Security with LDAP

Andrew Findlay
Skills 1st Ltd

andrew.findlay@skills-1st.co.uk

Network Information Services

When managing a large number of computers it is convenient to
store configuration data in a central location rather than maintain
separate files on each machine. Thus, DNS quickly replaced large
/ et c/ host s files on the Internet, and a number of more general
nameservices were developed to serve more local needs. Sun’s
YP/NIS is probably the best known, but Hesiod[1] does a similar
job and protocol suites such as XNS and NetBIOS also include
nameservices of one sort or another.

The more general nameservices support a number of “‘maps’, each
of which translates from keys to values. A NIS serving Unix
machines has maps such as passwd, group, automount, services,
and rpc. Often there are two or more key fields in a map: the
passwd map for example has to service lookups both by username
and by uid. Data is accessed with the same library calls that origi-
nally handled local files, so most application programs are not
aware that the underlying storage has changed.

A network using a NIS relies on it completely for normal
operation so maintaining its integrity is vital. Most NIS systems in
use today have very little protection against active attackers: they
depend on the IP address of the server being widely known and
assume that nobody has taken over its address. This is obviously
insecure in a world where TCP connections can be hijacked at a
distance, so system designers are turning to cryptography to
provide assurance that good data is being used.

Network Authentication Service

Authenticating users is one of the more visible aspects of
computer security. People are used to providing usernames and
passwords when they want to use a machine or other resource.

One approach to authentication in a network is simply to use the
NIS to access conventional Unix password hashes and to do the
validation locally on the desktop machine. This scheme is

commonly used with YP/NIS but it suffers from having to make
all password hashes available to all desktop machines. There are
shadow-password schemes that prevent ‘ordinary” users from
getting hold of the hash data, but these are fairly easy to bypass
when used with a NIS. With access to a collection of password
hashes, a cracker can mount a dictionary attack with a good
chance of success so it would be better to keep the hashes away
from client machines entirely.

Another approach is to use a special-purpose authentication
protocol such as RADIUS or TACACS+. These were originally
developed to control access to modem banks, but are equally
usable with desktop computers. Kerberos is another way to do
authentication without exposing secrets: this also has the benefit
of providing a complete single-sign-on environment if it is fully
implemented. Several other protocols have been pressed into
service for authentication over the years: SMB allows authentica-
tion against an NT domain, and I have even heard of POP being
used in this way! It comes as no surprise to find that LDAP is now
used an authentication protocol as well.

Ideally, a network authentication service should provide reliable
answers, be fast, and should work without exposing any informa-
tion about the password. This is harder than it first looks, as the
client does not want to expose the password to the server in case
the server turns out to be compromised. Similarly, the server
should not expose any hash data to the client. Network snoopers
should not be able to gather any data that can be replayed later to
gain unauthorised access. Each protocol tackles these problems in
different ways, with varying degrees of success. LDAP has a
number of authentication and security options which can provide
very good security if used correctly, though as ever there is a
trade-off between security and ease of management.

LDAP Basics

LDAPI[6] is a directory-access protocol derived from X.500. It
works with a tree structure where each node or object in the tree
contains a set of attribute-value data. Each object belongs to one or
more objectclasses, which define the mandatory and optional
attributes. The original application of both X.500 and LDAP was to
provide a ‘white pages” directory service, where most objects in
the tree represented people and the tree had a geographic or
organisational structure.

Storing NIS Data in an LDAP Directory

RFC2307[2] describes a schema for storing NIS data in an LDAP
directory. Mappings are provided for all the common databases:
passwd, group, hosts, shadow, services, netgroup, protocol, ethers

etc. The RFC describes objectclasses and attributes, but does not
mandate a particular tree structure. A common practice is to use a
structure like this:

dc=org

dc=example

ou=People ou=Group OU=rpc ou=mounts

Here, domain-component naming is used to match the domain
name example.org and separate subtrees are provided for each type
of information. Data from the passwd file goes into ou=People
rather than ou=passwd because it is assumed that each person has
one primary account and that other information will be added to
the same entry (phone number, e-mail address etc).

Passwd data

Typical data in an account entry looks like this:

dn: ui d=andr ew, ou=Peopl e, dc=exanpl e, dc=or g
ui d: andrew

cn: Andrew Fi ndl ay

obj ect Cl ass: account

obj ect O ass: posi xAccount

objectd ass: top

obj ect O ass: shadowAccount

shadowLast Change: 11296

shadowivax: 99999

shadowMar ni ng: 7

| ogi nShel | : /bin/ bash

ui dNunber: 500

gi dNunber: 500

honmeDi rectory: /hone/ andrew

gecos: Andrew Fi ndl ay

user Password: {crypt}1u@Sw. ohy$Xui RSCqOkp. . .

The first line sets the Distinguished Name - the unique name
identifying this entry in the tree. uid is used as the naming
attribute: this refers to the User ID that we would normally call
‘username’ in a Unix context. There is one aspect of uid to be
particularly aware of: it is matched in a case-insensitive way so it
is not possible to represent distinct accounts ‘fred” and ‘FRED".

Notice that the uid attribute occurs again inside the entry, along
with uidNumber and gidNumber: there must be exactly one of each
of these attributes and they are used when resolving calls to
getpwnam() etc.

The full name of the account owner appears twice: first as cn
(Common Name) which is an attribute that can take multiple
values and is much used by white-pages lookups. The extra copy
in the gecos attribute allows control over the exact string returned
to getpwnam() calls.

The objectClass attributes refer to aspects of the RFC2307 schema.
They set the list of mandatory and optional attributes for the
entry, and are also useful in searches. A call of the form
getpwnam(”andrew”) is likely to result in an LDAP search of the
form (ui d=andrew) AND (obj ect Cl ass=posi xAccount)

Group data

As we have seen, data from passwd and shadow files maps line-
by-line into the account entry. Data from the group file is handled
in a similar way. A conventional Unix group file has one group
per line, with every group member listed:

| dapbods: x: 389:ti m steve, col i n, dany, andr ew

This is convenient for seeing who is in a group, but extremely
inefficient for the most common operation: listing the groups that
a particular user is a member of at login time. The usual algorithm
is to enumerate every entry in the group map looking for occur-
rences of the username.

RFC2307 defines group membership using the memberUid
attribute in a posixGroup object. Because memberUid is a multi-
valued attribute, the group map can now be searched very
efficiently. The example group entry above would look like this in
the directory:

dn: cn=l dapbods, ou=G oup, dc=exanpl e, dc=or g
obj ect d ass: posi xG oup
obj ect Cl ass: top

cn: | dapbods

user Password: {crypt}x
gi dNunber : 389
menberUid: tim

menber Ui d: steve

menber Ui d: colin

nmenber Ui d: dany

menber Ui d: andrew

Now, to find the list of groups that a user belongs to, the search is
of the form:

(obj ect O ass=posi xG oup) AND (nenber U d=andr ew)
The LDAP server can be configured with indexes on any attribute,

so searches of this form can be made very efficient and large
databases can be handled without performance penalties.

Putting it all together

So much for the theory, but how much of this actually works? To
find out, I built a testbed on a portable PC running Red Hat 7.1
and supporting several VMware virtual machines with diverse
operating systems. I also connected a Sun Ultra 5 running
Solaris 8.

The LDAP server was slapd from OpenLDAP 2.0.18 (a security
advisory has since been issued requiring upgrade to 2.0.21). The
config file is shown in Appendix 1. slapd sends logging data to
syslog, and it is a good idea to separate this into a file of its own
with a line like this in / et ¢/ sysl og. conf:

| ocal 4. * /var/1og/slapd.|og

I find it convenient to keep a wide window on screen running
‘tail -f’on the logfile while testing.

To create the initial data I used the migration tools from PADL
software. These are often included with Linux distributions, but it
is worth fetching the latest version from www.padl.com The tools
need very little configuration, and will load data from existing
tiles in / et ¢ into the LDAP directory. Note that the tools create
the container entries ou=People etc but they do not create the top-
level entry (dc=example,dc=org in this case) so it must be created by
hand before the tools will run. To do this, create a file of the form:
dn: dc=exanpl e, dc=org

obj ect Cl ass: dcObj ect

obj ect C ass: organi zation

o: The Exanpl e Organisation
dc: exanpl e

and load it with a command like this:

| dapnodi fy -a -H I dap://Iocal host/ -r -c -x \
-D ’ cn=Manager, dc=exanpl e, dc=org’ -W\
-f <fil ename>

At this stage, the LDAP server can be tested with command-line
tools such as Ildapsearch. Once it is working it is possible to
configure systems to use it as a NIS.

The Name Service Switch and nss_ldap

NSS is a facility found in Solaris and Linux which allows new
name-resolution code to be installed as shared objects without
having to rebuild existing libraries. Some versions of FreeBSD and
AIX have a similar concept called the Information Retrieval
System, apparently derived from BIND 8 code.

In principle you can install a new name-resolution system just by
placing a shared library in the right directory and editing

/etc/nsswitch.conf. Solaris and many Linux distributions come
with LDAP modules for NSS, though they are often derived from
fairly old code and you may need to fetch the latest version from
www.padl.com if you want all the security features.

I tested nss_ldap on a virtual machine with a small Red Hat 7.2
installation. The first thing to do is to configure the LDAP param-
etersin/ et c/ | dap. conf:

| dap. conf
#

Location of LDAP server.

Must be resol vabl e without using LDAP
ﬁost brick.skills-1st.co.uk

ﬁ The di sti ngui shed nanme of the search base.
Ease dc=exanpl e, dc=org

This simple config is enough to get things going, though we will
return to add more security later.

To make the machine use LDAP for passwd and group lookups,
edit/ et ¢/ nsswi t ch. conf and change lines as shown:

passwd: files | dap
shadow: files |dap
gr oup: files |dap

The effect of this is that lookups will use local files first and
progress to LDAP for anything not found locally. This allows for
system accounts to be kept in /etc files (necessary during bootup)
while user accounts are held centrally.

If the name service cache daemon (nscd) is running, it may be
necessary to restart it before LDAP lookups work. Similarly,
nsswitch.conf is normally only read once per process so don't
expect any existing processes to notice until they are restarted
(and that includes the shell that you used to set all this up from!)

An easy test is to find the home-directory of a user that is listed in
the LDAP store but not in the local password file:

echo ~fred

The Solaris version of nss_ldap is based on the iPlanet LDAP
libraries and it does not use /etc/ldap.conf, preferring instead to
use a program called Idapclient to set up the parameters. The
problem with Idapclient is that it depends on a feature that is
implemented differently in different LDAP servers so it does not
easily work with OpenLDAP. There are a number of mailing-list
archives containing discussion of the problem and suggesting
various workarounds, though I have not yet made it work myself.

FreeBSD is supposed to be able to use the PADL nss_ldap code,
but it requires a rebuild of at least the main C library to make it
work. Again, I have not had time to test this, but in principle it
should work with the same data that supports Linux.

Authentication with pam_Ildap

The usual way of using LDAP for user authentication is to locate
the account entry in the directory and then try to ‘bind’ to the
directory as that account, presenting the password or other
credentials as received from the user. In the simplest case, the
password is presented to the directory server in clear, but there
are a number of more secure schemes.

Most Unix-like systems now implement Pluggable Authentication
Modules (PAMs) of some form. This allows authentication
methods to be changed easily without having to re-compile every
program that might need to check a password. PAMs can also
implement policy such as time-of-day restrictions and other
security requirements. A particularly powerful feature is that
PAMs can be stacked, allowing for a choice of authentication
methods and perhaps several different policy modules to be active
as well. As with NSS, PAM is implemented with shared libraries
so re-configuration is quite easy.

Red Hat, SuSE, Mandrake, and FreeBSD all provide pam_ldap
modules derived from the PADL code. Solaris includes a module
based on iPlanet code, though it is quite possible to replace this
with the PADL version if required. In all cases, configuration is
shared with the equivalent NSS module so little extra work is
required.

To use LDAP for authentication is a matter of installing the
pam_ldap module and editing the appropriate PAM config: either
/ et c/ pam conf or one or more files in / et ¢/ pam d. Look for
the line describing pam_unix and add pam_ldap at that point. On
Red Hat Linux the file is / et ¢/ pam d/ syst em aut h and it
looks like this:

aut h required /1ibl/security/pam env. so
auth sufficient /lib/security/pamunix.so |ikeauth null ok
aut h sufficient /lib/security/pamldap.so use first_pass
aut h required /1ibl/security/pam deny. so
account required /1iblsecurity/pam uniX. so
account required /1ibl/security/pam.| dap. so

password required /1iblsecurity/pamcracklib.so \
retry=3 type=

password sufficient /lib/security/pamunix.so nullok \
use_aut ht ok nd5 shadow

password sufficient /lib/security/pam.l|dap.so use_authtok

password required /1iblsecurity/ pam deny. so

session required /[liblsecurity/pamlimts.so
sessi on required /1ibl/security/pam unix. so
sessi on opti onal /1iblsecurity/pam.|dap.so

Note that you should not edit the file directly on Red Hat Linux:
use the authconfig program to maintain it.

Note also that the example config files supplied with the pam_Idap
source code might give LDAP more control than you want,
including the ability to supply an alternate password for root.

Solaris uses /etc/pam.conf so the format is slightly different. Here
is a snippet describing the authentication requirements for rlogin:

rlogin auth sufficient \
lusr/libl/security/$l SAN pam | dap.so.1
riogin auth sufficient \
[usr/libl/security/$l SA/ pamrhosts_auth.so.1
rlogin auth required \
lusr/1ib/security/$l SA/ pam unix.so.1

Note the $ISA variable: this is the Instruction Set Architecture,
which allows for 32-bit and 64-bit programs to co-exist. Strictly
this means that if you replace any PAM modules you should
provide both 32-bit and 64-bit versions but so far I have not found
any 64-bit programs using authentication This will probably
change...

FreeBSD also uses /etc/pam.conf but has a slightly different
layout. Here is part of the section for login (and thus rlogin too):

| ogin auth sufficient pam skey.so

| ogi n auth requisite pam cl eart ext pass_ok. so

I ogin auth sufficient /[usr/local/lib/pam]ldap.so \
try first_pass

| ogin auth required pam uni x.so try_first_pass

Where a PAM password clause has been defined (as in the Red
Hat example above), pam_ldap supports changing passwords
using LDAP so the user need never know that LDAP is being used
rather than local files.

With both nss_ldap and pam_ldap in place on client machines, all
user-management can be done through the directory.

Now add Windows: SAMBA PDC

Samba has had the ability to act as an NT-style Primary Domain
Controller for some time. Recent releases have added a facility to
store the PDC SAM data in an LDAP directory. This is clearly
marked as experimental code in Samba 2.2.2 though the Samba-
TNG project claims to be more advanced in this area. The two
versions have different approaches: mainstream Samba aims to
provide Windows-Unix integration, where Samba-TNG aims for a
complete PDC implementation that just happens to run on Unix
rather than Windows.

If Samba is installed on a machine using nss_Ildap and pam_Idap it
will of course use them, so networks running SMB with cleartext
passwords may not need to do more than that. There are

advantages to the PDC model though, so Samba’s move to closer
integration with LDAP is particularly welcome.

To enable LDAP storage for the PDC, Samba must be configured
with the ——with—ldapsam option. This completely overrides local
storage of SAM data so you cannot use the same binary in both
modes.

The LDAP-specific parts of the Samba config file look like this:

| dap adm n dn = cn=manager, dc=exanpl e, dc=or g
| dap server = brick.skills-1st.co. uk
| dap suffix = dc=exanpl e, dc=org

A minimal Samba PDC config is shown in Appendix 2.

Note that the LDAP suffix given here matches the search base
used by nss_ldap and pam_ldap. This allows Samba to share the
entries that already exist to describe people/accounts. Note also
that the admin DN is given: in this case I have used the name of
the DSA manager (equivalent to root in directory terms), but it
should be possible to use a less powerful ID if ACLs are set up
carefully. Samba needs to bind to the directory as a user with
write permission so that it can insert new attributes in entries. The
password is stored in the secrets database using the command:

snbpasswd -w <passwor d>

Unfortunately, the password has to be typed on the command line
so make sure you clear out any command-history files afterwards!

Samba introduces several new attributes, so it’s schema file must
be copied from sanba- 2. 2. 2/ exanpl es/ LDAP/ sanba. schena to the
server schema directory and an appropriate include statement has
to be added to slapd.conf. The schema file supplied tries to re-
define displayName so this clause must be commented out before
restarting the server.

Samba needs to set up two new password hashes and several
other attributes for each user. The password hashes cannot be
derived from the Unix password data, so be prepared to supply
new passwords for each user:

snbpasswd -a <user nanme>

Unfortunately, this is where the experimental nature of the code
starts to show through. Some of the attributes get bad values: in
particular, rid gets set to zero, and both smbHome and profilePath
get values including %-expansions that are not properly handled
when the data is used. These need to be fixed by hand: I used
ldapsearch to extract the complete attribute set into a file for
editing, and Idapmodify to put the updated values back.

Before a Windows client can join a domain, it needs a “trust
account’ to be set up on the PDC. With the appropriate scripts
configured on Samba, this can be largely automated but for test
purposes I created Unix-style accounts by hand. These have
usernames formed by appending ‘$” to the Windows ‘computer-
name’, and are made ready for use with the command:

snbpasswd -a - m <conput er nane>

With these preparations done, I was able to join an NT client to
my domain and log in using the same username and password
used with the Unix clients.

There is obviously some work still needed on the LDAP PDC
code, but once stable there are some interesting possibilities. One
option would be to do away with backup domain controllers
altogether, and support distribution and resilience by having
replicated LDAP servers each serving the same data to one or
more Samba PDCs. I have yet to work out the exact effect of
moving a Windows client from one such domain controller to
another.

Looking at the problem the other way round, it should be possible
to run nss_ldap and pam_ldap against an Active Directory system.
The sample /etc/ldap.conf shipped with the PADL code includes
an example configuration for this purpose, though I have not tried
it.

Security

With such a concentration of data in the directory, security
becomes very important[3]. Anyone who could modify the data
could give themselves access to vast numbers of machines at a
stroke. Some data needs to be protected from unauthorised
viewing: although all passwords are hashed, anyone who can read
the hashes can mount a dictionary attack. More subtly, anyone
who can hijack a client-server connection can feed bogus data to
an individual client, or use the client’s privileges to modify server
data. All these things can be protected against, and LDAP now has
most of the tools needed to do it.

Access Control

Control over who may read what and who may change what is
exercised with Access Control Lists (ACLs). This is one of the non-
standardised areas of LDAP, and it varies a lot from one server to
another. However, all modern servers provide enough control to
protect passwords. Here is a simple ACL section from
OpenLDAP:

access to attrs=userPassword
by self wite
by anonynous auth
by * none

access to *
by * read

This allows authenticated users to change their own passwords,
allows un-authenticated users to authenticate, and prevents all
other access to the userPassword. It permits read access to every-
thing else. Obviously if Samba PDC data is being stored then
similar protection must be extended to ImPassword and ntPass-
word.

Client Authentication

The simplest form of client authentication is to bind to the server
using a cleartext password. This is the method normally used by
pam_ldap for checking login passwords. For security, this method
should only be used with encrypted connections.

A more secure method is to use one of the SASL authentication
mechanisms, such as DIGEST-MD5[4]. This is based on a secret
known to both the client and the server, allowing for a simple
challenge-response scheme. SASL is also capable of negotiating
data encryption to protect subsequent operations.

LDAP also supports encryption and authentication using
Transport Layer Security[5]. TLS is closely related to the older SSL
scheme, and uses the same certificate-based methods. In its
simplest form, TLS provides proof of server identity and protec-
tion of data in transit so it is useful where plaintext passwords
might be passed across the net. The same mechanism can also be
used to prove the identity of the client to the server, where the
client has been issued with a suitable X.509 certificate.

It is often more appropriate (and cheaper) to use a private Certifi-
cation Authority for this purpose rather than getting certificates
from a public supplier. This is easy to set up using OpenSSL:

openssl genrsa -des3 -out ca. key 2048
openssl req -new -x509 -days 365 -key ca. key -out ca.cert

You will be prompted to supply some information. The result of
the commands above will be two files: a key file and a certificate
file. These are the basis of the Certification Authority.

openssl genrsa -out |dap.key 1024
openssl req -new -key |dap. key -out |dap.csr

You will again be asked for information to fill in the Certificate
Signing Request. The critical item is to put the LDAP server name

in when prompted for ‘Common Name’. This should be the exact
name that clients will use when contacting the server. It is best to
use a fully-qualified domain name. Note that the Idap.key file is not
encrypted as it must be read by the LDAP server: protect this file
very carefully! Use the CA to sign the certificate:

openssl x509 -req -in ldap.csr -out |dap.cert -CA ca.cert \
- CAkey ca. key -CAcreateserial -days 365

The result is a file called Idap.cert containing the certificate for the
LDAP server. You can examine certificates with the command:

openssl x509 -in ldap.cert -text -noout

The LDAP server needs copies of its own certificate and key files,
and also a copy of the CA certificate. The key file must only be
readable by the server process, so make it mode 400 and owned by
the owner of the server (OpenLDAP can be run as root, or can be
told to set UID to another user after binding the TCP ports). Add
lines to slapd.conf to tell the server about the new files:

TLSCertificateFile / et c/ openl dap/ keys/ server. cert
TLSCertificateKeyFil e / et c/ openl dap/ keys/ server. key
TLSCACertificateFile / et c/ openl dap/ keys/ ca. cert

When the server is next restarted it will be able to use TLS. It will
also support SSL if told to bind to an | daps: /// URL. To make
nss_ldap and pam_Ildap use TLS, add a line to /etc/ldap.conf on the
client machines:

ssl start_tls

This provides transport-level encryption of LDAP sessions, thus
giving some protection to passwords etc. However, it does not
guard against bogus servers: to get this extra protection it is
necessary to give the client machines a copy of the CA certificate
that was used to sign the server certificate. Recent versions of
nss_ldap and pam_Idap will verify the server identity if lines of this
form are added to /etc/ldap.conf:

tl s_checkpeer yes
tls cacertfile /etc/ssl/ca.cert

Now, if a bogus server is encountered the client will immediately
close the LDAP connection and deny the attempted login. Note
that the reason for the denied login can be hard to find in the
client logfiles: it may be necessary to turn on a high level of
debugging to see the relevant message! Note also that certificate
verification is a fairly recent addition to nss_Idap and pam_ldap so
the versions shipped with most OS distributions do not yet have
it.

Samba-2.2.2 has the option to use TLS when accessing LDAP,
though it does not yet have code to check server certificates. To
enable TLS add this to the global section of the config file:

| dap ssl = start tls

Other nameservice clients like Automount and AMD do not yet
have the ability to use TLS at all, so unfortunately there are still
chinks in the armour.

Management Tools

This area is still rather lacking. The PADL migration tools are
good for converting and loading the initial data, but once LDAP is
in use as the nameservice you will need other tools to create and
manage accounts etc. Scripts can be built around Idapsearch and
ldapmodify from the OpenLDAP distribution, or around one of the
Perl modules that support LDAP. Another useful tool is GQ - a
general-purpose LDAP browser/modifier.

There is at least one project under way to develop specific
management tools for LDAP NIS systems. ldaputils is based at
SourceForge and eventually plans to have a web-based manage-
ment interface.

Performance

An LDAP server providing NIS service is likely to handle much
more traffic than one just servicing ‘white pages’ requests so
performance is an important consideration in a large network.
When sizing servers it is necessary to know how much traffic to
expect: Table 1 summarises the results of some simple tests with
both pam_Idap and nss_ldap configured.

More recent versions of nss_ldap make much more efficient use of
the server than the older ones. The use of a cache daemon also
helps, though it does result in one more long-lived LDAP connec-
tion per client machine.

An LDAP server with logging turned off should not have any
difficulty in servicing 500 searches per second, but if TLS is in use
the cost of connection setup and binding is likely to far outweigh
the search load. A large pool of clients will also result in many
hundreds of connections being held open, so the server and its
supporting operating system must be configured to support a
sufficient number of open files.

LDAP servers can be configured to replicate data from a master
server, so the read-only query load can be spread across as many
machines as necessary. Operations (like password changing) that
result in changes to the database get referred back to the master
server. The format of /etc/ldap.conf supports multiple servers in

the form of a space-separated list, and the servers are tried in turn
until one answers or the list is exhausted.

Client & Connect | Bind | Search | Connections
Operation Held Open
Per session
Red Hat7.1login |8 8 13*
Red Hat 7.1 login |5 5 3 1o
with nscd
Samba connect (not | 5 5 19 1
PDC)
Samba connect 6 6 8 1o
with nscd (not
PDC)
Samba connect 2 2 5 Oz
with PDC and nscd
Red Hat 7.2 login |2 4 6 la
with nscd
* Two of these try to return every entry from the Group table
a Plus one connection per client machine for nscd
Table 1: LDAP load imposed by clients

Conclusions

It is quite possible to use LDAP as a Network Information Service,
though at the moment it is not quite an ‘out of the box and into
production” product. There is potential for much greater security
than most other forms of NIS, and with a bit of planning it should
provide good performance too.

References

1. The Hesiod Name Server, Stephen P Dyer, Project Athena,
Proceedings of the USENIX Winter 1988 Technical Conference
www.mit.edu/afs/athena.mit.edu/astaff/project/hesioddev-
/hesiod.dist/doc/hesiod.PS

2. RFC2307 An Approach for Using LDAP as a Network Information
Service, L Howard. Work is under way to update the REC:
http:/ /www.padl.com/~lukeh/rfc2307bis.txt

3. RFC2829 Authentication Methods for LDAP
4. RFC2222 Simple Authentication and Security Layer.

5. RFC2830 Lightweight Directory Access Protocol (v3):
Extension for Transport Layer Security

6. RFC2251 Lightweight Directory Access Protocol (v3)

Sources

OpenLDAP www. openl dap. or g

OpenSSL www. openssl . org

Cyrus SASL asg. web. cmu. edu/ cyr us/
Berkeley DB www. sl eepycat . com

NSS LDAP www. padl . conl sof t war e. ht ni
PAM LDAP

Migration tools

GQ bi ot . conl gq/

LDAPutils sourceforge.net/projects/ldaputils/

This paper and www.skills—1st.co.uk/papers/afindlay.html
others by
Andrew Findlay

Appendix 1: slapd.conf
sl apd. conf
Log level is a bitfield. 768 provides

reasonabl e activity | oggi ng
Loggi ng goes to syslog with facility code
LCOCAL4

HHEHFH HH

ogl evel 768

ncl ude /usr/ 1 ocal/etc/openl dap/ schena/ core. schenma

ncl ude /usr/ 1 ocal/etc/openl dap/ schena/ cosi ne. schema
ncl ude /usr/ 1l ocal/etc/openl dap/ schenma/ i net or gper son. schema
ncl ude /usr/ 1 ocal/etc/openl dap/ schena/ | ava. schema

ncl ude /usr/local/etc/openl dap/ schema/ kr b5- kdc. schena
ncl ude /usr/ 1 ocal/etc/openl dap/ schena/ m sc. schenma

ncl ude /usr/ 1 ocal /et c/openl dap/ schena/ nadf . schema

ncl ude /usr/local/etc/openl dap/ schema/ ni s. scherma

ncl ude /usr/ | ocal /et c/openl dap/ schena/ openl dap. schema
ncl ude /usr/local/etc/openl dap/ schema/ cor ba. schema
ncl ude /usr/ 1 ocal/etc/openl dap/ schena/ sanba. schema

pidfile /usr/local /var/slapd.pid
argsfile /usr/local /var/slapd. args

How we want passwords stored
passwor d- hash { SSHA}

Define SSL and TLS properties (optional)
TLSCertificateFile / et c/ openl dap/ keys/ server. cert
TLSCertificateKeyFile /etc/openldap/keys/server.key
TLSCACertificateFile / et c/ openl dap/ keys/ ca. cert

Define SASL properties (optional)
sasl-realm green

sasl - host brick. skills-1st.co. uk
sasl - secprops m nssf=112

HHHHHHAH B HH R BB R R R R R R R R SR
dat abase definition
HHAHHHHHHHH PR AR HH R R R R R R R R R R R SR

dat abase I dbm
suf fix "dc=exanpl e, dc=or g"
r oot dn "cn=Manager, dc=exanpl e, dc=or g"

Cl eartext passwords, especially for the rootdn, should
be avoi ded

See sl appasswd(8) and slapd.conf(5) for details.

Use of strong authentication is encouraged.

r oot pw secr et

The dat abase directory MJST exist prior to running slapd
AND shoul d only be accessible by the slapd/tools.
Mode 700 i s recomended.

directory /usr/ 1 ocal /var/openl dap-1 dbm
Indices to nmaintain

i ndex uid eq

i ndex ui dNunber eq

i ndex gi dNunber eq

i ndex cn eq

i ndex menber Uid eq

i

ndex i pServi cePort eq
Access Contro

Users can change their own passwords
Everyone can read everything except passwords

access to attrs=userPassword
by self wite
by anonynous auth
by * none

access to *
by * read

HIHHH R
end of sl apd. conf
HUHH B R

Appendix 2: Samba config

[gl obal]
net bi os name = vnil5
wor kgroup = S2
encrypt passwords = Yes
preferred master = Yes
Wi ns suprort = Yes
log level =1

Make this a PDC
donai n | ogons = Yes
os level = 34

| ocal master = yes
donmai n master = yes

LDAP par ans

| dap admin dn = cn=nmanager, dc=exanpl e, dc=org
| dap server = brick.skills-1st.co.uk

| dap suffix = dc=exanpl e, dc=org

| dap ssl = start tls

Required share on PDC

[net | ogon]
conment = Domai n | ogon service
pat h = /var/sanbal/ netl ogon
public = no
witeable
br owsabl e

no
no

Profile store for NI/ 2k
[profile]
path = /var/sanbal/profile
create mask = 0600
directory mask = 0700
nt acl support = no
read only = no

[hones]
guest ok = no
read only = no

