfo)
adapts (DirFileDataSource)

stringToFind = ProxyProperty('stringToFind')

Component template doesn't run over SSH in GUI anyway, so disable
testable = False

n Note that testable = False removes the test button from the GUI dialogue.

73 As with all info and interface definitions, it is usually good practice to ensure that any
attribute appears in both class types.

n If there is an interface entry but no matching info then the keyword will appear in the GUI
dialogue but will not show default values and changes in the GUI will not be honoured. If
there is an entry for the info but not the interface then the keyword will not appear in the

244 ZenPack Developers' Guide Oct 13, 2016

GUI but default values will be honoured. The Zope Management Interface (ZMI) is a good tool

to check what values exist on the object.

& (@ example.org hrrp

Z-1|E

R

& (2 Devices
(Z] Aws RRDD e at /zportl ver/Linux/DirFile/rrdTemp es/test 1
(e G
(Z] Application _||Properties allow you to assign simple values to Zope objects. To change property values, edit the values and click "Save Changes".
[ZJ AutoDiscovered |
[BackupForLotsch e (G Type
(2 Discovered sourcetype [DirFileDataSource ¢ selection
] Example enabled 5] boolean
® I HTTP component [${heze/id}] string
Sl kvm eventClass [/DirF\ le] string
(2] MarkitDatabases .
eventKey [] string
(2 Network) -
| Ping severity [3] in
(2] power commandTemplate [ﬁ\efstatsfpa(am.sh ${herelﬁ|eDirName}/${he‘ string
& (2 Printer cycletime [50 l int
& (T Server oid [| string
Hemd usessh boolean
& pB2)
parser [auto | string
(2 Darwin 3 . .
B & Linux stringToFind [test1 | string
(] ActiveMQ Save Changes || Delete |
& pirFile o
o= Al [+]|To add a new property, enter a name, type and value for the new property and click the "Add" button.

Figl)re 153: ZMI to check values of datasource instances - note the Properties tab

configure.zcml in the base directory of the ZenPack needs to be created if it doesn't already

exist. The following lines configure the new datasource:

<?xml version="1.0" encoding="utf-8"?>

<configure
xmlns="http://namespaces.zope.org/zope"
xmlns:browser="http://namespaces.zope.org/browser"
xmlns:zcml="http://namespaces.zope.org/zcml">

<!-- Info Adapters: DataSources

For ZenPacks that add new datasource types you must register their Info
adapter (s). The info adapters provide the API that the web interface needs

to show information about each instance of your datasource type that is
created. The info adapters are also used to set the properties of the

datasource instances.
-——>

<adapter

provides=".datasources.DirFileDataSource.IDirFileDataSourceInfo"

for=".datasources.DirFileDataSource.DirFileDataSource"

factory=".datasources.DirFileDataSource.DirFileDataSourceInfo"

/>

</configure>

Note that all the definitions are relative to .datasources; that is, they are in the datasources

subdirectory of the ZenPack in the DirFileDataSource module.

Oct 13, 2016 ZenPack Developers' Guide

245

12.3.4.6 Testing the new datasource

This process has created several new classes in a new datasource directory and, potentially,
created a new configure.zcml. The ZenPack should be reinstalled to ensure that all these
changes are picked up.

Before doing so, create the /DirFile event class used in the template, add it to the ZenPack
and ensure the ZenPack is exported so that /DirFile is written to objects.xml.

Subsequent “tweaks” of the new classes only need zenhub and zopectl to be restarted. You
may also need to restart zencommand, depending on what has changed.

The first sign of “good news” is when creating a new datasource, the DirFileDataSource
option is available in the dropdown list. If this does not appear, suspect syntax errors. If it
does appear, create a new datasource and check that all fields appear with the correct
defaults. It is perfectly possible to override any values in the GUI dialogue (provided that the
field has been connected with an info definition).

A datapoint called matches should be created automatically.

Create graphs to display data for the datasources.

g

Networks

Overview

Events
4 Components
@oirs 2)
¥ Files (5)
Winterfaces (4)
@network Rovtes (4)
@os Processes (5)
°Flle Systems (3)
@iF services (14)
°Pmcessors (1)
Graphs
Modeler Plugins
Configuration Properties
Software
My Example Menu 1
Mib Browser
Custom Properties

Administration
4 Monitoring Templates

Device (/Server/Linux)
Disk_free_df (/Server/Linux/DirFile)

DASHBOARD

Processes

EVENTS

IP Services

Matches

URE REPORTS

Windows Services MNet

work Map

ve [oo

ADVANCED

Manufacturers

Sun 12:00
2015-12-06 08:30:24 GMT

B matches

Mon 00: 00
to
cur:l7.00

Mon 12:00
2015-12-07 26:30:24 GMT
avg:17.60 max:17.00

Matches

100
a5
90
85
BO+

Sun 12:00
2015-12-06 08:30:24 GMT

B test_1_matches

Mon 00: 00
to
cur:90.00

Mon 12:00
2015-12-07 20:30:24 GMT
avg:90.28 max:93.08

Figure 154: G-raphs to count occurrences of "test 1” and "without” using the DirFileDataSource

246

ZenPack Developers' Guide

Oct 13, 2016

A slightly modified version of the shellscript, file_stats_param.sh, will be required which
accepts a second parameter as the string to search for and which simply delivers one Nagios-
style value.

STATE_OK=0

STATE WARNING=1
STATE CRITICAL=2
STATE UNKNOWN=3

#
exitstatus=$STATE OK

filename="3$1"
stringl="s2"
Check that command is wvalid
stringCountl=$ (grep "S$stringl" $filename 2>/dev/null)
if ["$?" =0]
then
echo "Error collecting file stats"
exit $STATE WARNING

else
stringCountl=$ (grep "S$stringl" S$filename | wc -1)
fi
echo " File string count test ok | matches=$stringCountl"

exit Sexitstatus

n Note: To duplicate the earlier example, create a without datasource and a test_I datasource
(using underscore to avoid white space); each should automatically get a matches datapoint.

Earlier versions of Zenoss used an underscore in datapoint names between the datasource
and the datapoint (whereas a dot is now used). This causes a slight glitch if datasource names
contain underscore. The fully-qualified names are, in fact, correct; datapoints can be
selected in the graph dialogue from the correct datapoint names; but the name assigned to
the datapoint loses everything before the underscore in the datasource name. Thus a
datasource test_1 with datapoint matches gets a datapoint called 1_matches - and this is what
appears on the legend of the graph. The workaround is to edit the graph point to change the
label back to test_1_matches.

Oct 13, 2016 ZenPack Developers' Guide 247

Edit Graph Point

ADVANCED

Name

Type
|+ H =) ” in} DataPoint

Monitoring Templates

4 A10MemCpu ———
: Name Source Enabled DataPoint Max. Value
/Network/A10
4 without file_stats_param.sh ${he... true i test 1_matches
A10Server

without. matches

A10ServiceGroup
) N 4 test 1 file_stats param.sh$fhe... true

Al0VirtualServer

test_1.maiches
Active Directory
FileDiskUsed Jusrfbin/du -P -b ${here/fi... true
Directory 2003 {

e FileTest! WithoutGount file_stats.sh "${here/fileD... true
FileLsDiskUsed Jbin/ls -l ${here/fileDirNa... true

Api
ApcAts

e

ApcPduBank Manage Graph Points
ApcPduOutlet ==
ApcPduPS S ‘

Name Type Description

1_matches . DataPoint test 1 matches
Name
Is Disk Used
SAVE CANCEL
| | without by datasource
check_fip_fully > 7
| myFooter « | 4 || @ | {€» - || GroupBy: | Template | Device Ciass || Bound Component == [1) 0Jobs - |

Figure 155: Changing a graph point label if datasource name contains underscore

12.4 Performance templates and zenpacklib

For a discussion of templates and zenpacklib, review section 8.9.

zenpacklib provides a means of exporting templates from an existing ZenPack, provided such
templates are associated with a Zenoss device class.

zenpacklib.py dump templates ZenPacks.community.DirFile > DirFileTemps.yaml

Templates are output to Unix stdout (ie the screen) so redirect the output to a temporary file,
not your main zenpack.yaml. This output then needs incorporating into the main
zenpack.yaml, under the appropriate class. If the ZenPack does not include the containing
Zenoss device class then only the ZenPack name will be output. It may be necessary to use the
GUI to add the device class to the ZenPack temporarily, in order to extract the templates.

Note one issue with exporting templates is that a template description field tends to have
single quotes around it; zenpack.yaml requires double-quotes, otherwise subsequent lines are
all interpreted as comment. The Unix vi editor provides automatic color coding for files with a
yaml suffix, which helps spot this; red text denotes “quoted”.

248 ZenPack Developers' Guide Oct 13, 2016

zenoss@zend2:/code/ZenPacks/DevGuide/ZenPacks.community.DirFile/ZenPacks/community/DirFile

File Edit View Search Terminal Help
/Server/Linux/DirFile: e |
remove: False # False is default - specified for clarity
ZProperties:
zPythonClass: ZenPacks.community.DirFile.DirFileDevice
zDeviceTemplates:
- Disk_free_df

- Device
zCollectorPlugins: ['zenoss.snmp.NewDeviceMap', 'zenoss.snmp.DeviceMap', 'HPDeviceMap',
‘DellDeviceMap', 'zenoss.snmp.InterfaceMap', 'zenoss.snmp.RouteMap', 'zenoss.snmp.IpServiceM

ap', 'zenoss.snmp.HRFileSystemMap', 'zenoss.snmp.HRSWRunMap®', 'zenoss.snmp.CpuMap®, 'HPCPUMap
', 'DellCPUMap', 'DellPCIMap', 'zenoss.snmp.SnmpV3EngineIdMap', 'community.cmd.DirFileMap']
templates:

Dir:
description:
targetPythonClass: Products.ZenModel.Device
datasources:

DirDiskUsed:
type: COMMAND
component: ${here/id}
commandTemplate: /usr/bin/du -P -b -d @ ${here/dirName} | cut -f 1
cycletime: 60
datapoints:
disk used: GAUGE
usessh: true
graphs:
Disk used:
height: 100
width: 500
units: Bytes
graphpoints:
disk_used:
dpName: DirDiskUsed disk used
Disk free dff
"zenpack.yaml" [Modified][readonly] 234 lines --21%-- 51,19 10%

Figure 156: zenpack.yaml with incorporated templates - note red test denoting comments

[l

Changing the two single quotes for the description field to two double quotes, resolves the
issue.

Note in Figure 156 that the zDeviceTemplates property is specified for the Zenoss device class
using the hyphen notation for a list containing Disk_free_df and Device. The order of the
entries in this list will control the order of the attendant graphs. The alternative list notation,
using square brackets, can be seen in the following line specifying zCollectorPlugins.

When the amalgamated zenpack.yaml is complete, the ZenPack should be reinstalled.

Oct 13, 2016 ZenPack Developers' Guide 249

E zenoss@zen42:/code/ZenPacks/DevGuide - o x
File Edit View Search Terminal Help

[zenoss@zen42 DevGuide]$ zenpack --link --install ZenPacks.community.DirFile

INFO:zen.ZenPackCMD:Previous ZenPack exists with same name ZenPacks.community.DirFile

[ERROR: zen.zenpacklib:Monitoring template /Server/Linux/DirFile/Dir has been modified since the ZenPacks.community.DirFile ZenPack was installed. These local changes will be
t as this ZenPack is upgraded or reinstalled. Existing template will be renamed to 'Dir-upgrade-1449573333'. Please review and reconcile local changes:

4
jee@ -9,7 +9,7 @@
cycletime: 60
datapoints:

disk used: GAUGE
usessh: !!python/unicode "true'
+ usessh: true
graphs:

Disk used:

height: 100

ERROR:zen.zenpacklib:Monitoring template /Server/Linux/DirFile/Disk free df has been modified since the ZenPacks.community.DirFile ZenPack was installed. These local change
11 be lost as this ZenPack is upgraded or reinstalled. Existing template will be renamed to 'Disk_free df-upgrade-1449573334'. Please review and reconcile local changes:
Fs
@@ -8,8 +8,8 @@

commandTemplate: df_root.sh

cycletime: 60

datapoints:

df_root: {}
- usessh: !!python/unicode ‘true’
+ df_root: GAUGE
+ usessh: true
graphs:
root df:
units: Bytes

ERROR:zen.zenpacklib:Monitoring template /Server/Linux/DirFile/File has been modified since the ZenPacks.community.DirFile ZenPack was installed. These local changes will b
st as this ZenPack is upgraded or reinstalled. Existing template will be renamed to 'File-upgrade-1449573334'. Please review and reconcile local changes:

e+t
@@ -10,7 +10,7 @@
cycletime: 60
datapoints:
diskUsed: GAUGE
usessh: !!python/unicode ‘true’
usessh: true [~

Figure 157: Output from reinstalling the ZenPack after templates changed in zenpack.yaml

If there are templates in zenpack.yaml that replace existing templates then an error message
is generated (which seems excessive). Differences between the new and existing templates are
shown in diff format and the old template is saved under a different name. Once the yaml
versions of the templates are proven, the old templates, which have a suffix of the epoch time
when created, should be deleted manually in the GUI.

If the original templates had been added to the ZenPack's objects.xml then these will also
reflect the name change and they should be removed from the ZenPack using the GUI
interface and the ZenPack re-exported. If the Zenoss device class has been added to
objects.xml that should also be removed as it is defined in zenpack.yaml.

12.4.1 Where do things go wrong?

12.4.1.1 Issues with custom datasources and templates in zenpack.yaml|

When using zenpacklib, there are issues when a datasource GUI field includes white space or
characters that may need escaping, like $ or %. For example, without zenpacklib, the
Command Template field for the without datasource worked with:

file stats.sh ${here/fileDirName}/S{here/fileName}

Dumping templates with zenpacklib produced a stanza without a Command Template at all:

without:
type: DirFileDataSource
severity: err
cycletime: 60
datapoints:
matches: GAUGE
stringToFind: without

If the datasource is edited through the GUI to put double quotes around the command
parameters:

file stats param.sh "${here/fileDirName}/${here/fileName}"

250 ZenPack Developers' Guide Oct 13, 2016

and the dump_templates command is rerun, then the CommandTemplate keyword appears in
the yaml file, but the datasource fails. zenhub fails to parse the string and pass it to
zencommand - look in $ZENHOME/log/zenhub.log for error messages (which you only see
with debug logging turned on).

More obvious is the event that appears from the Zenoss server from the zenhub agent, with a
summary of:

TALES error for device taplow-1l.skills-1st.co.uk datasource without

In the event detail, the resolution field is set to:

Could not create a command to send to zencommand because TALES evaluation
failed. The most likely cause is unescaped special characters in the

o)

command. eg $ or %

On further investigation. this issue does not seem to be associated with white space or
quoting. It would appear that the CommandTemplate field for our custom datasource is
actually blank (as was suggested by the original dump_templates).

To circumnavigate this problem, the datasources and graphs associated with the custom
DirFileDataSource will be shipped in a separate template, FileXml, which is delivered
through the ZenPack's objects.xml. These definitions and graphs will be removed from
zenpack.yaml which will have the object class for File modified:

monitoring templates: [File, FileXml]

13.0 Converting COMMAND ZenPacks to
PythonCollector

The DirFile ZenPack uses a CommandPlugin for modeling and COMMAND datasources to
gather performance information - as do very many existing ZenPacks.

There are many drawbacks to COMMAND-driven functionality:

e Inherent overhead in running COMMAND datasources under bash which spawns a
new subprocess to run each command

e Many problems with quoting and escaping characters in bash

e CommandPlugin modeler does not (by default) allow zProperties to be passed as part
of the command, so very inefficient

e Huge overhead if running COMMAND datasources to many components

The positive aspect of using ssh commands is that it is easy and relatively well understood.
This still doesn't necessarily make it a good idea!

This chapter will explore converting first the COMMAND datasources and then the modeler
plugin of the DirFile ZenPack to use the zenpython daemon that is provided with
ZenPacks.zenoss.PythonCollector.

Oct 13, 2016 ZenPack Developers' Guide 251

13.1 ZenPacks.zenoss.PythonCollector

ZenPacks.zenoss.PythonCollector is a freely-available ZenPack written and supported by
Zenoss. It was first released mid-2013 and is compatible with:

Zenoss Core 4.2.x
Zenoss Resource Manager 4.1.x
Zenoss Resource Manager 4.2.x
Zenoss Core 5.0.x

Zenoss Resource Manager 5.0.x

The latest version (December 2015) is 1.7.3.

Be aware that this is a ZenPack still being actively developed and ensure that all the latest
updates information is read whenever a new version is installed. For example, 1.7.2 / 3 have
introduced two new parameters which can cause major disruption to existing environments:

blockingwarning

m The zenpython collector daemon executes plugin code provided by other ZenPacks.
If this plugin code blocks for too long it will prevent zenpython from performing
other tasks including collecting other datasources while the plugin code is
executed. The blockingwarning option will cause zenpython to log a warning for any
plugin code that blocks for the configured number of seconds or more. The default
value is 3 seconds (30s in 1.7.2). Decimal precision such as 3.5 can be used.

blockingtimeout

m This option will cause zenpython to disable a plugin if it blocks for longer than the
number of seconds specified. The zenpython daemon will restart itself after
disabling the plugin to get unblocked. Events will be created indicating that some
monitoring will not be performed due to disabled plugins on all affected devices.
The default value is 5 seconds. Decimal precision such as 5.5 can be used. Setting
this to 0 will disable the blocking functionality, reverting the behaviour back to pre
1.7.2 version.

m Once a plugin is blocked, it will remain permanently blocked until its name is
removed from either /var/zenoss/zenpython.blocked on Zenoss 5, or
/opt/zenoss/var/zenpython.blocked on Zenoss 4. The zenpython service must be
restarted after manual modifications to this file.

Slightly older additional parameters for the zenpython daemon are:

252

twistedthreadpoolsize

s Controls size of threads pool. Datasources can use multi-threading to run multiple
requests in parallel. Increasing this value may boost performance at the cost of
system memory used. The default value is 10.

collect

s Allows only specific plugins to run. This is primarily a developer option to help
reduce the noise while developing plugins. The default is to collect all configured

ZenPack Developers' Guide Oct 13, 2016

plugins. The value for this option is a regular expression. Only plugins whose class
name matches the regular expression will be run.

e ignore

m Prevents specific plugins from running. This is primarily a developer option to help
reduce the noise while developing plugins. The default is to not ignore any
configured plugins. The value for this option is a regular expression. Only plugins
whose class name doesn't match the regular expression will be run.

These options can be configured either from the Zenoss GUI from ADVANCED -> Settings ->
Daemons (or ADVANCED -> Settings -> Collector -> Daemons if remote Collectors are
deployed); alternatively, edit zenpython.conf in $ZENHOME | etc and then restart the
zenpython daemon.

The PythonCollector ZenPack is a prerequisite for many other ZenPacks, both from Zenoss
and developed by other people. It is recommended as an effective enabling technology and is
much preferable to using command-style monitoring and modeling.

13.1.1 Using the PythonCollector ZenPack

Unless the PythonCollector ZenPack is installed solely as a prerequisite for other ZenPacks,
writing code is inevitable. The wiki documentation at
http://wiki.zenoss.org/ZenPack:PythonCollector provides some terse information.

“The goal of the Python data source type is to replicate some of the standard
COMMAND data source type's functionality without requiring a new shell and shell
subprocess to be spawned each time the data source is collected. The COMMAND data
source type is infinitely flexible, but because of the shell and subprocess spawning, it's
performance and ability to pass data into the collection script are limited. The Python
data source type circumvents the need to spawn subprocesses by forcing the collection
code to be asynchronous using the Twisted library. It circumvents the problem with
passing data into the collection logic by being able to pass any basic Python data type
without the need to worry about shell escaping issues.

The Python data source type is intended to be used in one of two ways. The first way is
directly through the creation of Python data sources through the web interface or in a
ZenPack. When used in this way, it is the responsibility of the data source creator to
implement the required Python class specified in the data source's Python Class Name
property field. The second way the Python data source can be used is as a base class
for another data source type. Used in this way, the ZenPack author will create a
subclass of PythonDataSource to provide a higher-level functionality to the user. The
user is then not responsible for writing a Python class to collect and process data. “

Fundamentally, to collect performance data with the zenpython daemon, a
PythonDataSourcePlugin must be written in Python. This is the “first way” described
above and later on the wiki page as “Using the Python data source directly”. A
PythonDataSourcePlugin must be in a file called dsplugins.py in the base directory of the
ZenPack. If a ZenPack contains several such plugins, then a dsplugins subdirectory can be
created.

There are a number of ZenPacks around that demonstrate these techniques:

e zenoss/ZenPacks.zenoss. AWS

Oct 13, 2016 ZenPack Developers' Guide 253

https://github.com/zenoss/ZenPacks.zenoss.AWS
http://wiki.zenoss.org/ZenPack:PythonCollector

o ZenPacks.zenoss.Hadoop

o zenoss/ZenPacks.zenoss.HBase (with dsplugins directory)

e ZenPacks.community.zplib.twemproxy
e ZenPacks.community.zplib.Redis

Once the plugin is written, it can be used when defining a Python-type datasource.

Monitoring Templates

A @] - + (@O
Name Source Enabled Type Name Type
4 FileDiskUsed usr/bin‘du -P -b ${hererfileDirName)/${here/fileName} | cut -f 1 over SSH true COMMAND
FileDiskUsed.diskUsed GAUGE
FileLsDiskUsed /binfls -1 ${here/fileDirName} over SSH true COMMAND
- FileTest1WithoutCount file_stats.sh "${here/fileDirName)/${here/fileName}" over SSH true COMMAND
FileTest1WithoutCount.test_1 GAUGE
FileTest1WithoutCount.without GAUGE i
[YEBEE
Name
Edit Data Source
Disk Used
Name: Type:
Is Disk Used
i e
Enabled AT without count
Event Key:
613 Component: _
File-upgrade-1449653142 Plugin Class Name:
Cycle Time (seconds):
i v R
'Server/Linux/DirFile -
MyFooter ~ || o | € | £} ~ Group By T‘empkals .Device Class

Figure 158: Defining a Python datasource, including a custom plugin

Unfortunately the Zenoss GUI does not provide a dropdown box to select the plugin so this
has to be accurately typed.

ZenPacks.community.DirFile.dsplugins.FileDiskUsedPythonDeviceData

As can be seen in Figure 158, there is not a wealth of other options to specify for the Python
datasource. If more configuration is required, then the second option described on the wiki
page is used to create a complete datasource, as seen in the previous chapter; the datasource
must include a PythonDataSourcePlugin.

The ZenPacks.zenoss.PythonCollector ZenPack provides three main elements:
e zenpython daemon in the base directory of the ZenPack
e PythonDataSource datasource in the datasources subdirectory

e PythonDataSourceConfig in the services directory

254 ZenPack Developers' Guide Oct 13, 2016

https://github.com/jcurry/ZenPacks.community.zplib.Redis
https://github.com/jcurry/ZenPacks.community.zplib.twemproxy
https://github.com/zenoss/ZenPacks.zenoss.HBase
https://github.com/zenoss/ZenPacks.zenoss.Hadoop

13.1.2 * Anatomy of a PythonDataSourcePlugin

The PythonDataSourcePlugin, like all datasource plugins, has some methods that run at the
collector zenpython daemon (or zencommand daemon for a COMMAND datasource); other
methods are actually run centrally by zenhub.

n Fundamentally, collector daemons do not have access to the Zope database (ZODB).
If a collector daemon needs access to attributes or methods of a device instance or component
instance, they have to be gathered by zenhub and passed to the collector daemon in a
configuration phase. This happens when a collector daemon starts up.

If these attributes change at some stage in the ZODB, then all relevant datasource
configurations for that device will be re-examined and the new configuration will be pushed to
the relevant collector daemons. This now happens automatically when any relevant attribute
in the ZODB is changed; in earlier versions of Zenoss, the Push Changes menu from a device's
Action icon was used to perform this reconfiguration on-demand.

Examination of PythonDataSource.py in the datasources directory of

n ZenPacks.zenoss.PythonCollector shows the standard attributes of a PythonDataSource -
which inherits from the RRDDataSource class. Note that the cycletime attribute is changed in
the PythonDataSource to be a string rather than an integer.

This file also includes the interface and info classes for the PythonDataSource, including the
new plugin_classname field and the redefined cycletime. The testable attribute is set to
False.

The PythonDataSourcePlugin class inherits from the very basic object class. It has one
attribute and a number of methods.

e proxy_attributes = () attribute

m This is a way to pass specific zProperties of a device from the ZODB to the
zenpython daemon.

e config key(cls, datasource, context): method

» Run at zenhub to determine what config elements are grouped together into a
single config object; all config objects are then sent to the zenpython daemon The

default is:
return (
context.device () .1id,
datasource.getCycleTime (context),
datasource.rrdTemplate () .1id,

datasource.id,
datasource.plugin classname,

)

s Each config received by the daemon will be evaluated and split into tasks based on
the configured TaskSplitter. At a minimum there will be one task per config, but it
is possible to have more.

n s Judicious choice of these parameters can sometimes result in a huge reduction of
processing effort. For example, if one command actually elicits information for all
component instances on a device, then the command should only be run once and
the combined returned data should then be sorted to the correct components.

Oct 13, 2016 ZenPack Developers' Guide 255

m The context parameter is the object that the template is applied to - either a device
or a component.

e params(cls, datasource, context): method

s Run at zenhub to gather data about the context (device or component) from the
ZODB.

s Normally this would not be used to gather zProperties; they would be passed in the
proxy_attributes attribute.

s For example, in the DirFile ZenPack, a File object class has attributes for fileName
and fileDirName. These could be retrieved from the ZODB by the params method
and passed to the zenpython daemon.

= Note that a Python dictionary is returned.
s The default params method returns an empty dictionary.

e The methods that are actually executed by the zenpython daemon are all effectively
null functions in the base PythonDataSourcePlugin class. Note that the collect method
must be implemented in any class that inherits from PythonDataSourcePlugin. Typically
some of the other methods will also be overridden in any subclass.

def collect(self, config):

"""No default collect behaviour. Must be implemented in subclass."""
return NotImplementedError

def onResult (self, result, config):
"""Called first for success and error."""
return result

def onSuccess(self, result, config):
"""Called only on success. After onResult, before onComplete.”™""
return result

def onError(self, result, config):
"""Called only on error. After onResult, before onComplete.”™""
return result

def onComplete(self, result, config):
"""Called last for success and error."""
return result

def cleanup(self, config):
"""Called when collector exits, or task is deleted or recreated."™"
return

s The comments in the code are fairly self explanatory as to when the methods are
run.

s Typically a subclass will at least implement its own collect, onSuccess and onError
methods.

e The new_data utility method is generally called by any subclass, either in collect or
onSuccess to create a new, empty data structure for returning results.

def new data(self):

mwan

Return an empty data structure.

256 ZenPack Developers' Guide Oct 13, 2016

Suitable for returning from on* methods.

This data structure should emulate the source format defined in
Products.ZenRRD.parsers.JSON.

return {
'values': defaultdict (dict),
'events': [],
'maps': [],

}

n e Fundamentally, a PythonDataSourcePlugin must deliver data results and/or events in
a new_data data structure.

13.2 Twisted

This section is not marked as “hard” with an asterisk - but it is; however, anyone who is going
n to implement code using the PythonCollector ZenPack must get at least some understanding
of the concepts of Twisted libraries.

Twisted is an event-based framework for internet applications, written in Python. Twisted
projects variously support TCP, UDP, SSL/TLS, IP multicast, Unix domain sockets and
others. Protocols supported include HTTP, XMPP, NNTP, IMAP, SNMP, ssh, IRC and ftp.
There are also APIs into VMware VSphere and Amazon AWS among others. Twisted is based
on the event-driven programming paradigm, which means that users of Twisted write
callbacks which are called by the Twisted framework.

Relating this to the PythonDataSourcePlugin discussed earlier, the zenpython daemon is the
“framework” and the “on” methods are the callbacks. The collect method implements twisted
code that should return a Twisted Deferred.

The basic idea is that when an application is asking for data, typically over some
communications medium, the code makes the request and then has to wait until the result is
delivered. If this is a request over a piece of “wet-string”, low bandwidth network, then the
program may be delayed significantly waiting for the response.

A Twisted Deferred is a way of decoupling the request for data from its response. The program
may continue with other processing or other requests. A Deferred is an object with a promise
to call back with a result later. The deferred is returned immediately but think of it as a
“place holder”. When the result is delivered, it triggers the deferred, which then calls you back
at a function that you have specified. If an error occurred, an error handling function that you
specified is called back; thus we have the concept of callbacks and errbacks. onSuccess is a
callback; onError is an errback. Look at the doTask method of the zenpython.py code in the
PythonCollector ZenPack base directory to see how these are implemented.

One of the really difficult issues with Twisted, is debugging. Putting log or print statements
into code often results in errors or no data, because all there is at that stage is the Deferred,
the “place holder”. There is no data.

There are also a number of different ways of creating twisted methods. Some Python modules
and APIs inherently deliver twisted results (eg. pynetsnmp.twistedsnmp); if this is not the
case the most frequently used technique in Zenoss appears to be to use a Python decorator,

Oct 13, 2016 ZenPack Developers' Guide 257

@inlineCallbacks, to preface the collect method. These are demonstrated in the Python
datasource examples in the zenpacklib documentation at
http://zenpacklib.zenoss.com/en/latest/tutorial-http-api/datasource-plugin-datapoints.html .

n Note that if an inherently twisted delivery method is used, then the @inlinecallbacks should
not also be used.

An outline of a collect method might be:

from twisted.internet.defer import inlineCallbacks, returnValue

@inlineCallbacks
def collect(self, config):

for each datasource:
try:
response = yield(the routine that actually gathers data)
do further processing on response
except:
log the exception
returnValue (the processed response)

Points to note:
1. The inlinecallbacks decorator and returnValue are imports from twisted.
2. You must use returnValue(), (note the value is in brackets), not the usual return
3. The decorator must be on the line immediately preceding the collect function definition.
4

. Note that the yield in the above code makes a Python generator out of a function. A
generator is quite different from a function in that it does not return one value, but
several values over time. In this case, it returns the deferred data as it arrives. The
collect function, decorated with inlinecallbacks, expects a generator and calls it back as
often as necessary and waits for each deferred it receives.

5. The response = yield code block should always be in a Python #ry .. except construct to
ensure that errors are allowed to generate an errback.

A couple of useful links for Twisted and yield discussions are
https://confluence.oceanobservatories.org/display/CIDev/Gotchas+with+inlineCallbacks,
+vield+and+returnValue and http:/stackoverflow.com/questions/3894278/twisted-deferred-
addcallback-vs-yield-and-inlinedeferred .

13.3 Creating Python datasources

The DirFile ZenPack already exists with modeler plugin and COMMAND datasources. This
provides an easier environment then normal as the existing COMMAND-based modeler
plugin has already discovered File and Dir components.

The big difference with using the zenpython daemon rather than zencommand, is that it does

not have built-in utilities for running over the ssh protocol. It is the code in
$ZENHOME |/ Products | DataCollector | SshClient.py that actually performs the ssh

258 ZenPack Developers' Guide Oct 13, 2016

http://stackoverflow.com/questions/3894278/twisted-deferred-addcallback-vs-yield-and-inlinedeferred
http://stackoverflow.com/questions/3894278/twisted-deferred-addcallback-vs-yield-and-inlinedeferred
https://confluence.oceanobservatories.org/display/CIDev/Gotchas+with+inlineCallbacks,+yield+and+returnValue
https://confluence.oceanobservatories.org/display/CIDev/Gotchas+with+inlineCallbacks,+yield+and+returnValue
http://zenpacklib.zenoss.com/en/latest/tutorial-http-api/datasource-plugin-datapoints.html

communication for COMMAND-based modelers and plugins; examination of that code shows
that it uses the twisted.conch libraries.

In real practice, there are often better ways of gaining data from remote devices than using
ssh, with the help of other Twisted libraries or APIs; however, for these samples, to keep the
target functionality very simple, the PythonDataSourcePlugin will run scripts local to the
zenpython daemon, which in turn, run ssh commands. The communication will be rather
less flexible and forgiving than under zencommand, but will still benefit from using existing
zProperties such as zCommandUsername.

Driving ssh from the zenpython daemon

[zenhub |Uses config_key to split tasks for zenpython daemon(s)

zenpythont G TRl U LDl

- Tasks AV libexec/
- dev, taskName, cycletime, template, datasource, RootDiskFreePludin 4+ df root ssh.sh

. v

- dev, taskName, cycletime, template, datasource, FileDiskUsedPlugin 4= libexec/
dufile_ssh.sh

\ / \ J

\J

/In zenpython machine's file system, dufile_ssh.sh)
Param 1 =ssh user

Param 2 = keypath

Param 3 =target

Param 4 =file

Qsh -1 "$1" i "$2" "$3" Jusr/bin/du -P -b "$4" | cut -f 1/

Target device ($3)
fusr/bin/du -P -b fred.log | cut -f1

Figure 159: Driving ssh from a zenpython daemon to get disk usage for a file

Figure 159 demonstrates that:

e zenhub examines all configurations for all zenpython datasources for all devices and
components in the ZODB, and works out how many different configs are are necessary to
service those requirements.

e The configs are then handed to the relevant zenpython daemon(s) which works out how
many tasks are required. It is perfectly possible with both Zenoss Service Dynamics and
Zenoss Core 4 to have multiple collectors on different systems, each running a set of
collection daemons, including zenpython.

Oct 13, 2016 ZenPack Developers' Guide 259

Thi
zPr

e Each zenpython examines its task list and schedules tasks, depending on the cycletime
of the datasources.

e Each task will call a PythonDataSourcePlugin. For these examples, the plugin calls a
shellscript local to this zenpython. The file location is hardcoded in the plugin to be

relative to the ZenPack's plugin directory; in practice this is in the libexec directory of the
ZenPack.

o The plugin in the example passes zCommandUsername and zKeyPath to the script,
along with the device IP address and the filename for which to get du information.

o The script, <ZenPack base dir>/libexec/dufile_ssh.sh is run by the collect method of
the plugin, in asynchronous fashion, courtesy of Twisted.

Param 1 = ssh user

Param 2 = keypath

Param 3 = target

Param 4 = file

ssh -1 "$1"™ —-1i "$2" "$3" /usr/bin/du -P -b "$4" | cut -f 1

o The target device runs the du command over the ssh session, returning data to the
plugin via Unix stdout.

s solution loses the control offered by the zencommand daemon to take advantage of other
operties such as zCommandPath, zCommandLoginTimeout, zZCommandCommandTimeout

and zCommandPort, although they could be implemented into a more robust solution with
more effort.

13.3.1 Collecting device performance data

The first section in Chapter 12 was a simple example to collect the amount of free disk space
on the root filesystem of a device, using the script df _root.sh:

#!/bin/bash

#

Use df to get disk free. Get result in bytes (-B 1) and use Posix flag
for compatibility.

Check 6th whitespace separated field for /

output 3rd field (Used in Bytes) and make sure no duplicate lines

df -Pp -B 1 | awk -F " " '$6~/"\/$/ {print $3}' | unig

To run this command with zenpython implementing the ssh, the script, df_root_ssh.sh, is

modified thus:
#!/bin/bash
#
Use df to get disk free.
Param 1 = ssh user
Param 2 = keypath
Param 3 = target

260

#Get result in bytes (-B 1) and use Posix flag for compatibility.
Check 6th whitespace separated field for /
output 3rd field (Used in Bytes) and make sure no duplicate lines

ZenPack Developers' Guide Oct 13, 2016

ssh -1 "$1" —i "$2" "$§3" df -P -B 1 | awk -F " " '$6~/~\/$/ {print $3}' | uniq

The PythonDataSourcePlugin will be implemented in the dsplugins.py file in the base
directory of the ZenPack.

13.3.1.1 Imports for the PythonDataSourcePlugin

Zzenoss@zen42:/code/ZenPacks/DevGuide/ZenPacks.community.DirFile/ZenPacks/community/DirFile/d
File Edit View Search Terminal Help
Setup logging
import logging
log = logging.getLogger('.'.join(['zen', name_ 1))

import os

PythonCollector Imports
from ZenPacks.zenoss.PythonCollector.datasources.PythonDataSource import PythonDataSourcePlugin

Twisted Imports
from twisted.internet.defer import inlineCallbacks, returnValue
from twisted.internet.utils import getProcessOutputAndValue

Figure 160: Imports for dsplugins.py

Figure 160 shows the logging being setup and then imports for:

® o0s to get directory information
e PythonDataSourcePlugin base class from PythonCollector ZenPack
e inlinecallbacks and returnValue from twisted
n e getProcessOutputAndValue runs a command, returning a
Twisted Deferred

13.3.1.2 proxy_attributes and config_key method for the PythonDataSourcePlugin

In the sample test environment, public keys have already been setup between Zenoss and
targets so the only essential zProperties required are zCommandUsername and zKeyPath.

Oct 13, 2016 ZenPack Developers' Guide 261

<)

[=] zenoss@zend2:/code/ZenPacks/DevGuide/ZenPacks.community.DirFile/ZenPacks/community/DirFile, - o0 x

File Edit View Search Terminal Help

class

nn

#
pr

@c

de

RootDiskFreePythonDeviceData(PythonDataSourcePlugin):
" RootDiskFree Device data source plugin """

List of device attributes you might need to do collection.

oxy_attributes = (
'zCommandUsername',
'zKeyPath',
)

lassmethod

f config key(cls, datasource, context):

return (
context.id,
datasource.getCycleTime(context),
datasource.rrdTemplate().id,
datasource.id,
datasource.plugin_classname,
'RootDiskFreePythonDeviceData’,
)
13,0-1 13%

Figure 161: proxy_attributes and config_key method
The config_key method, to be run by zenhub, creates separate configs based on:

context.id - this is a device template so context.id will be hostname
datasource.getCycleTime(context) - the cycletime for this device for this datasource
datasource.rrdTemplate().id - the performance template name

datasource.id - the datasource name

datasource.plugin_classname - the datasource plugin class name

‘RootDiskFreePythonDeviceData' - this is simply a “good-practice” string to help

identification in log files

Ultimately this plugin will be driven by a device-level performance template.

r «Qi"

Settings

Q

1> DigMonitor
4 Dir

IServer/Linux/DirFile
i Dir-upgrade-1449573333
4 Disk_free_df
@/serverLinux/DirFile
i» Disk_free_df-upgrade-1449573334
@DiskFreeDiPython @

IServer/Linux/DirFile

i~ DNS

1> DnsMonitor

DASHBOARD EVENTS INFRASTRUCTURE REPORTS

Collectors Monitoring Templates Jobs MIBs

Data Sources Thresholds

45 dnylhon. . ZenPacks.community. DirFile dsplugins. RootDiskFreePythonDeviceData . true Python
dfPython.dfRootPython GAUGE

Root df (Python)

Figure 162: DiskFreeDfPython performance template

262

ZenPack Developers' Guide Oct 13, 2016

Note in Figure 162 that:
e The template is DiskFreeDfPython
e The datasource is dfPython
e Plugin is ZenPacks.community.DirFile.dsplugins.RootDiskFreePythonDeviceData

To see these parameters in use, run zenpython in debug mode and examine the output:

zenpython run -v 10 -d taplow-1l.skills-1lst.co.uk > /tmp/py 2>&1

zenoss@zen4, ode/ZenPacks/DevGuide/ZenPacks.communi le/ZenPacks/community/DirFile/libexec

File it View Search Terminal Help
2015-12-17 17:29:29,123 DEBUG zen.collector.config: Fetching threshold classes E
2015-12-17 17:29:29,166 DEBUG zen.zenpython: Loading classes ['Products.ZenModel.MinMaxThreshold', 'Products.ZenModel.ValueChangeThreshold', 'ZenPacks.community.
PredictiveThreshold.thresholds.PredictiveThreshold']

2015-12-17 17:29:29,166 DEBUG zen.collector.config: Fetching collector thresholds

2015-12-17 17:29:29,198 DEBUG zen.thresholds: Updating threshold ('high event queue', ('localhost collector', ''))

2015-12-17 17:29:29,199 DEBUG zen.thresholds: Updating threshold ('zenmodeler cycle time', ('localhost collector', ''))

2015-12-17 17:29:29,199 DEBUG zen.collector.config: Fetching configurations

2015-12-17 17:29:29,325 DEBUG zen.zenpython: updateDeviceConfigs: updatedConfigs=['taplow-11.skills-1st.co.uk']

2015-12-17 17:29:29,325 DEBUG zen.zenpython: Processing configuration for taplow-1l.skills-lst.co.uk

2015-12-17 17:29:29,325 DEBUG zen.daemon: DummyListener: configuration taplow-11.skills-1st.co.uk added

2015-12-17 17:29:29,325 DEBUG zen.collector.tasks: Splitting config taplow-11.skills-1st.co.uk

2015-12-17 17:29:29,328 DEBUG zen.zenpython: Tasks for config taplow-11.skills-1st.co.uk: {'opt zenoss local fredtest 60 Dir dudir ZenPacks.community.DirFile.dsp
lugins.DirDiskUsedPythonDeviceData DirDiskUsedPythonDeviceData': < main__ .PythonCollectionTask object at ©x7664250>, 'taplow-11.skills-1st.co.uk 60 DiskFreeDfPy|
thon dfPython ZenPacks.community.DirFile.dsplugins.RootDiskFreePythonDeviceData RootDiskFreePythonDeviceData': < main__ .PythonCollectionTask object at 0x7385f90
>, 'fred2.log 20151124 60 File duFile ZenPacks.community.DirFile.dsplugins.FileDiskUsedPythonDeviceData FileDiskUsedPythonDeviceData': < main__.PythonCollection
Task object at 0x76e0790>, 'fred2.log 20151125 60 File duFile ZenPacks.community.DirFile.dsplugins.FileDiskUsedPythonDeviceData FileDiskUsedPythonDeviceData': <
| _main__ .PythonCollectionTask object at ©x7339490>, 'opt zenoss local fredtest test 60 Dir dudir ZenPacks.community.DirFile.dsplugins.DirDiskUsedPythonDeviceData
DirDiskUsedPythonDeviceData': <_ main__.PythonCollectionTask object at ©x7385ed0>, '"fredl.log 20151202 60 File duFile ZenPacks.community.DirFile.dsplugins.FileDi|
skUsedPythonDeviceData FileDiskUsedPythonDeviceData': < main__ .PythonCollectionTask object at 0x7422150>, ‘fredl.log 20151116 60 File duFile ZenPacks.community.
DirFile.dsplugins.FileDiskUsedPythonDeviceData FileDiskUsedPythonDeviceData': <_ main__.PythonCollectionTask object at 0x7215b1e>, 'fredl.log 20151116 60 File du
File ZenPacks.community.DirFile.dsplugins.FileDiskUsedPythonDeviceData FileDiskUsedPythonDeviceData': < main__ .PythonCollectionTask object at 0x76e07d0>}
2015-12-17 17:29:29,329 DEBUG zen.collector.scheduler: add task opt zenoss local fredtest 60 Dir dudir ZenPacks.community.DirFile.dsplugins.DirDiskUsedPythonDevi
ceData DirDiskUsedPythonDeviceData, < main__.PythonCollectionTask object at ©x7664250> using 60 second interval

2015-12-17 17:29:29,329 DEBUG zen.collector.scheduler: add task taplow-11.skills-1st.co.uk 60 DiskFreeDfPython dfPython ZenPacks.community.DirFile.dsplugins.Root
DiskFreePythonDeviceData RootDiskFreePythonDeviceData, <_ main__.PythonCollectionTask object at 0x7385f90> using 60 second interval

2015-12-17 17:29:29,329 DEBUG zen.collector.scheduler: add task fred2.log 20151124 60 File duFile ZenPacks.community.DirFile.dsplugins.FileDiskUsedPythonDeviceDa
ta FileDiskUsedPythonDeviceData, <_ main__.PythonCollectionTask object at ©x76e0790> using 60 second interval

2015-12-17 17:29:29,329 DEBUG zen.collector.scheduler: add task fred2.log 20151125 60 File duFile ZenPacks.community.DirFile.dsplugins.FileDiskUsedPythonDeviceDa
ta FileDiskUsedPythonDeviceData, <__main__.PythonCollectionTask object at ©x733949@> using 60 second interval

2015-12-17 17:29:29,329 DEBUG zen.collector.scheduler: add task opt_zenoss local fredtest test 60 Dir dudir ZenPacks.community.DirFile.dsplugins.DirDiskUsedPytho
nDeviceData DirDiskUsedPythonDeviceData, < main__.PythonCollectionTask object at 0x7385ed@> using 60 second interval

2015-12-17 17:29:29,329 DEBUG zen.collector.scheduler: add task fredl.log 20151202 60 File duFile ZenPacks.community.DirFile.dsplugins.FileDiskUsedPythonDeviceDa
ta FileDiskUsedPythonDeviceData, < main__ .PythonCollectionTask object at 0x7422150> using 60 second interval

2015-12-17 17:29:29,329 DEBUG zen.collector.scheduler: add task fredl.log_ 20151110 60 File duFile ZenPacks.community.DirFile.dsplugins.FileDiskUsedPythonDeviceDa
ta FileDiskUsedPythonDeviceData, < main__.PythonCollectionTask object at ©x7215b10> using 60 second interval

2915—12—17 17:29:29,330 DEBUG zen.collector.scheduler: add task fredl.log 20151116 60 File duFile ZenPacks.community.DirFile.dsplugins.FileDiskUsedPythonDeviceDa
ta FileDiskUsedPythonDeviceData, < main__ .PythonCollectionTask object at ©x76e07d0> using 60 second interval

et

Figure 163: Debug log for zenpython showing all tasks for this device and the RootDiskFree task

In Figure 163 the first section highlighted in red is all the tasks to be run by this zenpython
for the device taplow-11.skills-1st.co.uk.

A separate add task is then logged for each task, showing the config_key parameters that
have been used (second highlighted section in green).

add task taplow-11.skills-1st.co.uk 60 DiskFreeDfPython dfPython
ZenPacks.community.DirFile.dsplugins.RootDiskFreePythonDeviceData

where:
e 60 cycletime in the datasource

e DiskFreeDfPython template name

dfPython datasource name
e ZenPacks.community.DirFile.dsplugins.RootDiskFreePythonDeviceData
" plugin

° comment string

Oct 13, 2016 ZenPack Developers' Guide 263

13.3.1.3 collect method for the PythonDataSourcePlugin

File Edit View Search Terminal Help
@inlineCallbacks
collect(self, config):

log.debug('config is %s ' % (config))
log.debug('config.datasources is %s ' % (config.datasources))
r ¢ in config.datasources:
log.debug('config.datasource element is %s ' % (c))
ds® = config.datasources[0]
k,v ds@. dict_.items():

log.debug('ds@ k is %s and v is %s ' % (k,v))

Get path to executable file, starting from this file

which is in ZenPack base dir/dsplugins

Executables are in ZenPack base dir / libexec

NOTE: If using dsplugins directory, then need to go up one to get to libexec
thisabspath = os.path.dirname(os.path.abspath(__ file))

libexecdir = thisabspath + '/../libexec'
If ds0.zKeyPath starts with ~ then it doesn't expand properly so convert to full path
expanduser gives $HOME including trailing /

homedir = os.path.expanduser("~")

f dsO.zKeyPath.startswith('~"):

keyPath = ds@.zKeyPath.replace('~', homedir)

keyPath = ds0.zKeyPath
script is df _root_ssh.shh taking 3 parameters, zCommandUsername, keyPath, host address
cmd = os.path.join(libexecdir, 'df_root_ssh.sh')
#cmd = os.path.join(libexecdir, 'df_root_ssh_bad.sh')
args = (ds0.zCommandUsername, keyPath, ds@.managelp)
log.debug(' cmd is %s \n ' % (cmd))

-cmd stdout = d getProcessQutputAndValue(cmd, args = args)

1ngfdebug(‘RootDifkFree collect. stdout is %s and stderr is %s and exit code is %s
Exception:

log.exception('Error in collect gathering RootDiskFree info - %s ' % (Exception))
returnValue(cmd_stdout)

Figure 164: collect method

' % (cmd_stdout[0], cmd_stdout[l], cmd_stdout[2]))

The collect method in Figure 164 starts with the Python @inlineCallbacks decorator. It is

passed the datasource configuration as parameter.

The config parameter (which is generally the hostname of the device) has a datasources
element which is a list of PythonDataSourceConfig, the definition for which can be found

in the PythonCollector ZenPack in services/ PythonConfig.py.

264 ZenPack Developers' Guide

Oct 13, 2016

[E] zenoss@zend2:/opt/zenoss/local/ZenPacks.zenoss.PythonCollector/ZenPacks/zenoss/PythonCollector/services _ O

File Edit View Search Terminal Help
Hnport logging
log = logging.getlLogger('zen.PythonDataSource")

import importlib
from twisted.spread import pb

from Products.DataCollector.ApplyDataMap import ApplyDataMap

from Products.ZenCollector.services.config import CollectorConfigService
from Products.ZenRRD.zencommand import DataPointConfig

from Products.ZenUtils.ZenTales import talesEvalStr

from ZenPacks.zenoss.PythonCollector.datasources.PythonDataSource \
import PythonDataSource

known point properties = (
‘isrow', 'rrdmax', ‘'description', ‘'rrdmin‘', ‘'rrdtype', ‘createCmd’')

class PythonDataSourceConfig(pb.Copyable, pb.RemoteCopy):
device = None
managelp = None
component = None
template = None
datasource = None
config key = None
params = None
cycletime = None
eventClass = None
eventKey = None
severity =
plugin classname = None
result = None

init (self):
self.points = []

- getEventKey(self, point):
fetch datapoint name from filename path and add it to the event key
Irn self eventKey + '|' + point.rrdPath.split('/')[-1]
”PythonConflg py" [readonly] 236 lines --4%-- 16,1 4% [

Figure 165: PythonDataSourceConfig class definition in PythonCollector ZenPack

In addition to the attributes seen in Figure 165, any proxy_attributes that are declared are
also part of the class attributes.

To demonstrate this, extra log.debug statements can be used around the start of the collect
method:

def collect(self, config):

log.debug('config is %s ' % (config))

log.debug('config.datasources is %$s ' % (config.datasources))
for ¢ in config.datasources:
log.debug('config.datasource element is %s ' $ (c))
ds0 = config.datasources[0]
for k,v in dsO. dict .items():

log.debug('dsO k is %s and v is %s ' % (k,v))

This results in entries in a debug log like Figure 166

Oct 13, 2016 ZenPack Developers' Guide 265

zenoss@zen42:/code/ZenPacks/DevGuide/ZenPacks.community.DirFile/ZenPacks/community/DirFile/libexec

Edit View Search Terminal Help
2015—12—22 15:39:22,575 DEBUG zen.collector.scheduler: Task taplow-30.skills-1st.co.uk 60 DiskFreeDfPython dfPython ZenPacks.community.DirFile.dsplugins.RootDisk|
FreePythonDeviceData RootDiskFreePythonDeviceData changing state from RUNNING to BLOCKING
2015-12-22 15:39:22,575 DEBUG zen.ZenPacks.community.DirFile.dsplugins.RootDiskFreePythonDeviceData: config is taplow-30.skills-1st.co.uk
2015-12-22 15:39:22,575 DEBUG zen.ZenPacks.community.DirFile.dsplugins.RootDiskFreePythonDeviceData: config.datasources is [<ZenPacks.zenoss.PythonCollector.serv
ices.PythonConfig.PythonDataSourceConfig instance at 0x6e08cf8>]

2015-12-22 15:39:22,576 DEBUG zen.ZenPacks.community.DirFile.dsplugins.RootDiskFreePythonDeviceData: config.datasource element is <ZenPacks.zenoss.PythonCollecto
r.services.PythonConfig.PythonDataSourceConfig instance at 0x6e08cf8>

2015-12-22 15:39:22,576 DEBUG zen.ZenPacks.community.DirFile.dsplugins.RootDiskFreePythonDeviceData: ds®
2015-12-22 15:39:22,576 DEBUG zen.ZenPacks.community.DirFile.dsplugins.RootDiskFreePythonDeviceData: ds®
2015-12-22 15:39:22,576 DEBUG zen.ZenPacks.community.DirFile.dsplugins.RootDiskFreePythonDeviceData: ds®
2015-12-22 15:39:22,576 DEBUG zen.ZenPacks.community.DirFile.dsplugins.RootDiskFreePythonDeviceData: ds®
2015-12-22 15:39:22,576 DEBUG zen.ZenPacks.community.DirFile.dsplugins.RootDiskFreePythonDeviceData: dsO
e.dsplugins.RootDiskFreePythonDeviceData

2015-12-22 15:39:22,576 DEBUG zen.ZenPacks.community.DirFile.dsplugins.RootDiskFreePythonDeviceData: ds®@ k is manageIp and v is 10.0.0.30

2015-12-22 15:39:22,576 DEBUG zen.ZenPacks.community.DirFile.dsplugins.RootDiskFreePythonDeviceData: ds® k is points and v is [({}, 'dfRootPython')]

2015-12-22 15:39:22,576 DEBUG zen.ZenPacks.community.DirFile.dsplugins.RootDiskFreePythonDeviceData: ds® k is config key and v is ('taplow-30.skills-1st.co.uk',
60, 'DiskFreeDfPython', 'dfPython', 'ZenPacks.community.DirFile.dsplugins.RootDiskFreePythonDeviceData', 'RootDiskFreePythonDeviceData')

2015-12-22 15:39:22,576 DEBUG zen.ZenPacks.community.DirFile.dsplugins.RootDiskFreePythonDeviceData: ds® is datasource and v is dfPython

2015-12-22 15:39:22,576 DEBUG zen.ZenPacks.community.DirFile.dsplugins.RootDiskFreePythonDeviceData: dsO is template and v is DiskFreeDfPython

2015-12-22 15:39:22,576 DEBUG zen.ZenPacks.community.DirFile.dsplugins.RootDiskFreePythonDeviceData: ds@ is device and v is taplow-3@.skills-1st.co.uk
2015-12-22 15:39:22,576 DEBUG zen.ZenPacks.community.DirFile.dsplugins.RootDiskFreePythonDeviceData: ds® is params and v is {}

2015-12-22 15:39:22,577 DEBUG zen.ZenPacks.community.DirFile.dsplugins.RootDiskFreePythonDeviceData: ds@ is zKeyPath and v is ~/.ssh/id_dsa

2015-12-22 15:39:22,577 DEBUG zen.ZenPacks.community.DirFile.dsplugins.RootDiskFreePythonDeviceData: ds@ is zCommandUsername and v is zenplug

2015-12-22 15:39:22,577 DEBUG zen.ZenPacks.community.DirFile.dsplugins.RootDiskFreePythonDeviceData: dsO is eventKey and v is

is cycletime and v is &0

is severity and v is 3

is component and v is None

is eventClass and v is None

is plugin_classname and v is ZenPacks.community.DirFil

= xR

A A A AR

Figure 166: Debug log for zenpython showing keys and values for a PythonDataSourceConfig

Note that the managelp attribute of the device is available as part of a
PythonDataSourceConfig. Those zProperties that are declared as proxy_attributes are also
accessible, as is the device parameter (which is set to the device id).

The datasource is accessed in the line:

ds0 = config.datasources|[0]

The next few lines are concerned with finding the directory holding the script that zenpython

will execute:
Get path to executable file, starting from this file
which is in ZenPack base
Executables are in ZenPack base dir / libexec

thisabspath = os.path.dirname (os.path.abspath(file))
libexecdir = thisabspath + '/libexec'

The standard Python os module is used to ascertain the “current” directory and then append
/libexec.

If using the zKeyPath zProperty, typically it has a value of ~/.ssh /id_dsa where “~” gets
translated to the home directory of the Zenoss user. When passed as a parameter, the “~”
needs expanding to be the full path or the ssh command fails:

If ds0.zKeyPath starts with ~ then it doesn't expand properly so convert

to full path
expanduser gives S$HOME including trailing /
homedir = os.path.expanduser ("~")

if ds0.zKeyPath.startswith('~"):

keyPath = ds0.zKeyPath.replace('~', homedir)
else:

keyPath = ds0.zKeyPath

The next stage uses the os module to construct the complete command to be run, with
parameters:

script is df root ssh.shh taking 3 parameters, zCommandUsername, keyPath, host address
cmd = os.path.join(libexecdir, 'df root ssh.sh')
args = (dsO.zCommandUsername, keyPath, dsO.managelp)

266 ZenPack Developers' Guide Oct 13, 2016

The script name, df root_ssh.sh is hardcoded here. The zCommandUsername and managelp
attributes from the PythonDataSourceConfig dsO element are passed as parameters one and
three to the script. The second parameter is the full path to the public-key file.

The remainder of the collect method uses the imported Python twisted
getProcessOutputAndValue method to run the command, returning either the output or
raising an exception if the command failed.

try:
cmd_stdout = yield getProcessOutputAndValue (cmd, args = args)
log.debug('RootDiskFree collect. stdout is %s and stderr is %
code is %s ' % (cmd stdout[0], cmd stdout[l], cmd stdout[2])
except Exception:
log.exception ('Error in collect gathering RootDiskFree info - %s ' % (Exception))
returnValue (cmd_stdout)

s and exit
)

getProcessOutputAndValue is used to run the command as this method spawns a process and
returns a Deferred that will be called back with its output (from stdout and stderr) and it's
exit code as (out, err, code) If a signal is raised, the Deferred will errback with the stdout and
stderr up to that point, along with the signal.

The result from getProcessOutputAndValue is a tuple with 3 elements:

(<command stdout> , <command stderr>, <command exit code >)

Note that the code that actually retrieves the data needs to be in a try / except clause so that
any failure raises an errback; because the whole collect method has the @inlineCallbacks
decorator, the yield function delivers communications value(s), as they arrive.

returnValue() must be used to deliver a result from the collect method, not a simple return;
this is part of the twisted module.

13.3.1.4 onResult method for the PythonDataSourcePlugin

onResult is called immediately on result and before either onSuccess or onError.

zenoss@zen42:/code/ZenPacks/DevGuide/ZenPacks.community.DirFile/ZenPacks/community/DirFile/dsplugins

: File Edit View Search Temminal Help

onResult(self, result, config):
Called first for success and error.

You can omit this method if you want the result of the collect method
to be used without further processing.

|
I
: log.debug('RootDiskFree result. stdout is %s and stderr is %s and exit code is %5 ' % (result[0], result[l], result[2]))
i # Check that the command exit code is @ and that there is a non-null result for stdout

| result[2] != 0O:

i log.exception('In onResult - Error in collect gathering RootDiskFree info - %s ' % (result[l]))

[Exception(' %s' % (result[l]))

! result[0]:

[Exception(' %s' % ('Error in collect gathering RootDiskFree info. No result returned'}))

) resull

|

i

87,21 6

Figure 167: onResult method

It is used to check whether the command exit code was non-zero or the command stdout was
null; in either case, an exception is raised.

Oct 13, 2016 ZenPack Developers' Guide 267

13.3.1.5 onSuccess method for the PythonDataSourcePlugin

If the collect method successfully yields results then the onSuccess callback will be called.
Ultimately, the zenpython daemon should return a dictionary datastructure:

return
'values': defaultdict (dict),
'events': [],
'maps': [1,

}

where the values element is a dictionary of dictionaries and any events and / or maps are
Python lists (both may be empty).

The values dictionary has component id as key name. Since this example is a device-level
datasource, the component is None. The inner dictionary has the key as a datapoint name
and the value as the corresponding value.

This example is further simplified by hard-coding the datapoint name, dfRootPython, as the
key of the inner dictionary and the value is the integer result returned by the collect method.

def onSuccess(self, result, config):

wuan

Called only on success. After onResult, before onComplete.

wnn

log.debug('In success - result is %s and config is %s ' % (result, configqg))
data = self.new data()
data(['values'] = {}

for ds in config.datasources:

We are forcing a single value returned from collect to populate
a single known datapoint called dfRootPython

data['values'] [None] = {'dfRootPython' : result}

log.debug('data is %s ' % (data))
return data

13.3.1.6 onError method for the PythonDataSourcePlugin

If the collect method fails for any reason then the errback, onError will be called. Typically
this will perform some logging and probably deliver an event to be passed to the user through
the Event Console.

Again, as a first example, the event is largely hardcoded but it does pass the result stderr
message as part of the event summary field.

def onError(self, result, config):
moan
Called only on error. After onResult, before onComplete.
You can omit this method if you want the error result of the collect
method to be used without further processing. It recommended to
implement this method to capture errors.

wnn

log.debug('"In OnError - result is %s and config is %s ' % (result, config))
return {
'events': [{
'summary': 'Error getting root df data with zenpython: %s' % result,
'eventClass': '/DirFile',

268 ZenPack Developers' Guide Oct 13, 2016

8 &

'eventKey': 'RootDiskFreePythonDeviceData',
'severity': 4,
11,

}

Note that in this case, there is no values or maps components of the datastructure returned,
and that the events element is a list containing one or more dictionaries, where the
dictionary key is a valid event field name and the value is a suitable value.

It is good practice to deliver in the event, some indication of where the error has occurred. In
this example, the eventKey field is set to the string RootDiskFreePythonDeviceData.

It is good practice to set an eventClass in the event, otherwise it will have the Unknown class
in the event console.

No other methods are required for the PythonDataSourcePlugin. It will inherit the
onComplete and cleanup methods from its parent PythonDataSourcePlugin class, all of which
simply return the result.
13.3.1.7 Testing the new PythonDataSourcePlugin
When a new plugin has been created, it should only be necessary to restart:

e zenhub

e zopectl

e zenpython

Similarly if any changes are made to the plugin file.

13.3.1.8 Performance template to drive the PythonDataSourcePlugin

A device-level performance template is required to drive the new PythonDataSourcePlugin. In
section 13.3.1.5 the onSuccess method hard-coded the name of the datapoint as
dfRootPython (to keep things simple for now). The template must define a datasource of
type Python with a datapoint called dfRootPython.

. I T RU .

Menitoring Templates

a C‘-.‘VFF.'-—L'P,“L‘k A +[elo- +ela

Name Source Enabled Type Name Type Min. Value

DNS s x
D nito

dfPython.dfRootPython GAUGE

Edit Data Source

Name: Type
dfPython Python
Enabled Severity:
Event Class

Component:

${here/id} Plugin Class Name:

Cycle Time (seconds): ZenPacks.community.DirFile dsplugins.RootDiskFreePythonDeviceData

SAVE CANCEL

0 Jobs »

MyFooter ~ |(o= || & | € ~ || Group By Template || Device Class || Bound Component

Figure 168: DiskFreeDfPython performance template with PythonDataSourcePlugin

Oct 13, 2016 ZenPack Developers' Guide 269

The template:
e Has name DiskFreeDfPython
e Is associated with Zenoss device class /Server/Linux/DirFile
e Has a datasource called dfPython of type Python
e Has a cycle time of 60 seconds (for testing - probably too fast for production)

e Has Plugin Class Name of
ZenPacks.community.DirFile.dsplugins.RootDiskFreePythonDeviceData

s Note that the plugin field, strictly, is the module path

s Unfortunately there is no dropdown selection list for this field so care is necessary
when typing

s The module name is the same whether a dsplugins directory is used or not (see
later)

e The dfPython datasource has a datapoint called dfRootPython (to match the plugin

onSuccess datapoint coding) which gives a fully-qualified datapoint name of
dfPython.dfRooyPython

e A graph is created for the template called Root df (Python) which includes the
datapoint

4 [example.org | https:/jzend2.class.example.org/zport/dmad/template #templateTree:/zport/dmad/Devices/Server/LinuxDirFile/rdTemplates,DiskFreeDfP v@] [-‘]v @] &® =+

Monitoring Templates

4 DiskFreeDfPython NIk JIE—AIE« 22 + QO
Name Source Enabled Type Name Type Min. Value
a

dfPython.dfRootPython GAUGE

Manage Graph Points

+* -
Name Type Description

dfRootPython DataPaint dfPython_dfRootPython

+ Q|0 -

Name

SAVE CANCEL

F ig;tre 169: Datapoint and graph for DiskFreeDfPython performance template

The performance template must be bound to a device class or specific device before data will
be gathered. This could be done in the ZenPack's zenpack.yaml file.

device classes:
/Server/Linux/DirFile:
remove: False # False is default - specified for clarity
zProperties:
zPythonClass: ZenPacks.community.DirFile.DirFileDevice

270 ZenPack Developers' Guide Oct 13, 2016

zSshConcurrentSessions: 5
zDeviceTemplates:

- Disk free df

- Device

- DiskFreeDfPython

If zenpack.yaml is modified then it is safest to reinstall the ZenPack and restart Zenoss.

13.3.2 * Blocking and non-blocking in Twisted

The collect method of a PythonDataSourcePlugin should return a Twisted Deferred. There is

an excellent commentary on the Zenoss forums by Chet Luther at
http://www.zenoss.org/forum/136876 which discusses PythonDataSourcePlugins from the

context of blocking and non-blocking code. It is slightly paraphrased here.

Prior to version 1.7.2 of ZenPacks.zenoss.PythonCollector, several users reported
problems with zenpython not collecting to varying degrees. In some cases it would
appear to get completely deadlocked and stop collecting all datasources for all devices,
and a /Status/Heartbeat event would eventually be created indicating zenpython was
no longer functioning. In other cases it was more subtle, lots of tasks were missed or
delayed which resulted in gaps in graphs and delays in detecting problems.

In all of these cases the cause was eventually found to be PythonDataSourcePlugin
subclasses in ZenPacks (zenpython plugins) using blocking IO instead of non-
blocking IO using Twisted's mechanisms. In the extreme case of a completely
deadlocked zenpython the cause was a plugin that made a synchronous MySQL query
that had no timeout set, so in some cases where the database would never finish
responding to a query, zenpython would remain blocked and unable to perform any
collection until it was restarted. In the less severe cases it was more typical things
where sometimes making API calls takes many seconds or even many minutes, but
even these would accumulate to making zenpython not be able to do any other
collection until those blocking API calls completed.

PythonCollector 1.7.2 was released with the "blockingwarning" option, a new
"percentBlocked" datapoint, and detailed task state tracking for how long tasks spent
blocked. The idea was to get a better idea of how prevalent the problem was, and which
common plugins were affected. It didn't do anything to keep zenpython from getting
wedged by a badly behaved plugin. Some issues were found with plugins in the
MySqlMonitor and AWS ZenPacks using blocking IO. An update has been released to
MySqlMonitor that fixed its plugins, and an update is being worked on to the AWS
ZenPack that fixes its issues. That said, some users were still concerned that a badly
behaved plugin could wedge zenpython.

To address this concern, PythonCollector 1.7.3 was released with the "blockingtimeout"
option which defaults to 5 seconds (that may seem too short, more on that later.) The
blockingtimeout option is a mechanism for zenpython to protect itself from getting
wedged by a plugin that uses blocking IO, and it works as follows.

A timer is started each time the collect method of any PythonDataSourcePlugin is
called. The timer is cancelled as soon as that collect method returns. If the timer
reaches blockingtimeout before the collect method returns, the zenpython process
completely restarts itself with the plugin that failed to return in time

Oct 13, 2016 ZenPack Developers' Guide 271

http://www.zenoss.org/forum/136876

272

disabled. This may sound extreme, but for technical reasons was really the only way
to recover from being blocked.

To understand why zenpython must restart itself you have to understand how
zenpython is a single-threaded process that uses asynchronous IO via the Twisted
library to efficiently perform lots of parallel collection. Any time non-asynchronous
code is being executed it means that no other collection or process can be performed
until it yields back to the reactor (Twisted's event loop). The catch here is that
zenpython is executing arbitrary code provided by ZenPacks. The zenpython code
essentially gives up control to that ZenPack code as soon as it calls it, until that code
returns. The way that zenpython manages to restart itself when it calls to ZenPack
code that doesn't return is by running a watchdog thread that keeps an eye on that
timer and restarts the process if it expires.

If the plugin is disabled (and logged in /var/zenoss/zenpython.blocked on Zenoss 5,
or /opt /zenoss [var [zenpython.blocked on Zenoss 4) then it is disabled for all devices,
not just the device where the plugin timed out.

To understand why that is done you have to imagine a scenario where you have a
plugin that executes on all Linux servers. Let's say you have 1,000 Linux servers being
monitored, and let's say that 50 of them develop some condition that causes the plugin
to block on them for 10 seconds. Assuming it takes zenpython only 1 minute to restart
when monitoring 1,000 servers, it would take (60 seconds + ~10 seconds) * 50 servers,
or ~11 minutes before zenpython would have all of the plugin+device executions
disabled. During this time zenpython wouldn't be doing anything. So we are forced to
assume that if a plugin blocks once, that it's not written correctly and using blocking
I0. So the plugin is completely disabled for all devices that use it.

So now back to why the default blockingtimeout is set to 5, which may seem way too
low given everything above. To understand this, you again have to understand why the
PythonDataSourcePlugin.collect() method must return a Deferred. After all, it's easy to
imagine making an API call to some application that takes more than 5 seconds. When
using Twisted's non-blocking networking APIs you immediately get a Deferred object
returned when you make a call like getPage("http://example.com/api/really-slow-
thing"), even if the response doesn't come back for 10 minutes. When the response
comes back, the Deferred's callback (or errback if there's an error) is called. The
PythonDataSourcePlugin.collect() must do the same thing. Usually by returning the
Deferred object that something like getPage("http://...") returned to you.

If you properly use Twisted's networking libraries to perform non-blocking IO in this
way, your collect method will return nearly instantaneously even if the device being
monitored is down, or slow, or anything like that. So your API call can take way longer
than blockingtimeout, but your collect method still returns immediately.

It's almost always possible to create a Twisted way to get your stuff. If you can't find a
way to do it natively within the process there are a couple of less-optimal options. You
can use twisted.internet.utils.getProcessOutputAndValue() to run an external script
that returns a Deferred that will callback when the process exits with output and an
exit code. Alternatively you can use twisted.internet.threads.deferToThread() to run
some blocking code in-process in another thread. It also will return a Deferred
immediately that will callback when the call returns with the return value.

ZenPack Developers' Guide Oct 13, 2016

https:/twistedmatrix.com/documents/13.1.0/api/twisted.internet.utils.getProcessOutputAndValue.html

https://twistedmatrix.com/documents/13.1.0/api/twisted.internet.threads.deferToThread.html
getProcessOutputAndValue is suboptimal because it requires spawning another process

and passing all parameters via command line options and parsing its text output.

deferToThread is suboptimal because the threadpool is of a limited size, so only so
many things can be running on the threadpool at a time. It can also consume
considerable extra memory.

13.3.2.1 * Comparing blocking and non-blocking collect methods

The collect method discussed so far, using getProcessOutputAndValue is:

@inlineCallbacks
def collect(self, config):

ds0 = config.datasources[0]
for k,v in dsO. dict .items():
log.debug('dsO k is %s and v is %s ' % (k,v))

thisabspath = os.path.dirname (os.path.abspath(file))
libexecdir = thisabspath + '/../libexec'
If dsO.zKeyPath starts with ~ then it doesn't expand properly - convert to full path
expanduser gives $HOME including trailing /
homedir = os.path.expanduser ("~")
if ds0.zKeyPath.startswith('~"):
keyPath = ds0.zKeyPath.replace('~', homedir)
else:
keyPath = ds0.zKeyPath
script is df root ssh.sh taking 3 parameters, zCommandUsername, keyPath, host addr
cmd = os.path.join(libexecdir, 'df root ssh.sh')

args = (dsO.zCommandUsername, keyPath, dsO.managelp)
log.debug (' cmd is %s \n ' % (cmd))
try:

cmd stdout = yield getProcessOutputAndvValue (cmd, args = args)
except Exception:

log.exception ('Error in collect gathering RootDiskFree info - %s ' % (Exception))
returnValue (cmd_ stdout)

This is non-blocking. getProcessOutputAndValue delivers a Deferred.

If the collect method is written with something that is probably more familiar like using the
Python subprocess module to run a command, the plugin will block until the results are
returned. Note that subprocess requires its command to be a list with command and
arguments included.

@inlineCallbacks
def collect(self, config):

ds0 = config.datasources|[0]
for k,v in dsO. dict .items():
log.debug('dsO0 k is %s and v is %s ' % (k,v))

thisabspath = os.path.dirname (os.path.abspath(file))
libexecdir = thisabspath + '/../libexec'
If dsO.zKeyPath starts with ~ then it doesn't expand properly so convert to full path

Oct 13, 2016 ZenPack Developers' Guide 273

https://twistedmatrix.com/documents/13.1.0/api/twisted.internet.threads.deferToThread.html
https://twistedmatrix.com/documents/13.1.0/api/twisted.internet.utils.getProcessOutputAndValue.html

expanduser gives $HOME including trailing /
homedir = os.path.expanduser ("~")
if dsO.zKeyPath.startswith('~"):

keyPath = ds0.zKeyPath.replace('~', homedir)
else:

keyPath = ds0.zKeyPath

script is df root ssh.sh taking 3 parameters, zCommandUsername, keyPath, host addr

cmd = [os.path.join(libexecdir, 'df root ssh.sh'),
ds0.zCommandUsername, keyPath, dsO.managelp]
log.debug (' cmd is %s \n ' % (cmd))

value = None

try:
cmd_process = yield(subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE))
cmd_process.communicate() returns a tuple of (stdoutdata, stderrordata)
cmd stdout, cmd stderr = cmd process.communicate ()
log.debug (' stdout is %$s and stderr is %$s ' % (cmd stdout, cmd stderr))
if not cmd stderr:
value = int (cmd stdout.rstrip())
else:
raise Exception('%$s ' % (cmd stderr))
except:
log.exception ('Error gathering RootDiskFree info - %s ' % (cmd_stderr))
raise Exception(' %s' % (cmd stderr))

returnValue (value)

Under light load, with good communications response, both variations will work in a similar
fashion. If cmd_process = yield(subprocess.Popen(cmd, stdout=subprocess.PIPE,
stderr=subprocess.PIPE)) provides data inside the blockingtimeout then the same results will
be seen (albeit, the overall performance of zenpython will still be less effective).

However, if subprocess does not yield results within blockingtimeout then the plugin will be
permanently disabled, for all devices. If there are 1000 devices using the plugin and one
device happens to be down, this plugin will still be disabled for all devices.

13.3.3 Collecting component performance data; specific component
command; single value returned

The COMMAND version of collecting component datasources is discussed in section 12.3.
12.3.1 discusses running a command template datasource where a filename is passed and the
du command is run to determine disk used in bytes. The Unix command is configured as part
of the datasource:

/usr/bin/du -P -b S{here/fileDirName}/S{here/fileName} | cut -f 1

To run the equivalent under zenpython, a small shellscript, dufile_ssh.sh, can be constructed
which, as with the previous example in this section, takes ssh parameters in addition to the
filename:

#!/bin/bash

#

Use du to get disk used for a directory in bytes.
Param 1 = ssh user

Param 2 = keypath

Param 3 = target

Param 4 = file

274 ZenPack Developers' Guide Oct 13, 2016

echo $1 $2 $3 $4 > /tmp/dufile.tmp

#ssh -1 zenplug -i ~/.ssh/id dsa taplow-11 /usr/bin/du -P -b \
/opt/zenoss/local/fredtest/fredl.log 20151202

ssh -1 "$1" —-i "$2" "$3" /usr/bin/du -P -b "$4"

Note that the script returns the full output - there is no cut in the new script so output should
be of the format:

"499\t/opt/zenoss/local/fredtest/test/fred2.1log 20151125\n"

where \t¢ is a tab and \n is a newline.

A new PythonDataSourcePlugin class will be created to drive this script.

13.3.3.1 Using a dsplugins directory

Rather than expanding the existing dsplugins.py, a dsplugins directory will be created under
the ZenPack base directory; thus plugins can be maintained in separate files making them
easier to manage and debug.

Create the directory and then create an _ init_ .py in the dsplugins directory. This file needs
an entry for each plugin file in the format:

from RootDiskFreePythonDeviceData import RootDiskFreePythonDeviceData
from FileDiskUsedPythonDeviceData import FileDiskUsedPythonDeviceData

where the first name is the filename (strictly, the module name) and the second name is the
class within the module. It is generally good practice for the two names to be the same.

The only other small modification required to move the RootDiskFreePythonDeviceData class
into its own RootDiskFreePythonDeviceData.py file under dsplugins, is to change the libexec
directory that was carefully constructed.

thisabspath = os.path.dirname (os.path.abspath(file))
libexecdir = thisabspath + '/../libexec'

The libexec directory is one up from the current (dsplugins) directory and then down to
libexec.

13.3.3.2 Imports, proxy_attributes, config_key and params

The imports and proxy_attributes for the FileDiskUsedPythonDeviceData plugin are exactly
the same as for RootDiskFreePythonDeviceData.

The config_key method to determine the separate configs to be distributed to zenpython
daemons, needs to be slightly different. To make component configs unique, both the device
and the component need to be included:

@classmethod

def config key(cls, datasource, context):
context will be a File.

return (
context.device () .1id,
datasource.getCycleTime (context),
datasource.rrdTemplate () .1d,

datasource.id,
datasource.plugin classname,
context.id,

Oct 13, 2016 ZenPack Developers' Guide 275

'FileDiskUsedPythonDeviceData',
)

Since context.id is the component id for a component template, and several devices may have
the same filename, the parent device is required to make configs unique; hence the addition of
context.device().id.

Note that the cycle time parameter must remain as the second field (more on this in the next
section).

The params method needs to retrieve data from the ZODB database for use in the later collect
method.

@classmethod

def params(cls, datasource, context):
context is the object that the template is applied to - either a device or a component
Use params method to get at attributes or methods on the context.
params is run by zenhub which DOES have access to the ZODB database.

params = {}
params['fileName'] = "'
if hasattr (context, 'fileName'):
params['fileName'] = context.fileName
params|['fileDirName'] = ''
if hasattr (context, 'fileDirName'):
params|['fileDirName'] = context.fileDirName
params|['fileId'] = context.id
Need to run zenhub in debug to see log.debug statements here
log.info (' params is %s ' % (params))

return params

fileDirName and fileName will be used to create the fully-qualified filename to run the du
command against. fileld is required as the component index for the values returned by the
collect method.

13.3.3.3 * Acloser look at the usage of config_keys

Care is needed when constructing the tuple to be returned from the config_key method. The
data is used by zenhub to create the separate configs for zenpython daemons. The code that
actually uses this structure is tasks.py in $ZENHOME | Products | ZenCollector.

276 ZenPack Developers' Guide Oct 13, 2016

Zenoss@zend2:/opt/zenoss/Products/ZenCollector

File Edit View Search Terminal Help
class SubConfiguffationTaskSplitter(SimpleTaskSplitter): E: |

A task splitter that creates a single scheduled task by
device, cycletime and other criteria.
zope.interface.implements(ISubTaskSplitter)
subconfighName = 'datasources’

def makeConfigKey(self, config, subconfig):
"aise NotImplementedError("Required method not implemented")

def splitSubConfiguration(self, config):
subconfigs = {}
for subconfig in getattr(config, self.subconfigName):
key = self.makeConfigKey(config, subconfig)
subconfiglist = subconfigs.setdefault(key, [])
subconfiglList.append(subconfig)
return subconfigs

def splitConfiguration(self, configs):

This name required by ITaskSplitter interface

tasks = {}

for config in configs:

("Splitting config %s", config)

Group all of the subtasks under the same configId
so that updates clean up any previous tasks
(including renames)
configld = config.configld

subconfigs = self. splitSubConfiguration(config)
key is a tuple of the config elements. subconfigGroup is a PythonDataSourceConfig instance
for key, subconfigGroup in subconfigs.items():
: ('In SubConfigurationTaskSplitter start of splitConfiguration loop. key is %s and sub
configGroup is %s ' % (key, subconfigGroup))
name is ALL the elements of the config joined by space
name = ' '_join(map(str, key))
interval is HARD-CODED to be the second ie [1] element of the config
interval = key[1]
configCopy = copy(config)
setattr(configCopy, self.subconfigName, subconfigGroup)
tasks[name] = self. newTask(name,
configld,
interval,
configCopy)
#IBGNEEEGg (' In SubConfigurationTaskSplitter splitConfiguration loop. configId is %s name is %s
interval is %s configCopy is %5 tasks[name] is %s ' % (configId, name, interval, configCopy, tasks[name] })
return tasks
"tasks.py" [Modified] 437 lines --33%-- 145,17 36% |-

Figure 170: SubConfigurationTaskSplitter class in $ZENHOME | Products | ZenCollector [tasks.py

Note in the splitConfiguration method that:

o key is a Python tuple of the config_key elements
e subconfigGroup is a PythonDataSourceConfig instance
e interval is set to key[1]

n This means that the interval parameter that is passed to the _newTask method is absolutely
position dependent.

If config_key in the dsplugin file is:

@classmethod
def config key(cls, datasource, context):
context will be a File.

return (
context.device () .1id,

Oct 13, 2016 ZenPack Developers' Guide 277

datasource.getCycleTime (context),
datasource.rrdTemplate () .1id,
datasource.id,

datasource.plugin classname,
context.id,
'FileDiskUsedPythonDeviceData',

)

then the interval parameter will be set to datasource.getCycleTime(context) - the second field,
that is the [1] element, in the Python tuple.

If config_key is coded as:

@classmethod
def config key(cls, datasource, context):
context will be a File.

return (
context.device () .1id,
context.id,
datasource.getCycleTime (context),
datasource.rrdTemplate () .1id,
datasource.id,
datasource.plugin classname,
'FileDiskUsedPythonDeviceData',
)

then zenpython.log will be full of errors for such tasks as the interval parameter (which,
incidentally, is a digit, not a string) will be set to context.id.

= zenoss@zen42:/code/ZenPacks/DevGuide . |
File Edit View Search Terminal Help
2016-01-02 19:45:12,070 DEBUG zen.collector.scheduler: add task taplow-30.skills-1st.co.uk 60 DiskFreeDfPython dfPython ZenPacks.community.DirFile[
.dsplugins.RootDiskFreePythonDeviceData RootDiskFreePythonDeviceData, <_main_ .PythonCollectionTask object at 0x5fe3750> |;jng 60 _second intervEL|
2016-01-02 19:45:12,070 DEBUG zen.collector.scheduler: add task taplow-30.skills-1st.co.uk fredl.log 20151215 6@ File duFile CKS.community.Di
rFile.dsplugins.FileDiskUsedPythonDeviceData FileDiskUsedPythonDeviceData, < main__ .PythonCollectionTask object at Ox5fd@750> using fredl.log 201
51215 second interval O —
- DEBUG zen.collector.scheduler: add task taplow-30.skills-1st.co.uk opt_zenoss_local_fredtest 60 Dir dudir ZenPacks.communi|
ty.DirFile.dsplugins.DirDiskUsedPythonDeviceData DirDiskUsedPythonDeviceData, <_ main__.PythonCollectionTask object at 0x5fe37d0> using opt_zenoss
_local_fredtest second interval
2016-01-02 19:45:12,070 DEBUG zen.collector.scheduler: add task taplow-30.skills-1st.co.uk fred2.log_20151216 60 File duFile ZenPacks.community.Di|
rfile.dsplugins.FileDiskUsedPythonDeviceData FileDiskUsedPythonDeviceData, <__main__.PythonCollectionTask object at 0x5d131d@> using fred2.log_201]
51216 second interval
2016-01-02 19:45:12,070 DEBUG zen.collector.scheduler: add task taplow-30.skills-1lst.co.uk fredl.log 20151216 60 File duFile ZenPacks.community.Di
rFile.dsplugins.FileDiskUsedPythonDeviceData FileDiskUsedPythonDeviceData, < main__ .PythonCollectionTask object at 0x5b0c850> using fredl.log 201
51216 second interval
2016-01-02 19:45:12,070 DEBUG zen.collector.scheduler: add task taplow-30.skills-1st.co.uk opt_zenoss local fredtest test 60 Dir dudir ZenPacks.co
mmunity.DirFile.dsplugins.DirDiskUsedPythonDeviceData DirDiskUsedPythonDeviceData, < main_ .PythonCollectionTask object at 0x5c75f9@> using opt_z
enoss_local fredtest test second interval
2016-01-02 19:45:12,071 DEBUG zen.collector.scheduler: add task taplow-30.skills-1st.co.uk fred2.log 20151215 60 File duFile ZenPacks.community.Di|
rFile.dsplugins.FileDiskUsedPythonDeviceData FileDiskUsedPythonDeviceData, <__main__.PythonCollectionTask object at 0x5fd0896> using fred2.log_201]
51215 second interval
2016-01-02 19:45:12,071 DEBUG zen.collector.scheduler: Task taplow-30.skills-1st.co.uk 60 DiskFreeDfPython dfPython ZenPacks.community.DirFile.dsp
lugins.RootDiskFreePythonDeviceData RootDiskFreePythonDeviceData starting (waited ©® seconds) on 60 second intervals
2016-01-02 19:45:12,071 DEBUG zen.collector.scheduler: Task taplow-30.skills-1st.co.uk 60 DiskFreeDfPython dfPython ZenPacks.community.DirFile.dsp
lugins.RootDiskFreePythonDeviceData RootDiskFreePythonDeviceData changing state from IDLE to QUEUED
Traceback (most recent call last):
File "/opt/zenoss/lib/python2.7/logging/ init_ Upy", line 842, in emit
msg = self.format(record)
File "/opt/zenoss/lib/python2.7/1logging/ init_ .py", line 719, in format
return fmt.format(record)
File "/opt/zenoss/lib/python2.7/1logging/ init_ .py", line 464, in format
] record.message = record.getMessage()
File "/opt/zenoss/lib/python2.7/logging/ init .py", line 328, in getMessage
msg = msg % self.args
TypeError: %d format: a number is required, not str
JEas Ltk Rt
2016-01-02 19:45:12,072 DEBUG zen.collector.scheduler: Task taplow-30.skills-1st.co.uk fredl.log_20151215 60 File duFile ZenPacks.community.DirFil
e.dsplugins.FileDiskUsedPythonDeviceData FileDiskUsedPythonDeviceData changing state from IDLE to QUEUED
2016-01-02 19:45:12,074 DEBUG zen.collector.scheduler: call finished LoopingCall<'fredl.log_20151215"'>(CallableTask: taplow-30.skills-1st.co.uk fr|
edl.log 20151215 60 File duFile ZenPacks.community.DirFile.dsplugins.FileDiskUsedPythonDeviceData FileDiskUsedPythonDeviceData, *(), **{}) : [Fail
ure instance: Traceback: <type 'exceptions.TypeError'=: unsupported operand type(s) for %: 'float' and 'str'
/opt/zenoss/lib/python/twisted/internet/task.py:163:start

Figure 171: zenpython debug log where interval is not second element of config_key

In Figure 171 the task for the device using RootDiskFreePythonDeviceData is correct with an
interval of 60 seconds (first highlighted section); see Figure 161 for this config_key method.
Tasks for the components using FileDiskUsedPythonDeviceData (second highlighted section)

278 ZenPack Developers' Guide Oct 13, 2016

show that the second field is fred1.log 20151215 so that is used for the interval parameter,
which then results in the subsequent errors, starting with a “TypeError: %d format: a number
is required, not str” message.

The libexec directory of ZenPacks.community.DirFile includes a slightly modified copy of
tasks.py with extra log.debug lines to help understand the task splitting process.

13.3.3.4 collect method

The collect method for the FileDiskUsedPythonDeviceData PythonDataSourcePlugin is similar
to the previous method for RootDiskFreePythonDeviceData; the differences come towards the
end where data has to be returned for each component.

zenoss@zen4a2:/code/ZenPacks/DevGuide/ZenPacks.community.DirFile/ZenPacks/community/DirFile/dsplugins

File Edit View Search Terminal Help

@inlineCallbacks
collect(self, config):

ds® = config.datasources[0]
Get path to executable file on Zenoss collector, starting from this file
which is in ZenPack base dir/datasources
Executables are in ZenPack base dir / libexec
NOTE: If using dsplugins directory, then need to go up one to get to libexec
thisabspath = os.path.dirname(os.path.abspath(_file })
libexecdir = thisabspath + '/../libexec’
If ds0@.zKeyPath starts with ~ then it doesn't expand properly so convert to full path
expanduser gives $HOME including trailing /
homedir = os.path.expanduser("~")
ds@.zKeyPath.startswith('~"):
keyPath = ds®.zKeyPath.replace('~', homedir)

keyPath = ds@.zKeyPath
fileName = ds@.params['fileDirName'] + '/"' + dsO@.params['fileName']
script is dufile_ssh.sh taking 4 parameters, zCommandUsername, keyPath, host address, fileName
cmd = os.path.join(libexecdir, 'dufile_ssh.sh")
args = (ds0.zCommandUsername, keyPath, ds0.managelIp, fileName)

Next line should cause an error
#args = (ds@.zCommandUsername, keyPath, ds@.managelp, '/blah')
log.debug(' cmd is %5 \n ' % (cmd))

.cmdistdout = getProcessOutputAndValue(cmd, args = args)
log.debug(' %s collect. stdout is %s and stderr is %s and exit code is %s ' % (ds@.plugin_classname, cmd_stdout[®], cmd stdout[1l], cmd_stdout[2]))
Exception:
log.exception('Error in collect gathering %s info - %s " % (ds@.plugin_classname, Exception))
returnValue(cmd_stdout)
returnValue(cmd_stdout)

"FileDiskUsedPythonDeviceData.py" [readonly] 202 lines --26%-- 54,0-1 31%

Figure 172: collect method for FileDiskUsedPythonDeviceData

In Figure 172:

e fileName is constructed from the datasource params list, concatenating fileDirName
and fileName with a slash in between. It is then used as the final argument in the
command to be run.

o The command name is hardcoded to be dufile_ssh.sh in the libexec directory of the
ZenPack.

e The command arguments are passed in the args variable.
e getProcessOutputAndValue is used to deliver a Deferred result.

e The yield in the try .. except clause is a generator that delivers the output from the du
command.

e If something goes wrong then an exception is delivered as an errback

e dsO.plugin_classname is used to parameterise logging and exception statements

Oct 13, 2016 ZenPack Developers' Guide 279

The onResult method is almost exactly the same as in the previous example.

13.3.3.5 onResult, onSuccess and onError methods

The onSuccess method must deliver a new_data dictionary where the values element is itself
a dictionary with keys being component id and values is a dictionary of {datapointname :
<value returned from du command>}.

zenoss@zen42:/code/ZenPacks/DevGuide/ZenPacks.community.DirFile/ZenPacks/community/DirFile/dsplugins

File Edit View Search Terminal Help
onSuccess({self, result, config):

log.debug({ 'In success - result is %s and config is %s ' % (result, config))
data = self.new _data()
data['values'] = {}
f ds config.datasources:

log.debug(' Start of config.datasources loop')

#result[®] in format:

952 /opt/zenoss/local/fredtest/fredl.log 20151202

1 result[0].split('\n"):
il

k
v

L.split()[1].split("/")[-1]
int(l.split()[0])

Exception(' %s' % ('Error in collect gathering FileDiskUsedPythonDeviceData info. Result format wrong'))
log.debug('ds.component is %s' % (ds.component))
log.debug(' k is %s and v is %5 ' % (k,v))
ds.component == k:
datapoint_id Ocsid= X ds.points):
log.debug('In datapoint loop datapoint id is %s ' %(datapoint_id))
datapoint id ['duBytes’',]:
dpname = ' '.join((ds.datasource, 'duBytes'))
log.debug('dpname is %s' % (dpname))
data['values'][ds.component] = {dpname : v}
log.debug('data[values] is %s' % (data['values']))
got a match so get out of 1 loop

log.debug('data is %s ' % (data))
data

"FileDiskUsedPythonDeviceData.py" [Modified] 155 lines --88%-- 137,0-1 85%

Figure 173: onSuccess method for FileDiskUsedPythonDeviceData

In the onSuccess method in Figure 173:
e For each datasource config:
s result[0] should hold one or more lines in the format:
+ 952 /opt/zenoss/local/fredtest/fred1.log_20151202
= Split result[0] by whitespace and:
+ Split the second element on /' and assign the last element to & (the filename)
+ Assign the integer value of the first element to v (the number of bytes used)

m The & value from the result is compared against the datasource component
attribute.

s Where it matches, the datapoints for the datasource are cycled through, looking for
a datapoint called duBytes (which is hardcoded in the code here). The performance
template that uses this plugin must be constructed to ensure that the duBytes
datapoint exists. When a match is found, break out of this loop.

m dpname is constructed by joining the datasource name with duBytes, linked with
an underscore, to give the fully-qualified datapoint name.

280 ZenPack Developers' Guide Oct 13, 2016

m The values element of the data dictionary is constructed with the component id as
the key and the corresponding value being the dictionary with dpname as its key
and the returned du number as the value.

The onError method is almost exactly the same as in the previous example. The summary
has the exception error message appended to the end. The eventKey field is set to
FileDiskUsedPythonDeviceData.

13.3.3.6 Performance template to drive the PythonDataSourcePlugin

As ever, a performance template is required to drive data collection. The default,
automatically-bound template for a File component must match the label name of the
component object type ie. File. However, zenpack.yaml permits specifying a list of templates
for a component so, for clarity, the template to drive the FileDiskUsedPythonDeviceData will
be specified in its own template called FilePythonXml and will be stored in the ZenPack's
objects.xml file.

Meonitoring Templates

H+[e]e- +
'Server/Linux/DirFile Name Source Enabled Type Name Type Min. V&

X

duFile.duBytes GAUGE
e

FileSystem
Edit Data Source

Name: Type
duFile Python
Enabled Severity:
Event Class:

Component:

${here/id} Plugin Class Name:

Cycle Time (seconds): ZenPacks.community.DirFile.dsplugins.FileDiskUsedPythonDeviceData

SAVE CANCEL

Figure 174: FilePythonXml template to drive .FileDiskUsedPythonDeviceData component plugin

Note in Figure 174:
e Template is called FilePythonXml
e Datasource is called duFile

e Datapoint name is duBytes, giving a fully-qualified datapoint name of duFile.duBytes.
This must match the datapoint name constructed in the onSuccess method of the plugin.

e The Plugin Class Name must be typed carefully to match the module path to the
plugin. Note that it is irrelevant whether a dsplugins directory is used.

e The cycle time is set to 60s for testing
A graph, Disk Used (Python) is created to display the datapoint for the component.

The zenpack.yaml file will have the File object class amended to include the FilePythonXml
template:

Oct 13, 2016 ZenPack Developers' Guide 281

File:

label: File # NB It is label, with spaces removed, that is used to match a component template
meta type: File # Will default to this but in for completeness

order: 70 # after dir

auto_expand column: fileName

monitoring templates defaults to File. Also need FileXml, shipped in objects.xml

to circumnavigate issue whereby custom datasource CommandTemplate appears blank when
shipped in zenpack.yaml. Also added on FilePythonXml.

monitoring templates: [File, FileXml, FilePythonXml]

13.3.4 Collecting component performance data; specific component
command; multiple values returned. Nagios plugin conversion.

This section converts the COMMAND datasource scenario which checks for the presence of
two specific strings in a File component and provides a count for the number of lines where
the string appears. The strings are known in advance. The COMMAND-based solution ran a
command on the remote target (over ssh) and utilised the Nagios parser to decode the output
returned into different <datapoint name>=<datapoint value> pairs.

As with the last example, a local shellscript will run an ssh command, driven by by the
twisted getProcessOutputAndValue method. A big difference with this scenario is that the
command to be run remotely by ssh is not a built-in command but a script that has been
placed on the target in a specific directory; thus we have the local file_stats_ssh.sh running a
remote command, file_stats.sh and the remote command is found in the zZCommandPath
directory. The filename to be checked for the presence of the hard-coded strings “test 1” and
“without” is passed as the fourth parameter to the local script.

The local shellscript, file_stats_ssh.sh is:
#!/bin/bash

#

Runs command, file stats.sh, on remote target to return number of lines
1in file containing "test 1" and "without"

file stats.sh expects one parameter - filename

#

Returned output in format:

" File string count test ok | $stringlName=S$stringCountl $string2Name=S$stringCount2"
or error output starting with "Error"

#

Param 1 = ssh user

Param 2 = keypath

Param 3 = target

Param 4 = file to test

Param 5 = path to file stats.sh

echo $1 $2 $3 $4 $5 > /tmp/filestats.tmp
CMD="$5/file stats.sh $4"
SSh _l "$l" _i "$2" "$3" "$CMD"

The remote file_stats.sh is exactly the same as in section 12.3.2.

The new plugin, FileStatsPythonDeviceData.py, will be implemented in the dsplugins
directory of the ZenPack. Remember to add a statement for it to the dsplugins/__init__.py:

from FileStatsPythonDeviceData import FileStatsPythonDeviceData

282 ZenPack Developers' Guide Oct 13, 2016

13.3.4.1 Imports, proxy_attributes, config_key and params

Imports are very similar to the last example. re, the Python regular expression module, is also
1mp0rted as that will be used to help decode the Nagios-style output that is returned.

zenoss@zen42:/code/ZenPacks/DevGuid

Elle Edit View Search Terminal Help

Setup fogging

import logging

log = logging.getLogger('.'.join(['zen', _ name_ 1))

import os
import [g@

PythonCollector Imports
from ZenPacks.zenoss.PythonCollector.datasources.PythonDataSource import PythonDataSourcePlugin

Twisted Imports
from twisted.internet.defer import inlineCallbacks, FgturnValue
from twisted.internet.utils import getProcessOutputAndValue

FileStatsPythonDeviceData(PythonDataSourcePlugin):
""" DirFile File component data source plugin for test 1 and without stats"""

List of device attributes you might need to do collection.
proxy attributes = (

'zCommandUsername',

'zCommandPath',

'zKeyPath',

)

@classmethod
config key(cls, datasource, context):
context will be a File.

re (
context.device().id
datasource.getCycleTime(context),
datasource.rrdTemplate().id
datasource.id,
datasource.plugin classname,
context.id,
'FileStatsPythonDeviceData',
)

"FileStatsPythonDeviceData.py" [readonly] 198 lines --0%-- 1,9

Top

Figure 175: imports, proxies and config_key method

The local shellscript needs to pass the zCommandPath property to the remote script so it

must be included in the proxy_attributes statement.

The config_key method is identical to the previous example, passing both context.device().id

and context.id as part of the unique task definition.

The params method is identical to the previous example, delivering fileName, fileDirName

and fileld for use in the methods to be run by zenpython.

13.3.4.2 collect method

The collect method is very similar to the previous example. It simply differs in the command

to be called and its arguments.

Oct 13, 2016 ZenPack Developers' Guide

283

zenoss@zen42:/code/ZenPacks/DevGuide/ZenPacks.community.DirFile/ZenPacks/community/DirFile/dsplugins

Eile Edit View Search Terminal Help
EinlineCallbacks E
lef collect(self, config):

ds®@ = config.datasources[0]
Get path to executable file on Zenoss collector, starting from this file
which is in ZenPack base dir/datasources
Executables are in ZenPack base dir / libexec
NOTE: If using dsplugins directory, then need to go up one to get to libexec
thisabspath = os.path.dirname(os.path.abspath(__file_))
libexecdir = thisabspath + '/../libexec’
IT dsO.zKeyPath starts with ~ then it doesn't expand properly so convert to full path
expanduser gives $HOME including trailing /
homedir = os.path.expanduser("~")
if ds0.zKeyPath.startswith('~'):
keyPath = ds0.zKeyPath.replace('~"', homedir)

keyPath = ds0.zKeyPath
fileName = ds@.params['fileDirName'] + '/' + ds@.params['fileName']
script is file stats ssh.sh taking 5 parameters, zCommandUsername, keyPath, host address, fileName, zCommandPath
cmd = os.path.join(libexecdir, 'file stats ssh.sh')
args = (dsB.zCommandUsername, keyPath, ds@.manageIp, fileName, ds@.zCommandPath)
Next line should cause an error
#args = (ds0.zCommandUsername, keyPath, ds®.managelp, fileName, '/blah')
log.debug(" cmd is %s \n " % (cmd))

cmd_stdout = yield getProcessOutputAndValue(cmd, args = args)
log.debug(' %5 collect. stdout is %s and stderr is %s and exit code is %5 ' % (ds@.plugin classname, cmd stdo
ut[@], cmd_stdout[1l], cmd_stdout[2]))
X Exception:
log.exception('Error in collect gathering %s info - %s ' % (ds@.plugin classname, Exception))
returnValue(cmd_stdout)
returnValue(cmd_stdout)

"FileStatsPythonDeviceData.py" [readonly] 195 lines --28%-- 56,5 33%
Figure 176: FileStatsPythonDeviceData collect method

Note that by using ds0.plugin_classname as a parameter in logging and exception statements,
far more commonality can be achieved between similar collect methods.

The collect method is deliberately only concerned with retrieving data, not with processing it.

13.3.4.3 onResult, onSuccess and onError methods

onResult is identical to the previous example, returning an exception to onError if the
command exit is non-zero or the command stdout is null. It also uses ds0.plugin_classname to
parameterise date in logging and exceptions.

The onSuccess method should be used to decode the output from the script.

284 ZenPack Developers' Guide Oct 13, 2016

zenoss@zen42:/code/ZenPacks/DevGuide/ZenPacks.community.DirFile/ZenPacks/community/DirFile/dsplugins

File Edit View Search Terminal Help
lef onSuccess(self, result, config):

log.debug('In FileStatsPythonDeviceData success - result is %s and config is %s ' % (result, config))
data = self.new data()
data['values'] = {}
or ds in config.datasources:
log.debug(' Start of config.datasources loop')
Set k to the fileld parameter passed in the params dictionary.
This will be used to test against the datasource component id.
is complete output returned from collect method like:
File string count test ok | test_1=90 without=17
= ds.params['fileld']
= result[0]
log.debug('ds.component is %s' % (ds.component))
log.debug(' k is %s and v is %5 ' % (k,v)
ds.component == k:
Create dictionary to hold dpname:dpvalue pairs for each file component
Eg. {'statsFile test 1': 'l1l', 'statsFile without': '1'}
dpdict = {}
for datapoint_id in (x.id x 1in ds.points):
log.debug('In datapoint loop datapoint_id is %s ' %(datapoint_id))
Datapoint names are hard-coded here
datapoint_id 1 ['test 1', 'without']:

< oM H
<

dpname = ' '.join((ds.datasource, datapoint id))
log.debug('dpname is %s' % (dpname))
v is complete output returned from collect method like

File string count test ok | test 1=90 without=17
Use regular expression re module to get values for test_1 and without
m = re.search(r'File string count test ok \| test 1=(?P<test 1=[0-9]*) without=(?P<without=[0-9]*)', v)

m.group(datapoint_id):
dpdict[dpname] = m.group(datapoint_id)
log.debug('dpdict is %s' % (dpdict))
data['values'][ds.component] = dpdict

log.debug('data is %s ' % (data))
I data

"FileStatsPythonDeviceData.py" [Modified][readonly] line 143 of 161 --88%-- col 1
Figure 177: FileStatsPythonDeviceData onSuccess method
In Figure 177:

e The component id is gathered into variable & from the params/’fileld’]
e The variable v is set to the entire stdout output from the ssh command

e Each component (file) may have several search strings to be checked so a dictionary,
dpdict, is created to hold dpname:dpvalue pairs for each file component.

e It is good practice (and enormously helpful) to include sample output when writing
code to parse output.

e The Python re regular expression module is used to parse the stdout string

m = re.search(r'File string count test ok \| test_1=(?P<test_1>[0-9]*) without=(?P<without>[0-9]*)"', V)
if m.group (datapoint id):
dpdict[dpname] = m.group (datapoint id)

m The search string to match, starts with the constant text:

File string count test ok
s Followed by a space, followed by a literal pipe symbol, which needs to be escaped
with a backslash

s Followed by a space, followed by the hard-coded first match string test_I= (white
space has been replaced by an underscore by this stage)

m (?P<test_1>[0-9]*) is a Python named group. The expression to match is /[0-9/* ;
that is, zero or more digits and a matching value is assigned to the group name
called test_1.

s Followed by hard-coded literal text for the second match string “ without=" - note
the single space before without which is delivered by the script output.

Oct 13, 2016 ZenPack Developers' Guide 285

m (?P<without>[0-9]%) is a second named group delivering a second set of digits to the
named group called without.

s v (the entire output from the shellscript) is the string that the regular expression is
applied to.

s The variable m holds the result of the regular expression search method.
s If a named group matching the datapoint_id exists as a result of the search, then
create an entry in the dpdict dictionary for:

dpname: m.group (datapoint id)

e Finally, for each file component, append an entry to the data/values’] dictionary, to be
returned, ultimately, to the template:

data['values'] [ds.component] = dpdict

The onError method is very similar to the previous example.

Fle Edit \iew Bookmarks Settings Help
def :“E":“(Eelf, result, config):

Called only on error. After onResult, before onComplete.

You can omit this method if you want the error result of the collect
method to be used without further processing. It recommended to
implement this method to capture errors.

ds@ = config.datasources[@]
plugin = dsB8.plugin classname.split('."'}[-1]
log.debug('In OnError - result is %s and config is %s ' % (result, config))

return {
‘events': [{
‘summary': 'Error getting file stats data with zenpython: %s' % result,
tevaniClass": "fDirEile’,

'eventKey': plugin,
'severity': 4,
e

}

"FileStatsPythonDeviceData.py" 164 lines --87%-- 144,17 99%

2

Figure 178: FileStatsPythonDeviceData onError method

Restart zenhub, zopectl and zenpython to test the new plugin.

13.3.4.4 Performance template to drive the PythonDataSourcePlugin

A new performance template FileStatsPythonXml will be created to drive the new plugin.
The datasource is called statsFile and, as with the COMMAND datasource in section 12.3.2,
datapoints test_1 and without must be hard-coded to match the datapoint code in the
onSuccess method.

286 ZenPack Developers' Guide Oct 13, 2016

4-@ 1st DASHBOARD EVENTS INFRASTRUCTURE REPORTS ADVANCED Q * admin siGNouT B

Monitoring Templates b

4 File I -1k 34 +|eo
/Server/Linux/DirFile flams Source Enabled Type Name Type
File_backup 4) statsFile ZenPacks.community.DirFile.dsplugins. FileStatsPythonDeviceData true Python
4 FileLsDiskUsedPythonXml statsFile.test_1 GAUGE

/Server/Linux/DirFile statsFile.without
4 FilePythonXml Edit Data Source
/Server/Linux/DijXERER
4 FileStatsPythonXml
/Se NUX/B] [Enabled

FileSystem Event Key:
4 FileXml Event Class:

i i : /DirFil =
IserverLinu D R

${here/id} Plugin Class Name:

| B

Graph Definitions

+]o]o)

Name

test 1 count (Python)

FtpMonitor

HTTP Cycle Time (seconds): ZenPacks.community.DirFile.dsplugins.FileStatsPythonDevicel without count (Python)
HitpMonitor

ifOperStatus

> |

Figure 179:7Template for driving the FileStatsPythonDeviceData plugin with hard-coded datapoints
This is a component template so needs to be included in zenpack.yaml in the
monitoring_templates attribute for the File object class:

monitoring templates: [File, FileXml, FilePythonXml, FileStatsPythonXml]

The template will then be automatically bound to any File component.

13.3.5 Collecting component performance data; generic component
command with parser

This example converts the COMMAND example in section 12.3.3 where the remote script is
proscribed by someone else - part of a commercial package or the work of another department.
The script delivers information about all components.

The COMMAND example created a bespoke parser to parse the output of Is -/; a Python
datasource has no built-in parsers so has to do that work anyway. This example differs from
previous Python ones by demonstrating the power of the config_key method to reduce the
work necessary to fulfil component templates.

Is -1 <directory> provides output for each file in that directory, including, in the fifth field, the
number of bytes in the file; the last field is the filename. This sample will run the s -/
command to bring back all files for a directory and then select the particular instance, by the
fileName attribute, along with its size.

Given an example line to parse like:
-rw-r--r-- 1 jane users 119 Dec 2 17:36 fredl.log 20151110
from section 12.3.3, a ComponentCommandParser uses four attributes:
e componentSplit = '\n'
m The delimiter to split the complete command output into elements per component

e componentScanner = r'(\S+\s+)+(?P<component>.+)$'

Oct 13, 2016 ZenPack Developers' Guide 287

s Match on the last element of non-white-space followed by white-space
s where component is the named group to match the component id
e scanners = [r'(\S+\s+){4}(?P<IsBytesUsed>[0-9]+)']

s Match on non-white-space followed by white-space 4 times then take the next
numeric field into:

m [sBytesUsed, the named group that must match the datapoint name
e componentScanValue = 'id'

s In the COMMAND parser, this defines the attribute of the component that must
match the componentScanner field

Since much of the work has already been done in the old COMMAND parser, significant parts
of it will be used in the new plugin.

The new PythonDataSourcePlugin, LsFileDiskUsedPythonDeviceData , will be added to the
ZenPack's dsplugins directory with the attendant entry in dsplugins/__init_.py:

from LsFileDiskUsedPythonDeviceData import LsFileDiskUsedPythonDeviceData

13.3.5.1 Imports, proxy_attributes, config_key and params

Imports will be exactly the same as the last example, including the Python re module for
regular expressions.

The proxy_attributes statement only lists zCommandUsername and zKeyPath,;
zCommandPath is not required as the remote command to be run is a built-in (/s -I).

The procedure is to run s -/ against a directory and then get filename and space used for
each file. When considering configs to be created, the context_id (that is, the individual files)
are superfluous; what determines the unique tasks are the target device and the directory
that files exist in, not the individual files. Thus the config_key method is:
@classmethod
def config key(cls, datasource, context):
context will be a File.

One command to a device supplies data for all context.id's
so context.id not needed in config key

return (
context.device () .1id,
datasource.getCycleTime (context),
datasource.rrdTemplate () .1d,

datasource.id,

datasource.plugin classname,
context.fileDirName,
'LsFileDiskUsedPythonDeviceData',
)

The params method is exactly the same as the previous example.

The collect method is almost identical to the previous example; only the command and
arguments are changed:

cmd = os.path.join(libexecdir, 'lsFileDiskUsed ssh.sh')
args = (ds0.zCommandUsername, keyPath, dsO.managelp, dsO.params['fileDirName'])

288 ZenPack Developers' Guide Oct 13, 2016

The onResult method is identical to the previous example.

13.3.5.2 onSuccess method

The onSuccess method capitalises on the custom parser code from the COMMAND example

and then uses the component id and the bytes used value to populate entries in the
data/ values’] dictionary, similar to previous Python examples.

zenoss@zen42:/code/ZenPacks/DevGuide/ZenPacks.community.DirFile/ZenPacks/community/DirFile/dsplugins

File Edit View Search Terminal Help
f onSuccess(self, result, config):
data = self.new data()
datal 'values'] = {}
The ultimate result from the plugin is a dictionary where keys are component ids so

return a dictionary here with the fileIld (not name) as key
result[0] is the complete string returned from the command, like:
#

#total 16

#-rw-r--r-- 1 jane users 119 Dec 2 17:36 fredl.log 20151110
#-rw-r--r-- 1 jane users 559 Dec 2 17:37 fredl.log 20151116
#-rw-r--r-- 1 jane users 500 Dec 3 11:09 fredl.log_ 20151202
#drwxr-xr-x 3 jane users 4096 Dec 2 17:38 test

#Use regular expression re module to allocate file sizes to file names

component fileName attribute instance matches last field eg. fredl.log 20151110
l-or-more non-whitespace char followed by l-or-more whitspace, 1 or more times
followed by l-or-more anything put into component variable

followed by end-of-line ie. last field

componentScanner = r' (\S+\s+)+(?P<component>.+)%"

Get 5th field that must be digits

l-or-more non-whitespace char followed by l-or-more whitspace, 4 times

followed by l-or-more digits put into 1sBytesUsed variable

scanners = r'(\S+\s+){4}(7P<lsBytesUsed>[0-9]+)'

yr ds in config.datasources:
log.debug(' Start of config.datasources loop')
for 1 in result[0].split('\n'):
i

K
A

re.search(componentScanner, 1)
re.search(scanners,1)

1ise Exception('In onSuccess - Error gathering %s info. Result format wrong') % (ds.plugin classname,)
"LsFileDiskUsedPythonDeviceData.py" [Modified][readonly] 180 lines --58%-- 105,0-1

log.debug('In LsFileDiskUsedPythonDeviceData success - result is %s and config is %s ' % (result, config))

71%

Figure 180: LsFileDiskUsedPythonDeviceData onSuccess method - part 1 - parsing the data for each

component

Again note that having an example of the output that is to be parsed, is incredibly useful in

the code.

The entire stdout from the command is split on the newline ('\n') character.

Oct 13, 2016 ZenPack Developers' Guide

289

zenoss@zend2:/code/ZenPacks/DevGuide/ZenPacks.community.DirFile/ZenPacks/community/DirFile/dsplugins

File Edit View Search Terminal Help

I Exception('In onSuccess - Error gathering %s info. Result format wrong') % (ds.plugin_classname,)
k 'H
k = k.group('component')
v = v.group('lsBytesUsed')
log.debug('ds.component is %s' % (ds.component))
log.debug(' k is %s and v is %5 ' % (k,v))
ds.component == k:
For each file component, build the dpdict with {dpname: <datapoint value> }
Currently only one hard-coded datapoint called 1sBytesUsed
dpdict = {}
datapoint id (x.1id X ds.points):
log.debug('In datapoint loop datapoint_id is %s ' %(datapoint_id})
datapoint id ['lsBytesUsed',]:

dpname = ' '.join((ds.datasource, 'lsBytesUsed'))
dpdict[dpname] = v
log.debug('dpname is %s' % (dpname))
log.debug('dpdict is %5' % (dpdict))
data['values'][ds.component] = dpdict
got a match so get out of 1 loop

log.debug('data is %5 ' % (data))
data

"LsFileDiskUsedPythonDeviceData.py" [Modified][readonly] 180 lines --77%-- 140,1 88% -

Figure 181: LsFileDisk Used PythonDeviceData onSuccess method - part 2 - applying the parsed data to
datapoints

In Figure 181 if the output line being processed has valid component id and value fields, then
the component is compared with the current datasource component. If the datasource has a
(hard-coded) datapoint called IsBytesUsed then the dpdict dictionary is populated with
{dpname: value}.

As with previous examples, this process is slightly over-complex to provide for further
expansion of datasources and datapoints. Since this example is looking for a filename match
from an /s -/ listing, once a match has been achieved there is no point in examining further
lines in the Is - [listing; hence the break.

As usual, the data/'values’] dictionary is populated for each file component.
The onError method is virtually identical to previous Python plugin examples.

Restart zenhub, zopectl and zenpython to test the new plugin.

13.3.5.3 Performance template to drive the PythonDataSourcePlugin

A new performance template FileLsDiskUsedPythonXml will be created to drive the new
plugin. The datasource is called FileLsDiskUsedPython and, as with the COMMAND
datasource a specific datapoint [sBytesUesd must be hard-coded to match the datapoint code
in the onSuccess method.

290 ZenPack Developers' Guide Oct 13, 2016

Monitoring Templates

ke e +| Q|0
DirFile Name Source Enabled Type Name Type

4 FileLsDiskUsedPythonXml FileLsDiskUsedPython.lsBytesUsed GAUGE

Edit Data Source

Name: Type:

FileLsDiskUsedPython Python

Enabled Severity

+[o]o-

. Is Disk Used (Python)
Component: /DirFile i (Pyt

${here/id} Plugin Class Name:

Cycle Time (seconds): ZenPacks.community.DirFile.dsplugins. LsFileDiskUsedPythor

SAVE CANCEL
0 Jobs ~

Figure 182: Template to drive LsFileDiskUsedPythonDeviceData plugin

This template can be automatically bound to File object classes by adding it to the
monitoring_templates attribute for File in zenpack.yaml:

monitoring templates: [File, FileXml, FilePythonXml, FileStatsPythonXml, FileLsDiskUsedPythonXml]

Note that for each template associated with a new Python plugin, the naming convention has
included “Python” to distinguish from similar templates that are driven by COMMAND
datasources.

Similarly, the graphs created have all included Python on the title so that data collected by
the two different methods can be distinguished and compared.

Thus far, each of the new Python-based templates should be added to the ZenPack's
objects.xml file by adding the template through the GUI options and re-exporting the
ZenPack.

13.3.6 Collecting component performance data; customized datasource
to pass customized key values

The last sample in the COMMAND section discussed creating a complete new datasource in
section 12.3.4. It extended the word-checking scenario so that strings to be searched for were
configurable in the datasource, and each datasource has a single datapoint for the string to be
checked.

The identical remote script, file_stats_param.sh, will be run to deliver string match results,
driven by a local ssh script, file_stats_param_ssh.sh.

#!/bin/bash

#

Runs command, file stats param.sh, on remote target to return number of lines
1in file containing supplied string parameter

file stats param.sh expects two parameters - filename and string

#

Oct 13, 2016 ZenPack Developers' Guide 291

Returned output in format:

" File string count test ok | matches= $stringCountl

or error output starting with "Error"

Param = ssh user
= keypath
Param target

file to test
path to file stats.sh
= string to search for

Param
Param
Param
set —-x

o Ul WN R
Il

#
#
#
#
#
Param
#
#
#
#
#

echo "$1 $2 $3 $4 $5 $6" > /tmp/filestatsparam.tmp

Ensure that the string is quoted to preserve spaces

CMD="$5/file stats param.sh $4 \"S6\""

file stats param ssh.sh zenplug ~/.ssh/id dsa taplow-11
/opt/zenoss/local/fredtest/fredl.log 20151202 /home/zenplug "test 2"

SSh -1 Ilsl" _i "$2" "$3" "sCMD"

13.3.6.1 Building the Python datasource

The new datasource in the ZenPack's datasources directory, will be
DirFilePythonDataSource.py. This file requires very little new development as it is largely a
combination of the existing datasource developed for the COMMAND scenario, with the
PythonDataSourcePlugin developed in dsplugins/FileStatsPythonDeviceData.py. The only
major difference is that the new datasource will inherit from the PythonDataSource class

rather than from the BasicDataSource.

The PythonDataSource can be inspected from the PythonCollector ZenPack base directory
under the datasources directory. Standard properties for a PythonDataSource are:

plugin classname = None

Defined instead of inherited to change cycletime type to string.

_properties = (
{'id': 'sourcetype', 'type': 'selection', 'select variable': 'sourcetypes', 'mode': 'w'},
{'id': 'enabled', 'type': 'boolean', 'mode': 'w'},
{'id': 'component', 'type': 'string', 'mode': 'w'},
{'id': 'eventClass', 'type': 'string', 'mode': 'w'},
{'id': 'eventKey', 'type': 'string', 'mode':
{'id': 'severity', 'type': 'int', 'mode': 'w'},
{'id': 'commandTemplate', 'type': 'string', 'mode': 'w'},
{'id': 'cycletime', 'type': 'string', 'mode': 'w'},
{'id': 'plugin classname', 'type': 'string', 'mode': 'w'},

)

Note that cycletime is redefined here to be a string rather than an int. plugin_classname is

unique to the PythonDataSource.

292 ZenPack Developers' Guide

Oct 13, 2016

zenoss@zend2:/code/ZenPacks/DevGuide/ZenPacks.community.DirFile/ZenPacks/community/DirFile/datasources

File Edit View Search Terminal Help
from ZenPacks.zenoss.PythonCollector.datasources.PythonDataSource import PythonDataSource, PythonDataSourcePlugin k.
from zope.component import adapts

from zope.interface import implements

from Products.Zuul.form import schema

from Products.Zuul.infos import ProxyProperty

from Products.Zuul.infos.template import RRDDataSourceInfo
from Products.Zuul.interfaces import IRRDDataSourcelnfo
from Products.Zuul.utils import ZuulMessageFactory as _t
import os

import re

Twisted Imports
from twisted.internet.defer import inlineCallbacks, returnValue
from twisted.internet.utils import getProcessOutputAndValue

Setup logging so it includes the ZenPack name
import logging
log = logging.getLogger('.'.join(["zen', name_]})

DirFilePythonDataSource(PythonDataSource):
" Get DirFile data using Command """
ZENPACKID = 'ZenPacks.community.DirFile'
Friendly name for your data source type in the drop-down selection.
sourcetypes = ('DirFilePythonDataSource’',)
sourcetype = sourcetypes[8]

Standard fields in the datasource - with overriden values

(which can be overriden again in the template)

component = ‘${here/id}"’

Note: Event Class must be defined to see this default in GUI
eventClass = '/DirFile’

NB cycletime is string rather than int in PythonDataSource

cycletime = '600°

stringToFind = "'

_properties = PythonDataSource._properties + (
{'id': 'stringToFind', 'type': 'string', 'mode':

W'},

)
Collection plugin for this type. Defined below in this file.
plugin_classname = ZENPACKID + '.datasources.DirFilePythonDataSource.DirFilePythonDataSourcePlugin’

"DirFilePythonDataSource.py" [Modified] 217 lines --18%-- 41,0-1 Top

Figure 183: DirFilePythonDataSource.py - part 1

In Figure 183 note that:
e PythonDataSourcePlugin is imported from the Python Collector ZenPack

e The info and interface imports are from RRDDataSourcelnfo and
IRRDDataSourcelnfo respectively. The COMMAND-based datasource used
CommandDataSourcelnfo and ICommandDataSourcelnfo.

o The new datasource will have a “friendly name” of DirFilePythonDataSource (in the
sourcetypes statement).

e The default cycletime is set to 600s.

e A new attribute is defined for the datasource, stringToFind, which will appear in the
GUI as a parameter to be supplied.

e The plugin_classname attribute is set as the path to this ZenPack with
.datasources.DirFilePythonDataSource.DirFilePythonDataSourcePlugin appended; that is,
follow the datasources directory, into the DirFilePythonDataSource file (module) to the
DirFilePythonDataSource class.

A datasource defines new elements of the GUI so needs to have info and interfaces entries.

Oct 13, 2016 ZenPack Developers' Guide 293

zenoss@zen42:/code/ZenPacks/DevGuide/ZenPacks.community.DirFile/ZenPacks/community/DirFile/datasources

File Edit View Search Terminal Help
IDirFilePythonDataSourceInfo(IRRDDataSourcelInfo):
"""Interface that creates the web form for this data source type.

These entries define fields you see in the GUI
The group statement is to keep attributes together on the GUI.

stringToFind = schema.TextLine(
title = _t{u'Search String'),
group = _t('stringToFind"))
DirFilePythonDataSourceInfo(RRDDataSourceInfo):
""" Adapter between IDirFileSourceInfo and DirFileSource
These entries define the default data that you see in GUI fields

implements(IDirFilePythonDataSourcelInfo)
adapts(DirFilePythonDataSource)

stringToFind = ProxyProperty('stringToFind")

"DirFilePythonDataSource.py" 222 lines --23%-- 52,0-1 25% |
Figure 184: DirFilePythonDataSource - part 2 - info and interface definitions

The rest of the datasource file defines the PythonDataSourcePlugin and is almost identical to
that in section 13.3.4. The only changes are:

e The PythonDataSourcePlugin is called DirFilePythonDataSourcePlugin to match
the definition earlier in the datasource file.

e The params method has an extra element which passes the stringToFind attribute
from the GUI to the zenpython daemon.

params|['stringToFind'] = datasource.talesEval (datasource.stringToFind, context)

o The collect method has cmd and args modified for the new script:

script is file stats ssh.sh taking 6 parameters, zCommandUsername, keyPath,

host address, fileName, zCommandPath, searchstring
cmd = os.path.join(libexecdir, 'file stats param ssh.sh')
args = (ds0.zCommandUsername, keyPath, dsO.managelp, fileName,

ds0.zCommandPath, dsO.params|['stringToFind'])

o The onSuccess method is modified slightly as the remote script returns a single
<varName>=<varValue> pair where the varName is matches.

294 ZenPack Developers' Guide Oct 13, 2016

zenoss@zend2:/code/ZenPacks/DevGuide/ZenPacks.community.DirFile/ZenPacks/community/DirFile/datasources

File Edit View Search Terminal Help

def onSuccess(self, result, config):
log.debug('In FileStatsPythonDeviceDataDataSource success - result is %s and config 1s %s '
data = self.new _datal()
data['values'] = {}
for ds in config.datasources
log.debug(' Start of config.datasources loop')
Set k to the fileld parameter passed in the params dictionary.
This will be used to test against the datasource component id.

v _is complete output returned from collect method like:
File string count test ok | matches=30

k = ds.params['fileld']

v = result[0]

log.debug('ds.component is %s' % (ds.component))
log.debug(' k is %s and v is %5 ' % (k,v)
if ds.component == k:
Create dictionary to hold dpname:dpvalue pairs for each file component
Eg. {'statsFile_ test 1': "11', 'statsFile without': "1'}
dpdict = {}
for datapoint_id in (x.id for x in ds.points):
log.debug('In datapoint loop datapoint_id is %s ' %(datapoint_id))
Datapoint names are hard-coded here
if datapoint_id not in ['matches']:
cont 2
dpname = '.join((ds.datasource, datapoint_id))
log.debug('dpname is %s' % (dpname))
v i1s complete output returned from collect method like
File string count test ok | test_1=90 without=17
Use regular expression re module to get values for test 1 and without
m = re.search(r'File string count test ok \| matches=(?P<matches>[0-9]1*)"', v)
1T m.group(datapoint_id):
dpdict[dpname] = m.group(datapoint_id)
log.debug('dpdict is %s' % (dpdict))
data['values'][ds.component] = dpdict

log.debug('data is %5 ' % (data))
feturn data

Figure 185: DirFilePythonDataSource onSuccess method

The datasource file has added new info and interface definitions so configure.zeml in the
ZenPack's base directory, must be edited to “glue” these in.

% (result, config))

"DirFilePythonDataSource.py" 222 lines --90%-- 201,9 88% |-

zenoss@zen42:/code/ZenPacks/DevGuide/ZenPacks.community.DirFile/ZenPacks/community/DirFile/datasources

Eile Edit View Search Terminal Help

<?xml veffsion="1.8" encoding="utf-8"?>

<configure
xmlns="http://namespaces.zope.org/zope"
xmlns:browser="http://namespaces.zope.org/browser"
xmlns:zcml="http://namespaces.zope.org/zcml">

<!-- Info Adapters: DataSources

For ZenPacks that add new datasource types you must register their Info
adapter(s). The info adapters provide the API that the web interface needs
to show information about each instance of your datasource type that is
created. The info adapters are also used to set the properties of the
datasource instances.

-->

<adapter
provides=".datasources.DirFileDataSource.IDirFileDataSourceInfo"
for=".datasources.DirFileDataSource.DirFileDataSource"
factory=".datasources.DirFileDataSource.DirFileDataSourceInfo"
/>

<adapter

provides=".datasources.DirFilePythonDataSource.IDirFilePythonDataSourceInfo”
for=".datasources.DirFilePythonDataSource.DirFilePythonDataSource"
factory=".datasources.DirFilePythonDataSource.DirFilePythonDataSourceInfo"
/>

</configure>

Figure 186: Modifications to configure.zcml for the DirFilePythonDataSource datasource

Oct 13, 2016 ZenPack Developers' Guide

"../configure.zcml" 30 lines --3%-- 1,9 Top

295

13.3.6.2 Deploying the new datasource

Having created a new datasource, the ZenPack must be reinstalled and zenoss completely
stopped and restarted.

The first test is to create a new performance template, FileStatsParamPythonXml with a
device class location of /Server/Linux/DirFile. Within the template, create a new datasource
and check that the new Python datasource is in the dropdown list. The convention for this
ZenPack is to call the datasource <the string to search for>Python, eg. withoutPython.

Remember that datasource instances need to be unique because, prior to Zenoss 5, the RRD
data for each device is saved in a filename that concatenates datasource_datapoint eg.
withoutPython_matches.rrd.

A matches datapoint will need creating for each datasource (to match the datapoint name
used in the onSuccess method).

Graphs should have a unique title to distinguish them from graphs created by earlier
examples.

Menitoring Templates

Ik 2K 23 + Q|0
Name Source Enabled Type Name Type
withoutPython ZenPacks.community.DirFile.datasources.DirFilePythonDataSource. DirFilePythonDa. true DirFilePythonDataSource

withoutPython.matches GAUGE

Edit Data Source
onXmi Name: Type:

test_1Python DirFilePythonDataSource

nXm Enabled Severity:

+[o]o-

Component: /DirFile ~; without by Python datasource

${here/id}

stringToFind
Search String:

SAVE CANCEL

e ADMAN
MyFooter + || 4= || @ | £ ~ 0 Jobs *

Figure 187: Template to drive new DirFilePythonDataSource

Don't forget to add this template to the ZenPack using the GUI and re-export the ZenPack.

To ensure that the template is bound automatically to all File object classes, re-edit
zenpack.yaml and add this template to the monitoring_templates attribute.

monitoring templates: [File, FileXml, FilePythonXml, FileStatsPythonXml,
FileLsDiskUsedPythonXml, FileStatsParamPythonXml]

296 ZenPack Developers' Guide Oct 13, 2016

13.4 Converting the modeler to use the PythonCollector
ZenPack

There are advantages and disadvantages with the COMMAND-based modeler plugin. On the
plus side, it inherently handles the ssh parameters and the transport session. On the minus
side, there is no mechanism for passing other parameters to the command to be run.

The COMMAND-based plugin specified the command as:

command = (
'find /opt/zenoss/local -type d ;
#'find / -type d ;'
'echo SPLIT ; '
'find /opt/zenoss/local -type f'
#'find / -type f'
)

Although the ZenPack provides for zMonitorDirl and zMonitorDirlFile properties, there is no
simple way to pass these parameters into the command; hence the extremely wasteful use of
the find command above.

Using a PythonPlugin in the modeler means that the ZenPack writer creates the collect
method with all the flexibility that has been seen with datasources.

Reiterating again, there are often better ways of getting twisted deferred data than using
getProcessOutputAndValue() to run ssh sessions but since we have this mechanism and the
ssh driver scripts, a PythonPlugin modeler will be created to demonstrate the mechanism.

The existing dudir_ssh.sh takes a fully-qualified directory name as a parameter , along with
the username, keypath and device target, and returns:

<bytes used> <Fully qualified filename>

if the directory exists; otherwise an error is returned. This will be used to model directories.
In a later development, the <bytes used> will also be incorporated.

The existing IsFileDiskUsed_ssh.sh takes the same parameters and delivers an Is -/ output for
the directory supplied. This will be used to model files.

Under the ZenPack's modeler / plugins hierarchy, create a python subdirectory and touch an
__init__.py file. The modeler file will be DirFilePythonMap.py.

13.4.1 Imports

Oct 13, 2016 ZenPack Developers' Guide 297

[Z] zenoss@zend2:/code/ZenPacks/DevGuide/ZenPacks.community.DirFile/ZenPacks/community/DirFile/modeler/plugins/commu

File Edit VWiew Search Terminal Help

B Module-level documentation will automatically be shown as additional
information for the modeler plugin in the web interface.
DirFilePythonMap

Python plugin using ssh scripts to gather directory and file information

When configuring modeler plugins for a device or device class, this plugin's

name would be community.python.DirFilePythonMap because its filesystem path within
the ZenPack is modeler/plugins/community/python/DirFilePythonMap.py. The name of the
class within this file must match the filename.

H o oH

PythonPlugin is the base class

from Products.DataCollector.plugins.CollectorPlugin import PythonPlugin
from twisted.internet.defer import inlineCallbacks, returnValue
from twisted.internet.utils import getProcessOutputAndValue

(Classes we'll need for returning proper results from our modeler plugin's process method.
from Products.DataCollector.plugins.DataMaps import ObjectMap, RelationshipMap

from Products.ZenUtils.Utils import prepld

import collections

from itertools import chain

import re

import os

"DirFilePythonMap.py" 217 lines --0%-- 1,1
Figure 188: DirFilePythonMap imports

The modeler plugin file needs imports for the usual twisted modules and utilities. It also
specifically needs to import PythonPlugin from

Products.DataCollector.plugins.CollectorPlugin.

Note that PythonPlugin is now provided in the core code; this definition is not in the
PythonCollector ZenPack. The definition mandates collect and process methods as a
minimum.

class PythonPlugin (CollectorPlugin) :

nmoan

A PythonPlugin defines a native Python collection routine and a parsing
method to turn the returned data structure into a datamap. A valid
PythonPlugin must implement the collect and process methods.

wnn

transport = "python"

def collect(self, device, logq):
"""Dummy collector to be implemented by the actual collector.

mwan

pass

13.4.2 Creating a dirRegex directory from zProperties

The same code as was used in the COMMAND modeler will be used to build a dictionary of
directories and file regular expressions.

298 ZenPack Developers' Guide Oct 13, 2016

[E] zenoss@zend2:/code/ZenPacks/DevGuide/ZenPacks.community.DirFile/ZenPacks/community/DirFile/modeler/plugins/community/f - o0 x

Eile Edit View Search Terminal Help
Eu? create dirRegex(self, device, log): 14
Create dictionary where key is directory and value is file regex
dirRegex = {}
" device.zMonitorDirl:
 device.zMonitorDirlFile:
dirRegex[device.zMonitorDirl.rstrip('/')] = device.zMonitorDirlFile

dirRegex[device.zMonitorDirl.rstrip('/')] = None
if device.zMonitorDir2:
- device.zMonitorDir2File:
dirRegex[device.zMonitorDir2.rstrip('/')] = device.zMonitorDir2File

dirRegex[device.zMonitorDir2.rstrip('/')] = None
f device.zMonitorDir3:
device.zMonitorDir3File:

dirRegex[device.zMonitorDir3.rstrip('/')] = device.zMonitorDir3File
.“éirRegex[device.zMonitorDirB.rstrip('/')] = None
#log.info(' dirRegex is %s % (dirRegex))
t dirRegex
"DirFilePythonMap.py" 217 lines --12%-- 27,1 13% -

Figure 189: DirFilePythonMap create_dirRegex function

The function is passed the device parameter so has access to all attributes, methods and
zProperties for that device. The result is a dictionary where keys are the fully-qualified
directory represented by the zMonitorDir<x> property and the values are the file regex
associated with the zMonitorDir<x>File. For example:

{'/opt/zenoss/local/fredtest': 'fredl.*"',
'/opt/zenoss/local/fredtest/test': 'fred2\\.log.*'}

13.4.3 DirFilePythonMap class attributes

[£] zenoss@zen42:/code/ZenPacks/DevGuide/ZenPacks.community.DirFile/ZenPacks/community/DirFile/modeler/plugins/community/f - o0 x
File Edit View Search Terminal Help

s DirFilePythonMap(PythonPlugin): [
relname and modname for the PythonPlugin will be inherited by any calls to

rm = self.relMap() or om = self.objectMap()

No compname specified here as Dir is a component directly on the device (defaults to null string)
classname not required as largely deprecated. classname is the same as the module name here
relname = ‘dirs’

modname = 'ZenPacks.community.DirFile.Dir*

deviceProperties = PythonPlugin.deviceProperties + (

'zCommandUsername',

'zKeyPath',

'zMonitorDirl"',

'zMonitorDir2"*,

'ZMonitorDir3’',

'zZMonitorDirlFile’,

'zMonitorDir2File’,

'zMonitorDir3File’,

)
"DirFilePythonMap.py" 217 lines --22%-- 49,1 245%

Figure 190: DirFilePythonMap attributes

7

The modeler will build directory components of object class Dir (found in
ZenPacks.community.DirFile) by fulfilling the device relation of dirs.

The device properties pertaining to ssh communications and the file and directory properties,
are all made available to the PythonPlugin.

Oct 13, 2016 ZenPack Developers' Guide 299

13.4.4 collect method
The unique method for the PythonPlugin is collect.

E zenoss@zen42:/code/ZenPacks/DevGuide/ZenPacks.community.DirFile/ZenPacks/community/DirFile/modeler/plugins/community/python

File Edit View Search Terminal Help

alnllneCallecks E
collect(self, device, log):
"""Asynchronously collect data from device. Return a deferred."""
log.info("%s: collecting data", device.id)
dirRegex = create_dirRegex(self, device, log)
log.debug('dirRegex is %s' % dirRegex)

Modeler is under modeler/plugins/community/python
thisabspath = os.path.dirname(os.path.abspath(__file_))
libexecdir = thisabspath + '/../../../../libexec’
If device.zKeyPath starts with -~ then it doesn't expand properly so convert to full path
expanduser gives $HOME including trailing /
homedir = os.path.expanduser("~")

f device.zKeyPath.startswith('~")

keyPath = device.zKeyPath.replace('~", homedir)

.keypath = device.zKeyPath

scripts take 4 parameters, zCommandUsername, keyPath, host address, dirName
dircmd = os.path.join(libexecdir, 'dudir ssh.sh')

filecmd = os.path.join(libexecdir, 'lsFileDiskUsed ssh.sh')

respanse = {} E
for d in dirRegex.keys():

args = (device.zCommandUsername, keyPath, device.managelp, d)
dircmd_out = =1d getProcessOutputAndValue(dircmd, args = args)
dircmd_out is a tuple of (<stdout> , <stderr> , <exit code>)
f dircmd_out[2] !=0:
1og exceptlon(In collect - Error gathering %s info - %s ' % (device.id, dircmd_out[1]))
: Exceptlon(In collect %s' % (dircmd out[1]))

if dircmd_out[@]:
log.exception('In collect - Error gathering %s info. No result returned % (device.id)
I e Exceptlon(In collect - Error gathering %s info. No result returned' % (device.id)

)
)

fllecmd out = yield getProcessOutputAndValue(filecmd, args = args)

if fllecmd_out[Z] 1=B;
log.exception('In collect - Error gathering %s info - %s ' % (device.id, filecmd_out[1]))
I Exception('In collect %s' % (filecmd out[1]))

iF n filecmdiout[@]:

log exception('In collect - Error gathering %s info. No result returned ' % (device.id))
ise Exception({'In collect - Error gathering %s info. No result returned' % (device.id))
"DirFilePvthonMap. Dv” [Modified] 215 lines --31%-- 68,17 38% [+

Figure 191: DirFilePythonMap collect method - part 1

Much of this code is lifted from earlier PythonDataSourcePlugin methods to establish the ssh
keypath and the libexec path to the ssh file that the modeler will run.

A dircmd and filecmd are setup:

dircmd = os.path.join(libexecdir, 'dudir ssh.sh')
filecmd = os.path.join(libexecdir, 'lsFileDiskUsed ssh.sh')

A loop is established for dirRegex.keys(); that is each zMonitorDir<x> property. This ensures a
small number of iterations. args includes the name of the directory for this iteration. yield
getProcessOutputAndValue(diremd, args = args) is used to deliver the twisted Deferred

results. As with dsplugin methods, the output is checked for valid stdout values for both
dircmd and filecmd.

response = {}
for d in dirRegex.keys () :
try:
args = (device.zCommandUsername, keyPath, device.managelIp, d)

dircmd out = yield getProcessOutputAndValue (dircmd, args = args)
dircmd out is a tuple of (<stdout> , <stderr> , <exit code>)
if dircmd out[2] !=0:

300 ZenPack Developers' Guide Oct 13, 2016

log.exception('In collect - Error gathering %$s info - %s ' %
(device.id, dircmd out([1l]))

Q

raise Exception('In collect %s' % (dircmd out[1]))
continue
if not dircmd out[0]:
log.exception('In collect - Error gathering %s info. No result
returned ' % (device.id))
raise Exception('In collect - Error gathering %s info. No

o)

result returned' % (device.id))

continue
filecmd out = yield getProcessOutputAndvalue (filecmd, args = args)
if filecmd out[2] !=0:

log.exception('In collect - Error gathering %$s info - %s ' %

(device.id, filecmd out[1]))
raise Exception('In collect %s' % (filecmd out[1l]))
if not filecmd out([O0]:
log.exception('In collect - Error gathering %s info. No result
returned ' % (device.id))
raise Exception('In collect - Error gathering %s info. No

o)

result returned' % (device.id))

The successful output of this part of the collect method should be:
e dircmd_out a tuple of (<stdout> , <stderr> , <exit code>) from dudir_ssh.sh

e filecmd_out a tuple of (<stdout> , <stderr> , <exit code>) from
IsFileDiskUsed_ssh.sh

A response dictionary has also been initialised.

The end of the collect method populates the response dictionary or raises an exception.

for d in dirRegex.keys():
try:

Check dircmd stdout. Should be like:

12345 /opt/zenoss/local/fredtest

Get the bytes used into named group bytesUsed

Pass the filecmd stdout as the fileOutput element to be sorted out by process
check = re.search(r' (?P<bytesUsed>[0-9]+)\s+/\S+$', dircmd out[0])

if check:
response[d] = {'bytesUsed': check.group('bytesUsed'), 'fileOutput': filecmd out([0]}
log.debug('response is %s ' % (response))

except Exception, e:
log.error (
"$s: %$s", device.id, e)
continue
#log.debug ('Response is %s \n' % (response))
returnValue (response)

dircmd is checked against a regular expression to ensure a valid response. The size is
extracted into the bytesUsed named group; the entire response from Is -/ is passed as the
second element of the entry in the response dictionary. response is a twisted deferred result.
For example:

Response is {'/opt/zenoss/local/fredtest': {'fileOutput': 'total 20\n-rw-
r--r-— 1 jane users 126 Jan 14 14:40 fredl.log 20151110\n-rw-r--r-- 1 jane
users 434 Jan 14 14:40 fredl.log 20151116\n-rw-r--r-- 1 jane users 1047 Jan
14 14:41 fredl.log 20151202\n-rw-r--r-- 1 jane users 961 Jan 18 19:10
fredl.log 20160118\ndrwxr-xr-x 3 jane users 4096 Dec 3 19:17 test\n',

Oct 13, 2016 ZenPack Developers' Guide 301

'bytesUsed': '21251'}, '/opt/zenoss/local/fredtest/test': {'fileOutput':
'"total 12\n-rw-r--r-- 1 jane users 499 Dec 2 17:38 fred2.log 20151124\n-rw-
r--r-- 1 jane users 499 Dec 3 19:17 fred2.log 20151125\ndrwxr-xr-x 2 Jjane
users 4096 Nov 29 18:17 lowertest\n', 'bytesUsed': '14587'}}

13.4.5 process method

The process method of DirFilePythonMap.py is very similar to the previous incarnation with
the COMMAND plugin except that the processing of the output has now been simplified.

El zenoss@zend42:/code/ZenPacks/DevGuide/ZenPacks.community.DirFile/ZenPacks/community/DirFile/modeler/plugins/community/python _

File Edit View Search Terminal Help

def process(self, device, results, log): 12
log.info("Modeler %s processing data for device %s",
self.name(), device.id)
B Create dictionary where key is directory and value is file regex
dirRegex = create_dirRegex(self, device, log)

Setup an ordered collection of dictionaries to return data to the ApplyDataMap routine of zenmodeler
maps = collections.0OrderedDict([
(‘dies’.,. [1).
('files', [1).
1)
Instantiate a relMap. This inherits relname and compname from the plugin.
rm = self.relMap()

for k, v in results.items():
dir_id = prepld(k)
Add an Object Map for this directory
Use prepld to ensure id is unique and doesn't include any dodgy characters like /
om = self.objectMap() inherits modname and compname (null) from plugin
om = self.objectMap()
om.id = dir id
om.dirName = k
om.bytesUsed = int(v['bytesUsed'])
for k1, vl in om.items():
log.debug('dir om key is %s and value is %s' % (kl, vl)
rm.append(om)
For this directory, create a map for associated files, passing this dir_id as part of compname
fm = (self.getFileMap(device, v['fileOutput'], dirRegex, k, 'dirs/%s' % dir id, log))
maps['files'].append(fm)
if len(rm.maps) > 0:
pass

else:
log.info('No matching dirs found on %s
return None

% (device.id))

Add the rm relationships to maps['dirs']
maps['dirs'].append(rm)

Need this complicated setup with maps = collections.OrderedDict and the chain return
to ensure that relationship maps are applied in the correct order. Otherwise there tend
to be issues trying to create relationships on objects that don't yet exist
return list(chain.from_iterable(maps.itervalues()))
"DirFilePvthonMap.pv" (Mod}fiedl 209 lines --Sg%-- 130,9 5% I

Figure 192: DirFilePythonMap process method 7

= = = L ————r——

The results dictionary has directory name as keys. results values are dictionaries of bytesUsed
and the file command output, which is passed to the getFileMap function.

302 ZenPack Developers' Guide Oct 13, 2016

zenoss@zen42:/code/ZenPacks/DevGuide/ZenPacks.community.DirFile/ZenPacks/community/DirFile/modeler/plugins/community/python

Eile Edit View Search Terminal Help

getFileMap(self, device, files_string, dirRegex, dir, compname, log):

#log.debug('files string is %s ,dirRegex is %s, dir is %s,compname is %sl % (files_string, dirRegex, dir, compname))
file_maps = []

f file files_string.split('\n'):

component fileName attribute instance matches last field eg. fredl.log 20151110
1-or-more non-whitespace char followed by l-or-more whitspace, 1 or more times
followed by l-or-more anything put into component variable
followed by end-of-line ie. last field
compExp = re.search(r'(\S+\s+)+(?P<component>.+)3%', file)
T compExp:
T = compExp.group(' component')
#log.debug('In getFileMap loop. T is %s ' % (f))
k, v dirRegex.items():
dir == k: # got directory match
re.search(v, T): # check the regex
Got a regex match against filename f
file id = prepld(f)
Don't want to inherit compname or modname from plugin as we want to set this expicitly
Use ObjectMap rather than om=self.objectMap()
file_maps.append(ObjectMap(data = {
'id': file_id,
'fileName' : T,
*fileDirName' : dir,
'fileRegex' : v,
|30
log.info('Found dir %s and file %s match' % (dir, T))
Get out of for k, v in dirRegex.items(): loop - don't care if matches on >1 regex

Return file maps relationship map with compname passed as parameter to this method
Again - don't want to inherit relname, modname or compname for this relationship as we want to set them explicitly
Use RelationshipMap rather then rm=self.relMap() (

1 RelationshipMap(
compname = compname,
relname = 'files',
modname = 'ZenPacks.community.DirFile.File',
objmaps = file maps)
"DirFilePvthonMap.pv" [Modifiedl 217 lines --82%-- 179,81 Bot |

Figure 193: DirFilePythonMap getFileMap function in process method

The output string is split on newlines and the last element of the line (the filename) is then
compared against the regex file expression for the matching directory. If the output line
matches then a File component object is created and added to the list of file_maps.

A RelationshipMap is returned to instantiate the files relationship using the object class
definition in ZenPacks.community.DirFile.File with the component created from the
concatenation of 'dirs/' and the directory id (passed in the compname parameter in the
previous screenshot); eg. dirs/opt_zenoss_local_fredtest .

The end result is identical to that achieved with the COMMAND plugin.

13.4.6 Testing the new modeler

When testing, ensure that the COMMAND plugin DirFileMap is removed from the modeler
plugin list of test devices and add DirFilePythonMap. Delete all existing components by
selecting them and using the middle icon (-) at the top of the GUI. This will not delete
existing performance data for the components.

The only daemons that need recycling are zenhub, zopectl and zenpython. Ultimately
zenmodeler will also need recycling but it can be run in one-off mode for testing.

Remodel with:

zenmodeler run -v 10 -d taplow-11l.skills-1lst.co.uk --collect DirFilePythonMap > /tmp/fredl 2>&1

and check the output file. Add log.debug statements in for debugging.

Oct 13, 2016 ZenPack Developers' Guide 303

The first test is that the new modeler does appear in the available list of modeler plugins for a
device. If this does not appear or if the zenmodeler output appears to have skipped the new
modeler, check zenhub.log for errors.

13.5 Combining performance data and modeler data

Some monitoring templates shipped with other ZenPacks and with the core product, retrieve
performance data as part of the modeler cycle. For example, the Interfaces component
includes Administrative Status and Operational Status; the File Systems component includes
Used Bytes and Free Bytes. A snapshot of these values can be useful but, given that
zenmodeler typically only runs once or twice a day, these values in the top half of a component
display, may be very out of date.

Fundamentally, these values are held as attributes of the component object so are updated by
the modeler plugin applying ObjectMaps. The PythonCollector ZenPack provides a way to
update such maps as part of the PythonDataSourcePlugin.

Remember that the result returned from a PythonDataSourcePlugin is a dictionary with
events, values and maps elements. There is a good example demonstrated in the zenpacklib

documentation at http://zenpacklib.zenoss.com/en/latest/tutorial-http-api/datasource-plugin-
model-5.html .

304 ZenPack Developers' Guide Oct 13, 2016

http://zenpacklib.zenoss.com/en/latest/tutorial-http-api/datasource-plugin-model-5.html
http://zenpacklib.zenoss.com/en/latest/tutorial-http-api/datasource-plugin-model-5.html

[El zenoss@zend2:/code/ZenPacks/DevGuide/ZenPacks.community.DirFile/ZenPacks/community/DirFile/dsplugins _ O

File Edit View Search Terminal Help
def onSuccess{self, result, config): L

Called only on success. After onResult, before onComplete.

You should return a data structure with zero or more events, values
and maps.
Note that values is a dictionary and events and maps are lists.

return {
'events': [{

'summary': 'successful collection',
'eventKey': 'myPlugin result',
'severity': 0,
1A
‘summary’: 'first event summary’,
'eventKey': 'myPlugin_ result’,
'severity': 2,
oo
'summary': ‘second event summary',
‘eventKey': 'myPlugin_result',
'severity': 3,
11,

'values': {
None: { # datapoints for the device (no component)
'datapointl’: 123.4,
'datapoint2': 5.678,

T

‘cpul’: {
“user's 12.13;
nsystem': 1.21,
tipts 128,
1

}.

‘maps': [
ObjectMap(...),
RelationshipMap(..),
]

"DirDiskUsedPythonDeviceData.py" [readonly] 215 lines --65%-- 140,1 56% |

Figure 194: Datastructure returned by a PythonDataSourcePlugin

The DirDiskUsedPythonDeviceData plugin could easily be used to populate a new bytesUsed
attribute of a Dir component object.

Oct 13, 2016 ZenPack Developers' Guide 305

zenoss@zen42:/code/ZenPacks/DevGuide/ZenPacks.community.DirFile/ZenPacks/community/DirFile/dsplugins

File Edit View Search Terminal Help
i EnSuchss(self, result, config): L
log.debug('In success - result is %s and config is %s ' % (result, config))
data = self.new data()
data['values'] = {}
i ds in config.datasources:
log.debug(' Start of config.datasources loop"')
#result[®] in format:
952 /opt/zenoss/local/fredtest
f 1 in result[@].split('\n"):
i o el

ds.component has / replaced with so prepld the directory name here
= prepId(l.split()[1])
= int(Ll.split()[0])

Exception(' %s5' % ('Error in collect gathering DirDiskUsedPythonDeviceData info. Result format wrong'))

log.debug('ds.component is %s' % (ds.component))
log.debug(' k is %s and v is %5 ' % (k,v))
ds.component ==
data['maps'].append(

ObjectMap({
'relname': 'dirs’',
‘modname’: 'ZenPacks.community.DirFile.Dir"',

'id': ds.component,
'bytesUsed': v,
i2))]
datapoint id ¥ (x.id T X in ds.points}):
log.debug('In datapoint loop datapoint_id is %s ' %(datapoint_id))
datapoint_id in ['duBytes',]1:

dpname = ' '.join((ds.datasource, 'duBytes'))

log.debug(‘dpname is %s' % {dpname))

data['values'][ds.component] = {dpname : v}

log. debug(data[values] is %s' % (data['values']))
got a match so get out of 1 loop

onSuccess will generate a Debug severity event - just to prove we can
data['events'].append({
'device': config.id,
‘summary': 'Dudir’
"DirDiskUsedPythonDeviceData. py [Modified] [readonly] 174 lines --57%-- 100,9 74% [3

Figure 195: Creating a datal'maps’] element for a PythonDataSourcePlugin

Exactly the same parameters are used in the datasource plugin as were used in the
modeler plugin. The directory id field is the datasource component; the bytesUsed field is
readily available in the plugin.

Don't forget to import the ObjectMap method from Products.DataCollector.plugins.DataMaps
at the top of the file.

zenpack.yaml will need modifying to create the bytesUsed attribute of the Dir object class:

Dir:
label: Dir # NB It is label, with spaces removed, that is used to match a component template
meta type: Dir # Will default to this but in for completeness
label width: 150 # This controls the column width for Dir in the Files component display
order: 60 # before file
auto_expand column: dirName
monitoring templates: [Dir, DirPythonXml] # will default to Dir but explicit for clarity

properties:
dirName:
type: string
label: Directory name
short label: DirName
label width: 300
order: 3.1

bytesUsed:
type: int
label: Bytes
short label: Bytes
label width: 100
order: 3.2

306 ZenPack Developers' Guide Oct 13, 2016

The ZenPack should be reinstalled and Zenoss completely restarted, having modified
zenpack.yaml. The result should be that the Dirs component display shows a Bytes field that
is instantiated and updated by the modeler but is also updated by the datasource plugin on
each cycle.

D OARD REPOR D D d ?
Devices
© g o [N ©
|
_ O~ | @ | select~ Q, Type to filter...
Overview
Events
4 Components
o opt_zenoss_loc... /opl/zenoss/local/fredtest/test 14587 2
OFiles (6)
@ Network Routes (3) Graphs ‘ Hourly ‘ Custom Range | || Reset vill!
@ nterfaces (4) < oom Ou >
@05 Processes (5) 25kt
@File Systems (3) 24 k
@1P Services (14) g 2Bk
>
@Processors (1) @ 22k
Graphs 21k §
5 20 k
Modeler Plugins Mon 00: 00 Mon 12:00 Tue 00:00
Configuration Properties 2016-01-17 23:18:39 GMT to 2016-01-19 11:18:39 GMT
B disk_used cur:21.25k avg:20.73k max:21.25k =
MyFooter vllln -]a- v] Commands ~ £ 0Jobs ~

Figure 196: Dirs components with Bytes field

Remember that ZenPacks built with zenpacklib have another alternative for displaying
performance data with the configuration data. The datapoint keyword described in section
10.3.6 is a much simpler and less resource-intensive approach.

Making changes to modeled attributes in the ZODB database during performance collection
can (and usually does) cause a huge amount of configuration invalidation churn that is
entirely unnecessary and may impact performance.

14.0 Events in ZenPacks

It is good practice to include new events in a ZenPack if new conditions have been created. It
is easiest to include Event Class definitions in the objects.xml file by simply adding from the
GUI menus.

14.1 Detecting duplicate events

Several standard fields of an event are key to detecting duplicate events and to implement
event auto-clearing mechanism.

Fields that contribute to the event fingerprint and are used in the dedupid field for
detecting repeated events, are:

e device
e component

e eventClass

Oct 13, 2016 ZenPack Developers' Guide 307

<

e eventKey
e severity
e [summary]

If the eventKey field is null then summary becomes part of the fingerprint; otherwise
summary is not considered. (Note it is eventKey, not eventClassKey that is used here).

Standard templates for many datasource types, including COMMAND and Python, include
fields in the GUI dialogue for Component, Event Class and Event Key; it is good practice to
always populate these fields; by default, these fields tend to be null with the exception of a
COMMAND template which has a default event class of /Cmd/Fail.

If the eventClass field is not populated then the event will come to the Event Console as
/Unknown; this means that further event mapping will need to be configured before de-
duplication or auto-clearing can take place.

The decision whether to populate the eventKey field is crucial. This determines whether the
summary field is part of determining a repeated event. If unique distinguishing information is
in the summary field then do not include eventKey.

14.2 Event auto-clearing mechanism

Zenoss has a built-in mechanism whereby an event with severity of Clear (0) automatically
clears all previous events where:

e component UUID
e eventClass
e eventKey

are the same. The componentUUID incorporates both device and component but this field is
often blank (it was new in Zenoss 4 and many event classes pre-date that). Thus, if

n componentUUID is null then the auto-clear fingerprint fields are:

e device

e component
e eventClass
o eventKey

Note the use of eventKey again in either definition of the auto-clear fingerprint.

14.3 Exploring the use of event class attributes

The ZenPacks.community.DirFile ZenPack will be used to explore the effect of event
attributes.

To demonstrate the use of the event fields (or attributes - the words are used
interchangeably), the file_stats.sh script on a remote target was hidden. This file is driven
both by a COMMAND template datasource and a Python datasource.

308 ZenPack Developers' Guide Oct 13, 2016

Template DataSource Type Remote Script
File FileTest1WithoutCount |COMMAND |file stats.sh
FileStatsPythonXml statsFile Python file_stats.sh
Monitoring Tem
A+l - 3
= Name Source Enabled Type Name Type Min. Value
FileDiskUsed usr/bin/du -P -b ${hereffi... true COMMAND
FileLsDiskUsed fbinfls -1 ${hereffileDirNa true COMMAND
Edit Data Source
Name: Type:
Enabled Severity:
Event Class: Warning
Parser: 60
Component: Event Key:
${herefid}
Command Template:
file_stats.sh "${nereffileDirName}/${here/fileName}"
SAVE CANCEL
0 Job:

Figure 197: FileTest1WithoutCount COMMAND datasource in File template

The COMMAND-based template drives the remote script over ssh. Note that the Component

field has been filled in but the Event Key field has not. EventClass contains the default

/Cmd /Fail.

A +|[e]o-

Name

Edit Data Source

statsFile

Enabled
Event Key:

Component:

${herefid}

Cycle Time (seconds):

SAVE CANCEL

o
Source Enabled Type

Type:
Python
Severity:
Event Class:

Plugin Class Name:

ZenPacks.community.DirFile.dsplugins.Fi

Figure 198: statsFile Python datasource in FileStatsPythonXml template

Oct 13, 2016

ZenPack Developers' Guide

Name Type

309

The statsFile Python datasource has had Component and Event Class configured but Event
Key is left blank. The file_stats.sh remote script is called by the Plugin.

File Edit View History Bookmarks Tools Help

© Zenoss: Devices 3¢ | (O Zenoss: taplow-... ¢ | © Zenoss: Events 3¢ | (3 Zenoss: Monitor... 3 | (3 Zenoss: ZenPac... 3 | { Zenoss: zend2.c... 3 | (3 Zenoss: Michae... 3 | C Zenoss: Trevor ... 3 | dp | v

- M- o @ e~

[5 example.org | https://zen42.class.example.org/zport/dmd/Events/evconsole

¢@I:‘ DASHBOARD EVENTS INFRASTRUCTURE REPORTS ADVANCED Q v * admin SIGNOUT |E

Event Console EventArchive EventClasses Triggers Page Tips

@@@ ‘ { Select v][Export ~ M Configure V] Last updated at 10:50:45AM Actions «
Y O D T e D D e Y e ST, Iﬁﬁﬂ-—-—-d@ﬁﬁﬁ-—-!!éﬁﬁﬁﬁi-
j taplow-11* 3
taplow-11.skill... [DirFile FileStatsPythonDeviceData Error getting file stats data with zenpyt... zenpython 2016-02-01 10:44:03 2016-02-01 10:50
L] taplow-11.skill... fredi.log 20151202 [Cmd/Fail FileTest1WithoutCount No output from COMMAND plugin zencommand 2016-02-01 10:43:57 2016-02-01 10:49
L] taplow-11.skill... fred2.log 20151125 /Cmd/Fail FileTest1WithoutCount No output from COMMAND plugin zencommand 2016-02-01 10:43:57 2016-02-01 10:49
L] taplow-11.skill... fred2.log 20160122 [Cmd/Fail FileTest1WithoutCount No output from COMMAND plugin zencommand 2016-02-01 10:43:57 2016-02-01 10:49|
L] taplow-11.skill... fredi.log 20151116 /Cmd/Fail FileTest1WithoutCount No output from COMMAND plugin zencommand 2016-02-01 10:43:57 2016-02-01 10:49
L] taplow-11.skill... fredi.log 20160118 /Cmd/Fail FileTest1WithoutCount No output from COMMAND plugin zencommand 2016-02-01 10:43:57 2016-02-01 10:49
L] taplow-11.skill... fred2.log 20151124 [Cmd/Fail FileTest1WithoutCount No output from COMMAND plugin zencommand 2016-02-01 10:43:57 2016-02-01 10:49
] taplow-11.skill... fredi.log 20151110 /Cmd/Fail FileTestiWithoutCount No output from COMMAND plugin zencommand 2016-02-01 10:43:57 2016-02-01 10:49

Figure 199: Events generated when remote file_stats.sh script is missing

Note in the Event Console output in Figure 199 that the events driven by the zencommand
daemon have Component and Event Key populated; the zenpython event has the Event Key but
not the Component.

Code in $ZENHOME | Products | ZenHub | services | CommandPerformanceConfig.py will
populate an empty Event Key field with the datasource Name field for a COMMAND
datasource. If Event Key is explicitly configured, it will override the default. The summary
field is populated from $ZENHOME |/ ZenRRD | parsers | Nagios.py if no output is detected.

The event generated by zenpython comes from the onError method of the
PythonDataSourcePlugin:

def onError(self, result, config):

mwan

Called only on error. After onResult, before onComplete.

You can omit this method if you want the error result of the collect
method to be used without further processing. It recommended to
implement this method to capture errors.

wnn

ds0 = config.datasources|[0]
plugin = dsO.plugin classname.split('."') [-1]
log.debug('"In OnError - result is %s and config is %s ' % (result, config))
return {
'events': [{
'summary': 'Error getting file stats data with zenpython: %s' % result,

'eventClass': '/DirFile"',
'eventKey': plugin,
'severity': 4,

1y

The event that is constructed does include eventKey, set to the plugin name, but does not
include component. This is easily rectified by adding the component field to the event above:

310 ZenPack Developers' Guide Oct 13, 2016

'events': [{
'summary': 'Error getting file stats data with zenpython: %s' % result,
'eventClass': '/DirFile',
'eventKey': plugin,
'severity': 4,
'component': dsO.component,

1y

Also note that the event summary is the literal string “Error getting file stats data with
zenpython: “ followed by the message from the Exception in the results variable.

&) Mozilla Firefox - 0 x

@ example.org | https://zen42.class.example.org/zport/dmd/Events/viewDetail 7evid=000c29b5-8a24-9efc-11e5-c8df98a880c3

Resource: iaplow-11.skills-1st.co.uk

Component: fred2.log 20151125
Event Class: /DirFile
Status: New

Error getting file stats data with zenpython:
[Failure instance: Traceback: <type
‘'exceptions.Exception's: In onResult bash:
/home/zenplug/file_stats.sh: No such file or
directory

/opt/zenoss/lib/python/twisted/internet
/defer.py:1076:gotResult
lopt/zenoss/lib/python/twisted/internet
/defer.py:1063:_inlineCallbacks
lopt/zenoss/lib/python/twisted/internet
/defer.py:361:callback
lopt/zenoss/lib/python/twisted/internet
/defer.py:455:;_ startRunCallbacks

--- <gxception caught here> ---
lopt/zenoss/lib/python/twisted/internet
/defer.py:542;_runCallbacks

/opt/zenoss/local

ar [D)
Figure 200: Detailed event when remote file_stats.sh script is missing for zenpython daemon

Message:

(<]

14.3.1 Detecting “repeat” events

Since eventKey is set by both COMMAND and Python datasources, the dedupid field is
defined as the concatenation of:

Oct 13, 2016 ZenPack Developers' Guide 311

e device

e component
e eventClass
e eventKey
e severity

separated by vertical bars.

=1 [6 example.org | https://zen42.class.example.org/zport/dmd/Events/evconsole v g] [Ev Google @ &% = -

*‘@l DASHBOARD Vv & INFRASTRUCTURE REPORTS ADVANCED 3 admin SIGNOUT R

Event Console Event Archive Event Classes Triggers Page Tips

|4 Refresh ~ | Actions ~ | Commands ~

taplow-11" o FileStats 7 V l x| g
v

taplow-11.skill... fred2.log 20151124 /DirFile... FileStatsPythonDeviceData Error getting file stats data with zenpyt... zenpython 2016-02-01 13:35:02 2016-02-01 13:41:02 it
v taplow-11.skill... fred2.log 20160122 /DirFile... FileStatsPythonDeviceData Error getting file stats data with zenpyt... zenpython 2016-02-01 13:34:59 2016-02-01 13:40:59 i
v taplow-11.skill... fred2.log 20151125 /DirFile... FileStatsPythonDeviceData Error getting file stats data with zenpyt... zenpython 2016-02-01 13:34:58 2016-02-01 13:40:58 7
v taplow-11.skill... fredi.log 20151110 /DirFile... FileStatsPythonDeviceData Error getting file stats data with zenpyt... zenpython 2016-02-01 13:35:54 2016-02-01 13:40:54 6
VW taplow-ii.skill... fredi.log 20151202 [DirFile... FileStatsPythonDeviceData Error getting file stats data with zenpyt... zenpython 2016-02-01 13:35:50 2016-02-01 13:40:50 6
W taplow-i1.skill... ™ Mozilla Firefox 6-02-01 13:35:43 2016-02-01 13:40:43 6
W laplow-11.skill... fred| @ example.org hiips:/zend2.class.example.org/zport/dmd/Events/viewDetail?evid=000c29b5-8a24-9efc-11e5-cBe89a10ad5z | 6-02-0113:35:39 2016-02-01 13:40:39 6

zenpython
fred2.log 20151124

taplow-11.skills-
1st.co.uk|red2.log_20151124|/DirFile|FileStatsPythonDeviceData|4

/DirFile

DISPLAYING 1-7 of 7 ROWS.

Figure 201: Events from the Python plugin with repeat count and dedupid

Figure 201 demonstrates an increasing repeat count for each event with a dedupid field of:

taplow-11.skills-1st.co.uk|fred2.log 20151124|/DirFile]
FileStatsPythonDeviceDatal4

14.3.2 Auto-clearing events

The COMMAND-driven events will automatically clear (note clear status not closed) when
the command runs successfully again, as zencommand always sends a default clearing event
unless it is overridden by an error.

312 ZenPack Developers' Guide Oct 13, 2016

DASHBOARD

i ‘@1-

Event Console Event Archive

Event Classes

INFRASTRUCTURE

Triggers

REPORTS

ADVANCED

admin SIGNOUT |

Page Tips

m ... | taplow-11* IStatus]
[x] © taplow-11.skill... fredi.log 20151202 {Cmd/Fail FileTest1WithoutCount File string count test ok zencommand 2016-02-01 12:09:58
o taplow-11.skill... fred2.log 20151125 /Cmd/Fail FileTestiWithoutCount File string count test ok zencommand 2016-02-01 12:09:58
Q © taplow-11.skill... fredi.log 20151116 /Cmd/Fail FileTest1WithoutCount File string count test ok zencommand 2016-02-01 12:09:58
0 o taplow-11.skill... fred2.log 20160122 /Cmd/Fail FileTestiWithoutCount File string count test ok zencommand 2016-02-01 12:09:58
Q o taplow-11.skill... fredi.log 20160118 /Cmd/Fail FileTest1WithoutCount File string count test ok zencommand 2016-02-01 12:09:58
Q © taplow-i1.skill... fred2.log 20151124 ICmd/Fail FileTest1WithoutCount File string count test ok zencommand 2016-02-01 12:09:58
o 9 taplow-11.skill... fredi.log 20151110 /Cmd/Fail FileTest1WithoutCount File string count test ok zencommand 2016-02-01 12:09:58
o 1 taplow-11.skill... fredi.log 20151202 ICmd/Fail FileTest1WithoutCount No output from COMMAND plugin zencommand 2016-02-01 10:43:57
Q 1 taplow-11.skill... fred2.log 20151125 /Cmd/Fail FileTest1WithoutCount No output from COMMAND plugin zencommand 2016-02-01 10:43:57
[x] ! taplow-11.skill... fredi.log 20151116 /Cmd/Fail FileTest1WithoutCount No output from COMMAND plugin zencommand 2016-02-01 10:43:57
0 1 taplow-11.skill... fred2.log 20160122 /Cmd/Fail FileTest1WithoutCount No output from COMMAND plugin zencommand 2016-02-01 10:43:57
Q 1 taplow-11.skill... fredi.log 20160118 /Cmd/Fail FileTest1WithoutCount No output from COMMAND plugin zencommand 2016-02-01 10:43:57
Q 1 taplow-11.skill... fred2.log 20151124 /Cmd/Fail FileTest1WithoutCount No output from COMMAND plugin zencommand 2016-02-01 10:43:57
o 1 taplow-11.skill... fredi.log 20151110 /Cmd/Fail FileTest1WithoutCount No output from COMMAND plugin zencommand 2016-02-01 10:43:57

@ m |

Figure 202: Events after file_stats.sh remote script is restored

When the zencommand command runs successfully the summary field is the output from
file_stats.sh that precedes the pipe symbol.
echo " File string count test ok | $stringlName=$stringCountl \

$Sstring2Name=$stringCount2"

The corresponding PythonDataSourcePlugin will not currently auto-clear events as the
onSuccess method delivers no events. This could easily be added to ensure that error events
from zenpython are automatically cleared when the file_stats.sh script is restored.

zenoss@zend2:/code/ZenPacks/DevGuide/ZenPacks.community.DirFile/ZenPacks/community/DirFile/dsplugins

File Edit View Search Terminal Help

dpname = ' '.join((ds.datasource, datapoint_id}))
log.debug('dpname is %s' % (dpname)) P
v is complete output returned from collect method like
File string count test ok | test_1=90 without=17
Use regular expression re module to get values for test_ 1 and without
m = re.search(r'File string count test ok \| test 1=(?P<test 1>[0-9]*) without={?P<without>[0-9]1%*)"', v)
if m.group(datapoint_id):
dpdict[dpname] = m.group(datapoint_id)
log.debug('dpdict is %s' % (dpdict))
data['values'][ds.component] = dpdict

onSuccess will generate a Clear severity event to auto-close any previous error events
data['events'].append({
‘device': ds.device,

‘component': ds.component, .
'summary': 'Success getting file stats data with zenpython', |
'severity': 0,

‘eventClass': '/DirFile',

‘eventKey': ds.plugin classname.split('."')[-1],

1)

log.debug('data is %s ' % (data))
return data

def GAEBEor(self, result, config):

wn

Called only on error. After onResult, before onComplete.

]
"FileStatsPythonDeviceData.py" [readonly] 176 lines --89%-- 158,1 87% [
Figure 203: FileStatsPythonDeviceData plugin with clearing event added to onSuccess

After editing the dsplugin file, ensure that zenhub, zopectl and zenpython are recycled.

Oct 13, 2016 ZenPack Developers' Guide 313

fingerprint is constructed from:
e device
e component
e eventClass

o eventKey

Note in Figure 203 that the clearing event has a severity of 0 (Clear). The auto-clear

The “good news” clearing event will be a distinct event (not a repeat) as it differs from the
“bad news” event in its severity field.

events.

Do be aware that clear severity events that do not auto-clear any existing events, will be
silently dropped by the zeneventd daemon so there should never be repeated clearing

n Clear severity events are automatically set to Closed status (not Cleared).

@

@ example.org | https://zend2.class.example.org/zport/dmd/Events/viewDetail?evid=000c20b5-8a24-9efc- 11e5-cBdfbc6d7441

B]
eventKey FileStatsPythonDeviceData
agent zenpython
eventState Cleared
fredi.log 20151116
evid 000c29b5-8a24-9efc-11e5-c8dfbc6d7441
. dedupid taplow-11.skills-
facility P 1st.co.uk|fred1.log_20151116|/DirFile|FileStatsPythonDeviceData]0
Error getting file stats data with zenpython: [Failure instance: Traceback: <type eventClass DirFile
‘exceptions. Exception'>: In onResult bash: home/zenplug/file_stats.sh: No such
file or directory i i i ‘defer.py:1076:gotResult eventClassKey null
lopt. ib/py Jefer.py:1063:_inlineCallbacks Joptizenoss N
ib/py defer.py:361:callpack /of ib/g i eventClassMapping
message fintemet/defer.py:455:_startRunCallbacks -~ <exception caught here> — eventGroup
lopt/. python/ftwisted. Jefer.py:542: runCallbacks /optizenoss
NocaliZenPacks.zenoss. PythonCollectorZenPacks/zenoss/PythonCollector eventKey FileStatsPythonDeviceData
/zenpython.py:339: _wrapper /code/ZenPacks/DevGuide
/ZenPacks.community.DirFile/ZenPacks/community/DirFile/dsplugins CEED Gz
[FileStatsPythonDeviceData.py:100:onResult] evid 000c29b5-8a24-9efc-11e5-c8e59efa7c59
ntevid facility
priority message Success getting file stats data with zenpython
severity 4 ntevid
Error getting file stats data with zenpython: [Failure instance: Traceback: <type priority
s ‘exceptions.Exception’>: In onResult bash: /home/zenplug/file_stats.sh: No such .
6 file or directory /o i i i defer.py:1076:gotResult severity
oo summary Success getting file stats data with zenpython
DeviceClass Server/Linux/DirFile
clearid 000c29b5-8a24-9efc-11e5-cBe59efa7c59 [~ Devi (]
o m Dy a B

Mozilla Firefox

Error getting file stats data with zenpython: [Failure instance: Traceback: <type

eventGroup

e Mozilla Firefox el

@ example.org | nip

o

7

Detail7evid=00

en42.class.example.org/zport/dmd/Even

Success getting file stats data with zenpython

9b5-8a24-9efc-11e5-

Figure 204: "Good news” event auto-clears "bad news” event

nWhen a clearing event clears “bad news” events, the evid field of the “good news” event is
copied to the clearid field of the “bad news” event.

14.4 Adding transforms to Event Classes

The main reason for adding new event classes is to make it easier to process them, ensuring

that important events trigger notifications to specific users. Any event class may have a class

transform which is code that may do one or more of:

314

e Modify attributes of the event

ZenPack Developers' Guide

e Access the ZODB database for attributes or methods of the device that caused the
event

Oct 13, 2016

e Create new user-defined event attributes
e Run Python code
Fundamentally, an event transform is Python code.

As an example, consider the event generated by zenpython when the remote file_stats.sh
script is missing:

e eventClass /DirFile

e agent zenpython

e eventKey FileStatsPythonDeviceData

e component < file name being tested >

e summary Error getting file stats data with zenpython: < result >

It might be useful to include in the event, the directory containing the file under test. This is

the fileDirName attribute of the File object instance. The fileRegex attribute is also available,
defined in zenpack.yaml. A class transform for the /DirFile event class can be constructed as
shown in Figure 205.

4.@ Ist DASHBOARD EVENTS INFRASTRUCTURE REPORTS

Event Console Event Archive Event Classes Triggers

Events > DirFile

Classes

. Transform
Mappings , . - -
if evt.device and evt.eventKey == 'FileStatsPythonDeviceData':
Events for d in device.dirs():
Configuration Properties for f in d.files():
if f.id == evt.component:
evt.fileDirName = f.fileDirName
evt.fileRegex = f.fileRegex
Overridden Objects
Transform
Event Archive
Add to ZenPack...
I —

mﬂnr - l

Figure 205: | DirFile event class transform

Oct 13, 2016 ZenPack Developers' Guide 315

Two new user-defined event attributes are created for fileDirName and fileRegex.

Note that the transform has access to the device object and can query the ZODB database for
its dirs relationships and the associated files relationships to check whether any match the
existing evt.component field.

Error getting file stats data with zenpython: [Failure instance:
ucvive =10 WL R A LY
ipAddress 10.0.0.11
monitor localhost
prodState Production
clearid
count 151
firstTime 2016-02-02 15:48:52
lastTime 2016-02-02 18:18:52
ownerid
stateChange 2016-02-02 15:48:52
Category
explanation N/A
fileDirName lopt/zenoss/local/fredtest
fileRegex fred1.”
manager zen42.class.example.org
(] B

Figure 206: Event detail for | DirFile event class with new user-defined event attributes

14.5 Providing event details in a ZenPack

The Event Console permits configuration of fields to be displayed. In older versions of Zenoss,
this was reached by clicking the down-arrow on an event field header. Latterly, the Configure
button with Adjust Columns does the same job. Zenoss 4.2.5 with SUP 457 and later, even
sorts the available columns alphabetically though earlier versions added new fields to the
bottom of the list.

If a ZenPack has introduced new attributes that are required in the Event Console, these can
be configured in the zep.json file in the ZenPack's zep directory. If a ZenPack has been created
through the GUI then a zep directory will exist containing:

e zep.json.example

e actions.json.example

316 ZenPack Developers' Guide Oct 13, 2016

If the ZenPack has been created with zenpacklib then manually create the zep directory and
touch the __init_ .py file.

zenoss@zend2:/code/ZenPacks/DevGuide/ZenPacks.community.dummy/ZenPacks/community/dummy/zep
File Edit View Search Terminal Help

// This file is used to add custom event fields. It will be loaded when the
// ZenPack is installed.

// The file should be renamed to zep.json to be picked up during the ZenPack's
// installation.

// name: Human-friendly description of the new field. This shows up in the event console column header.

// key: Name of the field stored in the event dictionary or proto-buf.
/7 This name should follow the dot notation similar to ZenPacks.
/7 Zenoss details are zenoss.{namespace}.{detail}.
/i Third party ZenPacks should be something like: 'zenpack.community.myzenpack.{detail}' where
// the first three chunks correspond to the ZenPacks namespace.
/7
// type: One of the following codes:
/Y STRING = 1;
/7 INTEGER = 2;
/7 FLOAT = 3;
/ LONG = 4;
/Y DOUBLE = 5;
/7 IP_ADDRESS = 6;
/I // A slash-delimited path to a resource (event classes, locations, systems, groups, device classes).
/7 PATH = 7;
{
// Top-level key must be 'EventDetailltem'
"EventDetailItem" : [
{

"name" : "Example",

"key" ! "zenoss.example.detail name",

"type" : 1

// Add more event field dictionaries here, separated by commas

"zep.json.example" [readonly] 36 lines --2%-- (2 of 2) 1,1 All

Figure 207: zep.json.example created automatically when ZenPack created from GUI

There is an item on the Zenoss wiki that helps both with defining event details fields and
with providing triggers and notifications -

http://wiki.zenoss.org/Providing Triggers Notifications and Event Details in ZenPack .

Key points are:
o The file for defining event detail fields must be called zep.json

e There must be no comments in the file (prefaced with //). This will cause an error
when the ZenPack is loaded such as:

ValueError: No JSON object could be decoded
e Ensure there are no commas on the final line of a clause - JSON is not as forgiving as
Python - same error as above.

o FEventDetailltem is the required reserved keyword and is a list of dictionaries where
each dictionary specifies a field.

e The key attribute must match the name of the event attribute - this does not appear to
match with the information provided in the default example file.

Oct 13, 2016 ZenPack Developers' Guide 317

http://wiki.zenoss.org/Providing_Triggers_Notifications_and_Event_Details_in_ZenPack

m If key is a fully qualified name such as ZenPacks.community.DirFile.fileDirName
then the associated name does appear as a selectable field in the Adjust Columns
dialogue of the Event Console but one cannot use evt.
ZenPacks.community.DirFile.fileDirName in a transform as it tries to find a
ZenPacks attribute of evt (and, of course, fails).

n If key is ZenPacks.community.DirFile.fileDirName and a transform references
fileDirName then no association is made between the two.

o The name field is the user-friendly name used in the GUI.

e Help for the type field is given in the sample zep.json.example, where a type of 1
defines a string value.

The ZenPack should be reinstalled after introducing the zep.json file. This produced the
following warnings but the code does appear to work:

2016-02-04 11:05:15,804 WARNING zen.AddToPack: Error trying to evaluate
true at line 239
2016-02-04 11:05:15,818 WARNING zen.AddToPack: Error trying to evaluate
true at line 278
2016-02-04 11:05:15,831 WARNING zen.AddToPack: Error trying to evaluate
true at line 317

zenoss should be completely restarted.

-ﬂl:' DASHBOARD EVENTS INFRASTRUCTURE REPORTS ADVANCED Q v * admn siGNouT B

> E T TR YRR TR YRR ET

ETT Y CEventArchive EventClasses Triggers Page Tips

@@@@ | [Select ~ “ Export v][Configure v] Last updated at 11:30:06AM Actions v

Stalus Severily Resource Component EvenlClas: EventKey Summary ARl ... S—

E@ taplow-11* FileStats* .
taplow-1... fred2.log 20160122... /DirFil... FileStatsPythonDeviceData Error getting file stats data with zenpy... /opt/zenoss/local/fredtest/test fred2\.log.*
taplow-1... fredi.log 20160118... /DirFil... FileStatsPythonDeviceData Error getting file stats data with zenpy... /opt/zenoss/local/fredtest fred1.”
taplow-1... fredi.log 20151110... /DirFil... FileStatsPythonDeviceData Error getting file stats data with zenpy... /opt/zenoss/local/fredtest fred1.”
taplow-1... fredi.log 20151116... /DirFil... FileStatsPythonDeviceData Error getting file stats data with zenpy... /opt/zenoss/local/fredtest fred1.”
faplow-1... fred2.log 20151125... /DirFil... FileStatsPythonDeviceData Error getting file stats data with zenpy... /opt/zenoss/local/fredtest/test fred2\.log.”
taplow-1... fred2.log 20151124... /DirFil... FileStatsPythonDeviceData Error getting file stats data with zenpy... P fred2\.log.*
taplow-1... fredi.log 20151202... /DirFil... FileStatsPythonDeviceData Error getting file stats data with zenpy... /opt/zenoss/local/fredtest fredi.*

Figure 208: Event Console showing new File Directory and Regex event details

Note in Figure 208 that the column header matches the Name field in zep.json.

Ensure that the Event Console is refreshed and the web cache cleared to see the new event
details fields in the Column configuration.

Occasionally, it seems to be necessary to reinstall the ZenPack a second time before the new
fields appear.

14.6 Providing triggers and notifications in a ZenPack

Starting with version 4.0, Zenoss provides Triggers and Notifications for driving external
alerts to users, where:

318 ZenPack Developers' Guide Oct 13, 2016

o A trigger defines the conditions for raising an alert (combination of event fields plus
whether the trigger is enabled and details of users that can manage the trigger).

e A Notification is the action taken (email, page, command, trap), plus the trigger that
activates the notification and the users to inform. There are also fields for:

= Enabled

s Send Clear

s Send only on initial occurrence

s Delay

= Repeat

s Content (eg. email parameters, command to be run, TRAP details)

Prior to Zenoss 4, Alerting Rules which were very similar in appearance to triggers and
notifications, had to be defined; the big difference was that Alerting Rules were defined on a
per-user basis.

In practice, triggers are evaluated by the Java zeneventserver daemon (sometimes referred to
as zep); notifications are processed by zenactiond.

14.6.1 * Trigger and notification architecture

Consider the Event Architecture diagram in Figure 3 on page 7. When an event has been
processed by the zeneventd daemon, it is then passed to the zeneventserver (sometimes
referred to as zep) daemon via the zenevents queue. zeneventserver holds all the trigger
definitions and evaluates the event against each active trigger. Each and every trigger that
matches the event, results in a message being placed on the signal queue to be processed by
the zenactiond daemon.

14.6.1.1 Finding trigger details

$ZENHOME | Products | ZenModel | Trigger.py only defines a “stub” object for managing user
permissions for the trigger.

Some information on the structure of triggers can be deduced from
$ZENHOME |/ Zuul | facades | triggersfacade.py. For example, the synchronize method:

“will first synchronize all triggers that exist in ZEP to their corresponding objects in
ZODB. Then, it will clean up notifications and remove any subscriptions to triggers
that no longer exist”

Triggers exist both in the zenoss_zep MySQL database and in the ZODB database; the
synchronize method ensure that both are in step with each other.

Examining the MySQL database zenoss_zep and showing details of the various trigger tables,
provides understanding of relevant fields from the perspective of the zeneventserver daemon.

Oct 13, 2016 ZenPack Developers' Guide 319

Zzenoss@zend2:~

File Edit View Search Terminal Help

[zenoss@zend42 ~]% mysgl -u zenoss -pzenoss -D zenoss zep
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 2101
Server version: 5.5.40 MySQL Community Server (GPL)

Copyright (c) 2000, 2014, Oracle and/or its affiliates. ALl rights reserved.
Oracle is a registered trademark of Oracle Corporation and/or its

affiliates. Other names may be trademarks of their respective
owWners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statemeni

mysql> describe event trigger;

T R +------ +----- o mm - - - - - +
| Field | Type | Null | Key | Default | Extra |
i e +------ +----- Fo-mm e e - I +

| uuid | binary(1l6) | NO | PRI | NULL | |

| name | varchar(255) | YES | | NULL | |

| enabled | tinyint(4) | NO | | NULL | |

| rule api version | tinyint(4) | NO | | NULL | |

| rule type id | tinyint(4) | NO | | NULL | |

| rule source | varchar(8192) | NO | | NULL | |

R o m e a - +------ +----- o e e - - - I +

6 rows in set (0.00 sec)

mysql> describe v event trigger subscription;
e . +------ +----- e +--mm - +
| Field | Type | Null | Key | Default | Extra |
R i I I +------ +--=--- F--mmmm - - --- +
uuid	tinyint(4)	NO		NULL	
event trigger uuid	tinyint(4)	NO		NULL	
subscriber uuid	tinyint(4)	NO		NULL	
delay seconds	tinyint(4)	NO		NULL	
repeat seconds	tinyint(4)	NO		NULL	
send initial occurrence	tinyint(4)	NO		NULL	

6 rows in set (0.00 sec)

mvsal> [l
Figure 209: Examining the the MySQL zenoss_zep database - trigger tables

The createTrigger method in triggersfacade.py provides further insights into the attributes of
a trigger in the ZODB database (which one cannot inspect with MySQL utilities as all data is
held in an encoded format).

320 ZenPack Developers' Guide Oct 13, 2016

El zenoss@zen42:/opt/zenoss/Products/Zuul/facades e
File Edit View Search Terminal Help

createTr!gger(self, name, uuid=None, rule=None):
name = str(name)

zodb_triggers = self. getTriggerManager().objectValues()
zodb_trigger_names = set(t.id t zodb_triggers)
name zodb trigger names:
DuplicateTriggerName, ('The id "%s" is invalid - it 1s already in use.' % name)

triggerObject = Trigger(name)
self. getTriggerManager(). setObject(name, triggerObject)
acquired_trigger = self. getTriggerManager().findChild(name)

uuid:
IGloballdentifier(acquired_trigger).guid = str(uuid)

iGlobalIdentifier(acquired_trigger).create()
self.triggerPermissions.setupTrigger(acquired_trigger)

trigger = zep.EventTrigger()

trigger.uuid IGloballdentifier(acquired_trigger).guid
trigger.name name

trigger.rule.api_version = 1

trigger.rule.type = zep.RULE_TYPE_JYTHON

rule 'source’ rule:
trigger.rule.source = rule['source']

trigger.rule.source =

self.triggers_service.addTrigger(trigger)

log.debug('Created trigger with uuid: %s
trigger.uuid

% trigger.uuid)

"triggersfacade.py" [readonly] 984 lines --22%-- 224,17 23%
Figure 210: createTrigger method in $ZENHOME | Products / Zuul | facades / triggersfacade.py
A trigger has attributes for:

e UUID
e name
e rule (which is a dictionary), with attributes:

m api_version

m type
= source
e enabled

e subscriptions (which is a list of dictionaries, each containing a subscribed notification):
m [{delay_seconds, repeat_seconds, send_initial_occurrence,

subscriber_uuid, trigger_uuid, uuid},

e users (which is a list of dictionaries, each containing a user with permissions on this
trigger):

s [{label, manage, type, value, write },

Oct 13, 2016 ZenPack Developers' Guide 321

s where the value field is the UUID of the user or group

n Fundamentally, when working with a trigger in the ZODB database, treat it as a dictionary.

14.6.1.2 Finding notification details

$ZENHOME | Products | ZenModel | NotificationSubscription.py defines the
NotificationSubscription class, showing that a notification has the following attributes:

id

name

enabled

action

delay_seconds

repeat_seconds

send_initial occurrence

send_clear

subscriptions (which is a list of dictionaries, each representing a trigger); ie:
s [{name, uuid},,]

recipients (which is a list of dictionaries, each representing a user to receive the

notification). This list of dictionaries is identical in format to that used by triggers; ie:

s [{label, manage, type, value, write },

s where the value field is the UUID of the user or group
globalRead

globalWrite

globalManage

content

The content attribute is the details for an email or pager or the command and environment
details for a Command notification. Several files give help with permissible fields for the
different content types; see ZENHOME |/ Products [Zuul | interfaces | actions.py,
$ZENHOME | Products | Zuul | infos | actions.py and

$ZENHOME | Products | ZenModel | actions.py.

322

ZenPack Developers' Guide Oct 13, 2016

zenoss@zen42:/opt/zenoss/Products/Zuul/finterfaces

File Edit View Search Terminal Help
IEmailActionContentInfo(IActionContentInfo):

= schema.Choice(

_t(u'Body Content Type'),

SimpleVocabulary.fromValues(getNotificationBodyTypes()),
. itent type of the body for emails.'),

—+
-
=

1]

vocabulary
description
default

L | |
~+
—
=
-]
=1
™

)

subject format = schema.TextLine(

title = t(u'Message (Subject) Format'),
description = t(u'The template for the subject for emails.'),
default = t(u'[zenoss] ${evt/device} ${evt/summary}"')

)

body format = schema.Text(
title _t(u'Body Format'),
description _t(u'The template for the body for emails.'),
default = textwrap.dedent(text = u'"'"
Device: ${evt/device}
Component: ${evt/component}
Severity: ${evt/severity}
Time: s{evt/lastTime}
Message:
${evt/message}
Event Detail
Acknowledge
Close
<a href="${urls/eventsUrl}"=Device Events
)

)

clear subject format = schema.TextLine(

title = t(u'Clear Message (Subject) Format'),
description = _t(u'The template for the subject for CLEAR emails.'),
default = t(u'[zenoss] CLEAR: ${evt/device} ${clearEvt/summary}')

)

clear body format = schema.Text(
title = t(u'Body Format'),
l description = _t(u'The template for the body for CLEAR emails.'),
"actions.py" [readonly] 210 lines --32%--

Figure 211: $ZENHOME | Products | Zuul / interfaces [actions.py showing fields for email content

n Note that there are no tables in the zenoss_zep MySQL database for notifications; they are
handled entirely in ZODB by the zenactiond daemon.

n Fundamentally, when working with a notification in the ZODB database, treat it as an
object class .

14.6.1.3 Dumping trigger and notification details

There is an Audit package on GitHub (https:/github.com/jcurry/Audit) that provides several
scripts to dump various aspects of the Zenoss ZODB database. One of these is
trigs_and_notifs.py which outputs all aspects of all triggers and notifications. It takes a single
-f <filename> parameter, specifying the output file:

./trigs_and notifs.py -f trigs and notifs.out

Oct 13, 2016 ZenPack Developers' Guide 323

https://github.com/jcurry/Audit

14.6.2 ZenPack file for triggers and notifications

To provide triggers and notifications in a ZenPack, implement the actions.json file in the
ZenPack's zep directory. Again, a default sample file is provided with a GUI-created ZenPack.

e The file must be called actions.json
o There must be no comments
e Take care with punctuation - no comma on the last line of a clause

e Double quotes as part of a value must be escaped with backslash. For example:

"rule": {
"api version": 1,

"source": " (dev.production state == 1000) and (evt.severity >= 4) and
(evt.event class.startswith(\"/DirFile\")) and (evt.status == 0)",
"type": 1
}

zenoss@zend2:/code/ZenPacks/DevGuide/ZenPacks.community.DirFile/ZenPacks/community/DirFile/zep

File Edit View Search Terminal Help

i £
"triggers": [
{
"name": "Important File Dir"
"uuid": "4e3e0260-9f80-412b-989c-d23c26875c92",
"enabled": false,
"rule": {
"api_version": 1,
"source": "(dev.production state == 1000) and (evt.severity == 4) and (evt.event class.startswith
(\"/DirFile\")) and (evt.status == 0) and (fileDirName.startswith(\"/opt/zenoss/local/fredtest\"))",
"type": 1
}
}
I,
"notifications": [
{
"id": "Important File Dir Email", |
"description”: "File errorin important directory”, 1
"guid": "45b85f59-0d6a-4eba-adbd-66d5393e6403",
"action": "email",
"enabled": true,
"action_timeout": 60,
"delay_seconds": 0,
"repeat seconds": 8,
"send_initial_occurrence": true,
"send_clear": true,
"recipients": [],
"subscriptions": ["4e3e0260-9f80-412b-989c-d23c26875c92"]
}
|
]
"actions.json" [readonly] 32 lines --3%-- 1,1 ALl [©

Figure 212: actions.json in zep directory of ZenPack to define trigger and notification

The crucial fields that need to associate in Figure 212 is the subscriptions field of the
notification must be a list of the required trigger uuid fields.

New triggers and notifications require Universally Unique IDs (UUIDs) which can be
generated using Python:

python -c "import uuid; print uuid.uuid4 ()"

Copy the resulting UUID into actions.json.

324 ZenPack Developers' Guide Oct 13, 2016

$ZENHOME | Products | ZenUtils | guid /| guid.py has code to generate globally unique UUIDs.

The hardest part of creating an actions.json is understanding what the required field names
are and what data structure they must implement.

In practice, the easiest way to do this is to create the trigger and notification through the
GUI, dump the structures with the trigs_and_notifs.py file referred to in 14.6.1.3, and then
create the actions.json file using the names and structure from that output file.

14.7 Resolving issues with triggers and notifications
If the ZenPack installation fails, suspect syntax issues.

If a trigger or notification cannot be opened in the GUI suspect a specification error such as
bad fields.

Ensure that double quotes as part of a value string must be escaped with backslash.

14.8 Known issues with event fields, notifications and triggers
With Zenoss 4.2.5 SUP 457 there are two known issues:
e No defaults are provided for the content of notifications
» GUlI-created notifications do have defaults eg. email body, subject, etc

s Documented in Zenoss JIRA as https://jira.zenoss.com/browse/ZEN-15367?
filter=10510

s This means that email customisation through actions.json such as email host, user,
port and password all have to be hardcoded in actions.json

e Custom event fields can be specified in the Trigger GUI but result in errors in
zeneventserver.log.
s For example:

2016-02-10T11:35:52.253 [INDEXER EVENT SUMMARY] WARN
org.zenoss.zep.impl.TriggerPlugin - exception raised while evaluating rule:

(dev.production state == 1000) and (evt.severity >= 4) and
(evt.event class.startswith("/DirFile")) and (evt.status == 0) and
(fileDirName.startswith ("/opt/zenoss/local/fredtest")), NameError: global

name 'fileDirName' is not defined

s This is in Zenoss JIRA as https://jira.zenoss.com/browse/ZEN-21963?filter=10510
and https://jira.zenoss.com/browse/ZEN-7910

s SUP 671 (the latest 4.2.5 patch in March 2016) still does not fix this issue but it is
fixed in Zenoss 5.0.7.

¢ Trigger rule has the source format:

"source": " (dev.production state == 1000) and (evt.severity >= 4)
and (evt.event class.startswith(\"/DirFile\")) and (evt.status == 0)
and (hasattr(zp_det, \"fileDirName\") and \"fredtest\" in
zp_det.fileDirName)"

e Incorrect customisation of triggers in actions.json not only produces the error message
in zeneventserver.log; custom event attributes prevent the opening in the GUI of any
trigger that contains them.

Oct 13, 2016 ZenPack Developers' Guide 325

https://jira.zenoss.com/browse/ZEN-7910
https://jira.zenoss.com/browse/ZEN-21963?filter=10510
https://jira.zenoss.com/browse/ZEN-15367?filter=10510
https://jira.zenoss.com/browse/ZEN-15367?filter=10510

e With both Zenoss 4 and Zenoss 5, event field details in a ZenPack in zep.json
sometimes appears to take “a little while” or a second ZenPack installation before the new
field can be seen in the GUI Event Console Adjust columns or as a selectable field in the
Trigger GUI.

TODO: Resolve status of JIRA tickets to fix these issues for both Zenoss 4 and Zenoss 5.

15.0 Creating menus in ZenPacks

It is perfectly possible to extend menus in Zenoss. The GUI provides a simple way to extend
command menus; code is required for more advanced techniques.

The Zenoss 3 Developer's Guide has some useful information in Chapters 13 and 14. Also
consult the “Creating Zenoss ZenPacks” documents from Skills 1st at https:/www.skills-
1st.co.uk/papers/ .

The Zenoss GUI is built on top of Zope version 2, upto and including Zenoss 5. Extending
menus is one small topic of GUI extension, several of which have already been seen in earlier
chapters; for example, the display of device components, attributes and graphs.

The zenpacklib tool is excellent for creating some GUI code automatically; unfortunately it
has nothing to offer by way of menu creation.

15.1 The jargon

15.1.1 Zenoss 2 (some of which is still relevant!)

Zenoss 2.x used Zope Page Templates (ZPT), Template Attribute Language (TAL), Macro
Expansion for TAL (METAL), TAL Expression Syntax (TALES), Cascading Style Sheets (CSS)
and a little JavaScript. Fundamentally most of these are based on HyperText Markup
Language (HTML).

e HyperText Markup Language (HTML) - is the most basic formatting language
available on the Web, and some version of HTML is understood by every Web browser.
HTML is in practice a sloppy variant of eXtensible Markup Language (XML) which divides
up a page into elements (tags such as title, head or h3) and content (for example, the
things that you actually care about). Common HTML tags found in Zenoss skins files

include:
s <th> table header
m <td> table data
n <tr> table row
n
 break
s <block> creates larger structures that can include other blocks
s <form> for user input
= <input> input directive

e Zope Page Templates (ZPT) - are in essence HTML pages which are well-formed and
have extra XML attributes (ie the bits after the element name in-between the < and >

326 ZenPack Developers' Guide Oct 13, 2016

https://www.skills-1st.co.uk/papers/
https://www.skills-1st.co.uk/papers/

characters). The extra XML bits (attributes) are not a part of any HTML standard and are
ignored by HTML editors, meaning that ZPT pages live happily with HTML. These
attributes and the programming functionality that they deliver are called the Template
Attribute Language (TAL). Zenoss skins files all have a .pt extension for Page Template.

e Template Attribute Language (TAL) - the TAL attributes allow you to add dynamic
content using information from inside the Zope database (ZODB). From a Zenoss
perspective, this allows you to write a query that you can use to build a table, or show
different items depending on what objects or devices exist in a particular state. In other
words, TAL is the Zope way of accomplishing what you would normally need to do in a CGI
inside of a plain web server like Apache. It should be noted that inside TAL it is also
possible to use a restricted subset of Python. The restrictions include not being able to load
certain standard libraries, as well as operations like reading and writing to disk. This is
done intentionally for security reasons. See
http://docs.zope.org/zope2/zope2book/source/AppendixC.html for a Zope Page Template
reference. TAL includes statements such as:

s tal:define define variables

= tal:condition test conditions

= tal:content replace the content of an element
s talirepeat repeat an element

s tal:replace replace content of an element

s tal:attributes dynamically change element attributes

e Macro Expansion for TAL (METAL) - because TAL is hidden away inside HTML,
there's no way to reuse blocks of HTML and TAL for your site just by using TAL. METAL
allows page templates to define macros (which are essentially sub-templates that may be
called by other templates) and slots (which may be filled by other templates). Several
METAL macros are provided with Zenoss such as:

= pagel provides web page with breadcrumbs and content

= page2 page 1 plus standard breadcrumbs and navigation tabs
= page3 page 1 plus standard breadcrumbs, no tabs

= zentable creates tables of data for display

s navbodypagedevice macro to support sorting, filtering, multi-pages

e TAL Expression Syntax (TALES) - TALES allows access to the template's namespace,
including useful properties such as the here context object. TALES accepts paths (e.g.
here /id) which it resolves into object properties. It will attempt to resolve the final path
element as a key index, a key name, an attribute, or a method. For example, if
getSomething() is a method on the context, here/getSomething will return the result of
that method. TALES statements are what normally provides the dynamic content for a
page template, delivering data from the ZODB database.

e JavaScript - JavaScript (nothing really to do with Java!), can be written directly on the
Web page inside a script element anywhere in an HTML page, or it can be stored on a
server and accessed from a script element using the name specified in the src attribute.

Oct 13, 2016 ZenPack Developers' Guide 327

http://docs.zope.org/zope2/zope2book/source/AppendixC.html

e JavaScript Library: ExtdJs- the Zenoss Web interface extensively uses the Ext Js
JavaScript library from Sencha. This framework is used to make a desktop-style user
application within the constraints of HTML/CSS and JavaScript. Zenoss 2 and 3 used
version 3 of the library; Zenoss 4.2.x changed to ExtdJs 4, requiring many ZenPacks to be
updated. See https:/github.com/zenoss/Zenoss-User-Interface-API-
Docs/tree/master/guides/component grid upgrade for a discussion on this.

In Zenoss 2, GUI code was created largely in Page Template files, ending with a .pt suffix -
and significant amounts of these Page Template files are still used in the latest versions of
Zenoss. Core Zenoss GUI code is found under

$ZENHOME | Products | ZenModel | skins | zenmodel; ZenPacks that delivered new GUI code
had a directory hierarchy under the base directory called skins with a subdirectory of the full
ZenPack name.

15.1.2 Zenoss 3/41/5

Zenoss 3 made extensive changes to the GUI, moving to far more emphasis on JavaScript and
removing the need to write ZPT files; however, other files are now required to link the GUI
code with the data in the ZODB database.

e JavaScript files - with .js extension. Define what to display and how to display it.
Typically a ZenPack will ship .js files under the base directory in a browser /resources/js
directory hierarchy.

e infos - abstracts object attribute information saved in the ZODB, that will be displayed
to the user. Defines what will be displayed not how it will be displayed. May be in a
separate info.py file in the base directory of a ZenPack; alternatively, it is perfectly
acceptable to include info classes in other Python files of the ZenPack (especially if very
few definitions are required).

e interfaces - describes elements of how the data is displayed. May be in a separate
interfaces.py file in the base directory of a ZenPack; alternatively interface classes may be
included in other Python files.

e configure.zeml - provides the “glue” between interfaces and JavaScript display code
and this exact name will be searched for by the Zope mechanisms. Zope Configuration
Markup Language (ZCML) is Zope 3's XML-based component configuration language for
“wiring” together application policy and component registrations. It is documented at the

Zope site at http://docs.zope.org/zopetoolkit/codingstyle/zcml-style.html .

15.2 Extending Command menus with the GUI

Zenoss has always provided a simple, GUI method to add to the Command menu at the
bottom of the left-hand menu of a device or device class. Use the Administration menu to
display existing commands and the dropdown from Define Commands to add or delete
commands; clicking on a command permits editing (provided the user has sufficient
authority).

328 ZenPack Developers' Guide Oct 13, 2016

http://docs.zope.org/zopetoolkit/codingstyle/zcml-style.html
https://github.com/zenoss/Zenoss-User-Interface-API-Docs/tree/master/guides/component_grid_upgrade
https://github.com/zenoss/Zenoss-User-Interface-API-Docs/tree/master/guides/component_grid_upgrade

DA BOARD RASTR R REPOR ADO) . 5 =

Devices etwo Processe P Se ¢ do e e etwo ap anufa e

Linux @

Devices

Name ssh_zenplug

ssh to a device - ssh keys set up to access remote zenplug user from local zenoss

(Bl Kludges xterm to use DISPLAY :0.0 - your mileage may vary - check with echo $DISPLAY

Modeler Plugins Description

Configuration Properties

Overridden Objects /usr/bin/xterm -display :0.0 -fn 10x20 -fg white -bg blue -title "xterm as zenplug" -e ssh -| zenplug ${device/managelp}
Custom Schema Command
Administration
4 Monitoring Templates Confirm
Yo [
Password

Figure 213: Define a new ssh command for the [Server/Linux device class

Any command defined at a device class level is available to all devices in that class or
subclasses.

Any command can be run. The commands shipped with the core product simply produce
output in a new window, for example snmpwalk, ping; they do not offer a mechanism to solicit
input from a user. A trick demonstrated in Figure 213 that can work for Linux target
systems, is to open an xterm window for general purpose use. Parameters can be used within
the command as it has access to the device object so the command sets up an xterm that runs
ssh to ${device / managelp}. (Note that with xterm you may need to kludge the DISPLAY
variable and run xhost + from a normal command window before this Zenoss command
works).

/usr/bin/xterm -display :0.0 -fn 10x20 -fg white -bg blue \
-title "xterm as zenplug" -e ssh -1 zenplug ${device/managelp}

The Define Commands menu also has an Add to ZenPack option so such customisation can be
transported.

Oct 13, 2016 ZenPack Developers' Guide 329

Zenoss: taplow-11.skills-1st.co.uk - Mozilla Firefox _ o x jples _ox
File Edit

ane@zen; = " =
gicesg cofl & Zenoss: Devices X || ©Zenoss: ZenPacks.communit... 3¢ | € Connecting... X ‘J G ‘

File Edit view History Bookmarks Iools Help
v | /opt/zenoss/etc/ (%]

e xterm as zenplug
| Last login: Mon Apr 4 11:10:15 2016 from zenny.skills-1st.co.uk

INFRASTRUCTURE | REPORTS ADVANCED ave a lot of fun...
enplug@bino:~> [

[jane@zen & & example.or zen42.class.example.org

DASHBOARD

EVENTS

— taplow-11.skills-1st.co.uk
io\\ e e i | | up® |

10,0011 DEVICE STATUS
Device ID: Device Title:
s taplow-11.skills-1st.co.uk taplow-11.skills-1st.co.ul
Aol Uptime: Production State:

LI 00d:02h:37m:51s Production
A First Seen: ori

Interfaces (4) e Priority

OS Processes (5) izﬁgi::f;:i&sg Normal
€ Network Routes (3) Tag:
OFic Systems (3) 2016/04/04 08:50:42

Model Time:

@ P Senvices (14) s Serial Number:
QPFDCESSWS(T) 2016/04/04 08:50:42
oo DNS reverse Locking
Modeler Plugins e e ssh_zenplug
Configuration Properties (I LS MSmoTySRap
Software snmpwalkVa 2.0GB/2.0GB s) r te e -title "xterm as
Mib Browser ssh

My Example Menu 1 ——

Custom Properties Systems edi
tracerout -
Administration ssh to a device - ssh keys set up to access remote zenplug

zendma | user from local zenoss Kludges xterm to use DISPLAY :0.0
- your mileage may vary - check with echo $DISPLAY

m— . - - -
https://zen42.class.example.org/zport/dmd/Devices/.../devices/taplow-11.skills-1st.co.uk/devicedetail #

Figure 214: Output of new ssh command

15.3 ZenPacks.community.MenuExamples

ZenPacks.community. MenuExamples is a slightly modified version of an earlier ZenPack
called ZenPacks.skills1st. MenuExamples. The main difference is that customisation of the
Modifications menu has been removed as that is no longer relevant since later versions of
Zenoss 3.x.

The ZenPack should be treated as a number of samples, not as production code. It started life
with Zenoss 2.x and has been updated for Zenoss 3 and Zenoss 4; it also installs on Zenoss
5.0.x. One of its main purposes is to assist porting old ZenPacks from earlier Zenoss versions
upto the latest version, hence the inclusion of so many examples with older techniques.

The ZenPack creates some new object classes and modelers as demonstration classes that can
then have their menus modified:

o A new Zenoss device class /Example /[TestClass is created

e A new device object class called ExampleDevice is created with a new component object
class of ExampleComponent. ExampleDevice has a new method, createComment.

e The _ init_ .py in the base directory also creates an instance of ExampleDevice in
/Example [TestClass .

e Modeler plugins are created:
s ExampleSNMP gathers device memory & swap from UCD MIB
s ExampleCMD gathers component disk info using COMMAND
s ExampleHostResourcesSNMP gathers component information from HR MIB
The ZenPack demonstrates a number of different techniques for creating menus:

e My Example Menu 1 on left-hand device menu

330 ZenPack Developers' Guide Oct 13, 2016

<

s Active for all device types

s Has three windows displaying:

+ Several SNMP attributes for the device

+ Performance graphs for the device

¢+ A window with Zenoss Group information and further menu dropdown examples
e My Example Menu 2 on left-hand device menu

s Active only for devices of object class ExampleDevice

s Has two windows displaying:

+ Several (slightly different) SNMP attributes for the device

¢+ Performance graphs for the device

e My Example Menu 1 has two dropdown menus which are shipped as part of
objects.xml:

s My Drop down menu 1 requests input and updates device attribute
s My Drop down menu 2 delivers device attribute information

e Additional dropdown menus from Display for ExampleDevice device components -
Example Component Template and Amazing Stuff

e From INFRASTRUCTURE -> Devices a new item is added to the + dropdown to Add
Example Device

e From INFRASTRUCTURE -> Devices a new item is added to the left-hand Action
menu - Run My Predefined Shell Command

e From a device's main panel, two new actions are added to the Action menu for all
devices - Example Device Action and Another example device action

e A new menu is added to the footer bar, MyFooter, with three actions:
m The standard Model Device action
m Jane's Predefined Command to run a fixed command in a new window

m Set device comment | rackSlot which prompts for input and then modifies
attributes of the device

e Some of the menus use new functionality defined in routers.py and facades.py

15.3.1 New device class, device object class and component class

When the ZenPack is installed the _ init_ .py of the ZenPack creates two new Zenoss device
classes, /Example and /Example/ TestClass. Unusually, the ZenPack also create an instance
of a device in /Example /TestClass called ExampleDevicel.

It is not normally good practice for a ZenPack to include device instances as they are
probably irrelevant in any other organization and may cause a name duplication. It is
included here as an example and to permit some menu customisation techniques to be
demonstrated.

Oct 13, 2016 ZenPack Developers' Guide 331

* [(_3 example.org | https://izen42.class.example.org/zport/dmdjitinfrastructure#devices: zport.dmd.Devices.Example.TestClass

v z] E]v Google

6:-41 DASHBOARD EVENTS INFRASTRUCTURE REPORTS ADQAN jane sicNouT H

Devices Networks Processes IP Services Windows Services Network Map Manufacturers Page Tips

O Retresh - | Actions - | Commands -
4 @oEevices 88)

[OAppIIcation (13) - | |
© AutoDiscovered (.0 ExampleDevice1 /Example/TestClass Production

- AWS (1) taplow-30.skills-1st.co.uk 10.0.0.30
°BackupFoantsch. o
@ piscovered (0)

4 oExample (2)

¥ TestClass (2)
v @uTTP (3)
@kvm (0)
@ MarkitDatabases (...

1 W Network (14)

/Example/TestClass Production

> @Ping 9) B
i @ power (1) DISPLAYING 1 - 2 of 2 ROWS

[rooer- | 4 [@][0 - | e

<

Figure 215: New Zenoss device class [Example [TestClass with ExampleDevicel instance

The ExampleDevicel is defined without an IP address; for testing it may be convenient to use
the device's Action menu to Reset/Change IP Address to a real, existing test device, and
remodel.

15.3.2 Menu defined in __init__.py
__init__.py in the base directory of the ZenPack can be used to define a new menu.

If any use is to be made of the old-style skins files, then __init_ .py should have the skinsDir
directory registered. This will be <base directory of ZenPack>/skins. Beneath that directory
will be a directory with exactly the same name as the ZenPack. .pt files are created under
there.

skinsDir = os.path.join(os.path.dirname(file), 'skins')

from Products.CMFCore.DirectoryView import registerDirectory

if os.path.isdir (skinsDir):
registerDirectory(skinsDir, globals())

It is bad practice to create new ZenPacks using skins files; however, many ZenPacks still exist
with the old-style definitions.

332 ZenPack Developers' Guide Oct 13, 2016

zenoss@zen42:/code/ZenPacks/DevGuide/ZenPacks.community.MenuExamples/ZenPacks/community/MenuExamples

File Edit View Search Terminal Help
import logging
log = logging.getlLogger('.

.join(['zen', _name_ 1))

import os.path

Register the skins directory - we don't need this now if we put page template

files under browser/resources in Zenoss 3 style. It IS needed if you want to

find NEW pt files in the ZenPack's skins directory (all versions of Zenoss).

Note from Zenoss 3.2 that pt files that OVERRIDE Core pt files may NOT be

picked up from the skins directory (even with the skinsDir registered as below).
pt files that override Core pt files should actively be "wired in" with

statements in a configure.zcml file

skinsDir = os.path.join(os.path.dirname(file), 'skins')
from Products.CMFCore.DirectoryView import registerDirectory
T os.path.isdir(skinsDir)
registerDirectory(skinsDir, globals())

In older-style Zenoss 2.x ZenPacks the pt files are under skins/<ZenPack name>
The new Zenoss 3 convention is to put them under browser/templates and use the zcml files
1o 'wire-in' this directory

Create a new menu item in the left-hand menu for all devices

The label of the menu is the 'name' parameter

The 'action' parameter refers to a page template (.pt) file (without the .pt) if using
Zenoss 2 skins directory or refers to the "name" field in a page stanza

if using Zenoss 3 browser/configure.zcml wiring.

#

#

The 'permissions' field defines the permission that a role must have for this to be valid for a user
#
from AccessControl import Permissions
from Products.ZenModel.Device import Device

myExampleMenul = { 'id': 'myExampleMenul’,

‘name’ : 'My Example Menu 1'
‘action' : 'myExampleMenuOne',
'‘permissions' : (Permissions.view,)

Add this menu for certain object classes. Adding to "Device" means
it is available for all subclasses of /Device

]evice.factnry_type_information[G]['a:tinns'] += (myExampleMenul,)
"_init__ .py" [Modified][readonly] 135 lines --97%-- 132,1

Figure 216: My Example Menu 1 defined in __init__.py of ZenPack
Figure 216 shows the My Example Menu 1 menu definition in __init_ .py, where:

e id is a unique identifier
e name is the text that will be displayed in the GUI
e action refers to a page template file (using skins) or the name field

in a page stanza in a configure.zcml (Zenoss 3 and beyond)
® permissions permission that a role requires to execute the action

The last line of __init__.py adds this new menu to the default factory_type actions for the
top-level Device class, which is inherited by all subclasses; hence, all devices will have a My
Example Menu 1.

15.3.3 Old and new options for page templates for menus

The My Example Menu 1 menu is implemented by the action statement
myExampleMenuOne. The ZenPack actually has two different definitions of this; one under
the skins directory using old-style “wiring” in __init__.py, and a second, similar file under
browser [templates which is “wired in” with browser /configure.zeml. Both are called
myExampleMenuOne.pt.

The menu .pt files differ slightly so they can be distinguished:

e The device attribute fields displayed include comment in the modern
browser /templates version.

Oct 13, 2016 ZenPack Developers' Guide 333

e The title of the first table displaying attribute information includes whether it uses
skins or configure.zcml.

e Otherwise, the files are identical

zenoss@zen42:/code/ZenPacks/DevGuide/ZenPacks.community.MenuExamples/ZenPacks/community/MenuExamples/browser/templates

File Edit View Search Terminal Help

<tal:block metal:use-macro="here/templates/macros/page2"> [
<tal:block metal:fill-slot="contentPane">

<form method="post"
name="myExampleMenuOne" tal:attributes="action string:${here/absolute_url_path}/${template/id}">

<!-- Note the tabletitle of "My Example 1 Menu Stuff from V3 directory" which distinguishes this
V3-style menu from the V2-style menu defined under the skins subdirectory
This menu also differs from the V2 version by including the comments field for the device. Other
than these differences, the menu should be the same.

<tal:block metal:define-macro="myExampleMenuOne" tal:define="tabletitle string:My Example 1 Menu Stuff from V3 directory">
<tal:block metal:use-macro="here/zenuimacros/macros/zentable">

<tal:block metal:fill-slot="zentablecontents">
B'-- BEGIN TABLE CONTENTS --i

<t "tableheader" align=1left>SNMP Description</td>
< "tablevalues" tal:content=here/snmpDescr> </td>
<t tableheader" align=1left=SNMP 0ID</td> 4
<t "tablevalues" tal:content=here/snmpO0id> </td>
</tr>
<tr>

< class="tableheader" align=1left>SNMP System Contact</td>
<td class="tablevalues" tal:content=here/snmpContact> </td>
<td class="tableheader" align=1left>SNMP System Location</td>
<td class="tablevalues" tal:content=here/snmpLocation> </td>

<td class="tableheader" align=left>Device comment</td>
<td class="tablevalues" tal:content=here/comments> </td>
</tr>
< >
</tr>
<!-- END TABLE CONTENTS -->
</tal:block>
</tal:block>
</tal:block>
<tr>
</tr>
"myExampleMenuOne.pt" [Modified][readonly] 119 lines --14%-- 17,1 Top

Figure 217: myExamplemenuOne.pt page template file - modern version - part 1

(=1

Both .pt files define the same three subwindows for this menu option:

e A table showing device attribute information. The title reflects which .p¢ file is actually
being used.

e The standard device Performance Graphs

e The third subwindow My Example One Menus from Objects, shows a table with Zenoss
Group information for the device, and offers a dropdown menu to demonstrate further
menus.

The first part of the .pt file:
e Defines the unique name for the first form - myExampleMenuOne
e Defines the table title
e Defines table headings and values for:
s SNMP Description
= SNMP OID
s SNMP System Contact
s SNMP System Location

334 ZenPack Developers' Guide Oct 13, 2016

s Device comment (new version only)

e Each of these attributes has a single value for the device. here is the object
representing this device. The values are retrieved from ZODB using syntax such as:

here/snmpDescr
where snmpDescr is the device attribute in ZODB.
The second subwindow defines the standard Performance Graphs for a device:

<!-- Now add on the standard display of all device-level graphs -->

<tal:block metal:define-macro="objectperf"
tal:define="tabletitle string:Performance graphs for this Device">
</tal:block>

<table metal:use-macro="here/viewPerformanceDetail/macros/objectperf" />

This definition is provide by Zenoss core code in
$ZENHOME | Products | ZenModel | skins [zenmodel | viewPerformanceDetail.pt.

The third subwindow defines a table for Zenoss Group information and provides a dropdown
option with two submenus.

e The title of the subwindow is My Example One Menus from Objects
e Column headers for the table are:

s Link to Group

s Group Name

s Group Description

Oct 13, 2016 ZenPack Developers' Guide 335

zenoss@zen42:/code/ZenPacks/DevGuide/ZenPacks.community.MenuExamples/ZenPacks/community/MenuExamples/browser/templates

File Edit View Search Terminal Help

|

<!-- Add on a table to display Groups for this device
Note the form title of "My Example One Menus from Objects"
This form also has an extra dropdown menu called by the line

menu_id string:ExampleOneMenuObjects_list

ExampleOneMenuObjects_list is defined in objects/objects.xml
with 2 menuitems, myDropDownMenul and myDropDownMenu2.

3

<form method="post" name="myExampleObjectMenu"

tal:attributes="action here/absolute_url_path">
<input type="hidden" name="zenScreenName" tal:attributes="value string:myExampleMenuOne"/>
<input type="hidden" name="redirect" value="true"/>

<tal:block tal:define="objects here/groups/objectValuesAll;

editable python:here.checkRemotePerm('ZenCommon', here);

tableName string:exampleOneObjectMenu;

batch python:here.ZenTableManager.getBatch(tableName,objects);

tabhletitle string:My Example One Menus from Objects;

menu_id string:ExampleOneMenuObjects list">

<input type='hidden' name='tableName' tal:attributes="value tableName" />
<tal:block metal:use-macro="here/zenuimacros/macros/zentable">
<tal:block metal:fill-slot="zentablecontents">

<!-- BEGIN TABLE CONTENTS -->

<tr tal:define="message request/message | string:">
«<td class=tableheader colspan=4 tal:content="message" />
</tr>
<tr>
<th tal:replace="structure python:here.ZenTableManager.getTableHeader(
tableName, 'id', 'Link to Group ')"/>
<th tal:replace="structure python:here.ZenTableManager.getTableHeader(
tableMame, 'id', 'Group Name')"/>
<th tal:replace="structure python:here.ZenTableManager.getTableHeader(
tableMame, 'id', 'Group Description')"/>
</tr=

"myExampleMenuOne.pt" [Modified][readonly] 119 lines --42%-- 51,0-1 64%
Figure 218: myExamplemenuOne.pt page template file - modern version - part 2

o A device can be in multiple Groups so a table mechanism must be provided to list all
Groups.

zenoss@zen42:/code/ZenPacks/DevGuide/ZenPacks.community.MenuExamples/ZenPacks/community/MenuExamples/browser/templates

File Edit View Search Terminal Help

<tal:block tal:repeat="mybatch batch">
<tr tal:define="odd repeat/mybatch/odd"
tal:attributes="class python:odd and 'odd' or ‘even'">
<td class="tablevalues">

<input type="hidden" name="myGroupIds"
tal:attributes="value mybatch/id"/>
<input type="checkbox" style="float:left" name="myDelGroupIds"

tal:condition="editable"
tal:attributes="value mybatch/id"/>
<div style="float:left"
tal:define=" 1link python:mybatch.getPrettyLink()"
tal:content="structure link"/>
</td>
<td class="tablevalues" tal:content="mybatch/id"/>
<td class="tablevalues" tal:content="mybatch/description"/>
</tr>
</tal:block>
<!-- END TABLE CONTENTS -->

</tal:block>
</tal:block>
</tal:block>

</form>

</tal:block>
</tal:block>

"myExampleMenuOne.pt" [Modified][readonly] 119 lines --100%-- 119,5 Bot [~
Figure 219: myExamplemenuOne.pt page template file - modern version - part 3

e Figure 219 shows a typical structure for a table with multiple rows where:

<tal:block tal:repeat="mybatch batch">

336 ZenPack Developers' Guide Oct 13, 2016

m sets up a repeating batch called mybatch - this will supply multiple table values,
where mybatch takes on the value of the Group object for each valid Zenoss Group

<tr tal:define="odd repeat/mybatch/odd"
tal:attributes="class python:odd and 'odd' or 'even'">

s Define table rows that will gather attribute values for each row. Odd and even rows
will have different highlighting to make them stand out.

m The first column in each row will have table data (td) that is a link to the Zenoss
Group. The value will be this Group's id.

<td class="tablevalues">

<input type="hidden" name="myGroupIds"
tal:attributes="value mybatch/id"/>

<input type="checkbox" style="float:left" name="myDelGroupIds"
tal:condition="editable"
tal:attributes="value mybatch/id"/>

<div style="float:left"
tal:define=" link python:mybatch.getPrettyLink ()"
tal:content="structure link"/>

</td>

s The second column in each row will have table data (td) that is the Group Name.
The value will also be this Group's id.

<td class="tablevalues" tal:content="mybatch/id"/>

m The third column in each row will have table data (td) that is the Group
Description. The value will be this Group's description attribute.

<td class="tablevalues" tal:content="mybatch/description"/>

To find the correct .pt file to use for a device's My Example Menu 1 menu, all configure.zeml
files in the ZenPack are searched first. If a matching definition for the myExampleMenuOne
action is found, it is used. If no definition is found then it falls back to using the old-style

skins technique and searches for a matching file in the ZenPack's skins directory hierarchy.

In order to demonstrate both techniques, browser /configure.zcml has been coded with:

for="..ExampleDevice.ExampleDevice"

which ensures that this definition is only valid for devices of object class ExampleDevice.

Thus, devices of any other object class will not pass this test and will default to using the old
skins .pt file.

Oct 13, 2016 ZenPack Developers' Guide 337

zenoss@zen42:/code/ZenPacks/DevGuide/ZenPacks.community.MenuExamples/ZenPacks/community/MenuExamples/browser

File Edit View Search Terminal Help
<l-- Eefine a page for the myExampleMenuOne menu item, defined by the page template file &
in the subdirectory templates, in the file myExampleMenuOne.pt. This pt file provides
the link to the drop-down menus defined in the objects.xml file via the line with
menu id string:ExampleOneMenuObjects list

The name field in the following page definitions must match with the any value of an
"action" field that is defined in the factory_type_information of an object class.

If there is a valid, reachable myExampleMenuOne.pt in the ZenPack skins directory
then this new-style zeml wiring takes precedence.

The "for" field defines what objects this page definition is valid for.

for="#*" would be valid for everything. for="../ExampleDevice.ExampleDevice"

would limit it to just objects of type ExampleDevice as defined in the parent of this directory.
If there are valid definitions both here and in the ZenPack skins directory and the zcml has a
limiting "for" field, then this will prevail for those objects it matches and the version

in the skins dir will prevail otherwise.

BBB8: Change the myExampleMenuOne stuff to use router / facade mechanism rather than pt files.

2]

<page
name="myExampleMenuOne"
for="..ExampleDevice.ExampleDevice"

template="templates/myExampleMenuOne.pt"”
permission="zenoss.View"
>

"configure.zcml" [readonly] 186 lines --62%-- 116,10 73% [

Figure 220: browser [configure.zeml for myExampleMenuOne

The .pt file must be specified relative to this configure.zeml; that is, down into the templates
directory.

The for line is also specified relative to this configure.zcml; that is, up one directory to the
base directory of the ZenPack. The object class ExampleDevice (the second ExampleDevice) is
found in the Python module ExampleDevice (the first ExampleDevice).

15.3.4 New-style menus limited to specific device types

My Example Menu 2 is defined only for devices of object class ExampleDevice; it does not
appear at all in the left-hand menu for other devices. This is a simple extension from the
previous section.

browser [configure.zcml has a page definition for this menu, including a for statement.

<!-- myExampleMenuTwo is applicable only to ExampleDevice objects in for field -->

<page
name="myExampleMenuTwo"
for="..ExampleDevice.ExampleDevice"
template="templates/myExampleMenuTwo.pt"
permission="zenoss.View"

/>

It specifies the page template file in templates / myExampleMenuTwo.pt, which is very similar
to the Menu 1 example. It has two subwindows, one displaying a slightly different selection of
device attributes and also includes the standard Performance Graphs subwindow for the
device.

Importantly, there is no global definition in __init_ .py that refers to this menu but referring
back to the ExampleDevice.py file that defines the new object class, there is an extension of
the standard Device factory_type_information, explicitly for this device type.

The menus for this particular device class will have all the standard menus
for a Device and then add on this new menu. The "action" field must match
the name field in an entry in configure.zcml.

338 ZenPack Developers' Guide Oct 13, 2016

factory type information = deepcopy (Device.factory type information)
factory type information[O]['actions'] += (

{ rid’ : 'ExampleDevice'

, 'name' : 'My Example Menu 2 (Example Devices only)'
, 'action' : 'myExampleMenuTwo'

, 'permissions' : (Permissions.view,) },

)

The action field in the factory_type_information must match the name field in an entry in
configure.zeml.

If the object class of the device does not match the for statement in configure.zcml, there is no
default to resort to, and no menu is shown.

zenoss@zen42:/code/ZenPacks/DevGuide/ZenPacks.community.MenuExamples/ZenPacks/community/MenuExamples/browser/templates

File Edit View Search Terminal Help
ltal:block metal:use—macro=”here/templatesfmacros/pageZ”l -
<tal:block metal:fill-slot="contentPane">

<form method="post"
name="ExampleDeviceDetail" tal:attributes="action string:${here/absolute_url_path}/${template/id}">

<tal:block metal:define-macro="ExampleDeviceInfo" tal:define="tabletitle string:Example Device Information with zcml wiring">
<tal:block metal:use-macro="here/zenuimacros/macros/zentable">
<tal:block metal:fill-slot="zentablecontents">

<!-- BEGIN ExampleDevice TABLE CONTENTS -->

<tr>

<td class="tableheader" align=left>Name</td>
<td class="tablevalues" tal:content=here/titleOrId> </td>

<td class="tableheader" align=1left>IP address</td>
<td class="tablevalues" tal:content=here/managelp> </td>

<td class="tableheader" align=right>SNMP sysName</td>
<td class="tablevalues" tal:content=here/snmpSysName> </td>

< class="tableheader" align=left>SNMP Description</td>
<td class="tablevalues" tal:content=here/snmpDescr> </td>
</ftr>

<!-- END ExampleDevice TABLE CONTENTS -->

</tal:block>

</tal:block>

</tal:block>

<Tr>

</tr>

<tal:block metal:define-macro="objectperf" tal:define="tabletitle string:Performance graphs for Example Devices">

</tal:block>

<table metal:use-macro="here/viewPerformanceDetail/macros/objectperf" />

</form>

</tal:block>

</tal:block>

"myExampleMenuTwo.pt" [Modified][readonly] 42 lines --2%-- 1,51 Top

Figure 221: My Example Menu 2 page template file

Al

15.3.5 Dropdown menus shipped in objects.xml

My Example Menu 1 has three subwindows where the third, My Example One Menus from
Objects, has a dropdown action with two submenus.

Oct 13, 2016 ZenPack Developers' Guide 339

Zenoss: taplow-30.skills-1st.co.uk - Mozilla Firefox

File Edit View History Bookmarks Tools Help
O Zenoss: Devices b4 Ha Zenoss: taplow-30.skills... 3 1[6 Zenoss: ZenPacks.com... 3¢ 1[5 Zenoss: Monitoring Tem... 3%][C) Zenoss: MIBs b4][E) Zenoss: taplow-11.skills... 3¢ | <= | v
* [6 example.org | https:/jzen42.class.example.org/zport/dmd/Devices/Example/TestClass/devices/taplow-30.skills-1st.co.uk/devicedetail #¢ v z] @v Google ﬂ] ‘ -

q-ﬂl' DASHBOARD EVENTS INF {UCTURE REPORTS ADVANCED Q jane sienouT H

Networks Processes IP Services Windows Services Network Map Manufacturers Page Tips

Sy

ey S on Linux raspberypi 3.6.11+ #474 PREEMPT Thu Jun 13 17:14:42 BST 2013 | quun o0y T L
Evert Descripti amvel T T e SNMPOID 136141, .3.2.
4 Components SNMP System J c SNMP System ‘Cedar Chase this is a long long long location
Contact Ane DAY, Location description
@ Network Routes (2)
Device comment boo 2
°ExampFe Components (2)
¥

@ Hard Disks (5) <

sl .|
Graphs -
Modeler Plugins é
Configuration Properties H

~
Software P
Mib Browser 2
My Example Menu 1 E 100 m +
= Mon 60: 60
Mxeannitepte Bxanpebaycea il 2016-04-03 23:38:13 B b5 11:38:13 BST
Custom Properties B snmpOutPkts My Drop Down Menu 2... max:238.83m
- . B snmpInPkts max:238.83m

Administration My Drop Down Menu 1...

4 Monitoring Templates
Device (/Devices)
SnmpPacketsinOut (/Devices)

D. /Groups/Skills 1st Skills 1st

Myanh-l+ vlo vlcnmmm-

Figure 222: Dropdown menus shipped with objects.xml

Menus can be delivered as objects in objects / objects.xml. mydropDownMenul and
mydropDownMenu?2 are delivered this way. They are called from both versions of the
myExampleMenuOne.pt file (both the skins version and the browser /templates version), by
the line:

menu_id string:ExampleOneMenuObjects list

The code in objects.xml has been built by reference to other examples.

340 ZenPack Developers' Guide Oct 13, 2016

zenoss@zen42:/code/ZenPacks/DevGuide/ZenPacks.community.MenuExamples/ZenPacks/community/MenuExamples

File Edit View Search Terminal Help

E!,, ('*, 'zport', 'dmd', 'zenMenus', 'ExampleOneMenuObjects_list') -->

<object id='/zport/dmd/zenMenus/ExampleOneMenuObjects list' module='Products.ZenModel.ZenMenu' class='ZenMenu'>
<tomanycont id='zenMenultems'>

<object id='my] Menu2' module='Products.ZenModel.ZenMenultem' class='ZenMenultem'=>
<property id='zendoc' type='string'>

My Drop Down Menu 2...

</property>

<property type="text" id="description" mode="w" >

My Drop Down Menu 2...

</property>

<property type="text" id="action" mode="w" >

y
<property type="boolean" id="isglobal" mode="w" >
True
</property>
<property type="lines" id="permissions” mode="w" >
('ZenCommon*,)
</property>
<property type="lines" id="banned_classes" mode="w" >

</property>
<property type="lines" id="allowed_classes" mode="w" >

</property>
<property type="lines" id="banned ids" mode="w" >

</property>

<property type="boolean" id="isdialog" mode="w" >
True

</property>

<property type="float" id="ordering" mode="w" >
70.0

</property>

</object>

<object id='myDropdownMenul' module='Products.ZenModel.ZenMenultem' class='ZenMenultem'>
<property id='zendoc' type='string'>

My Drop Down Menu 1...

</property>
<property type="text" id="description" mode="w" >
"objects/objects.xml" [readonly] 195 lines --64%-- 126,1 80% |-

Figure 223: Definition of a menu list and its menus in objects.xml

In Figure 223, note:

e There must be a menu list defined, of object class ZenMenu, whose name matches the
menu_id referenced in the .pt file - ExampleOneMenuObjects_list. The menu list contains
one or more zenMenultems.

<object id='/zport/dmd/zenMenus/ExampleOneMenuObjects list'
module='Products.ZenModel.ZenMenu' class='ZenMenu'>
<tomanycont id='zenMenultems'>

e Each menu item is then defined with various properties.

<object id='myDropDownMenu2' module='Products.ZenModel.ZenMenultem' class='ZenMenultem'>
<property id='zendoc' type='string'>
My Drop Down Menu 2...

</property>

<property type="text" id="description" mode="w" >
My Drop Down Menu 2...

</property>

<property type="text" 1d="action" mode="w" >
myDropDownMenu?2

</property>

<property type="boolean" id="isglobal" mode="w" >
True

</property>

<property type="lines" id="permissions" mode="w" >
('ZenCommon',)

<property type="float" id="ordering" mode="w" >
70.0

Oct 13, 2016 ZenPack Developers' Guide 341

</property>

o The description property defines the name that will be seen in the GUI.

o The ordering property allows control over positioning within the menu list, where
lower numbers are nearer the top of the list.

e Itis the action stanza in the menu item definition that must match with the name
field of an entry in browser /configure.zcml.

e Both these dropdown menus are defined in Zenoss-3 style with configure.zcml and .pt
files in browser /templates.

El zenoss@zen42:/code/ZenPacks/DevGuide/ZenPacks.community.MenuExamples/ZenPacks/community/MenuExamples

File Edit View Search Terminal Help

<!-- Next two stanzas are for the dropdown menus that are defined in
objects.xml. The name field must match with the action field in the Menultem
definition in objects.xml (ie. myDropDownMenul / myDropDownMenu2). The layout
for these menus is in templates/myDropDownMenul.pt and
templates/myDropDownMenu2.pt respectively.

myDropDownMenul deliberately limits the scope to
for="..ExampleDevice.ExampleDevice"

as templates/myDropDownMenul.pt uses the createComment method which is only

defined for the ExampleDevice object class. The result is that for devices of

other object classes, the submit window simply hangs and can be closed harmlessly.

For ExampleDevice devices note that after clicking the OK button, control is
returned to the defaultdetails view as this is the default view as defined in
the factory information for a device.

<page
name="myDropDownMenul"
for="..ExampleDevice.ExampleDevice"

template="templates/myDropDownMenul.pt
permission="zenoss.View"
/>

<page
name="myDropDownMenu2"
For="®"
template="templates/myDropDownMenu2.pt"
permission="zenoss.View"
/>

</configuffe>
"browser/configure.zcml" [readonly] 186 lines --100%-- 186,10 Bot [~

Figure 224: configure.zeml "wiring” for dropdown menus shipped in object.xml

mydropDownMenul is restricted for use only by devices of object class ExampleDevice
(because it uses the createComment method which is only defined for the ExampleDevice
object class). The result is that for devices of other object classes, the submit window simply
hangs and can be closed harmlessly.

myDropDownMenu?2 is valid for all device object classes and produces a popup window with a
few device attributes.

342 ZenPack Developers' Guide Oct 13, 2016

'-‘4 1 DASHBOARD EVENTS N 1 REPORTS ADVANCED § jane SIGN OUT

@ Networks Processes IP Services Windows Services Network Map Manufacturers

Overview
Evenis

Custom range

4 Components Hourly

@Network Routes (2)
°Example Components (2)
B iome i _Page reached from mydropDownMenu2 - no dialog
Dinterfaces (2)
Graphs "
Modeler Plugins P = 10.0.0.30)
Configuration Properties) E i
Mib Browser y

My Example Menu 1

My Example Menu 2 (Example Devices only)
Custom Properties

Administration

4 Mnnitaring Temnlatea V<] i
MyFooter -] + - Q '] Commands ~ t.} 0 Job:

Figure 225: Popup window from myDropDownMenu2 with device attributes

The layout of this popup window is defined by templates/myDropDownWindow?2.pt.

zenoss@zen42:/code/ZenPacks/DevGuide/ZenPacks.community.MenuExamples/ZenPacks/community/MenuExamples

File Edit View Search Terminal Help

Jtal:block metal:use-mac m=“here)‘temp1ates/mac ros/page2"] E
<tal:block metal:fill-slot="contentPane">

<form method="post"
name="myDropDownMenu2" tal:attributes="action string:s{here/absolute_url_path}/${template/id}">

<tal:block metal:define-macro="myDropDownMenu2" tal:define="tabletitle string:Page reached from mydropDownMenu2 - no dialog">

<tal:block metal:use-macro="here/zenuimacros/macros/zentable">
<tal:block metal:fill-slot="zentablecontents">

<!-- BEGIN ExampleDevice TABLE CONTENTS -->
<tr>
<td class="tableheader" align=left=Name</td>
<td class="tablevalues" tal:content=here/title0rld> </td>
</tr>
<tr>
<td class="tableheader" align=left>IP address</td>
<td class="tablevalues" tal:content=here/managelp> </td>
</tr>
<tr>
<td class="tableheader" align=right>=SNMP sysName</td=>
<td class="tablevalues" tal:content=here/snmpSysName> </td>
<ftr>
<tr>
<td class="tableheader" align=left>SNMP Description</td>
<td class="tablevalues" tal:content=here/snmpDescr> </td>
</tr>
<!-- END ExampleDevice TABLE CONTENTS -->
</tal:block>
</tal:block>
</tal:block>
<tr>
eftr>

</form=>

</tal:block>
</tal:block>
"browser/templates/myDropDownMenu2.pt" [readonly] 40 lines --2%-- 1,1 Top [~

Figure 226: myDropDownMenu2.pt in browser [templates defining the popup window for Menu 2

myDropDownMenul prompts for a comment for the device and uses the createComment
method to update the comments attribute for the device.

Oct 13, 2016 ZenPack Developers' Guide 343

DASHBOARD EVENTS INFR. | JR REPORTS ADVANCED | jane SIGNOUT H

IP Services ~ Windows Services ~ Network Map ~ Manufacturers Page Tips

Overview

Events
4 Components Al : LI =
@ network Routes (2)

°Example Components (2) Add device details
@Hard Disks (5)
@ interfaces 2)
Graphs Commemzf

Modeler Plugins

Configuration Properties
Software

Mib Browser

My Example Menu 2 (Example Devices only)
Custom Properties

Administration

-

4 _Mnonitoring Temnlates

MyFooter ~ || 4 ~ || €} ~ || Commands ~) 0Jobs ~

Figure 227: Popup menu from myDropDownMenul that prompts for input

browser [templates | myDropDownMenul.pt defines the popup box and gathers the input value
into a variable called comments.

[E] zenoss@zend2:/code/ZenPacks/DevGuide/ZenPacks.community.MenuExamples/ZenPacks/community/MenuExampl _ o

File Edit View Search Terminal Help
Bh2Prdd device details</h2>

<form method="post"
name="createComment" tal:attributes="action context/absolute url path">

<table>
<tr><td>
<span id="comment_label" style="color:white;"=Comment: </span=
</td><td>

<input id="newComment" name="comments" style="width:200px">
</td=</tr=

<div id="dialog_buttons">

<!-- Note that after clicking the OK button, control is returned to the defaultdetails view
as this is the default view as defined in the factory information for a device.
-

<input tal:attributes="type string:submit;
value string:O0OK"
name="createComment:method" />

<input tal:attributes="id string:dialog_ cancel;
type string:button;
value string:Cancel;
onclick string:$$('dialog').hide()" />

</div=>
</table>

</Torm>
"browser/templates/myDropDownMenul.pt" [readonly] 32 lines --3%-- 1L Top |

Figure 228: myDropDownMenul.pt defining input popup and calls createComment method

344 ZenPack Developers' Guide Oct 13, 2016

It calls the createComment method that is defined in ExampleDevice.py.

[£] zenoss@zend2:/code/ZenPacks/DevGuide/ZenPacks.community.MenuExamples/ZenPacks/community/MenuEx - o0 x

| Eile Edit View Search Terminal Help
This function is called by mydropDownMenul.pt in browser/templates
The parameter "comments" must match the name parameter on the
input line and these both need to match the object attribute you are changing
The name of the function must match with the pt file dialog buttons section, with
the name field for the OK input eg.
<input tal:attributes="type string:submit;
value string:0K"
name="createComment :method" /=

HHEHEEHEER

- createComment(self, comments='', REQUEST='"'):

Set comments attribute for a device
self.comments = comments
T REQUEST:
messaging.IMessageSender(self).sendToBrowser(
'Device comment set',
'Device comment created as %S

% comments

rn self.callZenScreen(REQUEST)

"ExampleDevice.py" [Modified] 66 lines --100%-- 66,0-1 Bot [~
Figure 229: createComment method in ExampleDevice.py

In Figure 229 note that:

e The name of the function, createComment, must match with the .pt file dialog_buttons
section, where the function name matches the name field for the OK input.

n e The function parameter comments must match the name parameter on the input line
in the .pt file and these both need to match the object attribute you are changing in
ZODB.

For devices of object class ExampleDevice, note that after clicking the OK button, control is
returned to the defaultdetails view as this is the default view as defined in the factory
information for a Device.

15.3.6 Adding items to the Display dropdown for a component

Any component display for a device includes a Display dropdown menu in the middle of the
panel.

Oct 13, 2016 ZenPack Developers' Guide 345

4@1 DASHBOARD EVENTS INF UCTURE REPORTS ADVANCED 2 jane sIGNOUT H

m Networks Processes IP Services Windows Services Network Map Manufacturers Page Tips
7

Qverview

Events "
4 Components opt_zenoss_loc... fopt/zenoss/localfredtest

Q, Type tofiter...

opt_zenoss_loc...

/opt/zenoss/local/fredtest/test

@Files (7)
Winterfaces (4)

W 0s Processes (5)
@ Network Routes (3)
@File Systems (3)
@ senices (14)
@Processors (1)
Graphs zj
Modeler Plugins

Configuration Properties
Software

24 Templates
Amazing Stuff

Mon 12:00 Tue 00:00 Tue 12:00

2016-04-04 06:52:36 BST to 2016-04-05 18:52:36 BST
B disk_used cur:21.55k avg:21.55k max:21.55k

Mib Browser

My Example Menu 1

MyFooter ']+ - Iﬂ - I Commands ~
Figure 230: Display dropdown for a component

The default menu items include:

e Graphs
o Events
o Details

e Templates

Other items can be added either globally for all components or specific to a particular
component.

zenpacklib is excellent for automatically creating menu links to related component objects as
seen in the Files menu in Figure 230.

Pre zenpacklib, new menu items for the Display dropdown were coded in the object file
defining the component. ExampleComponent.py contains:

Defining the "perfConf" action here causes "Example Component
Template" to be available in
the display dropdown for components of this type.
The action "objTemplates" is a standard Zenoss page template defined
in S$SZENHOME/Products/ZenModel/skins/zenmodel/objTemplates.pt

factory type information = ({
'actions': ({
'id': 'perfConf',
'name': 'Example Component Template',
'action': 'objTemplates',
'permissions': (ZEN_CHANGE DEVICE,),
o)
b))

This results in an extra Example Component Template option. In practise, this is a duplicate
of the standard Templates menu.

A global Display item, applicable to all component types, can be added by coding a JavaScript
file and linking it in with configure.zeml “wiring”.

346 ZenPack Developers' Guide Oct 13, 2016

zenoss@zen42:/code/ZenPacks/DevGuide/ZenPacks.community.MenuExamples/ZenPacks/community/MenuExamples/browser

File Edit View Search Terminal Help
<?xmf] version="1.0" encoding="utf-8"?> =
<configure xmlns="http://namespaces.zope.org/browser">

<!-- A resource directory contains static web content. --=>
<!-- example is simply a unique name. The directory "resources" is directly under this directory -->
<!-- The name "example" in the resourceDirectory stanza must match what follows ++resource++ in viewlet -->

<resourceDirectory
name="example"
directory="resources"
/>

<!-- This amazing viewlet uses a for stanza to apply to all types of devices
Note that the manager stanza is interfaces.IHeadExtraManager
This adds in an extra dropdown menu for Components from the Display box

=

<viewlet

name="js-amazing-componentoption”
paths="/++resource++example/js/amazing. js"
weight="9"
for="Products.ZenModel.Device.Device"
manager="Products.ZenUI3.browser.interfaces.IHeadExtraManager"
class="Products.ZenUI3.browser.javascript.JavaScriptSrcBundleViewlet"
permission="zope2.Public"
/>

"configure.zcml" [Modified][readonly] 167 lines --0%-- 1,5 Top

Figure 231: browser [configure.zeml with Display dropdown for "amazing” item

The viewlet entry in browser / configure.zcml has a for statement that ensures the option is
applicable to the top-level Device class and all subclasses.

Note that the manager stanza is:

Products.ZenUI3.browser.interfaces.IHeadExtraManager

The JavaScript file is amazing.js under browser /resources/Js.

[E] zenoss@zend?2:/code/ZenPacks/DevGuide/ZenPacks.community.MenuExamples/ZenPacks/community/MenuExamples/browser _ o x

File Edit View Search Terminal Help
Henoss.nav.appendTo('Component', [{ 14
id: ‘'amazing stuff bottom panel’,
text: t('Amazing Stuff'},
xtype: '‘componentpanel’,
action: function(node, target, combo) {
var uid = combo.contextlUid;
alert(uid); 4
} 1)
/* Next line simply pops up a message on the screen

alert('just added amazing stuff');
%/

"resources/js/amazing.js" [readonly] 14 lines --7%-- 1,1 Top

Figure 232: browser [resources [js | amazing.js defines a Display menu option called Amazing Stuff

The menu simply produces an alert popup with the UID of the component.

15.3.7 Menu on INFRASTRUCTURE -> Devices to add new device type

The standard Zenoss Core menus have options to add a new device from the "+" dropdown
menu at the top of the list of devices. It is possible to add an extra option to that menu that is
specific for a particular device object class.

Oct 13, 2016 ZenPack Developers' Guide 347

DASHBOARD EVENTS NFR/ i REPORTS ADVANCED 4 jane SIGNoOUT

m Networks Processes IP Services Windows Services Network Map Manufacturers Page Tips

ISkills 1st

Q
4 @ Example (2)
@TesiClass (2)

- @HTTP (3)
@Kkvm (0)
@ MarkitDatabases (...

- W Network (14)

i @Ping (9)

- @Power (1)

- @ Printer (2)

i @ server (22)

b ostorage ()

Add a Single Device...

| Add Multiple Devices... |
otschy.skills-1st.co.uk Add EG2 Account... 0.0.125 IServer/NMware/ESXI Maintenance /Real | /Test

eV . .CO. . . .U 1l 1) i
taplow-30.skills-1st.co.uk Add MarkitDatabase Device... 0.0.30 Example/TestClass Production
taplow-11.skills-1st.co.uk Delete SLA. .. 0.0.11 ‘Server/Linux/DirFile Production
rb2011.skills-1st.co.uk et TR 0.0.254 /Network/Router Production /Real

zend2.class.example.org 192.168.10.42 [Server/Linux Production /Real

4 @croups (21)
O raddle_group (12)

" Skills 1st (3)

OZEnSystems (8)

4 Osystens 23) z i I B

@ MyTest (0) [+ DISPLAYING 1-5 of 5 ROWS
e

Figure 233: Add Example Device menu

This is done with a viewlet stanza in browser /configure.zeml that points to a JavaScript file,
add_example_device_option.js.

[£] zenoss@zend42:/code/ZenPacks/DevGuide/ZenPacks.community.MenuExamples/ZenPacks/community/MenuExamples/browser - o x

File Edit View Search Terminal Help
<!-- Define an add device entry 14
- =
<viewlet

name="js-add example device option"
paths="/++resource++example/js/add_example device option.js"
weight="10"
manager="Products.ZenUI3.browser.interfaces.IJavaScriptSrcManager”
class="Products.ZenUI3.browser.javascript.JavaScriptSrcBundleViewlet"
permission="zope2.Public"

=

"configure.zcml" [readonly] 186 lines --30%-- 57,0-1 26% [
Figure 234: configure.zecml "wiring” for Add Example Device menu

The JavaScript file creates a new Zenoss Action that prompts for hostname or IP address,
community and comment fields and then submits a job to create the new device.

348 ZenPack Developers' Guide Oct 13, 2016

[£] Zenoss@zend42:/code/ZenPacks/DevGuide/ZenPacks.community.MenuExamples/ZenPacks/community/MenuExamples/browser/resourcesfjs _ o

File Edit View Search Terminal Help

(function()fi [

// Ensure that the following var name matches the method defined in

// interfaces.py, routers.py and facades.py

// Also ensure the var name matches with the Zenoss.extensions.adddevice.push statement
I/ at the end of this file

var add_ExampleDevice = new Zenoss.Action({
text: t('Add Example Device') + '..."',
id: 'addExampleDevice-item',
permission: 'Manage DMD',
handler: function(btn, e){

var win = Zenoss.dialog.CloseDialog({
width: 300,
title: _t('Add Example Device'},
items: [{

xtype: 'form',
buttonAlign: 'left’,
monitorValid: true,
labelAlign: 'top’',
footerStyle: 'padding-left: 0°',
border: false,
// Ensure that name field of items match the attribute names
/ that you want to populate
items: [{
xtype: 'textfield',
name: 'devicelp'
fieldlLabel: _t{'Hostname or IP'},
id: "exampleDeviceTitleField",
width: 268,
allowBlank: false

xtype: 'textfield',
name: 'community’,
fieldLabel: _t('RO Community'),
id: "exampleDeviceRoCommunityField",
width: 260,
"add example device option.js" [readonly] 108 lines --0%-- 1512 Top

Figure 235: JavaScript for Add Example device menu - part 1 - defining the popup and input fields
In Figure 235, note:

e The var name must match the method defined in interfaces.py, routers.py and
facades.py - add_exampleDevice

o The dropdown menu text is defined as Add Example Device... (second highlighted line).
e A dialog window is defined whose title is Add Example Device
e Each item in the dialog box has a fieldLabel, eg Hostname or IP

e The allowBlank field for each item can mandate that an entry is specified

Add Example Device

Hostname or IP: taplow-30.skills-1st.co.uk

comment: Comment from add menu|

ADD CANCEL

Figure 236: Popup dialog for adding a new Example Device

Oct 13, 2016 ZenPack Developers' Guide 349

The second part of the JavaScript file defines the buttons for the user to select ADD or
CANCEL.

] zenoss@zen42:/code/ZenPacks/DevGuide/ZenPacks.community.MenuExamples/ZenPacks/community/MenuExamples/browser/resources/js - o0 x

File Edit View Search Terminal Help
buttons: (fi £
xtype: 'DialogButton’,
id: 'addExampleDevice-submit',
text: t('Add')
formBind: true,
handler: function(b) {
var form = b.ownerCt.ownerCt.getForm();
var opts = form.getFieldValues();

// Following line must match the class defined in routers.py
/1 and the last part must match the method defined on that class
£ ie. router class = ExampleDeviceRouter, method = add ExampleDevice

Zenoss.remote.ExampleDeviceRouter.add ExampleDevice(opts,
function(response) {
if (response.success) {
new Zenoss.dialog.SimpleMessageDialog({
message: _t('Add Example Device job submitted.'),

buttons: [{
xtype: 'DialogButton’,
text: t('0K')
Lo o 4

xtype: 'button',
text: t('View Job Log'),
handler: function() {
window.location =
'/zport/dmd/JobManager/joblist#jobs:' + response.jobld;

+H
}).show();

Zenoss.dialog.SimpleMessageDialog({
message: response.msg,
buttons: [{

xtype: 'DialogButton’,

text: _t('0K')

}
}).show();
}
1
}
"add example device option.is" 107 lines --43%-- 47,27 70% [~

Figure 237: JavaScript for Add Example device menu - part 2 - defining the Add button

In Figure 237:
e The input fields are delivered to the opts variable

e opts is passed to a router construct,
Zenoss.remote.ExampleDeviceRouter.add_ExampleDevice(opts), where:

s The remote router name must match the class defined in routers.py -
ExampleDeviceRouter

m The last element of the router construct must match the method defined on that
class - add_ExampleDevice

e Different message dialogs are produced, depending on whether action was successfully
taken. A successful response results in a box with two buttons:

s OK
s View Job Log which links to the Jobs list

350 ZenPack Developers' Guide Oct 13, 2016

o An unsuccessful response should have a box with the reason for failure and an OK
button

The last part of the JavaScript file defines the CANCEL button for the Add Example Device
dialog.

[E] zenoss@zen42:/code/ZenPacks/DevGuide/ZenPacks.community.MenuExamples/ZenPacks/community/MenuExamples/browser/resourcesfjs - 0 x

File Edit View Search Terminal Help

+)i

y
}. Zenoss.dialog.CANCEL]
H
1
win.show();
}
1)

Ext.ns('Zenoss.extensions');
Zenoss.extensions.adddevice = Zenoss.extensions.adddevice T Array ?
Zenoss.extensions.adddevice : [1];
// Ensure the parameter in the next line (add ExampleDevice) matches the var name at the top of the file

Zenoss.extensions.adddevice.push(add_ExampleDevice);

/f DON'T lose the closing bracket sets - you need

/7 YO)

// If you lose these nothing works and you get no error messages or warnings

HHB

"add_example_device option.js" 187 lines --100%-- 107,5 Bot [~

Figure 238: JavaScript for Add Example device menu - part 3 - CANCEL and menu addition

It also arranges to “push” the new Zenoss Action onto the existing adddevice menu. Note that
the push parameter must match the var name at the top of the JavaScript file -
add_ExampleDevice.

15.3.7.1 Routers and facades

Routers and facades provide a means to handle objects. A facade is code that actually
modifies objects; a router provides access to the facade, supplying the correct parameters. The
router can be considered as a translation layer between the browser and the facade; thus,
provided the name and parameters are maintained by the router, the underlying facade code
may be changed.

routers.py in the base directory of the ZenPack, contains the definitions for routers and their
functions. Typically a router calls a facade, defined in facades.py.

Router names, their functions and their parameters must all match up between the
routers.py / facades.py entries and the JavaScript that calls the router.

If a ZenPack provides several routers or facades then create subdirectories in the base
directory of the ZenPack called routers and facades and place individual router and facade
files under the appropriate directory.

add_example_device_option.js calls the ExampleDeviceRouter. with the
add_ExampleDevice(self, devicelp, community, comment) method.

Oct 13, 2016 ZenPack Developers' Guide 351

zenoss@zen42:/code/ZenPacks/DevGuide/ZenPacks.community.MenuExamples/ZenPacks/community/MenuExamples _ o x

File Edit View Search Terminal Help
// Following line must match the class defined in routers.py
S and the last part must match the method defined on that class

1 ie. router class = ExampleDeviceRouter, method = add_ExampleDevice
Zenoss . remote.ExampleDeviceRouter.add ExampleDevice(opts, [F] zenoss@zen42:/code/ZenPacks/DevGuide/ZenPacks.community.MenuExamples/ZenPacks/commi _
"browser/resources/js/add example device option.js" [readonly] 107 lines --51%-- File Edit View Search Terminal Help
zenoss@zen42:/code/ZenPacks/D ide/ZenPacks. ity.MenuE ZenPacks ity/Men <browser:directRouter
File Edit View Search Terminal Help name="ExampleDevice router"
i i for;
ExampleDeviceRouter(DirectRouter): .
ggtFa(ad@(self)'() class=".routers.ExampleDeviceRouter”

namespace="Zenoss.remote"
permission="zenoss.View"

The parameter in the next line - exampleDevice - must match with 7

the name field in an adapter stanza in configure.zcml
L

The name field in the adapter stanza must match with the parameter to
return Zuul.getFacade('this is the bit that must match', self.context)

Zuul.getFacade('exampleDevice', self.context)

The method name - add ExampleDevice - and its parameters - must match with the def +F d CBULRE

Vast part of the call for Zenoss.remote.ExampleDeviceRouter.add ExampleDevice LIiCe gethacarel in: EoULensspy:

: ;gpﬁqgtégvgitiigtiizki :g?ii:gmgﬁetgzv;gefgggloﬂ'JS The paranatersiwill be The provides field must match with an interface class name defined

. in interfaces.py in this directory (ie. IExampleDeviceFacade)
::i55252p225§v1;2:::E;ae??v1celp, CELTMFREY, GO R The factory field must match with a facade class name defined in
= 19 facades.py in this directory (ie. ExampleDeviceFacade).

zenoss@zend2:/code/ZenPacks/D ide/ZenPacks. ity.Men es/ZenPacks/ ity/Menu
File Edit View search Terminal Help <adapter

name="exampleDevice"

ExanpleDevicefacade (Zuulfacade) : s=".interfaces.IExampleDeviceFacade"

implements(IExampleDeviceFacade)

The method name add ExampleDevice and its parameters must match those defined i factory=".facades.ExampleDeviceFacade"

interfaces.py and routers.py o
It is the following method that ACTUALLY does the work of adding a device <"I
add ExampleDevice(self, devicelp, community, comment): "configure.zeml" [Modified][readonly] 118 lines --54%-- 64,8 4
“"vAdd a device of class ExampleDevice """
"facades.py" [readonly] 68 lines --27%-- 19,1 31%

Figure 239: JavaScript, router, facade and configure.zeml for Add Example Device menu

The parameters for devicelp, community and comment gathered by the JavaScript, are
passed to the router method in the opts variable; opts must deliver the correct number and
type of variables. The router passes them to the facade.

zcml "wiring" is required in the top-level configure.zcml for the router. It must also provide
an adapter for the facade.

interfaces.py (in the top-level directory) must have an entry for the interface for the facade,
matching any functions and their parameters.

The name of the IFacade class here (IExampleDeviceFacade) must match

what is defined in an adapter stanza's

provides=".interfaces. this is the bit that must match"

1ie. IExampleDeviceFacade in configure.zcml

The method name and parameters must match those defined for

the facade that implements

IExampleDeviceFacade in facades.py (ie. add ExampleDevice)

class IExampleDeviceFacade (IFacade) :

def add ExampleDevice (self, devicelp, community, comment) :

"""Add a device of class ExampleDevice"""

The facade is what actually implements functionality on an object. The collector for the new
device is hard-coded to be localhost.

352 ZenPack Developers' Guide Oct 13, 2016

zenoss@zen42:/code/ZenPacks/DevGuide/ZenPacks.community.MenuExamples/ZenPacks/community/MenuExamples

File Edit View Search Terminal Help

import 1gging

log = logging.getLogger('.'.join(['zen', name 1))
from zope.interface import implements

from Products.Zuul.facades import ZuulFacade

from Products.Zuul.utils import ZuulMessageFactory as _t
from .interfaces import IExampleDeviceFacade

from .interfaces import ImyAppFacade

The ZuulFacade class name, ExampleDeviceFacade, must match the name specified

1in the factory field of an adapter stanza in configure.zcml

1ie. ExampleDeviceFacade

The implements line must match that specified in the same adapter's "provides" field

and in interfaces.py, must match the IFacade class defined there (ie. IExampleDeviceFacade)

class ExampleDeviceFacade(ZuulFacade):
implements(IExampleDeviceFacade)
The method name add ExampleDevice and its parameters must match those defined in
interfaces.py and routers.py
It is the following method that ACTUALLY does the work of adding a device
def add _ExampleDevice(self, devicelp, community, comment):
"""Add a device of class ExampleDevice """

deviceRoot = self._dmd.getDmdRoot("Devices")
device = deviceRoot.findDeviceByIdExact(devicelp)
if device:
return False, _t("A device named %s already exists." % devicelIp)
zProperties = {
'zSnmpCommunity': community,
'zPythonClass': 'ZenPacks.community.MenuExamples.ExampleDevice',

}
Set the collector to be 'localhost’
perfConf = self. dmd.Monitors.getPerformanceMonitor('localhost’)
addDeviceCreationJob is a method defined in $ZENHOME/Products/ZenModel/PerformanceConf.py
Parameters here are not exhustive. discoverProto='snmp' ensures device is modeled as well
as discovered into the Zope database
jobStatus = perfConf.addDeviceCreationJob(
deviceName=devicelp,
devicePath='/Example/TestClass',
discoverProto='snmp',
comments=comment,
ZProperties=zProperties)
return True, jobStatus.id
"facades.pv" [Modifiedllreadonlyvl 57 lines --1%-- 1,9

Figure 240: facades.py showing the code to Add an Example device

<l

Top

The addDeviceCreationdJob method is then called on the collector object using the parameters
passed to add_ExampleDevice. This creates a job to add the device, returning the job status

id.

15.3.8 New items for left-hand DeviceClass Action menu

The Action (gear) icon at the bottom of the left-hand menu on INFRASTRUCTURE -> Devices

can have new items added to it.

Oct 13, 2016 ZenPack Developers' Guide

353

DASHBOARD EVENTS INFRASTRUCTURE REPORTS * jane sSiIGNOUT H

Devices
h /Example/TestClass
4 Janes Title in window
Q Preparing my command... B.¥
8 He
4 @ oevices (85 ualSlEE End of command...
@ Application (13)
@ autobiscovered (10)
AWS (1) 3 5-15t.c0
@Bac pForLotschyTempl: (0) 1
@piscovered (0)
4 " Example (2)
@HTTP (3) n
Dkvm (0)
: Bind Templates
@ markitDatabas|
Network (14) Reset Bindings
QPing 9) Clear Geocode Cache
@power (1) Edit
Oprinter (2)
un My Freaetin el omman
o Run My Predefined Shell C d
Server (22) [— A
OStorage () Add to ZenPack... bws
— Y. AutoschoH”.

https://zen42.class.example.org/zport/dmd/itinfrastructure#

Figure 241: customized items on DeviceClass Action menu
Actions chosen apply to any selected device classes. The menu has been extended to run a
predefined command that produces a popup window with the command output.

A viewlet entry is required in browser /configure.zeml that points to the JavaScript file
run_my_predefined_command.js.

A page entry is also required to show the output from the command, where the class field
defines an entry in command.py (in the ZenPack base directory) to actually run the command.

B zenoss@zen42:/code/ZenPacks/DevGuide/ZenPacks.community.MenuExamples/ZenPacks/ ty/N = O X [oc . Mozilla Firefox e
File Edit View Search Terminal Help

<!-- Define a new entry on the Action "gear cog wheel" menu B zenoss@zen42:/code/ZenPacks/DevGuide/ZenPacks.community.MenuExamples/ZenPacks/c - O
for the device list page Fle Edit View Search Terminal Help
// New menu option on the device list cog wheel menu, context-configure-menu

qsrmy—act{nn—menu—ltem‘ = . Ext.ComponentMgr.onAvailable('context-configure-menu', function(config) {
f++cesource++examp1e/]s/runimyipredeflnedﬁcummand.]s var origOnGet - config.onGetMenuTtems;
18 config.onGetMenuItems = function(uid) {

var result = origOnGet.call(this, uid) || [];

// Menu item only shows up when certain device class is selected
4 if(uid.match('*/zport/dmd/Devices/Example/TestClass/')) {

(true) {
result.push({

="Products.ZenUI3.browser.interfaces.IJavaScriptSrcManager"
"Products.ZenUI3.browser.javascript.JavaScriptSrcBundleViewlet"
ion="zope2.Public"

<!-- Add a command window for showing ouput for a command run from an action menu i o 5 p
o . A u : % text: _t('Run My Predefined Shell Command'),
The name parameter ties in with the "target" field in the js handler = = = el iy e
In the class field, .. takes you back to the ZenPack base directory where hidden: ‘Zenoss.Security:doesNotHavePe mission (tManage Device),;

there must be a file called command.py.......... hand::::wiﬁmit:on(%egoss CoinsAaN TR e
which contains a class called MyPredefinedCommandView uids: uid : k5
= target: 'run_my predefined_ command',
<page title: _t('Janes Title in window')
e L - 7 i
23\‘::*run_my_predeflned_command WAL
.command.MyPredefinedCommandView" 1) }
"zenoss.ManageDevice" i

s : 3 : result;
"./browser/configure.zcml" [readonly] 186 lines --30%-- 57,0-1 35% - e
il SE— .
zenoss@zend2:/code/ZenPacks/DevGuide/ZenPacks.community.MenuExamples/ZenPacks/community - o x |});
File Edit View Search Terminal Help ;?ggwsegéresources/js/ run_my predefined command.js" [Modified][readonly] 29

MyPredefinedCommandView is used in several menus to create a popup window

containing "Hello" and "World" followed by the url argument and the uid (which ma
¥y be null)

Runs the mywrapper_scriptl script in the ZenPack's libexec directory

Press ENTER or type command to continue]]

File Edit View Search Terminal Help
#set -x

$1 $2 $3 s4

‘date’ $1 $2 63 $4 > /tmp/mywrapper_script.log

MyPredefinedCommandView(StreamingView) :

stream(self):
Setup a logging file
1f = os.path.join{os.environ['ZENHOME'], 'log/example logging.log')

"libexec/mywrapper scriptl” [Modified][readonly] 6 line
[tegfile = open(lf, 'a') s --100%-- [Autoscrol
"command.py" [readonly] 60 lines --35%-- 21,9 22% [fIPress ENTER or type command to continuel] [.
—

Figure 242: configure.zecml, JavaScript file, command.py and shellscript to implement device class menu
item

354 ZenPack Developers' Guide Oct 13, 2016

In Figure 242, note:

® browser/configure.zcml references the JavaScript file in the paths statement of the
viewlet stanza - run_my_predefined_command.js

o The JavaScript file uses the target statement to reference the page stanza in
browser [configure.zeml - run_my_predefined_command

® browser/configure.zcml references the command entry in command.py, in the class
statement - MyPredefinedCommandView

e The MyPredefinedCommandView command runs mywrapper_scriptl in the ZenPack's
libexec directory

[£] zenoss@zend2:/code/ZenPacks/DevGuide/ZenPacks.community.MenuExamples/ZenPacks/community - o x

File Edit View Search Terminal Help
] try: 4
args = datal['args']
logfile.write('Argument is %s \n' % (args))
arg3 = args
.ioéfile.write{' No args \n')
argd = "'
‘uids = data['uids']
logfile.write('uids is %s \n' % (uids))
argd = uids
logfile.write('No uids \n')
argd = "'
libexec = os.path.join(os.path.dirname(_ file), 'libexec')
argl = "Hello"
arg2 = "World"
Find the script in the libexec directory of the ZenPack
myPredefinedCmdl = [
libexec + '/mywrapper scriptl’,
argl, arg2, arg3, argd
]
logfile.write(' myPredefinedCmdl is %s ' % (myPredefinedCmdl))
self.write('Preparing my command...')
result = executeCommand({myPredefinedCmdl, None, write=self.write)
self.write('End of command...')
logfile.close()
I rn result
"command.py" [readonly] 60 lines --46%-- 28,1 96% |-

Figure 243: MyPredefinedCommandView code to call libexec | mywrapper_scriptl

The MyPredefinedCommandView class in command.py and uses both literal parameters
(argl and arg?2) and parameters passed from the calling window. Data is delivered from the
browser with the statement:

data is a list that will contain 2 elements:

the url argument and the uid
data = unjson(self.request.get('data'))

Oct 13, 2016 ZenPack Developers' Guide 355

where data is a list containing the url of the currently selected object (which becomes arg3)
and its uid, which may be blank (which becomes arg4).

The actual command is in the libexec subdirectory as mywrapper_scriptl. It simply echos the

four parameters.

15.3.9 Adding new items to a device's Action menu

It is possible to add extra items to the Action menu for a device.

‘-ﬂ Ist DASHBOARD EVENTS INFRASTRUCTURE REPORTS ADVANCED * jane SIGNOUT H
Devices
e« laplow-30.skills-1st.co.uk :
/0\ fExgm la/TostClass | | | Up 0 | Production | Normal
10.0.0.30 DEVICE STATUS PRODUCTION STATE PRIORITY
[~
Type to filter
Overview Bind Templates pletemponani= |@ 2
Events Add Local Template Device description Device Status Device Errors Name =«
S -opecuens Remove Local Template
@ nNetwork Rol network interface eth0 up© 0 1026
Reset Bindings
 Example O :
@ Hard Disks { Override Template Here
Ointertaces (2 5oy change 1P Address.. Janes Title in device Action menu window
Graphs .
Push Changes... Preparing my

Modeler Plugins
Configuration Pro i e
Software Change Device Class...

Mib Browser Rename Device...

My Example Meni
Delete Device...
My Example Meni

Locking...

Custom Propertie; 1.0
Administration Example Device Action 0.8

4 Monitoring Templi Another example device action

[EE—— T
Figure 244: Adding items to a device's Action menu with Another example device action output

Two items are added by this ZenPack:
e Example Device Action logs to a console log

e Another example device action runs the same predefined command seen
in the previous section

browser [configure.zcml requires a viewlet entry.

356 ZenPack Developers' Guide Oct 13, 2016

[z] zenoss@zen42:/code/ZenPacks/DevGuide/ZenPacks.community.MenuExamples/ZenPacks/community/V - 0 x

File Edit View Search Terminal Help
<!-- Add an item to the "gear" Action menu for a specific device
Note the IHeadExtraManager in the manager field

for field makes this menu applicable to all device classes
ie. any class under Device
-

<viewlet
name="device-gear-menu"
paths="/++resource++example/js/deviceGearMenu.js"
weight="9"
for="Products.ZenModel.Device.Device"
manager="Products.ZenUI3.browser.interfaces.IHeadExtraManager"
class="Products.ZenUI3.browser.javascript.JavaScriptSrcBundleViewlet"
permission="zope2.Public"
/>

"./browser/configure.zcml" [readonly] 186 lines --52%-- 98,0-1 57%
Figure 245: browser [configure.zcml to define additions to a device’s Action menu
Note that:

e paths references the correct JavaScript file
e weight positions the new items towards the bottom of the menu
e for makes these additions valid for device class Device and all subclasses

o The manager statement must be
Products.ZenUI3.browser.interfaces.IHead ExtraManager

The JavaScript file pushes extra items on to the device_configure_menu (which is provided by
the core Zenoss code).

Oct 13, 2016 ZenPack Developers' Guide 357

[E] Zenoss@zend2:/code/ZenPacks/DevGuide/ZenPacks.community.MenuExamples/ZenPacks/community - 0 x

File Edit View 5earch Terminal Help
Prunction() {

/'ik'a.r\

* 0On the device details page the uid is

* Zenoss.env.device uid and on most other pages it is set with
* the environmental variable PARENT CONTEXT;

x5k /

function getPageContext() {
return Zenoss.env.device uid || Zenoss.env.PARENT CONTEXT;

}

Ext.ComponentMgr.onAvailable('device configure menu', function({config) {
var menuButton = Ext.getCmp('device configure menu');
menuButton.menultems.push({

xtype: 'menuitem’,
text: t('Example Device Action'}),
handler: function(){
console.log('JC - example device action clicked!"');
}
Fed
xtype: 'menuitem',
text: t(' Another example device action'),
handler: function() {
var win = new Zenoss.CommandWindow({
uids: getPageContext(),
target: 'run_my predefined command',
title: t('Janes Title in device Action menu window')
3
win.show();
}
1}
I3F
1OR:
"browser/resources/js/deviceGearMenu.js" [Modified][readonly] 37 lines --5%--
Press ENTER or type command to cuntlnuel

Figure 246: JavaScript file to extend a device’s Action menu
Note that the second item, Another example device action has an identical construct to the
previous example, referencing the run_my_predefined_command in the target statement;

however, to distinguish it from the previous example, a different window title is configured.

The output in the GUI popup will show the url to the selected device.

The first menu item demonstrates logging to the browser console log; this can be a useful
debugging technique used with the browser's logging tools.

358 ZenPack Developers' Guide Oct 13, 2016

Zenoss: taplow-30.skills-1st.co.uk - Mozilla Firefox
File Edit View History Bookmarks Tools Help
(> Zenoss: Devices 32 | © Zenoss: taplow-30.... 3 Hﬁzam: ZenPacks.c... 3 UE Zenoss: Monitoring ... 3¢][BZems: Backgroun... 3¢ Hf} Zenoss: Backgroun... ¥ Uﬁ Zenoss: taplow-11.... 3£ | =k l 5
« lé example.org | https://zen42.class.example.org/zport/dmd/Devices/Example/TestClass/devices/taplow-30.skills-1st.co.uk/devicedetail #(| /v z] [i_lv Google Q ‘ L

LlNei V][IC,SS VJ[lWeh Developer VJ Positionv Clear X
I

GET https://zend?.class.example.org/zport/RenderServer/render?width=581 ts=ellg.drange=129600&s tart=end - 1296008s&end=now-0s&graphid=1460020644667 ext-gen1792 [HTTP/1.1 200 0K 18ms
JC - example device action clicked! deviceGe.u.js:18
POST https://zend2.class.example.org/zport/dnd/Devices/Example/TestClass/devices/taplow-30.skills-1st.co.uk/jobs router [HTTP/1.1 200 OK 33ms

FEHlbeel eyt NFRASTRUCTURE | REPORTS ADVANCED)} jane SIGNOUT |
Remove Local Template

o Windows Services Network Map ~ Manufacturers Page Tips
Reset Bindings
Override Template Here 0o v AT 8

Reset/Change IP Address...
ype to filter
Overview Push Changes...
(B Model Device...
4 Components network interface lo
@ Network Ro SlhiangelDevC=i laees network interface eth0
¥ Example Cq Rename Device...
@Hard Disks Delete Device...
Binterfaces 2 Locking...
Graphs
Example Device Action
Modeler Plugins
Another example device action
| S

https://zen42.class.example.org/zport/dmd/Devices/.../devices/taplow-30.skills-1st.co.uk/devicedetail #
Figure 247: Firefox console log showing Example Device Action menu item output
Use Firefox menus Tools -> Web Developer -> Web Console to start the browser console log.

15.3.10 Adding a new menu to the Footer bar

A whole new menu can be added to the footer bar at the bottom of the navigation tree menu.

Oct 13, 2016 ZenPack Developers' Guide 359

* [E) example.org | https://zend2.class.example.org/zport/dmd/itinfrastructure# devices:.zport.dmd.Devices. Example. TestClass

‘-“4] t DASHBOARD EVENTS TRUCTURE REPORTS ADVANCED

Devices Networks Processes IP Services Windows Services Network Map Manufacturers

———N, 0 /| f
DETAILS g Example/TestClass

a TN (@0 st cote en-

4 @oevices (ss)

- @Application (13)
i ExampleDevicel
@ AutoDiscovered (10) ExampleDevice1
- Waws (1) taplow-30.skills-1st.co.uk PSR

°BackupFo rLotschyTemplates (0)
@piscovered (0)
4 "VExample (2)
! TesiClass (2)
» @HTTP (3)
@KvM (0)
@wmarkitDatabases (11)
I WNetwork (14)
» @Ping (9)

Model Device...

Set device comment / rackSlot...

Jane's predefined command L]

[+ o o - I

Figure 248: New menu on footer bar

The menu has:
o The standard "Model device" action
e An action to run the same predefined command discussed earlier

e An option "Set device comment / rackSlot" which prompts for these two fields and then
modifies the selected device accordingly.

A viewlet entry is required in browser /configure.zcml that points to the JavaScript file
myFooterMenu.js.

360 ZenPack Developers' Guide Oct 13, 2016

[E] zenoss@zend2:/code/ZenPacks/DevGuide/ZenPacks.community.MenuExamples/ZenPacks/community/MenuExamples _ O
File Edit View Search Terminal Help
<!-- Define a viewlet that puts up a new footer bar menu
The action is defined in myFooterMenu.js under the js subdir in the resources subdirectory
The weight field doesn't seem to change the position of this option on the
footer bar but don't set weight="1" or it doesn't show up at all

%

<viewlet

name="js-myFooterMenu"
paths="/++resource++example/js/myFooterMenu.js"
weight="4"
manager="Products.ZenUI3.browser.interfaces.IJavaScriptSrcManager"
class="Products.ZenUI3.browser.javascript.JavaScriptSrcBundleViewlet"
permission="zope2.Public"
/=

"./browser/configure.zcml" [readonly] 186 lines --52%-- 97,1 48% |5

Figure 249: browser [configure.zeml for footer menu

Note that the weight statement does not appear to have any effect but setting it to I results in
the menu not displaying at all.

[£] zenoss@zen42:/code/ZenPacks/DevGuide/ZenPacks.community.MenuExamples/ZenPacks/community/MenuExamples/ _ o
File Edit View Search Terminal Help

li/ whenever the footer bar is available we want to add a button
Ext.ComponentMgr.onAvailable('footer bar', function(config) {
var footer bar = Ext.getCmp('footer bar');
// the component is built but it is not ready for items to
// be added so add a listener for after it is rendered
footer_bar.on('render', function(){
// add our menu items
footer_bar.add([{
text: 'MyFooter’,
id: ‘my-footer-bar-menu',
menu: {
items: [{
xtype: 'menuitem',
text: t('Model Device') + '...',
hidden: Zenoss.Security.doesNotHavePermission('Manage Device'),
handler: function() {
var win = new Zenoss.CommandWindow({
uids: [getPageContext()],
target: 'run_model',
title: t('Model Device')
1)
win.show();
1
A
xtype: 'menuitem',
text: 'Jane\'s predefined command',
handler: function() {
var win = new Zenoss.CommandWindow({
uids: getPageContext(),
target: 'run _my predefined command',
title: t('Janes Title in footer bar window')
})i

win.show();

b
"myFooterMenu.js" [Modified] 52 lines --21%-- 11,5 55%
Figure 250: JavaScript file part 1 - defines standard Model Device and Predefined Command defined in
previous sample

In Figure 250, note:

Oct 13, 2016 ZenPack Developers' Guide 361

e The standard footer_bar is defined in core code. The new MyFooter menu will be added
to it

o The first menu item has the target of run_model. This simply duplicates the Model
Device menu item on a device's standard Action menu. run_model can be found in
$ZENHOME | Products | ZenUI3 | browser | configure.zeml.

o The second menu item has the target of run_my_predefined_command, seen in several
earlier samples. Note the title reflects that it is called from the footer bar.

The third menu item is another example of using a router. A popup window is produced to
supply input for the comments and rackSlot device attributes.

41: DASHBOARD EVENTS INFRASTRUCTURE REPCRTS ADVANCED * jane SIGN OUT
Devices
— taplow-30.skills-1st.co.uk ‘ 1) :
{ O /Example/TesiClass | I ‘ e U e [R
—_ 10.0.0.30 DEVICE STATUS PRODUCTICN STATE PRIORITY
Device ID . Device Title Rack Slot
Events ; ;
taplow-30.skills-1st.co.uk taplow-30.skills-1st.co.uk 27
4 Componenis

l me) ~alle 8
ki Modify comment / rackSlot g aclo

set from footer menu

#Network Routes (2)

05d:15h:57mj v localhost

Example Components (2)

: First Seen
#Hard Disks (5)

Hardware Manufacturer

2016/03/31 1§ =
Interfaces (2) —
| B Hardware Model
Graphs =
Modeler Plugins 20160331 1 S CANCEL

Model Time: OS Manufacturer

Configuration Properties

Software 2016/04/07 11:38:09

Locking OS Model
Unlocked

Mib Browser

My Example Menu 1

Memory/Swap:
My Example Menu 2 (Example Devices only) pemeny Sk

438.3MB/100.0MB

Custom Properties))
Save | | Cancel Save ‘ | Cancel ‘

Administration

4 Monitoring Templates

‘. MyFooter vHrH?” Commands v.‘ | 0,

Figure 251: Popup dialog for modifying comments and rackSlot from footer menu

The popup box is defined in the JavaScript file.

362 ZenPack Developers' Guide Oct 13, 2016

zenoss@zen42:/code/ZenPacks/DevGuide/ZenPacks.community.MenuExamples/ZenPacks/community/MenuExamples/browser/resources/js

File Edit View Search Terminal Help
1.0 C
xtype: 'menuitem',
text: _t('Set device comment / rack5lot') + '...',
hidden: Zenoss.Security.doesNotHavePermission('Manage Device'),
handler: function() {
var win = n Zenoss.dialog.CloseDialog({
width: 300,
title: _t('Modify comment / rackSlot'),
items: [{
xtype: 'farm',
buttonAlign: 'left’,
monitorValid: true,
labelAlign: 'top'
footerStyle: 'padding-left: 0',
border: false,
// Ensure that name field of items match the attribute names
/7 that you want to populate
// allowBlank: false means OK button will not be active until this condition satisfied|s
// 1if allowBlank set to true and field not supplied then field will be set to null
items: [{
xtype: 'textfield',
name: ‘comments',
fieldLabel: _t('Comments for device'),
id: "exampleDeviceCommentField",
width: 260,
allowBlank: true
3 A
xtype: 'textfield',
name: ‘'rackSlet',
fieldLabel: _t('Rack Slot for this device'),
id: "exampleDeviceRackSlotField",
width: 260,
allowBlank: false
M.
"myFooterMenu.js" [readonly] 132 lines --27%-- 36,23 35% [~

Figure 252: JavaScript file part 3 - defines popup box for comments | rackSlot input for footer menu

Note that:
o The allowBlank: False statement mandates input before the buttons will be active.

o The name statements must match the object attributes to be changed - comments and
rackSlot

The Modify button in the dialog popup calls a new router defined in the ZenPack,
Zenoss.remote.myAppRouter.myRouterFunc(opts) to channel data from the GUI into a facade
(myAppFacade) to actually change the attributes of the object to the values that have been
input.

Oct 13, 2016 ZenPack Developers' Guide 363

" 12:/cod K i enPack: ity.
Gle Edit View Search Terminal Help
buttons: [{
xtype: 'DialogButton',
id: 'modifyExampleDevice-submit"',
text: _t('Modify'),
formBind: true,
handler: function(b) {

var form = b.ownerCt.ownerCt.getForm();

var opts = form.getFieldValues();

[=] zenoss@zen42:/code/ZenPacks/DevGuide/ZenPacks.community.Me|

owser/resources - 0

File Edit View Search Terminal Help
s myAppFacade(ZuulFacade):
implements (ImyAppFacade)

Note that the the facade function, myFacadeFunc
The object is passed in addition to the commen

lef myFacadeFunc(self, ob, comments, rackSlot)
""" Modifies comments and rackSlot attributes

// Following line must match the class defined in routers.py ob.comments = comments
1/ and the last part must match the method defined on that class ob.rackSlot = rackSlot
1/ ie. router class = myAppRouter, method = myRouterFunc
/7 The 2 input fields for comments and rackSlot are passed as l r irn True, _t(" Comments and rackSlot attri
124 opts to the router function. "facades.py" [readonly] 68 lines --98%--

= =
Zenoss.remote.myAppRouter.myRouterFunc(opts, zenoss@zen42:/code/ZenPacks/D ide/ZenPack: ity. ZenPacks/commi

function(response) {
if (response.success) {
myFooterMenu.js" [readonly] 132 lines --53%--

@ 42:/code/ZenPacks/ i enPack: ity. nPack
File Edit View Search Terminal Help
E myAppRouter(DirectRouter)
f getFacade(self):

The parameter in the next line - myAppAdapter - must match with
the name field in an adapter stanza in configure.zcml

Zuul.getFacade('myAppAdapter', self.context)

The method name - myRouterFunc - and its parameters - must match with
the last part of the call for Zenoss.remote.myAppRouter.myRouterFunc
in the javascript file myFooterMenu.js . The parameters will be
populated by the items defined in the js file.

Note that the router function has 2 parameters, comments and rackSlot
that are passed as the "opts" parameters from myFooterMenu.js. The
values of these fields were provided by the form input.

File Edit View Search Terminal Help
S
The name field in the adapter stanza must match with the parameter
to return Zuul.getFacade('this is the bit that must match', self.con
in def getFacade in routers.py

The provides field must match with an interface class name defined i
interfaces.py in this directory (ie. ImyAppFacade).

The factory field must match with a facade class name defined in
facades.py in this directory (ie. myAppFacade).
G
<browser:directRouter
name="myApp_router"
for="*"
class=".routers.myAppRouter™”
namespace="Zenoss.remote"
permission="zenoss.View"
/>
<adapter
name="myAppAdapter"
provides=".interfaces.ImyAppFacade"

For="*"

f myRouterFunc(self, comments, rackSlot): factory=".facades.myAppFacade"
/>

facade = self._getFacade()
"routers.py" [readonly] 68 lines --50%-- 34,5

"configure.zeml" [Modified] 113 lines --56%-- 64,1
Figure 253: JavaScript, routers.py, facades.py and configure.zcml to implement the comments | rackSlot
dialog

In Figure 253, note:

e Both router and facade need entries in the top-level configure.zcml and the facade
also needs an entry in interfaces.py, as follows:

The name of the IFacade class here (ImyAppFacade) must match what is
defined in an adapter stanza's
provides=".interfaces. this is the bit that must match"

ie. ImyAppFacade in configure.zcml
The method name and parameters must match those defined for the facade
that implements ImyAppFacade in facades.py (ie. myFacadeFunc)

H= S W 3 S

class ImyAppFacade (IFacade) :
def myFacadeFunc(self, ob, comments, rackSlot):
""" Modify comments / rackSlot attributes for a device object"""

e The JavaScript file calls the router myAppRouter with the method myRouterFunc(opts)
, passing in opts the values received from the GUI for comments and rackSlot.

e The myAppRouter class in routers.py defines the facade as myAppAdapter which is
found by referring to the configure.zeml wiring. The adapter stanza points to
facades.myAppFacade.

o The interfaces.py file defines the myFacadeFunc method with parameters of (0b,
comments, rackSlot) where ob is the device object that is passed by the myRouterFunc
method from routers.py, as follows:

def myRouterFunc(self, comments, rackSlot):
facade = self. getFacade ()
The object that is being operated on is in self.context
ob = self.context
The facade name in the next line & its parameters must match
with a method defined in facades.py
(ie. myFacadeFunc (ob, comments, rackSlot))

364 ZenPack Developers' Guide Oct 13, 2016

Note that facade.myFacadeFunc needs 3 parameters as we
need to pass the object as well as the comments and
rackSlot attribute values.

success, message = facade.myFacadeFunc (ob, comments, rackSlot)
e The facade method, myFacadeFunc, is the code that actually updates the object and
returns a success message.

2 Comments and rackSlot attributes set for device taplow-30.skills-1st.co.uk (%]

Devices

taplow-30.skills-1st.co.uk Up

Example/TesiClass

taplow-30.skills-1st.co.uk taplow-30.skills-1st.co.uk 27

EEEREURHE Device modified localhost

Comments and rackSlot attributes set for device
EURGIk T3l taplow-30.skills-1st.co.uk

2016/04/07 11:38:09
Unlocked

438.3MB/100.0MB

Save Cancel Save Cancel

4 Monitoring Templates

MyFooter ~ | 4 - || €} ~ || Commands ~ 0Jobs +

Figure 254: Popup reporting success setting comments and rackSlot from footer menu

16.0 Testing and debugging ZenPacks

The chances of getting a ZenPack with new source code, correct first time, is not high. This
section offers some testing and debugging hints. At this stage, the information only addresses
Zenoss 4 though many comments are pertinent to earlier Zenoss versions and some will be
relevant for Zenoss 5.

Some of the points raised in this section have been discussed earlier in the text but they are
repeated here to provide a problem-driven reference chapter.

TODO: This chapter need lots of Zenoss 5 specific details.

16.1 Log files and logging

Zenoss logfiles are all held under $ZENHOME /log; in Zenoss 5, one must attach to the
relevant container first to see the active logfile. By default logfiles have an Info level
(logseverity = 20) of logging but this can be increased to Debug to provide lots more data
(logseverity = 10). When the problem is resolved, the original logging level should be restored.

Daemon log files and their configuration can be inspected from the ADVANCED -> Settings ->
Daemons menu. To increase the debug level, change the logseverity to Debug. If you check the
configuration file for this daemon in $ZENHOME /etc you will see a line:

Oct 13, 2016 ZenPack Developers' Guide 365

logseverity 10

Any changes to a daemon's configuration file requires a restart of the daemon, either through
the GUI or using <daemon> restart from a command line.

In addition to checking specific Zenoss daemon files like zenmodeler.log or zenperfsnmp.log, it
is always worth also checking zenhub.log and event.log.
Most daemons will respond to the debug parameter, which is a toggle switch.

zencommand debug

Turns on debug level on the running daemon. A second identical command toggles debugging
off again. This debug state will not persist past a daemon restart.

Make use of log statements in any code that you write. Modeler plugins automatically provide
for logging from the standard CollectorPlugin code. Make use of the different log severities:

log.debug ('logMatchTable is %s ' % (logMatchTable))

log.info ('Modeler %s processing data for device %s',self.name(), device.id)
log.warn('No SNMP response from %$s for the %s plugin ', device.id, self.name())
log.error('%$s: %s', device.id, e)

Run daemons in the foreground with the logging set to debug (-v 10) and output both stdout
and stderr to a file for further inspection. For example:

zenmodeler run -v 10 -d taplow-1l.skills-1lst.co.uk --collect DirFilePythonMap > /tmp/fredl 2>&l

16.1.1 Log messages and their likely meanings

1. In zenpython.log:

2015-12-15 10:26:01,268 DEBUG zen.ZenPacks.community.DirFile.dsplugins: In
OnError - result is [Failure instance: Traceback: <type
'exceptions.TypeError'>: 'str' object is not callable

a. The “str' object is not callable” is often a log or print statement where % has been
missed. For example

log.debug ('In datapoint loop datapoint id is %s ' (datapoint id))

should be:

log.debug('In datapoint loop datapoint id is %s ' % (datapoint id))

2. In zenmodeler.log:

No decoder for oid 1.3.6.1.4.1.2021.16.100.3.0 type ASN BIT8 - returning None
a. Suggests that an SNMP modeler plugin is requesting the wrong OID or that the
target device does not support that MIB value.

3. In zenhub.log:

2015-11-15 17:17:21,973 WARNING zen.ApplyDataMap: The attribute
logMatchIndex was not found on object fred2 daily from device taplow-
11l.skills-1st.co.uk

366 ZenPack Developers' Guide Oct 13, 2016

<

a. Indicates that a modeler plugin is trying to populate an object attribute that does not
exist in the object class file or zenpack.yaml. The error is only a WARNING and other
aspects of the modeler should be unaffected.

. In any collector daemon log:

2016-01-20 10:44:52,329 ERROR zen.collector.config: Configuration for
taplow-11.skills-1st.co.uk unavailable -- is that the correct name?

a. Typically there is no attempt to collect any data whatsoever for this device.

b. The issue is in the config_key or params methods of a performance
DataSourcePlugin run by zenhub, resulting in a null configuration for the device.

¢. An error in one plugin will prevent collection of all data by that daemon for that
device.

d. Matching errors should also appear in zenhub.log.

16.2 General hints and tips

1.

A frustrating common error is that most directories in a ZenPack need an __init_ .py
file, even though it may be empty. It is particularly easy to omit this from a ZenPack's
browser directory. It is perfectly acceptable to create a null-length file using:

touch init .py

A common error is to omit to import required classes before using them. pyflakes in vi
should help highlight these as the classes will be undefined.

A classic error to make in Python files is to get white space indentation wrong. Python
uses indentation to structure if, while, for and other constructs; you must be consistent
with the number of spaces used at each level of indentation.

A common issue with some environments and browsers is to see a blank screen in the
Zenoss GUI. This is usually resolved simply by resizing fonts in the browser using Ctrl

Use zendmd as a general debugging tool. It is an excellent “sandpit” to test bits of
Python and to query Zenoss objects and their attributes and methods. Several
examples have already been demonstrated throughout this document.

When weird things happen that really make no sense at all, try recycling the whole
Zenoss system with:
zenoss stop

zenoss start

Using the Python try ... except construct allows error conditions to fail in a much more
controllable manner.

Oct 13, 2016 ZenPack Developers' Guide 367

16.3 Testing and debugging new object class files

If you have created or changed object class files, you should always delete any discovered
instances that use those files and rediscover them to ensure that any relationship changes are
established correctly. You should certainly recycle zenhub and zopectl with:

e zenhub restart
e zopectl restart

When a new device object class has been added or a relationship has been added to a device
class, then you need to recycle the whole of Zenoss with:

® zenoss stop
® zenoss start

Typically you will be doing initial testing with a single device so delete the device and use the
Add Device menu to re-add it, ensuring that you specify your new device class in the Device
Class dropdown. Adding the device runs zendisc which calls zenmodeler. You may see error
messages in the discovery GUI. Usually they are quite good at pinpointing the problem to a
particular line in a particular file. Watch out especially for syntax errors in your code such as
missing closing brackets, missing quotes or missing colons (:).

Another way to start testing object class files is to use the Zope ZMI interface. For example,
navigate to hitp:/ /zen42.class.example.org [zport [dmd / manage and then navigate down
Devices [/ Server / Linux / SimpleTest [devices /| <a specific device> and check that the expected
attributes and relationships exist.

16.3.1 New components do not appear in left-hand menu

1. If you don't recycle everything then a new component that is declared in the new
relationship, doesn't appear in the left-hand menu of the GUL.

2. Check the spelling and capitalisation on names, especially relationship names - at least
3 times!

3. Use the ZMI to check whether the objects exist. If attributes and relations are correct
then the issue is probably with the GUI code.

16.4 Testing and debugging modeler plugins

If you have created or changed a modeler plugin, you need to restart zenhub and zopectl,
typically you do not need to delete your test device and re-add it. It should be sufficient to
simply use the Model Device menu from the Action icon and watch the output.

Note the dialogue particularly to ensure that your modeler does at least attempt to run — the
output will show what plugins are to be run. You may need to uncheck the Autoscroll box at
the bottom-right to be able to scroll back up the window.

368 ZenPack Developers' Guide Oct 13, 2016

Zeoss DASHPAAPR FursTe WIER ASTALIAT IAE nERARTe ARVARIAER F i
CORE

Model Device s

pem—
. Devices

/ - group-100-s2
INetwork/Switch/Bridg
4 172.31.100.21

Overview
Events

: Cugm::::orkﬁoules.;. g 29,416 ;NFO zen.ZenMoqale P gi s zgnuss.snmp.NewDeuceMap, zenoss.snmp .DeviceMap, zenoss.snmp.InterfaceMap,
zenoss.snmp.RouteMap, BridgelnterfaceMib, BridgeDeviceMib
@ Interface: EIT-01-20 157147

Software
Graphs
Administration

Confi Bind Templates
Mode Add Local Template
Custe
Modif

4 Monit
Br Override Template Here

Remove Local Template

Reset Bindings

b Reset/Change |P Address,

Push Changes..
Model Device.

Rename Device.
Clear Heartbeats

Lock..

Delete Device.

Figure 255: Output from Model Device highlighting the plugins to be run

16.4.1 Compilation errors

If your modeler doesn't appear on the plugins list it is probably a compilation error.
Remember that you have created python source files (ending in .py); Zenoss will compile-on-
demand to generate .pyc files. A good check is always to inspect the base Zenoss directory and
the modeler /plugins directory hierarchy to ensure that you have matching .pyc files for each
of your .py files.

A good way to test for compilation errors is to use the zendmd utility to import the file in
question.

ZenossPzend4l: > zendmd
Welcome to the Zenoss dmd command shell?
'dmd’ is bound to the DataRoot. 'zhelp()’ to get a list of commands.
»»» from ZenPacks.skillslst.bridge.modeler.plugins import BridgeDeviceMib
»»» from ZenPacks.skillslst.bridge.modeler.plugins import BridgeDeviceMib
3>
zenossPzenZ41:7> zendnd
Welcome to the Zenoss dmd command shellt
'dmd’ is bound to the DataRoot. ’'zhelp()’ to get a list of commands.
»»> from ZenPacks.skillslst.bridge.modeler.plugins import BridgeDeviceMib
Traceback (most recent call last):

File "<console>", line 1, in 7

File "rusr-local-zenoss-zenoss-local~ janesZenPacks.skillslst.bridgesZenPacks-skillslst/bridge-m
odeler/plugins/BridgeDeviceMib.py”, line 32

~

syntaxError: invalid syntax
> |

Figure 256: zendmd dialogue showing successful compilation and unsuccessful compilation

The figure above shows a successful import (in fact, two of them!) — you simply receive a
command prompt back. Note that you need to specify an object path to the Python source

Oct 13, 2016 ZenPack Developers' Guide 369

file, not a file path. The second zendmd dialogue shows a failed compilation (I removed a
closing bracket from line 32).

1. Watch for yellow highlighted messages when using a Modeler Plugin menu
2. Check $ZENHOME |/ log /event.log for error messages. For example:

File
"/code/ZenPacks/DevGuide/ZenPacks.community.LogMatch/ZenPacks/community/Log
Match/modeler/plugins/community/snmp/LogMatchMap.py", line 54

def process(self, device, results, log)

A

SyntaxError: invalid syntax

3. Do not leave test / half-finished plugin files under modeler/plugins if it has a .py suffix.
zenhub checks all python files under such directories and will attempt to use them as
modeler plugins. Errors will appear in zenhub.log:

2016-01-19 17:19:32,213 INFO zen.ZenHub: Worker (1699) reports 2016-01-19
17:19:32,213 WARNING zen.ModelerService: The following error occurred while
loading
ZenPacks.community.DirFile.modeler.plugins.community.python.DirFilePythonMa
pBad plugin:

('Traceback (most recent call last):', ' File
"/opt/zenoss/Products/DataCollector/Plugins.py", line 100, in create', '
self.modPath)', ' File "/opt/zenoss/Products/DataCollector/Plugins.py",
line 192, in importPlugin', ' return importClass (modPath)', ' File
"/opt/zenoss/Products/ZenUtils/Utils.py", line 536, in importClass', '

import (modulePath, globals(), locals(), classname)', ' File

"/code/ZenPacks/DevGuide/ZenPacks.community.DirFile/ZenPacks/community/DirF
ile/modeler/plugins/community/python/DirFilePythonMapBad.py", line 24', '
def create dirRegex(self, device, log)', ' A,
'SyntaxError: invalid syntax')

16.4.2 General modeler debugging hints

1. If the modeler runs but fails then hopefully you get a message in the GUI showing the
modeler output. If there are insufficient clues here, try running zenmodeler standalone
with full debugging turned on (-v 10) and send the output to a file:

zenmodeler run -v10 -d taplow-11l.skills-lst.co.uk --collect LogMatchMap \
> /tmp/fred 2>l

2. Note that the device parameter must be the device id if you use a name; alternatively,
the IP address can be used.

3. Using the --collect parameter to specify the modeler to run, can significantly reduce the
output.

4. If you still can't see the problem, try putting log statements in the modeler plugin code
to output intermediate data stages. Figure 257 highlights log.warn statements that
output the results of the SNMP getdata and tabledata structures.

370 ZenPack Developers' Guide Oct 13, 2016

Q Jane@zen241:...del'skins/zenmodel - Shell - Konsole 4-;

Session Edit View Bookmarks Settings Help

l def process(self, device, results, log): -
"""collect snmp information from this device"""
log. info(’ processing »s for device »s’, self.name(), device.id)
#Collect Physical Port Forwarding Table
getdata, tabledata = results

it Uncomment nmext 2 lines for debugging when modeling
log .warn("Get Data= »s", getdata)
log .warn(“Table Data= =", tabledata)

BaseTable = tabledata.get("dotldBasePortEntry")

#t If no data returned then simply return
if not BaseTable:
log.warn{ 'Ho SHMP response from ¥s for the »s plugin’, device.id, self.name())
log .warn("Data= »s", getdata)
log .warn(“Columns= »s", self.basecolumns)
return

PortTable = tabledata.get("dotldTpFdbEntry")

#t If no data returned then simply return
if not PortTable:
log .warn(‘Ho SHMP response from ¥s for the »s plugin’, device.id, self.name())
log .warn(“Data= #s", getdata)
log .warn("Columns= »s", =self.portcolumns)
return

"BridgeInterfaceMib.py"” [readonlyl 114 lines —42x— 48,1 =% Y -

Figure 257: BridgelnterfaceMib.py code highlighting debugging logging
5. A modeler filename must be the same as the plugin classname.

6. It is perfectly normal and not an error condition to get a line in zenmodeler.log saying:

2015-11-30 13:16:46,421 DEBUG zen.Classifier: No classifier defined

16.4.3 Attributes or relationships are not populated

1. Check the spelling and capitalisation on names, especially relationship names - at least
3 times!

2. If a relationship is not created then check relationship names and object files for both
device and component.
3. If relationship instance(s) are not created, check:

i. relname and modname statements in modeler plugin exists
ii. relname and modname are correct (especially case-sensitivity)

4. If one or more attributes do not have values:
i. Check spelling of attributes in modeler plugin table column names
ii. If SNMP modeler, check OID is correct and that data is collected
iii. Check attribute names in object class files do match with (i)

iv. Check type of attributes for errors eg. string data received for int defined
attribute

Oct 13, 2016 ZenPack Developers' Guide 371

5. For SNMP modelers, in particular:

a. Check that output is actually received from SNMP and that it matches what you
expect. The following message in zenperfsnmp.log would be an indication that the OID
you are requesting is incorrect or not supported on the agent:

No decoder for oid 1.3.6.1.4.1.2021.16.100.3.0 type ASN BIT8 - returning
None

b. Use the standalone snmpwalk utility as a test tool to check SNMP access,
authentication parameters and OIDs. For example:

snmpwalk -v 2c¢ -c fraclmye taplow-11.skills-1lst.co.uk .1.3.6.1.4.1.2021.16.2.1

snmpwalk -v 3 -a MD5 -A fraclmyea -1 authNoPriv -u jane zenny .1.3.6.1.4.1.2021.16.2.1

c. Check that Zenoss really does have the same parameters configured in the various
SNMP zProperties for the device.

d. Note that the leading dot “.” on the OID is optional (it confirms a “fully-qualified” OID
starting at the root of the MIB tree).

i. Note that some earlier versions of Zenoss had issues if this leading dot was
omitted.

6. For modelers that use ssh, it is important to test ssh, as the zenoss user, to each target
directly, as the first communication will generate the host fingerprint entry and ask
whether to add it to the known_hosts file in the zenoss user's .ssh directory. The target
name must be identical to that used by Zenoss. Zenoss modelers will probably fail if
asked this question, typically with a Host key verification failed error message.

a. Note on Zenoss 5 the test must be performed from the zencommand container as the
.ssh [known_hosts inside the container is not the same as that for the zenoss user on
the base host. If the zenpython daemon also uses ssh then it is not necessary to repeat
this for the zenpython container.

serviced service attach zencommand su zenoss -1

ssh -1 zenplug zenny2.class.example.org
cat .ssh/known hosts

7. Insert extra log.debug statements in the modeler code and rerun the zenmodeler
command in debug. For Zenoss Core 4 and earlier, you only need to recycle zenhub and
zopectl daemons if you insert extra log statements. No reinstall of the ZenPack is
necessary. For example:

log.debug ('logMatchTable is %s ' % (logMatchTable))

8. Beware coding mappings for attributes that have not been defined in either an object
class file or in zenpack.yaml. This will result in messages in zenhub.log like:

2015-11-15 17:17:21,973 WARNING zen.ApplyDataMap: The attribute
logMatchIndex was not found on object fred2 daily from device taplow-
11.skills-1st.co.uk

9. The other explanation for such messages may be mis-typed names in either the object
class or in the modeler.

372 ZenPack Developers' Guide Oct 13, 2016

10. If such attributes have been coded into the modeler for future use, you could preface
the name with an underscore temporarily, to avoid error messages.

11. Where multiple relationships are created, eg. Device -> Component -> Sub-component,
great care is needed in returning legal data maps. If more than one relationship map or
object map is returned by a modeler plugin, then the returned value must be a list of
relationship maps and/or object maps.

a. A typical algorithm might be:

maps = []

crm = self.relMap ()

for each component:
create component object map (com)
crm.append (com)

call function to deliver sub-component relationship map (srm)
maps.append (crm)
maps.extend (srm)

b. Note the use of append and extend when creating the list of maps:
i. maps starts as an empty list

ii. Component object maps are appended to it - each component object map is a
single item added to a list.

iii. A function delivers a list of sub-component object maps
iv. The srm list of maps extends maps
c. The argument of append is inserted to the next element of the list.

d. With extend, each element of the iterable argument, is appended as the next element
of the list

e. If erm is:

[coml, com2, com3] then maps becomes
[coml, com2, com3]

f. If srm is:

[soml, som2, som3]

appending srm to maps would give:

[coml, com2, com3, [soml, som2, som3]] not what we want!

whereas extending srm to maps would give:

[coml, com2, com3, soml, som2, som3] much better!

12.

16.4.4 Modeler issues related to using zenpacklib

1. Beware letting relation names default in zenpack.yaml. It is better practice to name
the relationships, in both device and component object classes, and to use the names in

Oct 13, 2016 ZenPack Developers' Guide 373

the class_relationships stanza. It is essential to get the relation names correct when
using them in modeler plugin code.

2. The modeler code also needs to know the module path for object classes for the
modname variable. Before zenpacklib, this was the path to the object class file; with
zenpacklib, it is the ZenPack name concatenated with the name of the object. For
example:

modname = "ZenPacks.community.LogMatch.LogMatch"

3. If a ZenPack is created with zenpacklib then none of the modeler/plugin directory
hierarchy is created. This must be done manually, remembering to create _ init_ .py
files at each level.

16.5 Testing and debugging problems with performance data

16.5.1 General performance issues

Each performance collector daemon has its own logfile in $ZENHOME |/ log; zenperfsnmp.log,
zencommand.log, zenpython.log etc.

1. Be aware which ZenPacks and datasources use which daemon and hence which log file
to check for problems. For example:

a. Many of the original Zenoss ZenPacks, like ftp, dns, dig and Apache use Nagios
plugins that are fundamentally driven by zencommand. Check a ZenPack's
documentation for information on daemons utilised.

b. ZenPacks.zenoss.Microsoft. Windows uses zenpython.

c. Check prerequisites for ZenPacks; any that has the PythonCollector ZenPack as a
prerequisite is likely to use zenpython.

2. Examine logfiles for Missed_Runs and Queued_Tasks messages. This is an indication
that the daemon cannot keep up with the load demanded of it. You may also see
timeout messages.

16.5.2 Configuration issues

There are several ways that performance data collection can fail because configuration has
not been completed or is incorrect:

1. A template is created but not bound to a device. In this case, no attempt will be made
to collect data. Go to the device's details page and check the Monitoring Templates
listed there.

2. Component templates, matching the component object class name, do not need binding
— this happens automatically — and the component template will not be listed for the
device. Check component templates from the middle drop-down menu on the
Component page and select Templates.

3. zenpack.yaml may specify other component templates for automatic binding to a
component object:

374 ZenPack Developers' Guide Oct 13, 2016

Dir:

label: Dir # NB It is label, with spaces removed, that is used to match a component template
meta type: Dir # Will default to this but in for completeness

label width: 150 # This controls the column width for Dir in the Files component display
order: 60 # before file

auto_expand column: dirName

monitoring templates: [Dir, DirPythonXml] # will default to Dir but explicit for clarity

4. You could also check the zDeviceTemplates property from the Configuration Properties
menu to ensure the correct device templates are bound.

5. In SNMP datasources, scalar MIB values need the trailing .0; otherwise no data will be
collected.

6. If SNMP community names configured in Zenoss do not match those in the target
agents then you will get no SNMP data. Test with a simple snmpwalk command from a
command line; for example:

snmpwalk -v 1 -c public switch.skills-1lst.co.uk system

7. Similarly for templates performing ssh commands, check the zCommand configuration
properties match the device, and test from the command line.

8. If a template is correctly configured and bound but there are only one or two data
values collected (counter values need at least two values before a point can be plotted
as it is a rate-of-change measurement), you will see a graph with no data and the cur,
avg and max values will have the value nan. This simply means graph points are not
yet available; another polling interval usually fixes this issue.

9. Ifyou see no graphs, do check that they have been configured - with the correct
datapoints.

10. For component device templates collecting tables of SNMP data, the instance may be
the issue. Increasing the logging level for zenperfsnmp may help diagnose this.

11. Note that zCommandSearchPath appears to be ignored by the zencommand
mechanism.

12. If specifying commands in a COMMAND template, either use a fully-qualified path
name to the command, or ensure that a local standard exists to implement the
zCommandPath property.

13. When specifying attributes to be substituted into datasource templates, take care with
names, syntax and open / closing braces. For example:

/usr/bin/du -P -b -s S${here/dirName}

16.5.3 Checking for collected performance data

In Zenoss 4 and earlier, templates collect data into Round Robin Database (rrd) files, held
under $ZENHOME | perf | Devices with a separate subdirectory for each device and each
device may have subdirectories for components such as os or logMatchs (that is, the
relationship name of the contained component); there may be further subdirectories for each
instance where the subdirectory name is the id of the sub-component; for example:

Oct 13, 2016 ZenPack Developers' Guide 375

Zzenoss@zen42:/opt/zenoss/perf/Devices/taplow-11.skills-1st.co.uk/logMatchs

File Edit View Search Terminal Help

[zenoss@zen42 Devices]$ cd taplow-11.skills-1st.co.uk/
[zenoss@zend2 taplow-11.skills-1st.co.uk]$ 1s -1

total 700

-rw-r--r-- 1 zenoss zenoss 35432 Jan 19 13:20 df_df_root.rrd

-rw-r--r-- 1 zenoss zenoss 35432 Jan 19 13:21 dfPython_dfRootPython.rrd
drwxr-x--- 2 zenoss zenoss 4096 Nov 23 17:07 fredl daily

drwxr-x--- 2 zenoss zenoss 4096 Jan 15 14:34 fredl.log_ 20151

drwxr-x--- 2 zenoss zenoss 4096 Jan 15 14:33 7

drwxr-x--- 2 zenoss zenoss 4096 Jan 15 14:34

drwxr-x--- 2 zenoss zenoss 4096 Jan 18 19:13 fredl.log_201

drwxr-x--- 2 zenoss zenoss 4096 Nov 23 17:07 fred2 daily

drwxr-x--- 2 zenoss zenoss 4096 Dec 3 16:3B fredZ.log_201

drwxr-x--- 2 zenoss zenoss 4096 Jan 15 14:33

drwxr-x--- 2 zenoss zenoss 4096 Jan 15 14:34 fred2 g_201511

-rw-r--r-- 1 zenoss zenoss 35432 Jan 19 13:21 laloadIntl5 laloadIntl5.rrd
-rw-r--r-- 1 zenoss zenoss 35432 Jan 19 13:21 laloadIntl_lalLoadIntl.rrd
-rw-r--r-- 1 zenoss zenoss 35432 Jan 19 13:21 laloadInt5 laloadInt5.rrd
drwxr-x--- 4 zenoss zenoss 4096 Nov 16 17:42 logMatchs

-rw-r--r-- 1 zenoss zenoss 35432 Jan 19 13:21 memAvailReal_memAvailReal.rrd
-rw-r--r-- 1 zenoss zenoss 35432 Jan 19 13:21 memAvailSwap_memAvailSwap.rrd
-rw-r--r-- 1 zenoss zenoss 35432 Jan 19 13:21 memBuffer memBuffer.rrd
-rw-r--r-- 1 zenoss zenoss 35432 Jan 19 13:21 memCached_memCached.rrd
drwxr-x--- 2 zenoss zenoss 4096 Dec 15 11:09 opt_zenoss_loca edte
drwxr-x--- 2 zenoss zenoss 4096 Dec 15 11:09 op

drwxr-x--- 6 zenoss zenoss 4096 Nov 18 15:18 o

-rw-r--r-- 1 zenoss zenoss 35432 Dec 1 17:42 snmpInPkts_snmpInPkts.rrd
-rw-r--r-- 1 zenoss zenoss 35432 Dec 1 17:42 snmpOutPkts snmpOutPkts.rrd
-rw-r--r-- 1 zenoss zenoss 35432 Jan 19 13:21 ssCpuldle_ssCpuldle.rrd
-rw-r--r-- 1 zenoss zenoss 35432 Jan 19 13:21 ssCpuRawWait_ssCpuRawWait.rrd
-rw-r--r-- 1 zenoss zenoss 35432 Jan 19 13:21 ssCpuSystem_ssCpuSystem.rrd
-rw-r--r-- 1 zenoss zenoss 35432 Jan 19 13:21 ssCpuUser_ssCpulser.rrd
-rw-r--r-- 1 zenoss zenoss 35432 Jan 19 13:21 ssIORawReceived ssIORawReceived.rrd
-rw-r--r-- 1 zenoss zenoss 35432 Jan 19 13:21 ssIORawSent ssIORawSent.rrd

-rw-r--r-- 1 zenoss zenoss 35432 Jan 19 13:21 sysUpTime_sysUpTime.rrd

[zenoss@zend42 taplow-11.skills-1lst.co.uk]$ cd logMatchs/

[zenoss@zend42 logMatchs]s 1s -1 *

fredl_daily:

total 72

-rw-r--r-- 1 zenoss zenoss 35432 Nov 23 16:19 logMatchCurrentCounter logMatchCurrentCounter.rrd
-rw-r--r-- 1 zenoss zenoss 35432 Nov 24 19:36 LogMatchCurrentCounter_LogMatchCurrentCounter.rrd

fred2 daily:
total 72

Figure 258: Directories for performance files for devices and components

1.

376

Always check that rrd files exist and are non-zero length. Template files have the
format:

<datasource name> <datapoint name>.rrd

Note that components created with zenpacklib will gather data structured slightly
differently. There will be no <relationship> level of subdirectory. Subdirectories will be
created directly for component instances with data files beneath that. The red-
highlights in Figure 258 are for non-zenpacklib components. The fred1_daily and
fred2_daily directories highlighted in blue have been created for components developed
with zenpacklib.

Particular care must be taken when converting a ZenPack to use zenpacklib in order
not to lose performance data. See the README for

https:/github.com/jcurry/ZenPacks.community. VMwareESXiMonitorPython for a
description of this problem and the workaround which involves modifying the rrdPath

method in the zenpacklib.py in the ZenPack's base directory. See also section 10.3.5.

If you see graphs that have no data at all, this generally means that a template is
bound but there is no rrd file.

rrd files can be inspected with the rrdtool command
a. rrdtool info <rrd file> | more

o Shows outline information for the RRD archives and data in the file

ZenPack Developers' Guide Oct 13, 2016

https://github.com/jcurry/ZenPacks.community.VMwareESXiMonitorPython

b. rrdtool dump <rrd file> | more
o Shows all the RRD archives and data in the file

n 6. In Zenoss 4, if the cycle time of any datasource is changed, it will stop the collection
of rrd data for this datasource. This is because the step value in the rrd file is setup
when the datasource rrd file is created and it cannot be subsequently changed (at least,
not easily without rrd export / import tools). If the rrd file is deleted, it will be
automatically recreated on the next cycle, with the new step value. Typically it will
require two cycle intervals before data values appear. With Zenoss 5, there is no issue
and the new cycle time will be honoured on the next sample interval.

16.5.4 Test buttons in datasources

Note that when you configure some data sources in a template, there is a test button that you
can use to specify a device known to Zenoss. This not always trustworthy. Double-click a
datasource line to bring up the Edit Data Source dialogue.

1. For an SNMP datasource, the test that is run, strictly, is an snmpwalk whereas the
zenperfsnmp daemon is more likely to issue an snmpget, so the test button can disguise
problems with instances.

" Test Data Source

Devices

<> group-100-s2.class.example.org
S Network/Switch/BridgeMIB
172.31.100.21

DONE in

i
Events + | Q|-
4 Components Data Points by Data Source Source
Network Routes 4 13612117230

Interfaces

Bridge Interfaces 136.1.21.17.24.0

Type:

dot1dStpTimeSinceTopologyChange SNMP

QID:

1.361.2117230

[=EGIES]

Test Against a Device
Device Name:

100-s2.class.example.org

=k - [| & - | commands -
Figure 259: Using the TEST button from the Edit Data Source configuration dialogue

2. Tests against component datasources are not trustworthy - sometimes they may work;
other times they don't. Tests against local devices should work.

3. The Test button does not work when running commands against remote hosts over
ssh.

Oct 13, 2016 ZenPack Developers' Guide 377

16.5.5 Issues with datasource plugins

1. Datasource plugins can either be in dsplugins.py in the base directory of the ZenPack
or in a dsplugins subdirectory. If a dsplugins directory is used, ensure it has an
__init__.py file. Unlike most such files, this must have entries in it, one per
PythonDataSourcePlugin. For example:

from DirDiskUsedPythonDeviceData import DirDiskUsedPythonDeviceData

2. When writing PythonDataSourcePlugins, beware creating Twisted responses that
block rather than returning an immediate Deferred. The PythonCollector ZenPack
from 1.7.3 onwards will permanently disable any datasource, for all devices, if it runs
for longer than the blockingtimeout parameter (default 5 seconds). Once a plugin is
blocked, it will remain permanently blocked until its name is removed from either
/var/zenoss/zenpython.blocked on Zenoss 5, or /opt/zenoss/var/zenpython.blocked

on Zenoss 4. The zenpython service must be restarted after manual modifications to
this file.

3. Remember that fundamentally, collector daemons do not have access to the
Zope database (ZODB). If a collector daemon needs access to attributes or methods of
a device instance or component instance, they have to be gathered by zenhub and
passed to the collector daemon in a configuration phase using the config_key and
params methods of a PythonDataSourcePlugin.

4. If a zenpython debug log apparently skips over processing datasources for a device,
with the message shown below, then suspect issues in config_key or params methods.
Also check zenhub.log.

2016-01-20 10:44:52,329 ERROR zen.collector.config: Configuration for
taplow-11.skills-1st.co.uk unavailable -- is that the correct name?

5. When creating the config_key method, ensure that datasource.getCycleTime(context) is
always the second element. See section 13.3.3.2.

16.5.6 Issues with datasources

1. Ensure that any script used by a COMMAND datasource or called by a Python
datasource does have the correct permissions to be executable.

2. Always check any ssh communications, as the zenoss user, using the command line
before using with Zenoss. The first time communication is established a dialogue will
be entered to add the server to the known_hosts file.

a. Note on Zenoss 5 the test must be performed from the zencommand container as the
.ssh /known_hosts inside the container is not the same as that for the zenoss user on
the base host.

serviced service attach zencommand su zenoss -1
ssh -1 zenplug zenny2.class.example.org
cat .ssh/known hosts

3. Check the relevant daemon's debug log file for authentication or authorisation error
messages. This also applies for community names with SNMP datasources.

378 ZenPack Developers' Guide Oct 13, 2016

4. Avoid underscore characters in datasource names. Underscore separates the
datasource from the datapoint in a fully-qualified datapoint name. Using underscore as
part of the datasource can cause confusions, especially with earlier versions of Zenoss.

5. If an eventClass is defined in a datasource file, that class must already exist in the

Z0ODB database when an instance of this datasource is created; otherwise the
eventClass field will be blank in the GUIL.

6. Remember that datasource instances need to be unique because the RRD data for each
device is saved in a filename that concatenates datasource_datapoint eg.
withoutPython_matches.rrd.

16.5.7 Performance collection issues related to using zenpacklib

1. The label field for a component object class not the object class name is used, by
default, to find component performance template to automatically apply.

2. If zenpack.yaml specifies the zDeviceTemplates zProperty (which is a list), to bind
templates to a Zenoss device class, note that this property must contain all device-level
templates to be bound; specifying a single new template in the zDeviceTemplates field
will remove any existing templates.

3. If using zenpacklib to export templates, beware that a template description field tends
to have single quotes around it; zenpack.yaml requires double-quotes, otherwise
subsequent lines are all interpreted as comment.

16.6 Testing skins files and JavaScript files

If skins or JavaScript files have been created or changed, you generally only need to restart
zopectl and then refresh the web page in the Zenoss GUI.

16.6.1 General failure errors

If the code is incorrect a standard error page is shown and you can get more information by
clicking the View Error Details link.

Oct 13, 2016 ZenPack Developers' Guide 379

£ jane Prefer

Zen ‘E)SS Core

Zenoss server time: 20:30:

e A Zenoss error has occurred

View Error Details
An error was encountered while publishing this resource. Please use the form below to submit details of this error to Zenoss, Inc. This information helps us identify
and fix issues with the software, though we are unable to respond individually to all submissions.
The Zenoss community forums are very active and a good resource for solving problems and answering guestions. Zeness also provides commercial services and
support packages.
The following fields are optional. This information will enly be used to contact you if further information is needed regarding this error.
Ev Your name:

Classes

Your email address

Additional info vou would like to provide:

Click this button to send the above information to Zenoss, Inc

Send Error Detailsl

% jane Preferences Logout Help

Zenoss server time: 20:32:

A Zenoss error has occurred

View Error Details

Type: PTRuntimeEror
Value: Page Template BridgeDeviceDetail has errors: [Compilation failed’, 'TAL.TAL Defs.TALError: TAL attributes on <tr> require explicit <1r>, at line 21, column 5]
Traceback (innermost last):

Maodule ZPublisherPublish, ling 114, in publish

Module ZPublisher.mapply. line 88, in mapply

Module ZPublisher Publish, line 40. in call_object

Module Shared DC.Scripts Bindings, line 311, in __call__

Module Shared.DC Scripts.Bindings, line 348, in _bindAndExec

Module Products CMFCaore FSPageTemplate, line 195, in _exec

Module Products. CMFCore FEPageTemplate. line 134, in pt_render

Module Products PageTemplates FageTemplate, line 35, in pt_render

<FSPageTemplate at /zport/BridgeDeviceDetall used for ;zport/dmdDevices/Network/Switch/BridgeMIB/devices/switch.skills-1st.co.uk>
Wamning: Compilation failed

Warning: TAL.TALDefs.TALError: TAL attributes on <tr> require explicit <Ar>, at line 21, column 5

PTRuntimeError: Page Template BridgeDeviceDetail has errors: [Compilation failed’, TAL.TALDefs. TALEror: TAL aftributes on <tr= require explicit <=, at line 21, column 51

An error was encountered while publishing this resource. Please use the form below to submit details of this error to Zenoss, Inc. This information helps us identify
and fix issues with the software, though we are unable to respond individually to all submissions.

The Zenoss community forums are very active and a good resource for selving problems and answering questions. Zenoss also provides commercial services and
support packages

The following fields are optional. This information will only be used to contact you if further information is needed regarding this error.

Your name:

Your email address:

Additional info you would like to provide:

Figure 261 shows the detailed error output. The file and line number at fault are documented
(I had indeed commented out a closing </tr> at line 21 of the BridgeDeviceDetail.pt file).
Simply fix the file, issue zopectl restart and refresh the web page.

It is always worth checking with a zenoss status command to see all daemons are running.
Sometimes JavaScript errors are not immediately apparent in the GUI but debugging output
appears in response to this command.

380 ZenPack Developers' Guide Oct 13, 2016

Sometimes the web View Error Details page suggests something is wrong that is nowhere
near anything you have recently changed. If this happens, try restarting the whole Zenoss
system with:

zenoss stop
zenoss start

If you suspect issues with JavaScript you could run a Firefox Web Console to see the
JavaScript errors - “There will be tons of CSS issues coming from different CSS pages (it's
annoying, but not fatal), and you can safely ignore them”, says the debugging section 13.8 of
the original Zenoss Developer's Guide! If you filter out Warning severity messages from the
Firefox Web Console, it may help you spot real issues quickly.

You may also find it helpful to view the page source of a page — for Firefox, use the View ->
Page Source option.

Section 13.8 of the original Developer's Guide also has the following advice with regard to
JavaScript:

“The Firefox Error Console will not tell you if Firefox wasn't able to find or load a
JavaScript file (if the path you've specified in your Web page to get to the JavaScript
file is incorrect). In order to determine if Zope was given a path to a filename that it
couldn't find, you'll need to go into Zope's ZMI, go to the error log

(http:/ [yourzenossserver:<your port>/error_log /manage_main) and remove all of the
error log filters” - the default filters are Unauthorized, NotFound and Redirect.

You will need to be logged in as admin to do this or an error message will result. All Zenoss-
configured users live in the /zport/acl_users user folder; this means they can only ever hope
to access items under /zport. Only the admin user who lives in the Zope /acl_users user
folder can access items at the root.

After changing the filters, retry the operation and you can see what files Zope wasn't able to
find and fix the paths in your page. This technique is also helpful for debugging
authentication issues — make sure that Unauthorized exceptions are not filtered out.

16.6.2 Problems displaying components

1. If you are not using zenpacklib and are writing JavaScript files, note that the new
component panel must be called <object component name>Panel eg. LogMatchPanel.
There should be no Grid in this name.

2. In JavaScript files, beware the common error of adding a column definition without
adding the new definition into the fields stanza.

3. Brackets mismatch is extremely easy, especially in JavaScript files. The vi % command
to match brackets is enormously helpful.

16.6.3 Issues with Info and Interface definitions and configure.zcml

The info.py file abstracts object attribute information saved in the Zope Object Database
(ZODB), that will be displayed to the user. Note that the file must have this exact name. It
describes what will be displayed not how something will be displayed.

Oct 13, 2016 ZenPack Developers' Guide 381

http://yourzenossserver/

interfaces.py describes how the data is displayed (and again, this filename is prescribed).

Something needs to ultimately tie together the different display elements. That is the role of
configure.zeml which provides the “glue” between interfaces and JavaScript display code
and this exact name will be searched for by the Zope mechanisms.

Forgetting to write / update info.py, interfaces.py and/or configure.zecml is common.

Errors in a configure.zcml are scary as they will prevent zenhub from starting, with an error
message. Fortunately it is quite good at pinpointing where the error is.
File "/opt/zenoss/lib/python/zope/configuration/fields.py", line 229, in fromUnicode

raise InvalidToken ("%$s in %$s" % (v, u))
zope.configuration.xmlconfig.ZopeXMLConfigurationError: File
"/opt/zenoss/etc/site.zcml", line 16.2-16.23

ZopeXMLConfigurationError: File
"/code/ZenPacks/DevGuide/ZenPacks.community.LogMatch/ZenPacks/community/LogMatch
/configure.zcml", line 15.4-18.11

ConfigurationError: ('Invalid value for', 'for', 'ImportError: Module
ZenPacks.community.LogMatch.LogMatch has no global LogMatchDevice in
.LogMatch.LogMatchDevice')

1. Beware typos!

2. In interfaces.py, beware that some constructs require schema and other don't. It is easy
to copy a line with say:

logMatchRegEx = SingleLineText (title= t (u"LogMatch RegEx"))

and modify it with a construct such as

logMatchCycle = Int(title= t(u"LogMatch Cycle"))

forgetting that Int needs to be schema.Int.

3. Ensure that IComponentInfo classes in interfaces.py specify suitable display types.
Using a schema.Int definition when the object data is actually a string, will cause
issues.

4. Edit configure.zeml with an editor that is XML-aware. color coding can help to prevent
missed quotes or angle brackets.

5. If a component or effect is not displayed, check that the for statement in configure.zecml
does not prevent display for the object..

<viewlet
name="7js-custom-overview-device"
paths="/++resource++LogMatchdJavascript/js/custom-overview—-device.js"
for="..LogMatchDevice.LogMatchDevice"
weight="10"
manager="Products.ZenUI3.browser.interfaces.IJavaScriptSrcManager"
class="Products.ZenUI3.browser.javascript.JavaScriptSrcBundleViewlet"
permission="zope2.Public"

/>

6. Field names in JavaScript files must match ComponentInfo class attributes, not the
DeviceComponent class attributes.

382 ZenPack Developers' Guide Oct 13, 2016

7. If there is an interface entry but no matching info for an attribute then the keyword
will appear in the GUI dialogue but will not show default values and changes in the
GUI will not be honoured.

8. Ifthere is an entry for the info but not the interface then the keyword will not appear
in the GUI but default values will be honoured. The Zope Management Interface (ZMI)
is a good tool to check what values exist on the object.

16.6.4 GUI issues when using zenpacklib

1. When defining column_width fields in zenpack.yaml, if the total exceeds 750 pixels
then all the column_width directives are ignored and revert to the default.

16.7 Testing and debugging problems with event elements

1. If a datasource template defines an Event Class field, ensure that Event Class is either
already defined or is shipped as part of the ZenPack; otherwise the datasource
customisation will show a blank Event Class.

2. Remember that any Event Classes defined in a ZenPack will be removed if the ZenPack
is removed.

3. If the ZenPack installation fails after adding Event Class definitions, suspect syntax
issues.

4. If a trigger or notification cannot be opened in the GUI suspect a specification error
such as bad fields or typos.

5. Ensure that double quotes as part of a value string in a trigger or notification
definition, must be escaped with backslash.

6. Ensure there are no comments in either zep.json or actions.json .

16.8 Problems with installing / removing ZenPacks

1. Ensure that a ZenPack has any GUI-created templates added to a ZenPack and the
ZenPack is exported before reinstalling a ZenPack. Otherwise there is a danger of
losing or overwriting required customisation.

2. Only remove a ZenPack if you really need to. Any objects that are part of the ZenPack
(Events, MIBs, templates, etc) will be removed from the ZODB. Performing a reinstall
of a ZenPack, although it performs a remove and install, does not remove any items
from the ZODB database.

3. If a ZenPack includes a Zenoss device class (and zenpacklib encourages such an
inclusion), then removing the ZenPack deletes any instances of devices in that class.
For a zenpacklib-created device class, this is only true if:

remove: True

is specified as part of the device class definition in zenpack.yaml. The default is False.

4. Removing a ZenPack that uses zenpacklib to create a device class with

Oct 13, 2016 ZenPack Developers' Guide 383

remove: False

can cause issues. The device class is preserved but any device instances in that class
remain in the ZODB and are inconsistent. The result is that the INFRASTRUCTURE
-> Devices menu will be broken for the removed device class and all its parents up to
the root Devices level. The symptom is a yellow message at the top of the GUI
saying:

Type error ('Could not adapt ' ,,)

The resolution is to reinstall the ZenPack.

Best practice should either be to set the remove parameter to True, understanding that
device instances will be deleted, or ensure a manual process exists to ensure that a
device class is empty before ZenPack removal, if remove is set to False.

5. When exporting a ZenPack, note that there is a bug whereby the build/lib subdirectory
is not cleaned out before export. This means that existing files will be updated, new
files will be added but if old files have been deleted then they will still exist in the
build /lib subdirectory and hence, in the new egg file.

17.0 Developing a ZenPack and making it publicly
available

A ZenPack for private use can be developed using any techniques; a ZenPack to be shared
with other users within an organization or with the wider Zenoss community, should probably
be developed within a git framework.

git is a tool for tracking changes to a set of files over time, a task traditionally known as
“version control”. It has become one of the leading standards for package development and is
available for many different platforms (https:/git-scm.com/).

GitHub (https:/github.com/) is the public, free, open source site where users and
organizations can create, store and share repositories. This is where Zenoss maintains their
repository of ZenPacks (https:/github.com/zenoss).

A good starting point for documentation is the git website at https:/git-scm.com/doc ; there is
also a useful O'Reilly Git Pocket Guide.

17.1 Simple procedure for git development

git can be a very powerful and complex collaborative tool; however, this is not a git tutorial.
There is a useful article on the Zenoss wiki about releasing ZenPacks -
http://wiki.zenoss.org/Releasing your ZenPack .

The first step is to install git on your development system. Instructions and code for most
environments can be found at https:/git-scm.com/downloads .

Once git is installed some global configuration should take place to identify a git user. The
following will set a global username and email for all repositories:

git config --global user.email "Jjane.curry@skills-1st.co.uk"
git config --global user.name "Jane Curry"

384 ZenPack Developers' Guide Oct 13, 2016

mailto:jane.curry@skills-1st.co.uk
https://git-scm.com/downloads
http://wiki.zenoss.org/Releasing_your_ZenPack
https://git-scm.com/doc
https://github.com/zenoss
https://github.com/
https://git-scm.com/

Note that git commit statements will fail unless a git user is identified thus.
A simple procedure for creating a ZenPack with git would be:
1. Create a development directory.
@ a. It is good practice for this not to be under $ZENHOME | ZenPacks. The examples
here will be under /code/ZenPacks/DevGuide .
mkdir /code/ZenPacks/DevGuide/ZenPacks.community.DirFile
cd /code/ZenPacks/DevGuide/ZenPacks.community.DirFile
2. Initialise the current directory as a git repository
git init
a. This creates a .git directory for the metadata and history involved with this

repository. Don't change anything in this directory unless you really know what you
are doing!

b. The default branch will be created, called master.
3. Create a .gitignore file in /code/ZenPacks | DevGuide [ZenPacks.community.DirFile

a. The .gitignore file defines file patterns to exclude from the repository. For example,
‘d you should not include compiled Python files ending in .pyc or .pyo. A typical ZenPack
.gitignore would be:

*.pycC

*.pyo

build/

setuptools*

* .egg-info/

EGG-INFO

b. Note that the dist directory (where the .egg file will be saved) is not ignored, though
the build directory is.

4. If this is a brand-new ZenPack, start development as usual in
[code [ZenPacks | DevGuide | ZenPacks.community.DirFile.

5. If the ZenPack has already been partially developed in a different directory hierarchy, (
say, /tmp/fred/ZenPacks.community.DirFile), perform a recursive copy:

cd /tmp/fred/ZenPacks.community.DirFile
cp -R * /code/ZenPacks/DevGuide/ZenPacks.community.DirFile

| d 6. Ensure that the ZenPack has a README .rst documentation file in the top-level
o directory.

7. From the top-level git development directory,
[code | ZenPacks | DevGuide | ZenPacks.community.DirFile, run

git status

a. This shows the current status of all files in the repository with respect to git. At this
stage, all files will be untracked.

On branch master

#

Oct 13, 2016 ZenPack Developers' Guide 385

Initial commit

Untracked files:
(use "git add <file>..." to include in what will be committed)

MANIFEST.in
README.rst
ZenPacks/
dist/

setup.py
nothing added to commit but untracked files present (use "git add" to track)

#
#
#
#
#
.gitignore
#
#
#
#
#

To add all files in the current directory and subdirectories to the git repository, use:
git add -A

a. Note that the -A flag ensures all changes, additions and deletions are incorporated
into the git index.

b. A second git status should now show all the files as “new” and as changes to be
“committed”.

On branch master
Initial commit

Changes to be committed:
(use "git rm --cached <file>..." to unstage)

new file: .gitignore
new file: MANIFEST.in
new file: README.rst

new file: ZenPacks/ init .py

new file: ZenPacks/community/DirFile/DirFileTemp.yaml

new file: ZenPacks/community/DirFile/DirFile templates.yaml
new file: ZenPacks/community/DirFile/LICENSE.txt

new file: ZenPacks/community/DirFile/ init .py

new file: ZenPacks/community/DirFile/configure.zcml

new file:
enPacks/community/DirFile/datasources/DirFileDataSource.py

S o DN S DN S S e S S S o o e e e 3 o o R R o

new file:
enPacks/community/DirFile/datasources/DirFilePythonDataSource.py

new file: ZenPacks/community/DirFile/datasources/ init .py

new file: ZenPacks/community/DirFile/dsplugins.py works

Perform an initial git commit. The commit is the fundamental unit of change in git. It
is a snapshot of the entire repository content, together with identifying information,
and the relationship of this historical repository state to other recorded states, as the
content has evolved over time.

a. The -m parameter should always be unique.

git commit -m 'First commit'

b. A further git status should show:

On branch master
nothing to commit (working directory clean)

ZenPack Developers' Guide Oct 13, 2016

10. Development of the ZenPack can now continue. Install the ZenPack in development
mode with the link flag:

zenpack --link --install ZenPacks.community.DirFile
zenoss restart
11. As content is added, removed and updated, repeat the cycle of:

git add -A
git commit -m 'With updated readme 1'
git status

a. Don't forget to repeat these steps after adding items to a ZenPack from the GUI and
exporting the ZenPack (thus updating objects.xml and the ZenPack .egg file).

17.2 Working with GitHub

Once the ZenPack has been developed and tested it can be uploaded to GitHub to be shared
with other people (it is also a good way to effect a remote backup of your development).

A free GitHub account can be created by visiting https:/github.com/join .

€ | @& citHub, Inc. (US) | hitps Jigithub.comijoin?source=header v @ | | C®search
GitHub Explore Features Enterprise Pricing Sign in
The best way to design, build, and ship software.
Step 1:
Set up a personal account
Create your personal account]
You'll love GitHub
Username
jeurry1 v Unlimited collaborators
This will be your username — you can enter your organization's username next Unlimited pUth repositories

Email Address

) + Great communication
home@skills-1st.co.uk v

~ Friction-less development

+ Open source community

Password

ssssessssnes v

Use at least one lowercase letter, one numeral, and seven characters

By clicking on "Create an account” below, you are agreeing to the Terms of
Service and the Privacy Policy.

F igure 262: Sign up for a GitHub account

Oct 13, 2016 ZenPack Developers' Guide 387

https://github.com/join

Choose the Free account option.

17.2.1 Using ssh authentication with GitHub

ssh is the usual method for transferring repositories between a local system and GitHub -
note that this requires OpenSSH to be installed on the local system. There is useful help on
GitHub for setting up ssh key authentication - https://help.github.com/articles/generating-an-

ssh-key/ .
ZenPack development will generally be done as the zenoss user so check this user's home

directory for a .ssh directory (note the leading dot). If this directory contains id_rsa.pubd then
this will be used with GitHub; otherwise, use the following to generate a new public-key pair:

ssh-keygen -t rsa -b 4096 -C "your emaillexample.com"

The contents of .ssh /id_rsa.pub should be copied to the clipboard for pasting into GitHub.
Ensure that no extra whitespace or linefeeds are added.

ssh keys are added to a GitHub account through the user's Settings menu.
(-_ 2 | @ Girb, Inc.(US) | https:github.com v | | C®search
O Pullrequests Issues Gist +-

Signed in as jeurry1

Your profile

Your stars

Learn Git and GitHub without any code!

Explore
Using the Hello World guide, you'll create a repository, start a branch, Integrations
write comments, and open a pull request. Help
‘ Sign out

o jeurryl ~

Your repositories

You don't have any repositories yet!

Welcome to GitHub! What’s next?
Create a repository
s about yourself
resting repositories
Follow @github on Twitter

Q ProTip! Edit your feed by updating the users you follow and repositaries you watch.

Figure 263: Settings menus for GitHub

Create your first repository or learn more about
Git and GitHub.

3\ Subscribe to your news feed

Select SSH Keys from the left-hand menu, and use the New SSH key button. The Title field
should provide identification for you as to what the key is for; the contents of id_rsa.pub

should be copied from the clipboard into the Key window.

388 ZenPack Developers' Guide

Oct 13, 2016

mailto:your_email@example.com
https://help.github.com/articles/generating-an-ssh-key/
https://help.github.com/articles/generating-an-ssh-key/

€ | & GitHub, Inc. (US) | hitps /igithub.comisetiings/ssh
O

Personal settings
Profile
Account settings
Emails
Notification center
Biling
SSH keys
Security
OAuth applications
Personal access tokens
Repositories

Organizations

Pull requests Issues Gist

SSH keys
There are no SSH keys with access to your account.
Title

zenoss on zend2.class.example.org

Key

ssh-rsa AAAAB3NzaC1yc2EAAAABIWAAAQEAIRIsSUh67LEpGSTEgR+01Yqa4dfirB2UC3SwEx VVIXIWE

+ A B Ty =

New SSH key

IRTWszQehr5PEXUE+QS5xKS0ighZHECUD4Kh5vguqeM3Ep3MRKror5qP3vzBCmEOcUiJJ8wQgmOcF6u1HP8cSLad

sQZxySqla7WoVWiTFPcNpzsaTqkSxBKnG+NMOT

IqAzN/85QWd0aruF60H3PASHIF Qi02GnpbbBOLwgF RqoEB8V1ipsq1K03+mfzXkd NAJIOL R2usN52RKg X7z WKm Y6
yMviuNm/ynwNEPF80xeKF OODFIUE.J 1v419p8aP0uDgv2XUJMw3asizGMaGwCSEm/WCzVAPZEWAsimoMQ==

zenoss@zend2.class.example.org

(@ Check out our guide to generating SSH keys or troubleshoot common SSH Problems.

Figure 264: Configuring SSH keys for a GitHub user

17.2.2 Creating the GitHub repository

A new repository can be created on GitHub by using the + icon (top-right) once the user has
logged in. The name should be identical to the repository name on the local development
system; that is, the name of the ZenPack.

€ | @ Gittiu,Inc. (US) | hitps Vigithub.comijcury/blah-test

Q This repository

jeurry / blah-test

<> Code Issues o

v @ || C®search

Pull requests Issues Gist

© Unwatch~ 1

Pull requests o Wiki Pulse Graphs Settings

Quick setup — if you've done this kind of thing before

or | HTTPS | SSH git@github.com: jcurry/blah-test.git

We recommend every repository include a README, LICENSE, and .gitignore.

...0r create a hew repository on the command line

echo "# blah-test' >> README.md

git init

git add README.md

git commit -m "first commit"
git remote add origin git@github.com:jcurry/blah-test.git
git push -u origin master

...or push an existing repository from the command line

git remote add origin git@github.com:jcurry/blah-test.git
git push -u origin master

...or import code from another repository
You can initialize this repository with code from a Subversion, Mercurial, or TFS project.

Import code

Q ProTip! Use the URL for this page when adding GitHub as a remote.

Figure 265: Creating a new repository on GitHub

Oct 13, 2016

ZenPack Developers' Guide

* Star ©

389

Once created, GitHub provides the correct commands to setup a remote on your local system.
Any local repository may be able to communicate with one or more remote repositories,
typically on GitHub. By convention, the remote on GitHub is called origin. Note carefully the
format of the remote; the user should be git@github.com; the GitHub user name then follows
after a colon.

git remote add origin git@github.com:jcurry/ZenPacks.community.DirFile.git

git remotes can be shown on the local system with:

git remote -v

The final stage is to push the repository from the local system to GitHub:

git push -u origin master

The -u parameter will only be used on the initial push to create the master branch on the
remote GitHub repository; origin is the remote target repository; master is the remote branch.
The local repository to be pushed is whatever is currently active (ie the directory you are in)
and the branch is whatever is currently checked out (at this stage, only the master branch
exists locally).

17.3 git branches

git has the useful capability of supporting lots of different branches. Once a basic working
repository exists, a new development can be tested in a separate branch and then merged into
the master branch, if required, once tested.

git checkout -b events

will create a new branch called events and check it out (that is, make it the active branch).
The original master branch will be unaffected by any subsequent changes until it is made
active with:

git checkout master

To see all branches, including the currently active one, use:

[zenoss@zen42 ZenPacks.community.DirFile]$ git branch -a
* events

master

python

remotes/origin/events

remotes/origin/master

remotes/origin/python

The asterisk against events indicates that is currently the active branch.

17.4 Cloning from GitHub to a local machine

If a repository exists on GitHub that you wish to use, it can be cloned. Assuming that
ZenPacks.community.UserGroup does not exist on the local machine, change to the ZenPack
development directory and use:

git clone ssh://git@github.com/ZenossDevGuide/ZenPacks.community.UserGroup

390 ZenPack Developers' Guide Oct 13, 2016

mailto:git@github.com

The code can then be modified locally and pushed back to GitHub. If, in the meantime,
someone else has updated the GitHub code, the push will fail. It is necessary to pull the
GitHub code and merge the changes on the local system, before pushing the combined
package back. A “pull” is actually a combined fetch and merge:

git fetch origin
git merge origin/master -m 'test merge message'

17.5 Other ways to use GitHub

If you cannot install git in your environment, repositories can still be retrieved from GitHub.
From a repository on GitHub, use the Download ZIP button to get a zipped archive. The
archive then needs to be manually unpacked.

17.6 ZenPacks on the Zenoss wiki

All publicly-available ZenPacks are documented on the Zenoss wiki at
http://wiki.zenoss.org/ZenPack Catalog with various filters to retrieve different subsets such
as:

e ZenPacks by Zenoss - both free and commercial varieties
e Community ZenPacks

There is a wiki item with good advice for releasing ZenPacks -
http://wiki.zenoss.org/Releasing your ZenPack .

It is good practice to contribute any new, tested ZenPack into the community and a link to a
form is provided at the bottom of the ZenPack Catalog wiki page -

http://wiki.zenoss.org/Form:ZenPack .
wiki Zenoss.org/F orm:ZenP ack v e ¥ search ¥ A T E By v =

.!.J:urry Talk Preferences Watchlist Contributions Log out

Search Q j

zenass Form Discussion Read Edit View histary Mare +
wn
Form:ZenPack

Install Zenoss

User Guide How to add a ZenPack to the Directory [edi

Deplayment

API Guide To add a new ZenPack to the directory, enter the ZenPack name below. MNote that you should not use the Python name, such as ZenPacks. zenoss . OperVZ, as the page name

Dev Guide Instead, use an easy-to-read name, like "OpenVZ"

i:f;;; cataicg It is also not necessary to add the word "ZenPack" to your name. ZenPacks are automatically added to the special MediaWiki ZenPack namespace to indicate that they are
&

Development ZenPacks. The URL to reach your new ZenPack page will be http://wiki.zenoss. org/ZenPack: zpname &

Troubleshooting

Transtorms Add a New ZenPack (edig

Tips

Cerfanmance DirFile Create or edit

Newsletters

All Categories

Navigation
Main page
Recent changes
Random page Content is available under Creative Commons Attribution Non-Commercial Share Alike unless otherwise noted

This page was last madified on 11 January 2016, at 21.03

Tools Privacy policy ~About Zenoss Wiki Disclaimers a6 §:;;ﬁ':_
What links here MediaWiki

Related changes

Figﬁre 266: Form for submitting a new ZenPack to the Zenoss wiki

Oct 13, 2016 ZenPack Developers' Guide 391

http://wiki.zenoss.org/Form:ZenPack
http://wiki.zenoss.org/Releasing_your_ZenPack
http://wiki.zenoss.org/ZenPack_Catalog

Note that the new ZenPack name should be a short name, not the full ZenPack name eg.

DirFile.

€) 3 | @ wikizenoss org/Special FormEditZenPackiZenPack DirFile Elv | [P®searcn ¥ A T A By 2y

Install Zenoss
User Guide
Deployment
API Guide

Dev Guide
ZenPack Catalog
Usermap
Development
Troubleshooting
Transforms

Tips
Performance
Newsletters

All Categories

Navigation
Main page
Recent changes
Random page
Toals
Upload file
Special pages
Printable version

\;f‘ Note: The auto-build system is currently online! Add a proper Source UR! for GitHub and appropriate releases with tags, and your ZenPack will be auto-built 1)

Names and Organizations [edif]

When you add a name to the Author or Maintainer fields, this form will automatically link to the User:name page. Every Wiki user has their own User page that they can
create and maintain which is accessible at hitp

zenoss org/User:username &,

Similarly, any Crganization you specify will link to a corresponding regular page at http.//
organization

(.zenoss.org/orgname &. This allows you to create a regular wiki page for your

Summary of ZenPack: Monitors files and directories,
one of the Zenoss Developers Guide ZenPacks.
This is a sample ZenPack, not designed for large production environments.

Author(s): (full name or

L Jeurry 0
wiki username)
Maintainer(s): (full name
L Jeurry
or wiki username)
Organization: Skills 1st (2]
License: GNU General Public License, Version 2 j o

ZenPack Python name: ZenPacks.community DirfFile

Note: €
Homepage (typically,
web-browesable GitHub nhttps:/github.com/ZenossDevGuide/ZenPacks community. DirFile
URL):

Documentation URL

(often old Jive site https://github.com/iZenossDevGuide/ZenPacks . community. DirFile [7]

page):

Source URI: https://github.com/ZenossDevGuide/ZenPacks ¢ | Paste the "git read-only" GitHub link for vour repo (that someone would use to clone)

Restart: zenoss restart]

Figure 267: Submitting a new ZenPack to the Zenoss wiki

Provided the ZenPack includes a README.rst file documenting the ZenPack, supply the URL
to the ZenPack main page on GitHub for each URL/URI request.

The Flavor entry should be Free.

Add a Release form for each separate release of the ZenPack.

392

ZenPack Developers' Guide Oct 13, 2016

Create/Edit Releases [zai

This is the part where you create specific versions of Your ZenPack. Click "Add release" below to add a new release. Please place more recent releases at the top —
releases can be ordered by dragging the "gripper” arrow to the right. Also, don't include an exhaustive history of releases -- just include the most recent version(s) that
would be of interest to various Zenoss users (typically, this means most recent 1-2 3 x-compatible releases and most recent 1-2 4 x-compatible releases.)

For each release, specify a:
1. Version, ie. 2.1.0
2. Source Tag/SHAT - aptional - the tag in GitHub that you used for this version, or the SHA1 hash of the top commit (to be used for our auto-build system)

3. Compatible with - specify the products you have tested your ZenPack against. Use the auto-complete values that pop up. (Start typing "Zen...")
4. Requires - specify other ZenPacks that this release depends upon, if any. Use auto-complete values

Version: 1.0.0
Git Tag/SHA1: 113629383675f4232a01b239c88085409CT6 €0
Release date: 15Mar 2016 B

Initial release using COMMAND datasources

Summary of changes:
" B N ZLETNUSS LUIE 3.2.X
Compatible with: | 7enoss Careid.2x
Zenoss Core 5.0
Zenoss Core 5.1.x
Zenoss Resource Manager 4.1 x

31 = |

W

Incompatible with: [Zenoss Core 2.5x
Zenoss Core 3.1
Zenoss Core 3.2x
Zenoss Core 4 2x

>

Requires:

Enhances:

Download URL: (used for commercial ZenPacks only)

Add release

Figure 268: Add a release form for each separate release
Note in Figure 268 that the Git Tag/SHAL1 field is found on the repository page in GitHub.

Oct 13, 2016 ZenPack Developers' Guide 393

wew

e murity DirFile: ZenPacks.commurity DirFile - Mozila

Eile Edit View History Bookmarks Tools Help

< I O [ZEN-79.. [() Zeno... x \Q READM Creais ZenP. . | €) jeurryiAu |) SSHkeys | €) zenPack. | © Datasou Introducion ... | [28) The Uk |) Issues # Weleom | €) Wissing | Remnvinq > 4+ W -

€ | @ Gitub, inc. (US) | hips:/github.com/ZenossDevGLi nPa ommunity DirFile VC" ‘Q’S‘-‘:arch ‘ $+ A T H By ey =
0 This repository Pullrequests Issues Gist ‘. +- . - 1
ZenossDevGuide / ZenPacks.community.DirFile @Unwatch~ 1 star o ¥Fork o ||
<> Code Issues o Pull requests o Wiki Pulse Graphs Seftings

ZenPacks.community.DirFile — Edit

D 9 commits ¥ 3 branches O 2 releases 1 contributor

Branch: master New file Upload files Find file SSH ~ git@github.com:ZenossDevGuide/Zer Download ZIP

.]curry README updated fo test Latest ccm minutes ago

I ZenPacks with yaml updated for zZSshConcurrentSessions and Dir template with -s... 2 months ago
i dist README updated 2 3 months ago
B .gitignore ZenPacks.community. DirFile 1.0.0 first commit 3 months ago
B MANIFEST.in ZenPacks.community.DirFile 1.0.0 first commit 3 months ago
[E) README.rst README updated to test 33 minutes ago
B setup.py ZenPacks.community.DirFile 1.0.0 first commit 3 months ago

README.rst

ZenPacks.community.DirFile

Description i

hitps:igithub.com/ZenossDeuGUIde/ZenPacks 11362938a6(54232a01h: 6a29 o

Figure 269: Finding the SHA1 field for the ZenPack release form

Click on the Latest commit reference to see the entire identification and cut-and-paste it to
the release form.

€ | @ GitHub, Inc. (US) | https:/github.com/ZenossDevGuide/ZenPacks community. DirFilelcommit/ 362938615114 232201 b239cB8cA54 v C‘l ‘Ce’:-:a\ch ‘ + A T B By e
O T Pullrequests Issues Gist Q. + @8-

ZenossDevGuide / ZenPacks.community.DirFile ©uUnwatch- 1 %Star o YFork o

<> Code Issues o Pull requests o Wiki Pulse Graphs Settings

README updated to test Browse files

¥ master

. jeurry committed 41 minutes ago 1 parent 34f13a7 commit 1f f5ffd23ea01 76229
Showing 1 changed file with 1 addition and 0 deletions. Unified = Split

1w README. rst B View

0 comments on commit 136293
1 nck canvarsatinn

Figure 270: Cut and paste the full SHA1 reference to the Release form

394 ZenPack Developers' Guide Oct 13, 2016

Provided this SHA1 identification is correct, the wiki will automatically find the code, build
an egg version of the ZenPack and make it available through the wiki ZenPack Catalog. The
auto-build process runs every 5 minutes.

€) ¥ | @ wikizenoss orgiZenPackDirFile ve ¥+ AN E By ey =
- ~
; Jeurry Talk Preferences Watchlist Contributions Log out N
Zenass ZenPack Discussion Read Edit with form Edit View history Mare + Q
Own IT.
DirFile ZenPack
Author(s)
Monitors files and directories
Install Zenoss o) o Jane Curry
et 1 One of the Zenoss Developers Guide ZenPacks Current Maintainer(s)
Deployment This is a sample ZenPack, not designed far lar oduction environments. Jane Curry
GANENEL Organization
Devouie Support Skills 1st
ZenPack Catalog pp NS I
License
Usermap This ZenPack is developed by the Zenoss user community and supported via our online forums. Zenoss,
- o \
Development Inc. does not provide direct support for this ZenPack GNU General Public License, Version 2
Troubleshooting ZenPack name
Transforms
. Releases ZenPacks.community.DirFile
- More Information
Perfarmance .
e Version 1.0.0- Download & GilHub page/HomePage &
Al Categories Summary of changes: Initial release using COMMAND datasources Linkio mere decs
Navigation f=6lsasaion20:l6/0a41S View Documentation &
Main page Compatible with Zenoss Core 4.2, Zenoss Core 5.0.x Git sources (for cloning)
Recent changes Incompatible with Zenoss Core 2.5.x Link®
Random page :
Tools Background e T T
What links here You have chosen to apen
e T cE Installation +/ ZenPacks.communityDirFile-1.0.0.eg9
Upload file which is: BIN file (76.1 kB)
Special pages R T D S from: hitp fiwiki zenoss.org
Printable version omal Installation;tpackagad:eag) Waould you ke to save this fils?
BEMANENHING ‘. Download the appropriate egg file for the version of Zenoss you are running Flle| | @Caneal
Page information
Browse properties 2. Ensure you are logged in as the zenoss user.
) L
wiki.Zenoss, nPacks. DirFilef.0.0iZenP acks.communit.DirFile-1.0.0.209 ~

Figure 271: Zenoss wiki ZenPack Catalog page for new ZenPack with automatically created download
link

Oct 13, 2016 ZenPack Developers' Guide 395

References

396

1.

10.
11.
12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

Official Zenoss documentation - https:/www.zenoss.com/resources/documentation?
field zsd core value selective=Core

Zenoss wiki ZenPacks home page - http:/wiki.zenoss.org/ZenPack Catalog

Free Zenoss provided ZenPacks on the wiki -
http://wiki.zenoss.org/Free ZenPacks by Zenoss

Zenoss community ZenPacks on the wiki - http://wiki.zenoss.org/Community ZenPacks

Chargeable Zenoss ZenPacks available only to Service Dynamics customers -
http://wiki.zenoss.org/Commercial ZenPacks by Zenoss

GitHub site for Zenoss ZenPacks - https:/github.com/zenoss

Zenoss documentation and taxonomy guidance at
https://zenosslabs.readthedocs.org/en/latest/ or the pdf version at
http://media.readthedocs.org/pdf/zenosslabs/latest/zenosslabs.pdf

ZenPacks standards guide and best practices -
https://zenosslabs.readthedocs.org/en/latest/zenpack standards guide.html

ZenPackers documentation website - http://zenpackers.readthedocs.io/en/latest/ . This
is maintained on github at https:/github.com/zenoss/ZenPackers/tree/master

reStructuredText reference for README files - http://docutils.sourceforge.net/rst.html

zenpacklib documentation at http://zenpacklib.zenoss.com/en/latest/

Zenoss wiki page with links to sample ZenPack examples and web-based training -
http://wiki.zenoss.org/ZenPack Development Guide

Zenoss wiki tips for creating a ZenPack development environment -
http://wiki.zenoss.org/ZenPack Development Guide/Development Environment

Zenoss Developer's Guide 3 -
http://docs.huihoo.com/zenoss/3/Zenoss Developers Guide 08-102010-3.0-v01.pdf

“Creating Zenoss ZenPacks” paper from http./www.skills-
1st.co.uk/papers/jane/zenpacks/

“Creating Zenoss ZenPacks for Zenoss 3” paper from http./www.skills-
1st.co.uk/papers/jane/zenpacks/zenpacks3.pdf

“Zenoss Datasources through the eyes of the Python Collector ZenPack” paper from
http:/www.skills-1st.co.uk/papers/jane/PythonZenPacks.pdf

“ZenPack Development Procedures” document for working with ZenPacks on Zenoss's
ZenPack site, written by David Buler (“phonegi”) -
http:/community.zenoss.org/docs/DOC-10223

Wiki item about Devices, Device Components and relationships -
http://wiki.zenoss.org/ZenPack Development Guide/Background Information

Wiki item for zendmd tips - http://wiki.zenoss.org/ZenDMD Tips

Wiki Tips category - http://wiki.zenoss.org/Category:Tips

ZenPack Developers' Guide Oct 13, 2016

http://wiki.zenoss.org/Category:Tips
http://wiki.zenoss.org/ZenDMD_Tips
http://wiki.zenoss.org/ZenPack_Development_Guide/Background_Information
http://community.zenoss.org/docs/DOC-10223
http://www.skills-1st.co.uk/papers/jane/PythonZenPacks.pdf
http://www.skills-1st.co.uk/papers/jane/zenpacks/zenpacks3.pdf
http://www.skills-1st.co.uk/papers/jane/zenpacks/zenpacks3.pdf
http://www.skills-1st.co.uk/papers/jane/zenpacks/
http://www.skills-1st.co.uk/papers/jane/zenpacks/
http://docs.huihoo.com/zenoss/3/Zenoss_Developers_Guide_08-102010-3.0-v01.pdf
http://wiki.zenoss.org/ZenPack_Development_Guide/Development_Environment
http://wiki.zenoss.org/ZenPack_Development_Guide
http://zenpacklib.zenoss.com/en/latest/
http://docutils.sourceforge.net/rst.html
https://github.com/zenoss/ZenPackers/tree/master
http://zenpackers.readthedocs.io/en/latest/
https://zenosslabs.readthedocs.org/en/latest/zenpack_standards_guide.html
http://media.readthedocs.org/pdf/zenosslabs/latest/zenosslabs.pdf
https://zenosslabs.readthedocs.org/en/latest/
https://github.com/zenoss
http://wiki.zenoss.org/Commercial_ZenPacks_by_Zenoss
http://wiki.zenoss.org/Community_ZenPacks
http://wiki.zenoss.org/Free_ZenPacks_by_Zenoss
http://wiki.zenoss.org/ZenPack_Catalog
https://www.zenoss.com/resources/documentation?field_zsd_core_value_selective=Core
https://www.zenoss.com/resources/documentation?field_zsd_core_value_selective=Core

22.

23.

24.

25.

26.
27.
28.
29.

30.
31.
32.
33.

34.
35.

36.
37.
38.
39.
40.

41.

42.

43.

44.

For advice on running a ZenPack development environment for Zenoss 5, see
http://zenpacklib.zenoss.com/en/latest/development-environment-5.html

Zenoss community developer site wiki at

http:/monitoringartist.github.io/community.zenoss.org/docs/DOC-2350.html, “Diving
into the device model”.

“Custom ZenPacks rough guide” contributed by blacks to the Zenoss forum at
http:/community.zenoss.org/docs/DOC-2358

Brief description of Zenoss 4 daemons - https:/support.zenoss.com/hc/en-
us/articles/202250769-An-Overview-of-Resource-Manager-4-x-Daemons

netSnmp SNMP agent from http:/www.net-snmp.org/
BRIDGE MIB, RFC 1493 - http://www.ietf.org/rfc/rfc1493.txt
http:/www.net-snmp.org/docs/mibs/UCD-SNMP-MIB.txt for the UCD MIB

oidview online website for viewing MIBs such as the BRIDGE MIB -
http.//www.oidview.com/mibs/0/BRIDGE-MIB.html

ZenPacks.community.mib_browser from http://wiki.zenoss.org/ZenPack:MIB Browser
“Learning Python” by Mark Lutz, published by O'Reilly
“Python Pocket Reference” by Mark Lutz, published by O'Reilly

“Twisted - Network programming Essentials” by Jessica McKellar & Abe
Fettig,https:/github.com/zenoss/zenpacklib/issues published by O'Reilly

https://docs.python.org/2/library/index.html for online Python documentation

pyflakes Python syntax checker obtainable from https:/pypi.python.org/pypi/pyflakes
and pyflakes-vim plugin for vi at http:/www.vim.org/scripts/script.php?script id=2441

pep8 Python style guide checker - https:/pypi.python.org/pypi/pep8

Zope web application server information from http:/www.zope.org/WhatlsZope

“The Zope2 Book” from http://docs.zope.org/zope2/zope2book/

Zope Page Templates Reference - http://docs.zope.org/zope2/zope2book/AppendixC.html

Zope Configuration Markup Language (ZCML) reference -
http://docs.zope.org/zopetoolkit/codingstyle/zcml-style.html

Zope 2 Interfaces reference -
http://docs.zope.org/zope2/zdgbook/ComponentsAndInterfaces.html

Modifying the Overview panel for a device -
http://wiki.zenoss.org/Device Overview Panels and
https://github.com/cluther/ZenPacks.example.CustomOverview

Differences in ZenPacks between ExtJs3 and ExtJs4 for custom Component Grid
panels - https:/github.com/zenoss/Zenoss-User-Interface-API-
Docs/tree/master/guides/component grid upgrade

YAML website - http://yaml.org/

Oct 13, 2016 ZenPack Developers' Guide 397

http://yaml.org/
https://github.com/zenoss/Zenoss-User-Interface-API-Docs/tree/master/guides/component_grid_upgrade
https://github.com/zenoss/Zenoss-User-Interface-API-Docs/tree/master/guides/component_grid_upgrade
https://github.com/cluther/ZenPacks.example.CustomOverview
http://wiki.zenoss.org/Device_Overview_Panels
http://docs.zope.org/zope2/zdgbook/ComponentsAndInterfaces.html
http://docs.zope.org/zopetoolkit/codingstyle/zcml-style.html
http://docs.zope.org/zope2/zope2book/AppendixC.html
http://docs.zope.org/zope2/zope2book/
http://www.zope.org/WhatIsZope
https://pypi.python.org/pypi/pep8
http://www.vim.org/scripts/script.php?script_id=2441
https://pypi.python.org/pypi/pyflakes
https://docs.python.org/2/library/index.html
http://wiki.zenoss.org/ZenPack:MIB_Browser
http://www.oidview.com/mibs/0/BRIDGE-MIB.html
http://www.net-snmp.org/docs/mibs/UCD-SNMP-MIB.txt
http://www.ietf.org/rfc/rfc1493.txt
http://www.net-snmp.org/
https://support.zenoss.com/hc/en-us/articles/202250769-An-Overview-of-Resource-Manager-4-x-Daemons
https://support.zenoss.com/hc/en-us/articles/202250769-An-Overview-of-Resource-Manager-4-x-Daemons
http://community.zenoss.org/docs/DOC-2358
http://monitoringartist.github.io/community.zenoss.org/docs/DOC-2350.html
http://zenpacklib.zenoss.com/en/latest/development-environment-5.html

398

45.

46.

47.

48.

49.

50.

51.
52.

53.

54.

55.

56.

57.

58.

59.
60.

zenpacklib command reference - http:/zenpacklib.zenoss.com/en/latest/command-line-
reference.html

zenpacklib YAML reference - http://zenpacklib.zenoss.com/en/latest/yvaml-
reference.html

zenpacklib on GitHub - outstanding issues and requests -
https:/github.com/zenoss/zenpacklib/issues

Sample command-based ZenPack, ZenPacks.zenoss.RabbitMQ -
https:/github.com/zenoss/ZenPacks.zenoss.RabbitMQ

General comments on modeler process method output in the ZenPacks.zenoss.OpenVZ
ZenPack -
https:/github.com/zenoss/ZenPacks.zenoss.OpenVZ/blob/develop/ZenPacks/zenoss/Ope

nVZ/modeler/plugins/zenoss/cmd/linux/OpenVZ.py - see comments at the end
Good example modeler handling components, sub-components and dsplugins -

ZenPacks.zenoss. AWS -
https://github.com/zenoss/ZenPacks.zenoss. AWS/blob/develop/ZenPacks/zenoss/AWS/m

odeler/plugins/aws/EC2.py
PythonCollector ZenPack - http:/wiki.zenoss.org/ZenPack:PythonCollector

See https:/github.com/cluther/ZenPacks.example.EvaluatedCommandModeler for an
example to permit the use of zProperties in the command definition of a

CommandPlugin modeler.

Look at https:/gist.github.com/James-Newman/9609c¢84688a0b9a4fee842878b9a5b00
which adds device classes, templates to device classes and event classes through the
__init__.py of a ZenPack.

See http:/zenpacklib.zenoss.com/en/latest/tutorial-http-api/datasource-plugin-
datapoints.html for examples of Python datasources with explanations.

Good example ZenPack demonstrating dsplugins.py for Python datasources -
http://wiki.zenoss.org/ZenPack:Hadoop and
https://github.com/zenoss/ZenPacks.zenoss.Hadoop

Good example of using dsplugins directory - http://wiki.zenoss.org/ZenPack:HBase ,
https:/github.com/zenoss/ZenPacks.zenoss.HBase ,
https:/github.com/jcurry/ZenPacks.community.zplib.twemproxy and
https:/github.com/jcurry/ZenPacks.community.zplib.Redis

Helpful items regarding Python Twisted and the yield function -
http://stackoverflow.com/questions/3894278/twisted-deferred-addcallback-vs-yield-and-
inlinedeferred ,
https://confluence.oceanobservatories.org/display/CIDev/Gotchas+with+inlineCallbacks
,+vield+and+returnValue

Discussion on blocking and non-blocking Python plugins on Zenoss forum at
http:/www.zenoss.org/forum/136876

Dave Peticolas' Twisted Introduction - http://krondo.com/?page id=1327

Nagios format output guide - https:/nagios-
plugins.org/doc/guidelines.htmI#PLUGOUTPUT

ZenPack Developers' Guide Oct 13, 2016

https://nagios-plugins.org/doc/guidelines.html#PLUGOUTPUT
https://nagios-plugins.org/doc/guidelines.html#PLUGOUTPUT
http://krondo.com/?page_id=1327
http://www.zenoss.org/forum/136876
https://confluence.oceanobservatories.org/display/CIDev/Gotchas+with+inlineCallbacks,+yield+and+returnValue
https://confluence.oceanobservatories.org/display/CIDev/Gotchas+with+inlineCallbacks,+yield+and+returnValue
http://stackoverflow.com/questions/3894278/twisted-deferred-addcallback-vs-yield-and-inlinedeferred
http://stackoverflow.com/questions/3894278/twisted-deferred-addcallback-vs-yield-and-inlinedeferred
https://github.com/jcurry/ZenPacks.community.zplib.Redis
https://github.com/jcurry/ZenPacks.community.zplib.twemproxy
https://github.com/zenoss/ZenPacks.zenoss.HBase
http://wiki.zenoss.org/ZenPack:HBase
https://github.com/zenoss/ZenPacks.zenoss.Hadoop
http://wiki.zenoss.org/ZenPack:Hadoop
http://zenpacklib.zenoss.com/en/latest/tutorial-http-api/datasource-plugin-datapoints.html
http://zenpacklib.zenoss.com/en/latest/tutorial-http-api/datasource-plugin-datapoints.html
https://gist.github.com/James-Newman/9609c84688a0b9a4fee842878b9a5b00
https://github.com/cluther/ZenPacks.example.EvaluatedCommandModeler
http://wiki.zenoss.org/ZenPack:PythonCollector
https://github.com/zenoss/ZenPacks.zenoss.AWS/blob/develop/ZenPacks/zenoss/AWS/modeler/plugins/aws/EC2.py
https://github.com/zenoss/ZenPacks.zenoss.AWS/blob/develop/ZenPacks/zenoss/AWS/modeler/plugins/aws/EC2.py
https://github.com/zenoss/ZenPacks.zenoss.OpenVZ/blob/develop/ZenPacks/zenoss/OpenVZ/modeler/plugins/zenoss/cmd/linux/OpenVZ.py
https://github.com/zenoss/ZenPacks.zenoss.OpenVZ/blob/develop/ZenPacks/zenoss/OpenVZ/modeler/plugins/zenoss/cmd/linux/OpenVZ.py
https://github.com/zenoss/ZenPacks.zenoss.RabbitMQ
https://github.com/zenoss/zenpacklib/issues
http://zenpacklib.zenoss.com/en/latest/yaml-reference.html
http://zenpacklib.zenoss.com/en/latest/yaml-reference.html
http://zenpacklib.zenoss.com/en/latest/command-line-reference.html
http://zenpacklib.zenoss.com/en/latest/command-line-reference.html

61.
62.

63

64.
65.
66.
67.
68.
69.

70.

Python regex check application - http.//www.pyregex.com/

For a wiki tip on providing Event Details, Triggers and Notifications in a ZenPack, see

http://wiki.zenoss.org/Providing Triggers Notifications and Event Details in ZenPac
k

. Audit package on GitHub for dumping many parts of the ZODB database, including

triggers and notifications - https:/github.com/jcurry/Audit

git website - https:/git-scm.com/ and git documentation - https:/git-scm.com/doc
GitHub site - https:/github.com/

Zenoss area on GitHub - https:/github.com/zenoss
“Git Pocket Guide” by Richard E. Silverman, published by)'Reilly

Wiki item for releasing ZenPacks - http://wiki.zenoss.org/Releasing your ZenPack

Discussing on versions of the JavaScript Library Extds -
https:/github.com/zenoss/Zenoss-User-Interface-API-
Docs/tree/master/guides/component grid upgrade

Some useful Knowledge Base articles are emerging which provide assistance with
managing the Zenoss 5 environment:

a) “Virtualization and Docker Containerization for Poets” -
https://support.zenoss.com/hc/en-us/articles/202254069-Virtualization-and-Docker-
Containerization-for-Poets

b) “How to troubleshoot Resource Manager 5.x services that fail to start” -
https://support.zenoss.com/hc/en-us/articles/207348996-How-to-troubleshoot-
Resource-Manager-5-x-services-that-fail-to-start

c¢) “How to Recover Control Center from Hardware Failure” -
https://support.zenoss.com/hc/en-us/articles/204643769-How-to-Recover-Control-
Center-from-Hardware-Failure

d) “How to add tools or scripts into a Resource Manager 5.x Docker Container” -
https://support.zenoss.com/hc/en-us/articles/207610516-How-to-add-tools-or-scripts-
into-a-Resource-Manager-5-x-Docker-Container

e) “Introduction to Zenoss Control Center” - https://support.zenoss.com/hc/en-
us/articles/206278353-Introduction-to-Zenoss-Control-Center

Oct 13, 2016 ZenPack Developers' Guide 399

https://support.zenoss.com/hc/en-us/articles/206278353-Introduction-to-Zenoss-Control-Center
https://support.zenoss.com/hc/en-us/articles/206278353-Introduction-to-Zenoss-Control-Center
https://support.zenoss.com/hc/en-us/articles/207610516-How-to-add-tools-or-scripts-into-a-Resource-Manager-5-x-Docker-Container
https://support.zenoss.com/hc/en-us/articles/207610516-How-to-add-tools-or-scripts-into-a-Resource-Manager-5-x-Docker-Container
https://support.zenoss.com/hc/en-us/articles/204643769-How-to-Recover-Control-Center-from-Hardware-Failure
https://support.zenoss.com/hc/en-us/articles/204643769-How-to-Recover-Control-Center-from-Hardware-Failure
https://support.zenoss.com/hc/en-us/articles/207348996-How-to-troubleshoot-Resource-Manager-5-x-services-that-fail-to-start
https://support.zenoss.com/hc/en-us/articles/207348996-How-to-troubleshoot-Resource-Manager-5-x-services-that-fail-to-start
https://support.zenoss.com/hc/en-us/articles/202254069-Virtualization-and-Docker-Containerization-for-Poets
https://support.zenoss.com/hc/en-us/articles/202254069-Virtualization-and-Docker-Containerization-for-Poets
https://github.com/zenoss/Zenoss-User-Interface-API-Docs/tree/master/guides/component_grid_upgrade
https://github.com/zenoss/Zenoss-User-Interface-API-Docs/tree/master/guides/component_grid_upgrade
http://wiki.zenoss.org/Releasing_your_ZenPack
https://github.com/zenoss
https://git-scm.com/doc
https://git-scm.com/
https://github.com/jcurry/Audit
http://wiki.zenoss.org/Providing_Triggers_Notifications_and_Event_Details_in_ZenPack
http://wiki.zenoss.org/Providing_Triggers_Notifications_and_Event_Details_in_ZenPack
http://www.pyregex.com/

ZenPack Reference
All ZenPacks created for this paper are available on GitHub under:
https://github.com/ZenossDevGuide/

1. ZenPacks.community.dummy

a. This ZenPack simply has the default files and directories after initial ZenPack
creation.

2. ZenPacks.community.IpServices

a. This ZenPack is built entirely through the GUI to demonstrate adding IP services to a
ZenPack.

3. ZenPacks.community.WinServices

a. This ZenPack is built entirely through the GUI to demonstrate adding Windows
services to a ZenPack.

4. ZenPacks.community.Processes

a. This ZenPack is built entirely through the GUI to demonstrate adding processes to a
ZenPack.

5. ZenPacks.community.simplel

a. This ZenPack is created purely using the GUI. It provides SNMP and COMMAND
templates, an SNMP MIB, an event with an event mapping instance, and a device
class.

6. ZenPacks.community.LogMatch
a. Version 1.0, git branch master

i. This ZenPack monitors logfiles using SNMP capabilities from the netSnmp UCD
agent. It also modifies the Overview panel in V1.0.1.

b. Version 1.0.2, git branch device

i. The 1.0.2 version of this ZenPack ignores the LogMatchDevice definition and
modifies the __init__.py to make the LogMatch a component of the os component of
the Device class. The versionTag and versionDate attributes are added directly to
the Device class attributes.

c. Version 1.0.3, git branch zenpacklib
i. This version of the ZenPack uses zenpacklib, starting from the 1.0.1 version.
d. Version 1.0.4, git branch zpl_and_datapoint

i. This version of the ZenPack uses zenpacklib, starting from the 1.0.3 version, and
adds a component configuration attribute that is populated by performance data.

7. ZenPacks.community.DirFile

a. Version 1.0, git branch master

400 ZenPack Developers' Guide Oct 13, 2016

https://github.com/ZenossDevGuide/

i. This ZenPack is designed to be very easy to setup and test, rather than a
production-strength monitoring solution. It uses several different methods to:

= Gather directory and file data based on new ZenPack-delivered zProperties
= Monitor disk space used by files and directories
= Monitor disk space used by the root filesystem
= Monitor counts of specific strings in the discovered files
ii. Version 1.0 uses COMMAND-based modeling and datasources
b. Version 1.0.1, git branch python
i. Converts all functionality in V1.0 to use the PythonCollector ZenPack
c. Version 1.0.2, git branch events

i. Adds event class, transforms, custom event field display, triggers and notifications
to 1.0.1 version

d. Version 1.0.3, git branch evalCommand

i. Starts from master branch and 1.0 version and modifies _ init_ .py and the
command modeler to make use of zProperties in the command.

8. ZenPacks.community.MenuExamples

a. Demonstrates several examples of extending Zenoss GUI menus:
9. ZenPacks.community.UserGroup

a. zenpacklib example that gathers Unix user and group information
10. ZenPacks.skills1st.bridge

a. Example used to demonstrate older GUI techniques

Oct 13, 2016 ZenPack Developers' Guide 401

Acknowledgements

Several people have contributed either actively or passively to this paper:
e Jason Stanley for proof reading and code help
e James Newman for proof-reading and code help
e Bryan Irvine for proof-reading, comments and contributions
e Steve Paras-Charlton for proof-reading and comments
e Simon Nasrallah for proof-reading and comments
e Helena Patching for proof reading and comments
e Frederic Ma for proof-reading and comments
e Kevin Smith for proof-reading and comments
e Luckie Ford for proof-reading and comments
e Ken Jenkins for proof-reading and comments
e Andrew Kirch for proof-reading and comments

e Chet Luther for his awesome knowledge of Zenoss and his willingness to share that
knowledge

e Andrew Findlay of Skills 1st for help with typesetting
e Georges Reichs for the original "amazing event architecture" diagram

e “blacks” on the Zenoss forum for his Custom ZenPack Rough Guide that got me
started. The original work for this was submitted by Zach Davis.

e George Fakhri for his blog post on “How to create a ZenPack..”

e “bigegor” on the Zenoss forum for his excellent ZenPacks used extensively as examples,
and for his responses to questions

e David Buler (“phonegi”) contributed hugely by doing the “detective work” on the
mechanics of the component panel code

e Alison Guzzio for managing this project through the Zenoss corporation

About the author

Jane Curry has been a network and systems management technical consultant and trainer
for 30 years. During her 11 years working for IBM she fulfilled both pre-sales and consultancy
roles spanning the full range of IBM's SystemView products prior to 1996 and then, when
IBM bought Tivoli, she specialized in the systems management products of Distributed
Monitoring & IBM Tivoli Monitoring (ITM), the network management product, Tivoli
NetView and the problem management product Tivoli Enterprise Console (TEC), all based
around the Tivoli Framework architecture.

402 ZenPack Developers' Guide Oct 13, 2016

Since 1997 Jane has been an independent businesswoman working with many companies,
both large and small, commercial and public sector, initially delivering Tivoli consultancy and
training. Over the last 8 years her work has been more involved with Open Source offerings,
especially Zenoss.

She has developed a number of ZenPack add-ons to Zenoss Core and has a large number of
local and remote consultancy clients for Zenoss customisation and development. She has also
created several workshop offerings to augment Zenoss's own educational offerings. She is a
frequent contributor to the Zenoss forums, wiki and IRC chat conversations and was made a
Zenoss Master by Zenoss in February 2009.

Oct 13, 2016 ZenPack Developers' Guide 403

	1.0 Zenoss concepts
	1.1 Background to Zenoss
	1.2 Devices, components, object classes and device classes
	1.2.1 Zenoss monitoring functionality
	1.2.2 Standard conventions for Zenoss code and ZenPacks

	1.3 Zenoss Daemons
	1.4 Zenoss 5 docker architecture
	1.5 Extending Zenoss out-of-the-box functionality

	2.0 What are ZenPacks?
	2.1 Sources for ZenPacks
	2.1.1 Free ZenPacks developed by Zenoss
	2.1.2 Community developed ZenPacks
	2.1.3 Chargeable Zenoss ZenPacks
	2.1.4 Write your own ZenPack!

	2.2 ZenPack basics
	2.3 Existing ZenPack documentation
	2.3.1 High-level documentation
	2.3.2 zenpacklib documentation
	2.3.3 Standard Zenoss documentation
	2.3.4 Community ZenPack documentation

	3.0 The mechanics of building a ZenPack
	3.1 ZenPack development environment
	3.1.1 Zenoss 4 and earlier
	3.1.2 Zenoss 5
	3.1.2.1 zenoss user
	3.1.2.2 Common directory between containers and the base host - /z
	3.1.2.3 Configuring the service for a development minimum
	3.1.2.4 Useful references for managing a Zenoss 5 environment

	3.2 ZenPack creation
	3.2.1 What's in a name?
	3.2.2 ZenPack directory hierarchy
	3.2.3 ZenPack creation for Zenoss 4 and earlier
	3.2.4 Zenoss 5 ZenPack creation
	3.2.5 ZenPack creation using zenpacklib

	3.3 Exporting ZenPacks
	3.3.1 Exporting xml data
	3.3.2 Creating the .egg from the command line

	3.4 Installing ZenPacks
	3.4.1 Installing ZenPacks on Zenoss 4
	3.4.2 Installing ZenPacks on Zenoss 5

	3.5 Removing ZenPacks

	4.0 Simple ZenPacks
	4.1 Adding performance templates to a simple ZenPack
	4.1.1 Adding SNMP performance templates to a ZenPack
	4.1.2 Adding zencommand performance templates to a ZenPack

	4.2 Adding SNMP MIBs and event classes to a simple ZenPack
	4.3 Adding device classes to a simple ZenPack
	4.4 * Adding services and processes to simple ZenPacks
	4.4.1 Adding IP services to a ZenPack
	4.4.2 Adding Windows Services to a ZenPack
	4.4.3 Adding Processes to a ZenPack

	5.0 Understanding core Zenoss objects
	5.1 Device.py
	5.1.1 Object attributes
	5.1.2 Object relationships
	5.1.3 Object methods

	5.2 DeviceComponent.py
	5.3 * Example object class hierarchy for Fan DeviceComponent
	5.4 * Example component class relationships for IpInterface
	5.5 zendmd and the ZMI as tools to understand objects
	5.5.1 The Zope Management Interface (ZMI)
	5.5.2 zendmd

	6.0 Developing complex ZenPacks
	6.1 Planning considerations
	6.1.1 Names and naming convention
	6.1.2 ZenPack prerequisites and other considerations

	6.2 zenpacklib
	6.3 Developing Python code
	6.3.1 pyflakes
	6.3.2 pep8

	6.4 Developing GUI code
	6.5 Useful tricks for ZenPack developers

	7.0 Anatomy of a ZenPack
	7.1 Basic principles
	7.1.1 Configuration data, modeler plugins and the zenmodeler daemon
	7.1.2 Performance data and monitoring templates

	7.2 New objects in ZenPacks
	7.3 GUI code
	7.3.1 Page Template files and skins directories in older Zenoss
	7.3.2 JavaScript code to define GUI elements
	7.3.3 configure.zcml, infos and interfaces

	7.4 Other elements of a ZenPack

	8.0 zenpacklib UserGroup sample ZenPack
	8.1 Requirements specification
	8.1.1 bash commands to access user and group information

	8.2 ZenPack specification
	8.3 Installing zenpacklib
	8.3.1 PyYAML
	8.3.2 Installing zenpacklib

	8.4 Creating the ZenPack
	8.5 zenpack.yaml
	8.5.1 zProperties
	8.5.2 Zenoss device classes
	8.5.3 Object classes
	8.5.4 Relationships

	8.6 Deploying and testing the ZenPack
	8.7 Modeler plugin
	8.7.1 Design details
	8.7.2 UserGroupMap modeler plugin code
	8.7.2.1 Creating the directory hierarchy
	8.7.2.2 Imports from other Python modules
	8.7.2.3 Base class for the UserGroupMap modeler plugin
	8.7.2.4 Using zProperties in the modeler plugin
	8.7.2.5 CommandPlugin command
	8.7.2.6 The process method of the modeler plugin

	8.7.3 Testing the modeler
	8.7.4 Where do things go wrong with modelers?

	8.8 * Renderers
	8.9 Templates and zenpacklib
	8.9.1 Creating a User component template with the GUI
	8.9.2 Exporting templates with zenpacklib

	8.10 * Creating object methods with zenpacklib
	8.10.1 Writing methods for objects

	8.11 *Creating new components directly on Device object class
	8.11.1 * zenpack.yaml modifications
	8.11.2 * Other modifications
	8.11.3 * Testing the changes
	8.11.4 * Binding device templates in __init__.py

	8.12 *Creating new components inherited from existing components
	8.12.1 zenpack.yaml modifications
	8.12.2 Other modifications
	8.12.3 Testing the changes

	9.0 SNMP LogMatch sample ZenPack
	9.1 Using smidump to get MIB information
	9.2 Requirements specification
	9.3 ZenPack specification
	9.4 Creating the ZenPack
	9.5 Creating device and component object classes
	9.5.1 Checking the device attributes and relationship

	9.6 Creating the component modeler
	9.6.1 * SNMP modeler code in core Zenoss
	9.6.2 The LogMatchMap modeler plugin for component data
	9.6.3 Testing the modeler
	9.6.4 The LogMatchDeviceMap modeler for the device
	9.6.5 Where do things go wrong with SNMP modelers?

	9.7 GUI display code
	9.7.1 JavaScript for new components
	9.7.2 info.py
	9.7.3 interfaces.py
	9.7.4 configure.zcml
	9.7.5 Where do things go wrong with GUI display code?
	9.7.6 * Architecture of the ComponentPanel

	9.8 Adding component performance templates
	9.9 Adding other ZenPack elements through the GUI
	9.10 Finalising the ZenPack
	9.11 Extending the ZenPack to modify the device Overview
	9.11.1 custom-overview-device.js
	9.11.2 browser/configure.zcml
	9.11.3 info.py
	9.11.4 interfaces.py
	9.11.5 Top-level configure.zcml
	9.11.6 Testing the new changes

	9.12 Modifying the ZenPack to remove LogMatchDevice
	9.12.1 monkeypatching standard objects in __init__.py
	9.12.2 LogMatch.py
	9.12.3 browser/configure.zcml
	9.12.4 LogMatchMap modeler plugin
	9.12.5 Remove / install ZenPack

	10.0 Rewriting the LogMatch ZenPack with zenpacklib
	10.1 Creating ZenPacks with zenpacklib
	10.2 zenpacklib capabilities
	10.3 Converting the logmatch ZenPack for zenpacklib
	10.3.1 zenpacklib benefits - items no longer required
	10.3.2 zenpack.yaml
	10.3.3 zenpack.yaml elements in modeler plugins
	10.3.4 Completing the ZenPack
	10.3.5 JavaScript to modify the device Overview panel
	10.3.6 Performance data as a component configuration attribute

	11.0 COMMAND DirFile sample ZenPack
	11.1 Requirements specification
	11.2 ZenPack specification
	11.3 Creating the ZenPack
	11.4 zenpack.yaml
	11.5 DirFileMap modeler plugin
	11.5.1 * CommandPlugin code in core Zenoss
	11.5.2 Using zProperties in the modeler plugin
	11.5.3 CommandPlugin command
	11.5.4 The process method of the modeler plugin
	11.5.5 * What's in an object map?
	11.5.6 zenpacklib and the modeler plugin
	11.5.7 Testing the DirFileMap modeler
	11.5.7.1 * Analysing the zenmodeler log

	11.6 *monkeypatching so command modeler uses zProperties
	11.6.1 * Modifying __init__.py
	11.6.2 * Modifying the modeler plugin code
	11.6.3 * Testing the new code
	11.6.4 * Caveats

	12.0 Collecting performance data
	12.1 Testing environment for the ZenPack
	12.2 Collecting device performance data
	12.2.1 * Analysing the zencommand debug log

	12.3 Collecting component performance data
	12.3.1 Specific component command; single value returned
	12.3.2 Specific component command; multiple values returned
	12.3.3 Generic component command with parser
	12.3.4 customized datasource to pass customized key values
	12.3.4.1 getDescription method
	12.3.4.2 useZenCommand method
	12.3.4.3 getCommand method
	12.3.4.4 addDataPoints method
	12.3.4.5 Infos, Interfaces and configure.zcml
	12.3.4.6 Testing the new datasource

	12.4 Performance templates and zenpacklib
	12.4.1 Where do things go wrong?
	12.4.1.1 Issues with custom datasources and templates in zenpack.yaml

	13.0 Converting COMMAND ZenPacks to PythonCollector
	13.1 ZenPacks.zenoss.PythonCollector
	13.1.1 Using the PythonCollector ZenPack
	13.1.2 * Anatomy of a PythonDataSourcePlugin

	13.2 Twisted
	13.3 Creating Python datasources
	13.3.1 Collecting device performance data
	13.3.1.1 Imports for the PythonDataSourcePlugin
	13.3.1.2 proxy_attributes and config_key method for the PythonDataSourcePlugin
	13.3.1.3 collect method for the PythonDataSourcePlugin
	13.3.1.4 onResult method for the PythonDataSourcePlugin
	13.3.1.5 onSuccess method for the PythonDataSourcePlugin
	13.3.1.6 onError method for the PythonDataSourcePlugin
	13.3.1.7 Testing the new PythonDataSourcePlugin
	13.3.1.8 Performance template to drive the PythonDataSourcePlugin

	13.3.2 * Blocking and non-blocking in Twisted
	13.3.2.1 * Comparing blocking and non-blocking collect methods

	13.3.3 Collecting component performance data; specific component command; single value returned
	13.3.3.1 Using a dsplugins directory
	13.3.3.2 Imports, proxy_attributes, config_key and params
	13.3.3.3 * A closer look at the usage of config_keys
	13.3.3.4 collect method
	13.3.3.5 onResult, onSuccess and onError methods
	13.3.3.6 Performance template to drive the PythonDataSourcePlugin

	13.3.4 Collecting component performance data; specific component command; multiple values returned. Nagios plugin conversion.
	13.3.4.1 Imports, proxy_attributes, config_key and params
	13.3.4.2 collect method
	13.3.4.3 onResult, onSuccess and onError methods
	13.3.4.4 Performance template to drive the PythonDataSourcePlugin

	13.3.5 Collecting component performance data; generic component command with parser
	13.3.5.1 Imports, proxy_attributes, config_key and params
	13.3.5.2 onSuccess method
	13.3.5.3 Performance template to drive the PythonDataSourcePlugin

	13.3.6 Collecting component performance data; customized datasource to pass customized key values
	13.3.6.1 Building the Python datasource
	13.3.6.2 Deploying the new datasource

	13.4 Converting the modeler to use the PythonCollector ZenPack
	13.4.1 Imports
	13.4.2 Creating a dirRegex directory from zProperties
	13.4.3 DirFilePythonMap class attributes
	13.4.4 collect method
	13.4.5 process method
	13.4.6 Testing the new modeler

	13.5 Combining performance data and modeler data

	14.0 Events in ZenPacks
	14.1 Detecting duplicate events
	14.2 Event auto-clearing mechanism
	14.3 Exploring the use of event class attributes
	14.3.1 Detecting “repeat” events
	14.3.2 Auto-clearing events

	14.4 Adding transforms to Event Classes
	14.5 Providing event details in a ZenPack
	14.6 Providing triggers and notifications in a ZenPack
	14.6.1 * Trigger and notification architecture
	14.6.1.1 Finding trigger details
	14.6.1.2 Finding notification details
	14.6.1.3 Dumping trigger and notification details

	14.6.2 ZenPack file for triggers and notifications

	14.7 Resolving issues with triggers and notifications
	14.8 Known issues with event fields, notifications and triggers

	15.0 Creating menus in ZenPacks
	15.1 The jargon
	15.1.1 Zenoss 2 (some of which is still relevant!)
	15.1.2 Zenoss 3 / 4 / 5

	15.2 Extending Command menus with the GUI
	15.3 ZenPacks.community.MenuExamples
	15.3.1 New device class, device object class and component class
	15.3.2 Menu defined in __init__.py
	15.3.3 Old and new options for page templates for menus
	15.3.4 New-style menus limited to specific device types
	15.3.5 Dropdown menus shipped in objects.xml
	15.3.6 Adding items to the Display dropdown for a component
	15.3.7 Menu on INFRASTRUCTURE -> Devices to add new device type
	15.3.7.1 Routers and facades

	15.3.8 New items for left-hand DeviceClass Action menu
	15.3.9 Adding new items to a device's Action menu
	15.3.10 Adding a new menu to the Footer bar

	16.0 Testing and debugging ZenPacks
	16.1 Log files and logging
	16.1.1 Log messages and their likely meanings

	16.2 General hints and tips
	16.3 Testing and debugging new object class files
	16.3.1 New components do not appear in left-hand menu

	16.4 Testing and debugging modeler plugins
	16.4.1 Compilation errors
	16.4.2 General modeler debugging hints
	16.4.3 Attributes or relationships are not populated
	16.4.4 Modeler issues related to using zenpacklib

	16.5 Testing and debugging problems with performance data
	16.5.1 General performance issues
	16.5.2 Configuration issues
	16.5.3 Checking for collected performance data
	16.5.4 Test buttons in datasources
	16.5.5 Issues with datasource plugins
	16.5.6 Issues with datasources
	16.5.7 Performance collection issues related to using zenpacklib

	16.6 Testing skins files and JavaScript files
	16.6.1 General failure errors
	16.6.2 Problems displaying components
	16.6.3 Issues with Info and Interface definitions and configure.zcml
	16.6.4 GUI issues when using zenpacklib

	16.7 Testing and debugging problems with event elements
	16.8 Problems with installing / removing ZenPacks

	17.0 Developing a ZenPack and making it publicly available
	17.1 Simple procedure for git development
	17.2 Working with GitHub
	17.2.1 Using ssh authentication with GitHub
	17.2.2 Creating the GitHub repository

	17.3 git branches
	17.4 Cloning from GitHub to a local machine
	17.5 Other ways to use GitHub
	17.6 ZenPacks on the Zenoss wiki

	References
	ZenPack Reference
	About the author

